
MSc Computer Science
Final Project

Model Checking DOGLog:
Implementing Risk Assessment
with Object-Oriented
Disruption Graphs

Caz Saaltink

Supervisor: dr. Stefano Maria Nicoletti
Co-supervisor: dr.ing. Ernst Moritz Hahn
2nd supervisor: dr. Tom van Dijk
External supervisor: prof.dr. Giancarlo Guizzardi

June, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Abstract

Risk assessment in complex systems increasingly requires the consideration of both safety
and security. Traditional methods often face challenges in unifying these aspects and
explicitly modeling the objects at risk within a system. The WATCHDOG framework
addresses these challenges by introducing object-oriented DisruptiOn Graphs (DOGs).
DOGs combine fault trees, attack trees, and object graphs to provide a comprehensive
modeling approach. To reason about these DOGs, WATCHDOG has DOGLog, a spe-
cialized three-layered logic. This thesis details the design and implementation of a model
checker for DOGLog. The core contribution is the development and implementation of
model checking algorithms for DOGLog, which utilize Binary Decision Diagrams (BDDs)
and Multi-Terminal BDDs (MTBDDs) for efficient analysis. The developed algorithms
support DOGLog’s three layers: Boolean disruption propagation, probability calculations,
and object-specific risk computations. The practical utility of DOGLog is demonstrated
through a comprehensive case study of a cyber-physical pipeline system. This case study
illustrates how ODF, the implemented tool, is used to analyze complex risk scenarios, iden-
tify optimal system configurations, and aid in the validation and refinement of risk models
by uncovering subtle modeling issues. The thesis concludes by discussing current limita-
tions and proposing future enhancements for both DOGLog and the broader WATCHDOG
framework.

Keywords : fault trees, attack trees, binary decision diagrams, formal methods, risk assess-
ment, model checking, object-oriented risk analysis

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Fault Trees . 4
2.2 Attack Trees . 5
2.3 Binary Decision Diagrams . 5

2.3.1 Complement Edges . 6
2.4 Multi-Terminal Binary Decision Diagrams 7
2.5 WATCHDOG . 9

2.5.1 Formal Definitions . 10
2.5.2 DOGLog Syntax . 12

3 Related Work 13
3.1 Specification and Verification of Fault Tree and Attack Tree Properties . . . 13
3.2 Custom Logics for Fault Trees and Attack Trees 13

3.2.1 Boolean Fault Tree Logic (BFL) . 13
3.2.2 Probabilistic Fault Tree Logic (PFL) 14
3.2.3 Attack Tree Metrics Logic (ATM) 14
3.2.4 Relation to WATCHDOG and DOGLog 15

4 Methodology 16
4.1 Model Checking . 16

4.1.1 Layer 1 Formulae . 16
4.1.2 Layer 2 Formulae . 18
4.1.3 Layer 3 Formulae . 24

4.2 Implementation . 28
4.2.1 Technology . 31
4.2.2 Numerical Precision . 31
4.2.3 Optimal Configuration Representation 31
4.2.4 Testing Methodology . 32

5 Case Study 34
5.1 Introduction . 34
5.2 Pipeline System . 34

5.2.1 BDMP Modeling . 35
5.3 Creating the DOG . 39
5.4 DOGLog Analysis . 45

i

6 Discussion and Future Work 54
6.1 WATCHDOG Limitations and Possible Extensions 54
6.2 Potential Enhancements to DOGLog and WATCHDOG 55

6.2.1 Nodes as Parameters for Layer 3 Functions 55
6.2.2 Direct Probability Calculation and Comparison 56
6.2.3 Support for Variables and Arithmetic Operations 56
6.2.4 Modeling Conditional Probabilities and Impacts in DOGs 57

6.3 Correctness and Verification of ODF . 58
6.4 Performance Evaluation . 59

7 Conclusion 60
7.1 Answers to Research Questions . 60

A Declarations 67
A.1 Use of AI . 67

ii

Chapter 1

Introduction

Fault trees are widely used in safety and reliability engineering to ensure that systems
are designed to be robust against failures [18, 39]. They model how component failures
propagate through a system to cause a system-level failure. This model enables engineers
to identify critical components and design redundancies to prevent system failures. At-
tack trees are a similar model used in security engineering to model how an attacker can
compromise a system [21, 46]. They assist security engineers in identifying possible attack
vectors and designing appropriate defensive measures.

Research has shown that safety and security are closely related concerns that should
often be considered together [12, 13, 19, 21, 50]. This recognition has led to the develop-
ment of methods that combine fault trees and attack trees into unified models [19, 21, 25,
29]. Such integrated models enable engineers to analyze the interactions between system
failures and attacks, leading to improvements in system robustness. However, safety and
security requirements do not always align, i.e., sometimes improving a system’s safety can
come at the cost of its security, and vice versa. A notable example comes from a European
luxury car manufacturer that implemented an automatic door unlocking mechanism for
crash situations [47]. While this safety feature was intended to help in accidents, it created
a security vulnerability where attackers could trigger the system by applying pressure to
the car’s roof, thereby gaining unauthorized access.

The WATCHDOG framework [31] is a novel approach that combines fault trees and
attack trees with object graphs to model relationships between events/actions and objects
at risk. By connecting both types of trees to objects, WATCHDOG allows us to analyze
optimal properties of those objects to minimize the risk they are exposed to. Consider the
example of the car crash door unlocking mechanism earlier. Figure 1.1 shows an object-
oriented DisruptiOn Graph (DOG) modeling different events, actions, and objects in the
system of a car. The DOG consists of three main components: an attack tree (left), a fault
tree (right), and an object graph (bottom). The object graph shows relevant objects in
the system and their relationships. An arrow between objects indicates that one object is
a part of another object. For instance, the lock is part of the door, which in turn is part of
the car. Events and actions can be connected to conditions, e.g., the event “Door locked” is
connected to the condition “!Crash_Unlock”. The condition consists of a negation operator
“!” and the object property “Crash_Unlock”, which represents the mechanism that unlocks
the door when the car crashes. When a condition is connected to an event or action, it
means that the event or action can only occur if the condition is satisfied. In this case,
the door can only be locked if the crash unlocking mechanism is disabled. From a safety
perspective, having the crash unlocking mechanism enabled is beneficial, as it prevents the
“!Crash_Unlock” condition from being satisfied. However, from a security perspective, this

1

Door locked

Car
1

Door
4

Lock
5

Driver
2

Thief
breaks into

car

Thief has
key

Doors are
unlocked

Pressure
on roof

Driver
forgot to

lock

Driver stuck
in crashed

car

Car crash

Stuck in
car

5

1

4

3

5 1,2

1,2

1,2

5

Driver
can't move

2

!Crash_UnlockCrash_Unlock

Roof
3

Figure 1.1: Example DOG for the car crash door unlocking mechanism

mechanism creates a vulnerability by allowing attackers to unlock the doors by applying
pressure to the roof. Using the WATCHDOG framework, one can analyze the optimal
configuration of object properties to minimize the risk exposure of the car.

Another important aspect of WATCHDOG is its ability to analyze risk exposure at the
object level [31]. For example, with WATCHDOG, one can compute the minimum and
maximum risk exposure of the car, or determine the most risky event or action the driver
participates in. This is where the relation between objects and events/actions comes into
play. These relationships are shown by the small blue numbers in the corners of the nodes
in the attack and fault trees. For example, the action “Thief has key” only affects the lock,
while the event “Car crash” affects both the driver and the car, which in turn affects the
roof, door, and lock as they are part of the car (as indicated by the arrows).

To perform these risk calculations and determine optimal property configurations, Nico-
letti et al. developed a custom logic called DOGLog [31]. In addition to the mentioned
computations about objects, this logic also allows specification of DOG properties, such as
“Is it possible for the driver to be stuck in the car given that the door is not locked?”, or
“What is the probability that the doors are not unlocked, but the thief has the key?” The
thesis aims to develop algorithms to implement the DOGLog logic, and to create a tool for
evaluating DOGLog properties on DOGs. This thesis is guided by the following research
questions:

RQ1. How can model checking algorithms be designed and implemented for the three
layers of DOGLog?

RQ2. How can DOGLog be used for performing risk analysis on a complex system, and
what conclusions can be drawn from the application of DOGLog to such a system?

RQ3. What are the current limitations of the WATCHDOG framework and its associated
logic DOGLog, and what are the most promising opportunities for future enhance-
ments to improve its expressiveness and usability?

The report is structured as follows. First, Chapter 2 presents the necessary background
information and formal definitions of fault trees, attack trees, binary decision diagrams, and
the WATCHDOG framework. Next, we review related work in Chapter 3. In Chapter 4,

2

we present our proposed methodology for implementing the DOGLog logic. We then
demonstrate the practical application of our work in a case study in Chapter 5. Chapter 6
discusses the findings, limitations, and potential future work. Finally, we conclude the
report in Chapter 7.

3

Chapter 2

Preliminaries

2.1 Fault Trees

A fault tree is a directed acyclic graph (DAG) that models how component failures prop-
agate through a system to cause a system-level failure. The structure consists of events
connected by logical gates, which determine how failures combine and propagate.

Events in a fault tree are categorized into two types: basic events (BEs) representing
atomic component failures, and intermediate events (IEs) representing composite failures
that result from combinations of other events. These combinations are determined by
logical gates, namely AND gates requiring all inputs to fail, and OR gates requiring at
least one input to fail. The system-level failure that fault tree users are interested in
preventing is at the root of the tree, and is often called the top event or top-level event
(TLE).

The propagation of failures through the tree is determined by the gate types. For an
AND gate, the output event occurs only when all input events occur simultaneously. For
an OR gate, the output event occurs when any input event occurs.

Formally, we define a fault tree as follows:

Definition 2.1. A fault tree is a 3-tuple (E, t, ch) with E = IE∪BE and IE∩BE = ∅ where:

• E is the set of events

• IE is the set of intermediate events

• BE is the set of basic events

• t : IE 7→ {AND, OR} is a function mapping intermediate events to the type of their
gate

• ch : IE 7→ P(E)\∅ is a function mapping intermediate events to their children

The semantics of a fault tree F describes whether an event e fails, given that a set of
basic events S fail [39].

Definition 2.2. The semantics of a FT F is a function πF : P(BE) × E 7→ {0, 1} where
πF (S, e) indicates whether e fails given the set S of failed BEs. It is defined as follows:

πF (S, e) =

e ∈ S if e ∈ BE∧
x∈ch(e)

πF (S, x) if e ∈ IE and t(e) = AND

∨
x∈ch(e)

πF (S, x) if e ∈ IE and t(e) = OR

4

A set of basic events that cause the top event to fail is called a cut set. If the set is also
minimal, i.e., removing any basic event from the set means the top event no longer fails, it
is called a minimal cut set (MCS). Minimal cut sets are of interest to fault tree analysts,
as they provide insight into which components are critical to the system’s reliability. The
dual of a cut set is a path set, which is a set of basic events such that if none of the events
fail, it is impossible for the top event to fail. Similarly, a minimal path set (MPS) is a path
set that is minimal.

2.2 Attack Trees

Attack trees are very similar to fault trees, but instead of modeling system failures, they
model how an attacker can compromise a system. The structure of an attack tree is
similar to that of a fault tree, with events representing possible attacks and logical gates
determining how attacks combine and propagate. Instead of events, attack tree nodes are
called attack steps (ASs), leafs are called basic attack steps (BASs), and the remaining
nodes are intermediate attack steps (IASs). The gates in an attack tree are the same as
in a fault tree, with AND gates requiring all inputs to succeed and OR gates requiring at
least one input to succeed.

Definition 2.3. An attack tree is a 3-tuple (AS, t , ch) with AS = IAS∪BAS and IAS∩BAS =
∅ where:

• AS is the set of attack steps

• IAS is the set of intermediate attack steps

• BAS is the set of basic attack steps

• t : IAS 7→ {AND, OR} is a function mapping intermediate attack steps to the type of
their gate

• ch : IAS 7→ P(AS)\∅ is a function mapping intermediate attack steps to their children

The semantics of an attack tree A describes whether an attack step a has succeeded,
given that a set of basic attack steps S have succeeded.

Definition 2.4. The semantics of an AT A is a function πA : P(BAS)× AS 7→ {0, 1} where
πA(S, a) indicates whether a has succeeded given the set S of succeeded BASs. It is defined
as follows:

πA(S, a) =

a ∈ S if a ∈ BAS∧
x∈ch(a)

πA(S, x) if a ∈ IAS and t(a) = AND

∨
x∈ch(a)

πA(S, x) if a ∈ IAS and t(a) = OR

Similar to MCSs for fault trees, a minimal attack scenario (MAS) is a minimal set of
basic attack steps that, when succeeded, guarantees the success of system compromise.

2.3 Binary Decision Diagrams

A Binary Decision Diagram (BDD), introduced by Lee [23] and further developed by
Akers [2] and Bryant [7], is a directed acyclic graph that represents a Boolean function.

5

The structure consists of decision nodes representing variables, terminal nodes representing
Boolean values, and edges representing variable assignments.

Each non-terminal node in a BDD represents a Boolean variable and has exactly two
outgoing edges: a high edge (typically denoted by a solid line) representing the case where
the variable is true, and a low edge (typically denoted by a dashed line) representing the
case where the variable is false. The terminal nodes are labeled with ⊤ or ⊥, representing
the Boolean values true and false respectively.

The evaluation of a Boolean function represented by a BDD follows a path from the root
node to a terminal node, with the path determined by the assignment of values to variables.
At each decision node, the evaluation proceeds along the high edge if the corresponding
variable is true, and along the low edge if it is false.

Definition 2.5. A Binary Decision Diagram is a 4-tuple BDD = (V,Low ,High,Lab)
where:

• V is the set of nodes

• Low : V 7→ V maps nodes to their low child

• High : V 7→ V maps nodes to their high child

• Lab : V 7→ Vars ∪ {⊤,⊥} maps non-terminal nodes to the variable they represent
and terminal nodes to their value

Additionally,

• Vars(BDD) is the set of variables in the BDD,

• every v ∈ V has an index Idx (v) ∈ N that determines the variable ordering, such that
for all non-terminal nodes v, if u = Low(v) or u = High(v) then Idx (v) < Idx (u)

• vr ∈ V is the root node, also denoted Root(BDD), and Idx (vr) = 0,

A Reduced Ordered Binary Decision Diagram (ROBDD), created by Bryant, is a type of
BDD that enforces additional constraints to ensure efficiency and canonicity [7]. These
constraints are:

1. No two distinct nodes represent the same function (reduced)

2. Variables appear in a fixed order along all paths from root to terminal nodes (ordered)

3. No variable node has identical high and low children (no redundant variables)

The canonicity of ROBDDs provides two important properties:

1. Equivalence checking of Boolean functions reduces to checking isomorphism of their
ROBDDs

2. Tautologies and contradictions have unique representations: a single ⊤ node and a
single ⊥ node, respectively

From now on, we will refer to Reduced Ordered Binary Decision Diagrams as BDDs, unless
explicitly stated otherwise.

2.3.1 Complement Edges

An often-used optimization for the BDD data structure is the use of complement edges [2].
This technique reduces the size of the BDD by allowing the representation of a Boolean
function and its negation with the same subgraph.

6

A complement edge indicates that the function represented by the node it points to
should be negated. This is typically implemented by adding a “complement” attribute to
each edge. When traversing a path from the root to a terminal node, the resulting value
is inverted each time a complement edge is followed.

The use of complement edges has two main advantages. First, it can significantly
reduce the number of nodes in the BDD. If a function and its negation are both needed
within a larger BDD, only one of them needs to be explicitly represented. The other is
represented by a complement edge pointing to the existing subgraph.

Second, it simplifies the negation operation. Negating a function represented by a BDD
with complement edges can be done in constant time by simply complementing the edge
pointing to the root of the BDD.

With complement edges, only a single terminal node, typically the ⊤ node, is required.
The ⊥ value is represented by a complement edge pointing to the ⊤ node. This further
reduces the size of the BDD representation.

An example of this can be seen in Figure 2.1, which shows the BDD for the function
f(x1, x2) = x1 ←→ x2 with and without complement edges. In the standard BDD, two
separate branches are required to represent the positive and negative cases. With comple-
ment edges, the BDD can reuse the same subgraph for both cases, with the low edge of x1
complementing the result of the x2 node. This reduces the number of nodes and simplifies
the overall structure.

x1

x2x2

⊤⊥

(a) Without complement edges.

x1

x2

⊤

-1

-1

(b) With complement edges.

Figure 2.1: Comparison of BDDs for f(x1, x2) = x1 ←→ x2 with and without
complement edges. The “-1” denotes a complement edge.

2.4 Multi-Terminal Binary Decision Diagrams

A Multi-Terminal Binary Decision Diagram (MTBDD) is a generalization of a BDD that
allows for more than two terminal nodes [10, 14]. While a standard BDD represents a
function mapping Boolean variables to a Boolean value ({⊤,⊥}), an MTBDD can represent
a function that maps Boolean variables to a value from an arbitrary set. The terminal
nodes in an MTBDD are not restricted to Boolean values but can instead hold values from
a specified domain, such as integers or real numbers.

In the context of this thesis, we are particularly interested in MTBDDs where the
terminal nodes represent numeric values. This allows for the representation of functions of
the form f : {⊤,⊥}n → R. Each path from the root to a terminal node corresponds to a
specific assignment of the Boolean variables, and the value of the terminal node gives the

7

function’s output for that assignment.
The key point of using numeric terminal values is the ability to perform arithmetic

operations directly on the diagrams. For example, two MTBDDs can be combined us-
ing operations like addition, subtraction, or multiplication. These operations are applied
element-wise on the functions they represent, which can be implemented efficiently using
a recursive algorithm similar to the Apply algorithm used for BDDs [7]. This makes
MTBDDs a powerful tool for quantitative analysis in, e.g., risk assessment, where numeric
values associated with different system states need to be computed and combined.

An example of MTBDD addition is shown in Figure 2.2. The figure shows two MTB-
DDs representing functions f(x, y) and g(x, y), and the resulting MTBDD for their sum
h(x, y) = f(x, y) + g(x, y). The terminal nodes of the resulting MTBDD are the sums of
the corresponding terminal nodes of the input MTBDDs. For instance, for the variable
assignment (x = ⊤, y = ⊤), the path in the MTBDD for f leads to the terminal node with
value 10, and the path in the MTBDD for g leads to the terminal node with value 20. The
resulting path in the MTBDD for h leads to a terminal node with value 10 + 20 = 30.
Crucially, the assignments (x = ⊤, y = ⊥) and (x = ⊥, y = ⊤) both result in the value
25. This demonstrates the efficiency of MTBDDs, where both paths point to the same
terminal node, avoiding redundancy and ensuring a compact representation.

x

y 10

52

(a) MTBDD for a function f(x, y).

x

y y

20 153

(b) MTBDD for a function g(x, y).

x

y y

30255

(c) MTBDD for the resulting function h(x, y) = f(x, y) + g(x, y).

Figure 2.2: An example of the addition of two MTBDDs.

8

Lock gets
jammed

House
1

Door
3

Lock
4

Inhab.
2

Attacker
breaks in

house

A. enters
door left
unlocked

A. forces
door

A. destroys
door

A. picks
lock

Fire +
impossible

escape

Fire breaks
out

Door gets
blocked

3

1,2

3

3

4
1,2

1,2

3

4

Door stays
locked

3

Lock_Locked

Lock_Jammed

!House_Sprinklers

^ Inhab_Unaware
Inhab_in_House!Lock_LockedLock_Pick-able

Door_Frail

Figure 2.3: Example DOG, taken from an earlier version of [31], see [28].

2.5 WATCHDOG

WATCHDOG is a framework for ontology-aware risk assessment that combines the Com-
mon Ontology of Value and Risk (COVER) [45] with commonly used formal methods
such as fault and attack trees to enable object-oriented risk assessment [31]. At its core,
WATCHDOG introduces Object-oriented Disruption Graphs (DOGs)—a formalism that
combines attack trees and fault trees with object graphs (OGs), to allow explicit modeling
of Objects at Risk (OaRs) and their properties.

Figure 2.3 shows an example DOG modeling risks to a house and its inhabitants. The
attack tree (red, left side) models how an attacker might break into the house by, e.g.,
destroying a frail door or entering through a door left unlocked. The fault tree (purple,
right side) models how a fire could lead to inhabitants being trapped. The object graph
(blue, bottom) makes explicit that the system involves an inhabitant and a house, and
that the lock is part of the door, which in turn is part of the house. Object properties like
“Lock_Locked” and “Door_Frail” can affect how attacks and failures propagate through the
system. In this example, the lock being locked helps prevent the house from being broken
into, while it can risk trapping inhabitants in case of a fire, which makes locking the lock
a double-edged sword. This example demonstrates how DOGs combine attack/fault trees
with explicit object modeling, and how object properties can affect risk propagation.

The key innovation of WATCHDOG is that it makes objects and their roles in the
system under analysis explicit. For example, when analyzing risks related to a door being
compromised, WATCHDOG allows explicitly modeling that both the door itself and its
lock are objects at risk, with properties like “door is frail” or “lock is pickable” that affect
how attacks and failures can propagate through the system.

To reason about DOGs, WATCHDOG provides a three-layered logic called DOGLog:

• Layer 1 allows reasoning about how disruptions propagate through the system, con-
sidering both the attack/fault tree structure and object properties

• Layer 2 enables probabilistic reasoning about the likelihood of disruptions occurring

9

• Layer 3 supports analyzing risk levels, allowing questions about which objects face
the highest risks

2.5.1 Formal Definitions

In this section, we summarize the formal definitions of the key concepts in WATCH-
DOG [31]. We begin by giving the formal definition of Object-oriented Disruption Graphs,
which consist of four main components:

Definition 2.6. An Object-oriented Disruption Graph (DOG) G is a tuple (A,F,O,B)
where A is an attack tree, F is a fault tree, O is an object graph and B is a disruption
knowledge base.

Both attack trees and fault trees in a DOG can be viewed as instances of a more general
structure called a disruption tree:

Definition 2.7. A Disruption Tree (DT) T is a tuple (N,E, t) where:

• (N,E) is a rooted directed acyclic graph

• t : N 7→ {OR, AND, LEAF} is a function such that for v ∈ N , t(v) = LEAF if and only if
v is a leaf

• ch : N 7→ 2N gives the set of children of a node

• RT is the unique root of the tree T

A scenario vector b⃗ = (b1, . . . , bn) represents the state of leaves in a disruption tree,
where bi = 1 if the i-th leaf is disrupted and bi = 0 otherwise. The universe of scenarios
ST = 2LEAFT represents all possible combinations of leaf states in tree T , where each leaf
can be either disrupted (1) or operational (0).

The behavior of a disruption tree is specified by its structure function fT (see Defini-
tion 2.8), which, based on the currently disrupted leaves, indicates for each node whether
it is disrupted [39].

In general, when a distinction between attack trees and fault trees is needed, we use
subscripts _A and _F , respectively. For example, SA is the universe of scenarios for an
attack tree, and b⃗F is a fault scenario. Additionally, NF and NA are the sets of nodes in
fault and attack trees, respectively.

Definition 2.8. The structure function of a disruption tree T is a function fT : Bn×N 7→ B
that indicates whether a node v ∈ N is disrupted in a given scenario b⃗ .

fT (b⃗ , v) =

bi if v = vi ∈ LEAF∨

v′∈ch(v) fT (b⃗ , v
′) if v ∈ IE and t(v) = OR∧

v′∈ch(v) fT (b⃗ , v
′) if v ∈ IE and t(v) = AND

WATCHDOG introduces Object Graphs (OGs) to explicitly specify objects that par-
ticipate in safety- and security-related events/actions in the system, as well as to model
relationships between objects.

Definition 2.9. An Object Graph (OG) O is a tuple (NO, EO,OP , cOP) where:

• NO is the set of nodes representing Objects at Risk (OaRs)

• EO ⊆ NO×NO is the set of directed edges representing the parthood relation between
OaRs

10

• OP is the set of atomic propositions representing object properties of OaRs

• cOP : NO 7→ 2OP is a function that returns the set of properties of a node v ∈ NO

Additionally, ch : NO 7→ 2NO gives the set of parts of a node and O has a unique root,
denoted RO.

Similar to scenario vectors for disruption trees, a configuration vector b⃗O = (o1, . . . , om)
represents the state of properties in an object graph:

Definition 2.10. A configuration b⃗O is a Boolean vector assigning values to properties
op ∈ OP . fO : Bn × OP 7→ B is a valuation function where fO(b⃗O, op) = 1 if and only if
property op ∈ OP equals 1 given configuration b⃗O. The set of all possible configurations
is denoted by C.

The final component of a DOG is its Disruption Knowledge Base (DKB), which es-
tablishes formal relationships between events/actions and the objects that participate in
them.

Definition 2.11. A Disruption Knowledge Base (DKB) is a tuple (D, Im,Pa,Pr) where:

• D = NA ∪NF ∪NO is the entity domain, where NA, NF and NO are pairwise disjoint

• Im : NA ∪NF 7→ R≥0 assigns an impact factor to events/actions

• Pa : NA ∪NF 7→ 2NO returns the set of participating objects for an event/action

• Pr : NA ∪NF 7→ 2OP returns the preconditions, where Pr(v) =
⋃

o∈Pa(v) cOP(o)

For each event or action v, there is also an associated condition Cond(v), which is a
Boolean formula over the preconditions Pr(v). The atomic propositions in Cond(v) are
op ∈ Pr(v), and they can be connected with the usual logical operators ∧ and ¬ (other
operators can be derived from these).

Let Form be the set of all Boolean formulae over preconditions, then we can evaluate
conditions using a function fCond :

Definition 2.12. The condition evaluation function fCond : Bn×Form 7→ B takes as input
a configuration vector b⃗O and conditions Cond(v). We have fCond (b⃗O,Cond(v)) = 1 if and
only if b⃗O satisfies Cond(v).

To account for object properties in disruption propagation, WATCHDOG extends the
basic structure function with conditions from the DKB. For an element v in NA or NF to
be disrupted, two conditions must be met:

• The element must be disrupted according to the basic structure function

• The conditions Cond(v) must evaluate to true

This is captured by the extended structure function f ◦T :

Definition 2.13. The extended structure function of a disruption tree T is a function
f ◦T : Bn × Bn × N 7→ B that takes as input a scenario b⃗ , a configuration b⃗O, and a node
v ∈ N . It is defined as:

f ◦T (b⃗ , b⃗O, v) =

bi ∧ fCond (b⃗O,Cond(v)) if v = vi ∈ LEAF∨

v′∈ch(v) f
◦
T (b⃗ , b⃗O, v

′) ∧ fCond (b⃗O,Cond(v)) if v ∈ IE and t(v) = OR∧
v′∈ch(v) f

◦
T (b⃗ , b⃗O, v

′) ∧ fCond (b⃗O,Cond(v)) if v ∈ IE and t(v) = AND

11

2.5.2 DOGLog Syntax

DOGLog is structured in three syntactic layers, where each layer has its distinct purpose:

• Layer 1 (ϕ): Reasons about disruption propagation through the system

• Layer 2 (ψ): Reasons about disruption probabilities

• Layer 3 (ξ): Reasons about safety and security risk levels

The syntax is defined as follows:

Layer 1: ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ[a 7→ bool] | MRS(ϕ)

Layer 2: ψ ::= P(ϕ) ▷◁ p | ¬ψ | ψ ∧ ψ | ψ[e 7→ q]

Layer 3: ξ ::= MostRisky∗(o) | TotalRiskmax
(o) | TotalRisk

min
(o)

| OptimalConf(o) | ξ[op 7→ bool]

In layer 1, atomic propositions a can represent any element in an AT or FT, or any object
property, i.e., a ∈ NA ∪ NF ∪ OP . The syntax [a 7→ bool] represents setting evidence:
assigning Boolean values to events, actions or object properties to construct what-if sce-
narios. With MRS(ϕ) we identify minimal risk scenarios (MRSs): minimal assignments on
leaves of the FT and AT, such that formula ϕ is satisfied.

Layer 2 formulae contain P(ϕ) to denote the probability that ϕ holds, with ▷◁ ∈ {<
,≤,=,≥, >} representing comparison operators for probability thresholds. Setting proba-
bilistic evidence is done via [e 7→ q], where e ∈ NA ∪NF is an event/action and q ∈ [0, 1] is
a probability value.

The main operators in layer 3 analyze risks for a specific object o. MostRisky∗(o) (with
∗ ∈ {A,F }) identifies the most risky action (MostRiskyA) or event (MostRiskyF) for an
object o. TotalRisk

min
(o) and TotalRisk

max
(o) compute the minimum and maximum total risk o is

exposed to, by considering all possible configurations of object properties. OptimalConf(o)
determines the configuration of object properties that minimizes the total risk for o. Fi-
nally, object properties op ∈ OP can be assigned Boolean values via [op 7→ bool] to create
configuration-specific scenarios.

12

Chapter 3

Related Work

3.1 Specification and Verification of Fault Tree and Attack
Tree Properties

Researchers have developed formal methods support for specifying and verifying system
properties of dynamic fault trees and attack trees, or combinations thereof. Methods exist
for formally specifying properties using temporal logics, as well as techniques for verifying
these properties through model checking [3, 36, 48].

The formal methods involved in property specification and verification for dynamic
fault trees and attack trees typically involve two key aspects: (1) specification languages
for expressing properties, and (2) analysis techniques for verifying these properties. For
specification, temporal logics like Computation Tree Logic (CTL) can be used to express
properties about the ordering and timing of events. For example, CTL can specify that a
condition must hold for all paths and all states of a system model.

The analysis of fault trees and attack trees often involves transformation to formal
models that enable automated verification [3, 36, 4]. Common target formalisms include
timed automata, Petri nets, and Markov models.

These formal models can then be analyzed using model checking tools to verify prop-
erties expressed in temporal logic, such as:

• Safety properties: ensuring bad states are never reached (which is the same as stating
that some good property is always satisfied)

• Liveness properties: ensuring desired states are eventually reached

However, none of these methods allow reasoning about the structure of the fault tree or
attack tree itself. Instead, they rely on the fact that the tree can be transformed into some
other formalism, for which specification and verification tools already exist.

3.2 Custom Logics for Fault Trees and Attack Trees

Recent work has introduced several logics for analyzing fault trees and attack trees. These
logics provide formal languages for expressing and verifying properties about such trees,
each focusing on different aspects.

3.2.1 Boolean Fault Tree Logic (BFL)

BFL [26] introduces a two-layered logic for formally specifying and verifying properties of
fault trees.

13

The first layer provides Boolean operators and allows setting evidence and computing
minimal cut/path sets. The second layer adds quantifiers and independence checking
between formulae.

With BFL, one can:

• Investigate what-if scenarios by setting evidence

• Check independence between formulae

• Compute minimal cut and path sets

• Find upper/lower bounds for failing elements

The logic supports checking whether specific status vectors satisfy a property, computing
all satisfying status vectors, and generating counterexamples when properties do not hold.

Two implementation approaches have been developed: (1) a BDD-based algorithm [26],
which cleverly exploits the properties of BDDs to efficiently compute minimal cut/path sets
and independence checks, and (2) a QSAT-based approach that translates BFL formulae
to Quantified Boolean Formulae (QBF) for solving [43] using a QBF solver. These ap-
proaches complement each other, as different types of queries may be better suited for one
implementation over the other [43]. At the time of writing, only the QSAT-based approach
has been implemented, while the BDD-based approach is still under development.

3.2.2 Probabilistic Fault Tree Logic (PFL)

PFL [30] extends BFL to reason about probabilities in fault trees. In addition to Boolean
reasoning, PFL enables:

• Checking probability bounds on events

• Setting probabilistic evidence

• Computing actual probability values

For example, with PFL one can check that “the probability of the top event occurring is
less than 0.1” or compute “the probability that gate G1 fails given that gate G2 has failed”.
To achieve this, PFL combines layer 1 of BFL with two new layers:

• Layer 1: Boolean reasoning (inherited from BFL)

• Layer 2: Probability bounds and evidence, and independence checking

• Layer 3: Probability value computation and evidence

PFL uses BDDs to compute probabilities, in a way that seems similar to the algorithm
proposed in [37]. An implementation of PFL does not yet exist.

3.2.3 Attack Tree Metrics Logic (ATM)

ATM [27] adapts the concepts from BFL and PFL to attack trees, allowing it to evaluate
a variety of security metrics, including but not limited to attack cost, attack probability,
and required attacker skill level. For example, one can use ATM to check that “the cost
of a DDoS attack is less than 1000 given that a machine is compromised” or compute “the
probability that an attacker can compromise a machine given that they have access to the
network”.

ATM consists of four layers:

• Layer 1: Boolean reasoning and minimal attacks (inherited from BFL)

• Layer 2: Metric bounds and setting attribution evidence (similar to layer 2 of PFL)

14

• Layer 3: Metric computation and setting attribution evidence (similar to layer 3 of
PFL)

• Layer 4: Quantification over layer 1 and 2 formulae (similar to layer 2 of BFL)

ATM uses BDDs to compute security metrics. However, since an attacker makes conscious
decisions about which actions to take, whereas faults are random events, the computation
of probabilities in ATM uses a different approach than in PFL. The approach is based on
the one proposed in [24]. No implementation of ATM exists at the time of writing.

3.2.4 Relation to WATCHDOG and DOGLog

The logics BFL, PFL and ATM serve as important precursors to DOGLog [31], each
contributing valuable concepts:

• From BFL: the concept of layered logic specification and the ability to reason about
Boolean properties, minimal cut/path sets, and setting evidence to investigate what-
if scenarios

• From PFL: quantitative analysis capabilities, particularly for probability computa-
tion

• From ATM: the ability to compute security metrics

WATCHDOG extends beyond these logics by:

• Integrating both fault trees and attack trees in a unified framework

• Adding explicit modeling of objects and their properties

• Computing risk values for objects that participate in events and actions

This makes WATCHDOG more suitable for risk assessment where both safety and security
aspects need to be considered. Further, WATCHDOG’s object-oriented approach allows
for reasoning about the impact of object properties on the propagation of risk in the
system. This can be crucial, as noted in [19]: “when considered jointly, safety and security
requirements or measures [can] lead to conflicting situations.” For example, an exit door
should be easily accessible in case of a fire (safety requirement), but should be secure
against unauthorized access (security requirement) [13, 47, 12].

Note that while there is overlap in the capabilities of DOGLog, BFL, PFL, and ATM,
none of these logics fully subsume another. Each logic introduces unique features or focuses
on different aspects of risk and security analysis. As a result, no single logic contains all
the expressiveness or analysis capabilities of another.

15

Chapter 4

Methodology

This chapter addresses the first research question: How can model checking algorithms be
designed and implemented for the three layers of DOGLog? To answer this, the chapter
details the design of the model checking algorithms for these layers and the subsequent
implementation of these algorithms.

4.1 Model Checking

4.1.1 Layer 1 Formulae

Model checking formulae in layer 1 involves translating the formulae into BDDs. Layer
1 formulae reason about disruption propagation in the DOG using atomic propositions
from the set NA ∪NF ∪OP . The translation from formulae to BDDs follows Algorithm 1,
which takes a DOG G and a formula ϕ as input and produces a BDD B

ϕ
G representing the

formula ϕ over G. The algorithm uses translation functions fA and fF to translate FT and
AT nodes of the DOG into BDDs, while also taking their object properties into account.

Below, operations on BDDs are in bold (e.g., ∧∧ for conjunction, ¬¬ for negation, and
¬∃¬∃ for negated existential quantification).

Definition 4.1. Let Ba(x) be a BDD with a single node v with Lab(v) = x, Low(v) = ⊥
and High(v) = ⊤.

Definition 4.2. The translation function of a disruption tree T is a function fT : NT →
BDD that takes as input an element v ∈ NT .1

fT (v) =

Ba(v)∧∧BC (Cond(v)) if v ∈ LEAF∨∨∨∨∨∨

v′∈ch(v)fT (v
′)∧∧BC (Cond(v

′)) if v ∈ IE and t(v) = OR∧∧∧∧∧∧
v′∈ch(v)fT (v

′)∧∧BC (Cond(v
′)) if v ∈ IE and t(v) = AND

where BC (Cond(v)) is the translation of the condition Cond(v) into a BDD, as defined
below.

Definition 4.3. The translation of a condition Cond(v) into a BDD is given by the
function BC : Form → BDD that takes as input a Boolean formula over preconditions Pr(v):

BC (φ) =

Ba(op) if φ = op ∈ OP

¬¬BC (φ
′) if φ = ¬φ′

BC (φ
′)∧∧BC (φ

′′) if φ = φ′ ∧ φ′′

1This definition is adapted from an unpublished draft of [31].

16

We also allow priming variables: if we have V = {xi}ni=1, then V ′ = {x′i}ni=1. Then
we let Bϕ

G[V↷↷V ′] denote the BDD obtained by replacing each variable xi in B
ϕ
G with x′i.

Furthermore, we have V ′⊂⊂V ≡ (
∧∧∧∧∧∧

i x
′
i ⇒⇒ xi) ∧∧ (

∨∨∨∨∨∨
i x

′
i ̸≠= xi), meaning that the number

of variables set to true in V ′ is strictly less than the number of variables set to true in V .
We use Restrict as defined in [7].

Algorithm 1 Compute B
ϕ
G from DOG G and ϕ (adapted from an unpublished

draft of [31])
Input: DOG G, formula ϕ
Output: BDD B

ϕ
G

1: function L1BDD(G, ϕ)
2: if ϕ = a then
3: if a ∈ NA then return fA(a)
4: else if a ∈ NF then return fF (a)
5: else if a ∈ OP then return Ba(a)
6: else if ϕ = ¬ϕ′ then return ¬¬ (L1BDD(G, ϕ′))
7: else if ϕ = ϕ′ ∧ ϕ′′ then return L1BDD(G, ϕ′)∧∧L1BDD(G, ϕ′′))
8: else if ϕ = ϕ′[ai 7→ bool] then return Restrict(L1BDD(G, ϕ′), xi, bool ∈ B)
9: else // ϕ = MRS(ϕ′)

10: V ← Vars(L1BDD(G, ϕ′)) \OP // minimality does not apply to OPs
11: return L1BDD(G, ϕ′)∧∧(¬∃¬∃V ′.(V ′⊂⊂V)∧∧L1BDD(G, ϕ′)[V↷↷V ′])

We define some predicates to distinguish between different types of nodes in a BDD
that is output by Algorithm 1.

Definition 4.4. Let G be a DOG and B = (V,Low ,High,Lab) be a BDD. For a node
v ∈ V , we define the following predicates:

τOP(G, v) ⇐⇒ Lab(v) ∈ OP

τAT(G, v) ⇐⇒ Lab(v) ∈ NA

τFT(G, v) ⇐⇒ Lab(v) ∈ NF

where OP , NA, and NF are the sets of object properties, attack tree nodes, and fault tree
nodes in G respectively.

The BDD B
ϕ
G, computed by Algorithm 1, represents all satisfying assignments for a

given layer 1 formula ϕ. This BDD is then utilized to answer two types of queries:

1. Check: This query determines if a specific assignment of truth values to all variables
in ϕ satisfies the formula. The variables include any object properties (op ∈ OP),
attack tree nodes (a ∈ NA), and fault tree nodes (f ∈ NF) that are part of ϕ. The
process involves:

• Constructing Bϕ
G using Algorithm 1.

• Traversing B
ϕ
G from its root node according to the provided assignment. At

each decision node, the path follows the high edge if the node’s variable is true
in the assignment, and the low edge if it is false.

• If this traversal leads to the ⊤ terminal node, the assignment satisfies ϕ. If it
leads to the ⊥ terminal, it does not.

2. Compute All Minimal Scenarios: This query identifies all minimal scenarios to
the non-object-property variables (i.e., variables from NA∪NF) that satisfy a formula
ϕ.

17

• If ϕ depends on object properties, their values must be specified as part of the
query.

• The MRS(ϕ) operator, as detailed in Algorithm 1, is then used to only return
the minimal risk scenarios.

• Each path from the root to the ⊤ terminal in this resulting BDD corresponds
to a minimal risk scenario for ϕ.

It is important to note that for minimal risk scenarios, while no sub-scenario satisfies ϕ,
adding attacks or faults (i.e., creating a super-scenario) does not guarantee that the new
scenario will still satisfy ϕ. This is because ϕ can contain negations, leading to potentially
non-monotonic (also called incoherent) behavior.

4.1.2 Layer 2 Formulae

In addition to the usual Boolean operators, layer 2 formulae allow checking probabilities,
as well as setting probabilistic evidence on atomic propositions in NA ∪NF .

Semantics. The probability semantics of DOGLog involve calculating the probability of
a given layer 1 formula ϕ under a specific configuration b⃗O. This is done by considering
all possible fault scenarios b⃗F ∈ SF in the fault tree and computing the probability of
each scenario [31]. For each fault scenario, we then determine the maximal probability of
successfully attacking the attack tree nodes in ϕ under the given configuration. Calculating
the probability in this way reflects Assumption 4 in [31], which states that the attacker
knows which elements have failed before choosing their actions.

α : BAS ∪ BE 7→ [0, 1] is a function that assigns a probability to each basic node. The
probability ρ(ϕ, b⃗O)A,F is calculated using the equation [31]:

ρ(ϕ, b⃗O)A,F =
∑

b⃗F∈SF

Prob(b⃗F)× PA(Set(ϕ, b⃗F , b⃗O))

Here, Prob(b⃗F) represents the probability of a fault scenario b⃗F , which is calculated with
Prob(b⃗F) =

∏k
i=1 bi × α(vi) + (1 − bi) × (1 − α(vi)), and PA(Set(ϕ, b⃗F , b⃗O)) represents the

maximal probability of successfully attacking the AT nodes in ϕ given the fault scenario
and configuration.

The PA(ϕ) equation [31]:

PA(ϕ) = max
b⃗A∈JϕKA

∏
v∈b⃗A

α(v)

is used to compute the probability of an attack succeeding by taking the maximum product
of the probabilities α(v) of the activated attack steps v ∈ b⃗A in the minimal attack scenarios
of ϕ (denoted b⃗A ∈ JϕKA).

Set(ϕ, b⃗F , b⃗O), is used to adjust the formula ϕ based on the fault scenario b⃗F and
configuration b⃗O [31]. It replaces the atomic propositions a ∈ NF ∪ OP in ϕ with their
corresponding truth values derived from the fault scenario and configuration, allowing the
computation of the probability of the adjusted formula.

The algorithm. To compute the probabilities in practice, we use Algorithm 2, which is
based on two algorithms: BDDDAG from [8, 24], and the algorithm in Fig. 7 of [37] (which
we will refer to as pTLE from now on).

18

Algorithm 2 Compute probability ρ(ϕ, b⃗O)A,F from DOG G, formula ϕ, and con-
figuration b⃗O
Input: DOG G, formula ϕ, configuration b⃗O
Output: probability ρ(ϕ, b⃗O)A,F

1: function L2Prob(G, ϕ, b⃗O)
2: B

ϕ
G = (V,Low ,High,Lab)← L1BDD(G, ϕ)
// With variable order: ∀o ∈ OP , f ∈ NF , a ∈ NA. Idx (o) < Idx (f) < Idx (a)

3: r ← vr // Start at root node

4: while Lab(r) ∈ OP do // Skip over OP nodes until reaching the first FT or AT node
5: if fO(b⃗O,Lab(r)) = 1 then
6: r ← High(r)
7: else
8: r ← Low(r)

9: return CalcNodeProb(G, Bϕ
G, r)

10: function CalcNodeProb(G, Bϕ
G, r)

11: Let V ′ ⊆ V be the set of nodes in B
ϕ
G that are a descendant of r

12: P ← V ′ 7→ −
13: P [⊥]← 0, P [⊤]← 1 // Set terminal nodes

14: for all v ∈ V ′ in bottom-up order do
15: if Lab(v) ∈ NA then
16: pLow ← P [Low(v)]
17: pHigh ← P [High(v)] · α(Lab(v))
18: P [v]← max(pLow , pHigh)
19: else if Lab(v) ∈ NF then
20: pLow ← P [Low(v)] · (1− α(Lab(v)))
21: pHigh ← P [High(v)] · α(Lab(v))
22: P [v]← pLow + pHigh

23: return P [r]

19

In [37], the pTLE algorithm computes the probability of the TLE of a fault tree, based
on the fault tree’s BDD representation. The algorithm is not restricted to the TLE, but
can be used to compute the probability of any event in the fault tree.

In [8, 24], the BDDDAG algorithm enables the computation of multiple metrics on ATs,
including the probability of an attack step succeeding. For the unital semiring, we take
D∗ = ([0, 1],max, ·, 0, 1), which is also absorbing [24].

In DOGLog, we can use FTs and ATs together, so we need to somehow combine the
two algorithms. To do this, we first create a single BDD of the formula using Algorithm 1.
For the variable ordering of the BDD, we make sure that variables of OP precede variables
of NF , which in turn precede variables of NA. First, the BDD is traversed until we passed
all OP nodes, and we reach the first FT or AT node. We then calculate the probability
ρ(ϕ, b⃗O)A,F using a bottom-up approach, where we first calculate the probabilities of the
AT nodes using BDDDAG, and then use pTLE to calculate the probabilities of the FT nodes
on top of the AT probabilities.

While a formal correctness proof is beyond the scope of this practically oriented thesis,
we present an informal argument for the correctness of our approach.

It is clear that BDDDAG correctly computes the probabilities of the AT nodes in our BDD.
The purpose of Set is to adjust the formula ϕ based on the fault scenario and configuration,
because the attacker knows which elements have failed before choosing their actions (recall
Assumption 4). In the BDD, this is taken care of by the variable ordering [7], where the
variables of the FT and object properties are ordered before the variables of the AT. This
ordering ensures that when evaluating the BDD, all decisions about object properties and
fault states are made before any decisions about attack actions. As a result, by the time we
reach any attack node in the BDD, we have complete information about which components
have failed and which object properties are true. This directly implements Assumption
4 by ensuring that attack probabilities are calculated with full knowledge of the system’s
fault state.

The pTLE algorithm normally computes the probability of the TLE of a fault tree,
based on the fault tree’s BDD representation. In this BDD, the computation ends at the
terminal ⊤ and ⊥ nodes, which represent probability 1 and 0, respectively. In our combined
approach, the last FT node on a path in the BDD is parent to either a terminal node or
an AT node (or both). If it is parent to an AT node, the probability of the AT node is
already calculated by the BDDDAG algorithm, and we multiply with this probability instead
of 0 or 1, which matches the desired semantics. If instead it is parent to a terminal node,
we multiply with 0 or 1 like usual, which also matches the desired semantics.

4.1.2.1 Probability Calculation Example

Let us demonstrate the algorithm with a concrete example. We will analyze the DOG
shown in Figure 4.1, which is based on the DOG in Figure 2.3, but with one modifica-
tion: the Lock_Locked object property is removed. To keep the notation concise, we use
abbreviations for the DOG nodes as defined in Table 4.1. To make the example easier
to follow, we will color nodes according to their type: AT nodes are red, FT nodes are
purple, and object properties are blue. For this example, we will work with the formula
φ = FD ∧DGB ∨EDLU ∧ FBO .

In this example, we use probability values for the basic nodes as shown in Table 4.1.
Moreover, we consider the following configuration: b⃗O = (LP = 1,LJ = 1,DF = 1,HS =

20

LGJ

House
1

Door
3

Lock
4

Inhab.
2

Attacker
breaks in

house

EDLU

FD

DD

PL

Fire +
impossible

escape

FBO

DGB

3

1,2

3

3

4
1,2

1,2

3

4

DSL
3

LJ

¬HS ∧ IUInhab_in_HouseLP

DF

Figure 4.1: DOG for the example in Section 4.1.2.1, adapted from Figure 2.3,
with abbreviated node names (see Table 4.1).

Table 4.1: Mapping between abbreviations in Figure 4.1 and full terms in Fig-
ure 2.3, as well as probabilities for basic nodes.

Abbr. Full Term α(v) Abbr. Full Term α(v)

DD A. destroys door 0.13 HS House_Sprinklers –
DF Door_Frail – IU Inhab_Unaware –
DGB Door gets blocked – LGJ Lock gets jammed 0.70
DSL Door stays locked 0.20 LJ Lock_Jammed –
EDLU A. enters door left un-

locked
0.17 LP Lock_Pick-able –

FBO Fire breaks out 0.21 PL A. picks lock 0.10
FD A. forces door –

21

0, IU = 1). We have

fA(FD) = (PL ∧ LP) ∨ (DD ∧DF)

fA(EDLU) = EDLU

fF (DGB) = (LGJ ∧ LJ) ∧DSL

fF (FBO) = FBO ∧ (¬HS ∧ IU)

The BDD. The resulting BDD for φ under the given configuration is shown in Figure 4.2,
annotated with probability computations. The probability values are calculated differently
for AT and FT nodes.

For AT nodes, the Low edge inherits the value of its target node unchanged, while
the High edge computes the product of the target node’s value and the current node’s
probability. The node’s final value is the maximum of its Low and High edge values. This
matches BDDDAG. For FT nodes, we follow pTLE. Both edges of a node v multiply their target
values by different probabilities: the Low edge by 1−α(v) (probability of non-occurrence)
and the High edge by α(v) (probability of occurrence). The node’s value is the sum of
both edge values.

Manual calculation. Table 4.2 shows the manual calculation of the probability accord-
ing to the semantics. The first three columns represent all possible combinations of the
fault tree variables, b⃗F ∈ SF . For each combination, we calculate:

• Prob(b⃗F): the probability of this fault scenario occurring

• PA(Set(φ, b⃗F , b⃗O))2: the maximal probability of a successful attack under this fault
scenario (and the given configuration)

• Their product: the contribution of this scenario to the total probability

The sum of all products (0.050078) gives us ρ(φ, b⃗O)A,F , which matches the result from
our BDD-based computation.

Comparing the two methods. As we can see, the results from the BDD and the
manual calculation are equal. Both methods perform an exhaustive analysis of all possible
fault scenarios b⃗F ∈ SF . While the table explicitly lists each scenario and its contribution,
the BDD implicitly represents these scenarios through its paths from the root to terminal
nodes.

A path in the BDD starts at the root node, and ends at one of the terminal nodes.
Now, let us consider subpaths of these paths, such that they end at the first AT node they
encounter (if any), and let us refer to this AT (or terminal) node as ∆.

Every such subpath corresponds to one or more rows in the table. If ∆ is the terminal
node ⊤ or ⊥, the value of PA in those rows should equal 1 or 0, respectively. If the subpath
ends at an AT node, the value of PA should be equal to the value of the node.3 The value
of ∆ is calculated by BDDDAG, and is exactly equal to PA(Set(φ, b⃗F , b⃗O)), as discussed in the
previous section.

All edges until ∆ have a value that is determined by the source node v (α(v) for the
High edge, 1 − α(v) for the Low edge). Multiplying these values along the path gives us

2Abbreviated as PA in Table 4.2.
3For example, the subpath DSL 99K FBO −→ EDLU corresponds to the two rows where DSL = 0

and FBO = 1. We have ∆ = EDLU , which has a probability value of 0.17 computed by BDDDAG, and the
PA value for these rows is also 0.17.

22

FT

FT

DSL
0.050078

LGJ
0.10759

0.2 * 0.10759 = 0.021518

FBO
0.0357

0.8 * 0.0357 = 0.02856

FT FBO
0.1384

0.7 * 0.1384 = 0.09688 0.3 * 0.0357 = 0.01071

AT PL
0.13

0.79 * 0.13 = 0.1027

PL
0.17

0.21 * 0.17 = 0.0357

EDLU
0.17

0.21 * 0.17 = 0.0357

⊥
0

0.79 * 0 = 0AT DD
0.13

0.13

⊤
1

0.1 * 1 = 0.1

DD
0.17

0.17

0.1 * 1 = 0.1

AT

0.17

0.13 * 1 = 0.13 0.13 * 1 = 0.13 0

0.17 * 1 = 0.17 0

Figure 4.2: BDD for FD ∧DGB ∨EDLU ∧FBO , annotated with probability
computation, with FT nodes before AT nodes. See Table 4.1 for abbreviations and
used probabilities.

23

Table 4.2: Step-by-step calculation of ρ(φ, b⃗O)A,F by enumerating all fault sce-
narios and their corresponding attack probabilities.

DSL LGJ FBO Prob(b⃗F) PA Prob(bF) · PA
0 0 0 0.18960 0 0
0 0 1 0.05040 0.17 0.008568
0 1 0 0.44240 0 0
0 1 1 0.11760 0.17 0.019992
1 0 0 0.04740 0 0
1 0 1 0.01260 0.17 0.002142
1 1 0 0.11060 0.13 0.014378
1 1 1 0.02940 0.17 0.004998

ρ(ϕ, b⃗O)A,F = 0.050078

the probability of the fault scenario, which should be the same as the sum of the Prob(b⃗F)
values for the corresponding rows in the table.4 Ultimately, the value of the root node is
the sum of the products of each subpath value and its corresponding ∆ node value, which
is the same as the sum of the products in the table.

Attacks first counterexample. To demonstrate the importance of the order of AT
and FT nodes in the BDD, we present a counterexample. Figure 4.3 shows the BDD for
the same formula, but with AT nodes before FT nodes. The resulting probability value
is 0.0357, which is different from the correct value of 0.050078. This discrepancy arises
because the BDD does not correctly represent the semantics of the formula.

Attack tree nodes have the unique property that they only influence the resulting
probability value if the attack step is performed. If the attack step is not performed,
the probability value remains unchanged. To maximize the resulting probability, only the
minimum necessary attack steps should be performed.

In the BDD in Figure 4.3, you can already see this going wrong in the path PL −→
EDLU −→ Both PL and EDLU are performed, which—if the attacker knows
which fault tree nodes have failed—is never necessary to satisfy the formula FD ∧DGB ∨
EDLU ∧FBO : the attacker can always choose to perform either FD or EDLU to satisfy
the formula.

4.1.3 Layer 3 Formulae

Layer 3 formulae analyze risks for specific objects. Each formula takes a single object as
input and determines: the most risky event or action in which it participates, the total
risk it is exposed to, or the optimal configuration of object properties to minimize the
risk exposure. Setting evidence is also supported for layer 3 formulae, but only for object
properties.

4Example: the subpath DSL 99K FBO −→ EDLU has two edges. The probability of DSL 99K FBO is
0.8, and the probability of FBO −→ EDLU is 0.21 (in the BDD this is the first number in the edge label).
The product of these values is 0.168. The Prob(b⃗F) values in the table for the two rows corresponding to
this path are 0.05040 and 0.11760, and their sum is 0.168.

24

AT

AT

PL
0.0357

DD
0.0357

0.0357

EDLU
0.14

0.1 * 0.14 = 0.014

AT EDLU
0.0357

0.03570.13 * 0.14 = 0.0182

FT

FBO
0.21

0.17 * 0.21 = 0.0357

⊥
0

0

DSL
0.3206

0.17 * 0.3206 = 0.054502

DSL
0.14

0.14

FT LGJ
0.763

0.2 * 0.763 = 0.1526

0.8 * 0.21 = 0.168 LGJ
0.7

0.2 * 0.7 = 0.14

0.8 * 0 = 0

FT

⊤
1

0.7 * 1 = 0.7 0.3 * 0 = 0

0.3 * 0.21 = 0.063

0.7 * 1 = 0.7

0.21 * 1 = 0.21 0.79 * 0 = 0

Figure 4.3: BDD for FD ∧DGB ∨EDLU ∧FBO , annotated with probability
computation, with AT nodes before FT nodes. See Table 4.1 for abbreviations and
used probabilities.

25

Layer 3 provides four functions:

• MostRisky∗ (with ∗ ∈ {A,F }): Returns the most risky event (MostRiskyF) or action
(MostRiskyA) for an object

• TotalRisk
min

and TotalRisk
max

: Return the minimum and maximum total risk an object is
exposed to, based on the different possible configurations of object properties.

• OptimalConf: Returns the configuration of object properties that minimizes the total
risk to an object

When we set evidence in layer 3, we effectively constrain the set of possible configurations
C to a subset of configurations that satisfy the evidence.

For the connection between objects and DT elements, the Pa function is used (defined
in Definition 2.11). More specifically, [31] defines LoM∗ (with ∗ ∈ {A,F }) as the set of
all events (LoMA) or actions (LoMF) in which o participates, and for which a satisfying risk
scenario and configuration exists:

LoM∗ =
{
a ∈ N∗ | o ∈ Pa(a) ∧ ∃b⃗∗, b⃗O. f ◦∗(b⃗∗, b⃗O, a) = 1

}
Furthermore, [31] defines the objRiskVal function as the total risk an object is exposed to
given a configuration b⃗O:

objRiskVal(o, b⃗O) =
∑

a∈LoMA∪LoMF

ρ(a, b⃗O)A,F · Im(a)

Then, the functions MostRisky∗, TotalRisk
min

, TotalRisk
max

, and OptimalConf are defined as fol-
lows:

MostRisky∗(o) = argmax
a∈LoM∗

max
b⃗O∈C

(
ρ(a, b⃗O)A,F · Im(a)

)
TotalRisk

min
(o) = min

b⃗O∈C
objRiskVal(o, b⃗O)

TotalRisk
max

(o) = max
b⃗O∈C

objRiskVal(o, b⃗O)

OptimalConf(o) = argmin
b⃗O∈C

objRiskVal(o, b⃗O)

4.1.3.1 Implementation.

The implementation of each layer 3 functions requires similar computational steps: each
function iterates over all elements in which the object participates, and then it compares
risk values across all possible configurations. The risk values are used differently depending
on the specific function: MostRisky∗ maximizes over individual elements, while TotalRisk

min
,

TotalRisk
max

and OptimalConf operate on the sum of risks across all elements, for each config-
uration.

Finding all elements in which the object participates, i.e., {a ∈ N∗ | o ∈ Pa(a)}, is a
trivial task. However, ensuring that a satisfying risk scenario and configuration exist for
each element requires more thought.

Initially, verifying the existence of satisfying scenarios appears like a task perfectly
suited for a SAT solver. Alternatively, this verification could be performed using BDDs
by checking that the constructed BDD is not the terminal node ⊥. However, SAT solvers
are often more efficient than BDDs for this specific task. The key observation is that the

26

probability calculations require BDDs regardless of the verification method chosen. Since
we can use the same BDD for both probability calculation and scenario verification, we
avoid the need for additional computation.

In the BDDs, configuration choices are represented by outgoing edges of OP nodes.
The system that results from these configuration choices is reflected in the non-OP nodes
that are children of OP nodes. The BDD rooted at the direct child of the last OP node
represents the system under a specific configuration, and this part of the BDD is used for
probability calculations.

Definition 4.5. Given a DOG G and a BDD B = (V,Low ,High,Lab) for some formula,
we define the set of configuration reflection nodes Γ(G, B) as:

Γ(G, B) = {v ∈ V | ∃u ∈ V. τOP(G, u) ∧ v ∈ {Low(u),High(u)} ∧ ¬τOP(G, v)}

MostRisky. To find the most risky event or action for an object, we need to compare the
risk values of all elements in which the object participates. For each element, we construct
a BDD using Algorithm 1. The BDD is used to verify that a satisfying risk scenario and
configuration exist, after which the same BDD is used for probability calculations.

For each element, all possible configurations of object properties must be considered.
We calculate the probabilities of the nodes in the BDD that are direct children of OP nodes
but are not OP nodes themselves; each of these nodes represents the system under a (set
of) configuration(s). The highest probability value across all configurations, multiplied by
the element’s impact, equals the maximum risk value for that element.

Algorithm 3 Find most risky event/action for object o
Input: DOG G, object o, type ∗ ∈ {A,F }
Output: element a ∈ LoM∗ with highest risk value, i.e., MostRisky∗(o)

1: function MostRisky(G, o, ∗)
2: maxRisk ← −1, maxElement ← −
3: for all a ∈ {a ∈ N∗ | o ∈ Pa(a)} do
4: BDDa = (V,Low ,High,Lab)← L1BDD(G, a)
5: if BDDa ̸= ⊥ then // Check that satisfying scenario and configuration exist
6: V ′ ← Γ(G,BDDa)
7: risk ← −1
8: for all v ∈ V ′ do
9: p← CalcNodeProb(v) // Using function from Algorithm 2

10: risk ← max(risk , p · Im(a))
11: if risk > maxRisk then
12: maxRisk ← risk
13: maxElement ← a
14: return maxElement

TotalRisk. The TotalRisk
min

and TotalRisk
max

functions determine the minimum and maximum
total risk an object is exposed to across all possible configurations of object properties.
This calculation differs from that of MostRisky∗. MostRisky∗ compares individual elements
to find the one with the highest potential risk. In contrast, TotalRisk

min
and TotalRisk

max
consider

the cumulative risk from all relevant elements for each specific configuration. The function
objRiskVal, defined previously, calculates this cumulative risk for a given object o and
configuration b⃗O. It sums the risk contributions (ρ(a, b⃗O)A,F · Im(a)) of all elements a in
which o participates. A BDD is required for each such element a to compute ρ(a, b⃗O)A,F .

27

Because the number of configurations grows exponentially with the number of object
properties, a direct approach of iterating through every possible configuration to calculate
objRiskVal and then finding the minimum or maximum is computationally infeasible. A
more efficient method using a symbolic representation of configurations is necessary.

We utilize Multi-Terminal Binary Decision Diagrams (MTBDDs) for this purpose.
An MTBDD is constructed for each element a in which the object o participates. This
MTBDD, denoted MTBDDa, maps every possible configuration b⃗O to the risk contribu-
tion of element a under that configuration, i.e., ρ(a, b⃗O)A,F · Im(a). Paths from the root
to terminal nodes in MTBDDa represent specific configurations. The value of a terminal
node is the risk contribution of a for the configuration(s) leading to it.

The individual MTBDDs, each representing the risk contribution of a single element
a for object o, are combined to determine the total risk. This combination is achieved by
summing these MTBDDs using the MTBDD addition operation. The sum is calculated
as:

MTsum(o) =
⊕

a∈LoMA∪LoMF

MTBDDa

This resulting sum, MTsum(o), is itself an MTBDD. It symbolically represents the
objRiskVal(o, b⃗O) function for an object o, where each path from the root to a terminal node
corresponds to a specific configuration b⃗O. The value of that terminal node is the total risk
objRiskVal(o, b⃗O) for that specific configuration. The set of all terminal values in MTsum(o),
denoted Terms(MTsum(o)), therefore contains all possible values of objRiskVal(o, b⃗O).
Consequently, TotalRisk

min
(o) is found by taking the minimum value in Terms(MTsum(o)).

TotalRisk
max

(o) is found by taking the maximum value in Terms(MTsum(o)). This MTBDD-
based method efficiently calculates total risk by avoiding the explicit enumeration of all
configurations. The algorithm for computing the total risk for an object o is shown in
Algorithm 4.

OptimalConf. From the semantics, we can see that OptimalConf is very similar to TotalRisk
min

.
The only difference is the use of the argmin function instead of the min function. This
means that we need to find the configuration that minimizes the total risk. We can use the
same MTBDD from ConfigsToRiskMTBDD (see Algorithm 4) to find the configuration
that minimizes the total risk. Instead of returning the minimum value of the terminals,
we return the configurations that correspond to the paths leading to this minimum value.
This process is detailed in Algorithm 5.

4.2 Implementation

The implementation of the DOGLog logic and the supporting framework is realized through
a tool named Object-oriented Disruption Framework (ODF) (find the repository at [42]).
ODF is designed to be used from the command line. A user interacts with the tool by
first creating an .odf input file. This file defines the DOG model, including its constituent
attack trees, fault trees, and object graph, as well as the DOGLog formulae to be evaluated.
The user then invokes ODF via a command-line interface, providing the path to this .odf
file. ODF processes the input, constructs the internal representation of the DOG, evaluates
the specified DOGLog queries, and presents the results directly in the terminal. The overall
workflow of the tool, from user input to result presentation, is summarized in Table 4.3.

28

Algorithm 4 Compute total risk for object o
Input: DOG G, object o, function f ∈ {min,max}
Output: minimal or maximal total risk value for object o

1: function TotalRisk(G, o, f)
2: MTsum ← ConfigsToRiskMTBDD(G, o)
3: return f(Terms(MTsum)) // Return the min or max of the terminals

4: function ConfigsToRiskMTBDD(G, o)
5: MTs ← ∅ // Set of MTBDDs, one for each element

6: for all a ∈ {a ∈ NA ∪NF | o ∈ Pa(a)} do
7: BDDa = (V,Low ,High,Lab)← L1BDD(G, a)
8: if BDDa ̸= ⊥ then
9: V ′ ← Γ(G,BDDa)

10: MTBDDa ← CreateMTBDD(BDDa, V ′, Im(a))
11: MTs ← MTs ∪ {MTBDDa}

12: return SumMTBDDs(MTs)

13: function CreateMTBDD(BDDa, V ′, Im(a))
14: MTBDDa ← BDDa
15: for all v ∈ V ′ do
16: p← CalcNodeProb(v)
17: Replace node v in MTBDDa with terminal node with value p · Im(a)
18: return MTBDDa

19: function SumMTBDDs(MTs)
20: MTsum ← 0
21: for all m ∈ MTs do
22: MTsum ← MTsum ++m
23: return MTsum

Table 4.3: High-level workflow of the ODF tool.

Step Description

1. The user prepares an .odf input file.
2. ODF parses the .odf file and constructs an internal DOG model.
3. The tool evaluates the DOGLog queries defined in the input file, using

the algorithms detailed in Section 4.1.
4. Results of the evaluation are presented to the user via command-line

output.

29

Algorithm 5 Find optimal configuration for object o
Input: DOG G, object o
Output: Set of configurations C that minimize total risk for o

1: function OptimalConf(G, o)
2: MTsum ← ConfigsToRiskMTBDD(G, o)
3: C ← FindPathsToMinTerminal(MTsum)
4: return C

5: function FindPathsToMinTerminal(M)
6: vmin ←∞
7: C ← ∅
8: S ← Stack() // Initialize an empty stack
9: Push(S, (Root(M), ∅)) // Push root node and empty path

10: while S is not empty do
11: (n, P)← Pop(S) // n is node, P is current path (configuration)
12: if n is a terminal node then
13: if Lab(n) < vmin then
14: vmin ← Lab(n)
15: C ← {P}
16: else if Lab(n) = vmin then
17: C ← C ∪ {P}
18: else
19: x← Lab(n)
20: Plow ← P ∪ {(x, 0)}
21: Push(S, (Low(n), Plow))
22: Phigh ← P ∪ {(x, 1)}
23: Push(S, (High(n), Phigh))
24: return C

30

4.2.1 Technology

ODF is developed using Python version 3.13. Python was chosen for its ease of use and
the author’s familiarity with the language. Alternative languages such as Rust and C++
were considered. However, they were ultimately not chosen due to concerns that the
time required for learning and mastering these languages would detract from other critical
aspects of the thesis research.

ODF uses some key libraries to provide its functionality.
At the core of ODF’s analytical capabilities are Binary Decision Diagrams (BDDs) and

Multi-Terminal Binary Decision Diagrams (MTBDDs). These data structures are managed
using a fork [41] of the dd library [49]. This fork fixes some bugs that were found during the
development of ODF and adds some additional features to the BDD class. The dd library
is a wrapper around CUDD, a C library for manipulating BDDs and MTBDDs [11]. dd
was chosen for its support for both BDDs and MTBDDs, as well as its ergonomic Python
API. Another potential option was OxiDD [17], but its Python bindings do not support
MTBDDs at the time of writing.

The ODF tool processes input files written in a custom domain-specific language (DSL).
These files, typically with an .odf extension, define the DOG (Attack Tree, Fault Tree,
and Object Graph) and the DOGLog formulae to be evaluated. Parsing of this DSL is
handled by the Lark library, a parsing toolkit for Python [22].

For the representation and manipulation of graph structures, such as the attack trees,
fault trees, and object graphs, the NetworkX library is used [15]. The library provides a
comprehensive set of tools for creating and analyzing complex graphs. Inside ODF, it is
mainly used to check for connectivity, acyclicity, and to find all descendants of a node in
the object graph.

ODF is used as a command-line tool, taking .odf files as input. The tool parses the
input files, constructs the DOG, and then uses algorithms explained in Section 4.1 to
check the DOGLog formulae. The results of the analysis are then presented to the user in
structured and colored text output.

4.2.2 Numerical Precision

For some calculations, namely for layer 2 probabilities (Algorithm 2) and MostRisky∗,
ODF utilizes the Python Fraction class.5 This class represents numbers with integer
numerators and denominators. This representation allows for exact arithmetic, thereby
avoiding floating-point rounding errors. Given that Python integers support arbitrary
precision, limited only by available memory [9], these calculations are performed with
exact precision.

The CUDD library, used for MTBDD operations, employs double-precision floating-
point numbers for terminal node values. This affects MTBDD addition, which is used
for TotalRisk

min
, TotalRisk

max
, and OptimalConf (see Algorithms 4 and 5). Therefore, these cal-

culations may have floating-point rounding errors.

4.2.3 Optimal Configuration Representation

The OptimalConf function (Algorithm 5) finds object property configurations that minimize
total risk. It does this by identifying paths to the terminal node with the minimum risk
value in the sum MTBDD, MTsum(o).

5https://docs.python.org/3.13/library/fractions.html

31

https://docs.python.org/3.13/library/fractions.html

It is well-known that different variable orderings can create (MT)BDDs of very different
sizes [7]. The variable order in an MTBDD affects its structure, and therefore the paths that
are found. ODF applies sifting to MTsum(o) before path extraction to get a more consistent
representation. Sifting reorders MTBDD variables to try to minimize its size [38]. A smaller
MTBDD can provide a clearer, more compact representation of optimal configurations.

For instance, consider three object properties OP1,OP2,OP3. Suppose the optimal
configurations (those yielding minimum risk Rmin) require OP1 = true and OP3 = true,
while OP2 can be true or false (a “don’t care” condition). One variable order resulting
from sifting (e.g., OP1,OP3,OP2) might lead to a single path representing this optimal
set: {OP1 7→ true,OP3 7→ true}. Here, OP2 might not appear on the path if the MTBDD
structure captures its irrelevance. Another sifting run might produce a different order (e.g.,
OP1,OP2,OP3). This could result in two explicit paths being returned by Algorithm 5:

• {OP1 7→ true,OP2 7→ false,OP3 7→ true}
• {OP1 7→ true,OP2 7→ true,OP3 7→ true}

Both representations (a single path with an implicit don’t care, versus two explicit paths)
describe the same set of optimal conditions, with the first being more concise.

The sifting algorithm in CUDD (used by ODF) is not deterministic. Different runs might
produce different variable orderings. This means the paths returned by Algorithm 5 for
optimal configurations can vary between runs. However, these different sets of configura-
tions are always logically equivalent. The minimal risk value itself also remains consistent.
So, while the identified optimal configurations are valid, their specific path representation
may change.

4.2.4 Testing Methodology

ODF is supported by an extensive automated test suite developed using the pytest frame-
work. The testing strategy aims for comprehensive coverage of the tool’s functionality
using, among others, unit, integration, and error-handling tests. The test suite is struc-
tured to mirror the codebase.

Core logic and layers. The tests systematically cover the core components of the
DOGLog implementation:

Parsing and model transformation. The parser’s ability to correctly interpret DOGLog
syntax and the subsequent transformation into internal models (Disruption Trees,
Object Graphs, Configurations) are thoroughly validated. This includes testing var-
ious syntactic constructs and model validation rules.

Layer 1 (boolean logic and BDDs). Extensive tests verify the correct construction of
Binary Decision Diagrams (BDDs) for a wide range of DOGLog formulae, from simple
atomic propositions to complex nested expressions involving all Boolean operators.
Satisfaction checking of these formulae against different configurations is also a key
focus.

Layer 2 (probability calculations). The evaluation of probabilities for DOGLog for-
mulae is tested, ensuring that calculations are correct under various configurations
and when influenced by probabilistic evidence.

Layer 3 (risk aggregation). Tests cover risk aggregation functions (e.g., TotalRisk),
identification of critical nodes (e.g., MostRisky), and the search for optimal config-
urations (OptimalConf). The construction of Multi-Terminal BDDs (MTBDDs) for
risk calculations is also validated.

32

Utility functions. Core utility functions, such as Depth-First Search (DFS) algorithms
used for BDD and MTBDD traversal and analysis, are independently tested.

Key features and operators. Specific DOGLog features and operators receive dedi-
cated testing:

Evidence handling. We test the correct application and precedence of both Boolean
(layer 1 and 3) and probabilistic (layer 2) evidence. This includes scenarios with
single, multiple, nested, and conflicting evidence, as well as evidence interacting with
node conditions and configurations.

MRS operator. The MRS operator, found in layer 1, is tested in various contexts: with
simple and complex formulae, in conjunction with evidence, and in nested forms, en-
suring its semantics are correctly implemented for identifying minimal risk scenarios.

BDD traversal. Algorithms involving BDD traversal are tested on various BDD struc-
tures, including single-node BDDs, BDDs with and without shared subtrees, and
BDDs with complemented edges. We also take care to test the proper handling of
complemented edges by including BDD structures where nodes can be reached via
both complemented and non-complemented paths.

Test types and coverage. Different types of tests are used to cover different parts of
the implementation:

Unit tests. Individual functions and classes, particularly those implementing core algo-
rithms (e.g., BDD construction, probability computation), are tested in isolation.

Integration tests. The interaction between different components is verified. Layer-specific
check functions serve as integration points for functionalities within that layer.

Scenario testing. The test suite covers a wide range of scenarios, including:

• Formulas representing tautologies and contradictions.
• Simple and deeply nested formula structures.
• Empty or trivial inputs for evidence and configurations.
• Probabilistic evidence with boundary values (0 and 1).
• Models with unusual structures (e.g., single-child intermediate nodes, nodes

with no participating objects).
• Unsatisfiable nodes or conditions due to evidence.

Error handling. The implementation’s robustness is tested by providing invalid inputs
or creating inconsistent states. Tests verify that appropriate exceptions (e.g., In-
validNodeEvidenceError) are raised and that warnings are issued for non-critical
issues (e.g., unused variables in configurations).

33

Chapter 5

Case Study

This chapter addresses the second research question: How can DOGLog be used for per-
forming risk analysis on a complex system, and what conclusions can be drawn from the
application of DOGLog to such a system? It presents a detailed case study to demonstrate
the practical application of the DOGLog logic and the ODF tool.

5.1 Introduction

This chapter presents a case study to demonstrate the practical application of the WATCH-
DOG framework. We construct an object-oriented disruption graph (DOG) based on
a Boolean logic Driven Markov Processes (BDMP) model from existing literature [20].
This process demonstrates the capability of translating models from other formalisms into
a DOG. To fully showcase the features of WATCHDOG, we augment the translated
DOG with additional object properties and safety-security interactions. Finally, we utilize
DOGLog, our logic for reasoning over DOGs, to analyze the case study. This analysis
highlights the power of DOGLog in assessing system risks and evaluating the impact of
different configurations.

5.2 Pipeline System

The case study focuses on a hypothetical cyber-physical system designed for transporting a
polluting substance, as described in [20]. The core of the system is a pipeline. This pipeline
is equipped with pumps to propel the substance and valves to control its flow. Sensors
are distributed along the pipeline. These sensors continuously measure pressure and flow
within each section. The operation of each pump and valve is managed by a Remote
Terminal Unit (RTU). Each RTU communicates with a central Control Center (CC). The
RTUs have several key responsibilities. They (1) collect data from nearby pressure and
flow sensors, (2) control the operational speed of pumps and the state (open/closed) of
valves, (3) transmit data and alarm signals to the CC and receive instructions from it,
(4) exchange pressure measurements and shutdown signals with adjacent RTUs.

A critical safety function of the RTUs is to ensure that the pipeline pressure does
not surpass a predefined maximum, Pmax, to prevent the pipeline from rupturing under
excessive pressure. Each RTU also computes the pressure differential, ∆P = |Pn − Pn−1|,
between its own sensors and those of a neighboring RTU. If this ∆P exceeds a threshold
∆Pmax, the RTU triggers an alarm to the CC. The CC then instructs all RTUs to halt
pumps and close valves. Concurrently, the RTU issues a shutdown signal to its neighboring
RTUs. The ∆Pmax threshold is typically breached when a pipeline rupture occurs. This is

34

pp pp pp p
FF F F

RTURTU

Master CC

HMI

p
F

RTU

Unidirectional Wired Link
Unidirectional Wireless Link
Bidirectional Wireless Link

pump Shut-off valve

Possible access of attacker

Pressure meter

Flow meterF

p

Figure 5.1: Schematic representation of the case study architecture (from [20]).

because the pressure before the break becomes significantly higher than the pressure after
it, resulting in a large differential. A safety measure, termed the “Reflex Action”, empowers
each RTU to independently stop its controlled pump or close its valve upon reaching
∆Pmax or receiving a shutdown order from another RTU. This action does not require
prior instruction from the CC and serves as a high-priority redundant safety mechanism.
The system architecture is depicted in Figure 5.1.

Kriaa et al. [20] make several assumptions about the physical setup and communication
infrastructure. RTUs are assumed to be locally installed on pumps and valves, connected
via wired links. Sensors, being more dispersed along the pipeline, utilize wireless links to
communicate with RTUs. Given the extensive length of the pipeline (hundreds of kilo-
meters) and the pipeline’s distance from the CC (a hundred kilometers), communication
is presumed to rely on a GSM network. The industrial protocols employed are Mod-
bus/TCP for RTU-CC communication, Modbus/RTU for inter-RTU communication, and
WirelessHART for sensor-RTU communication. These assumptions are used by safety and
security experts to accurately estimate the parameters of events in their model [20].

5.2.1 BDMP Modeling

The risk analysis of the pipeline system is supported by a BDMP model, depicted in
Figure 5.2 (from [20]). This model outlines various scenarios that can lead to the top
event: pollution of the environment. We first introduce the BDMP concepts that are
relevant to this case study. Then, we describe the BDMP model itself.

5.2.1.1 BDMP Concepts

Boolean logic Driven Markov Processes (BDMP) are graphical models for analyzing system
reliability, first introduced in [5]. The formalism was later extended to incorporate security
aspects, as detailed in [33, 34]. They extend traditional formalisms like fault trees and
attack trees by incorporating state-dependencies and dynamic behaviors through Markov
processes associated with events [35]. Similarly to fault and attack trees, BDMP typically
feature a hierarchical structure, breaking down a main undesired event (top event) into
more elementary events.1

1Though BDMP have one main top event, BDMP can have multiple top events [5]. The BDMP in
Figure 5.2 has two top events: “attack occurrence” and “Pollution”.

35

Common gate types define the logical relationships between events. The BDMP in
Figure 5.2 utilizes:

• OR gates: The event occurs if at least one of the child events occurs.

• AND gates: The event occurs if all child events occur.

• Priority AND (PAND) gates: The event occurs if all child events occur in a specific,
predefined order. In Figure 5.2, this is visually represented as an AND gate with a
triangle symbol on top.

BDMP can contain different types of leaves. Figure 5.2 utilizes the following types:

• Failure in operation: Depicted by an icon of a broken component with a black excla-
mation mark (e.g., “pipe break accidentally”). These events occur during component
operation, with an exponentially distributed time to failure.

• Failure on demand: Also depicted by an icon of a broken component with a red
exclamation mark (e.g., “valves on demand failure to close”). These events occur
with a specific probability when a component is called upon to function (e.g., 5e-5).

• Attacker Action: Represented by an icon of a crosshair (e.g., “access to CC”). These
events have an associated exponentially distributed time to success (e.g., “10 days”).

• Instantaneous Security Event (ISE): Shown as a crosshair icon, with “ISE“ label in
red (e.g., “high pumping pressure activation”). These occur with a specific probability
when activated (e.g., 0.4).

• House Events represent system configurations that can be set to true or false prior
to checking the model. In Figure 5.2, the node “No reflex action” represents such a
condition.

BDMP also use triggers, shown as red dotted arrows in Figure 5.2, to model dynamic
dependencies. Each leaf in a BDMP is associated with its own Markov process. This
process can be in one of two modes: ‘standby’ or ‘active’ [5]. The behavior of a leaf
depends on its current mode. For leaves associated with an exponentially distributed time
to occurrence (like attacker actions or failures in operation), the process effectively ‘ticks’
or progresses towards occurrence only while in the ‘active’ state. For leaves associated
with a probability of occurrence (like instantaneous security events or failures on demand),
this probability is evaluated when the leaf’s process transitions from the ‘standby’ state
to the ‘active’ state. At the moment of this transition, the event occurs with its specified
probability.

The mechanism that determines whether a leaf’s process is in the ‘standby’ or ‘active’
state is governed by what Bouissou and Bon [5] term process selectors. A process selector,
denoted Xi for an element i, is a Boolean function that dictates which of the two modes
is currently selected for that element’s Markov process. The value of Xi (1 for ‘active’
and 0 for ‘standby’) is determined by the state of the BDMP according to specific rules.
If element i is a root of the tree structure, its process selector Xi is set to 1 (active).
Otherwise, Xi is also 1, unless either:

1. The origin of a trigger pointing to element i has its structure function equal to 0
(meaning the triggering condition is not met).

2. Element i has at least one parent gate in the fault-tree, and all of these parent gates
have their own process selectors equal to 0.

In essence, a leaf’s process defaults to the ‘active’ mode unless it has a trigger condition
which is not activated, or none of its direct parents are active. Triggers allow the state of

36

one part of the system to dynamically change the operational mode (and thus the behavior)
of other components. This allows for the representation of complex sequential dependencies
and dynamic system behaviors.

5.2.1.2 The BDMP Model

The BDMP in Figure 5.2 simultaneously represents three primary types of scenarios as
considered by Kriaa et al. [20]: attack scenarios, accidental scenarios, and hybrid scenarios.
Attack scenarios involve malicious actions. Accidental scenarios are based on component
failures or other unintended events. Hybrid scenarios combine both malicious attacks and
accidental failures, highlighting potential interactions between safety and security events.

Pollution occurs if the pipeline breaks and the protection system concurrently fails to
react. The protection system encompasses the detection of a pipeline break by RTUs and
the subsequent system shutdown, initiated either by the reflex action or by commands from
the CC. Failure of the protection system can happen in two ways: it might be deactivated
by an attacker prior to a break, or it could fail accidentally. This is represented by the OR
gate labeled “possible scenarios” in the BDMP. Failure caused by an attacker is represented
at the second layer of the BDMP using a Priority AND gate, labeled “attack protection
syst then pipeline break”. This gate signifies that the protection system must fail (its left
input) before the pipeline breaks (its right input) for the combined event to occur.

The attack scenario, as modeled, assumes attacks follow a Poisson process with an
estimated occurrence rate of once every five years. A typical attack involves deactivat-
ing the protection system and then causing a pipeline breach, for instance, through a
water-hammer phenomenon. The water-hammer effect is achieved by suddenly closing a
downstream valve while high-velocity, high-pressure flow is propagating, causing a shock.
The preparation phase for an attacker includes gaining access to the SCADA system.2

This could be through physical or remote control of the CC, physical access to an RTU, or
network intrusion via communication links (RTU-CC or sensor-RTU). Subsequently, the
attacker must understand the system’s operation to effectively deactivate its protections.
Once access and understanding are achieved, the attack steps to deactivate protections
are considered quasi-instantaneous. To disable the RTUs’ reflex action, an attacker might
jam inter-RTU communication, preventing breach signals from reaching other RTUs. The
model includes a configurable event, “No reflex action”, which can be set to true or false to
represent the presence or absence of this local safety measure in the system. After these
preparations, the attacker can induce a water-hammer by creating high pumping pressure
and abruptly closing a downstream valve, causing a pressure surge that can rupture the
pipeline at its weakest point.

Accidental scenarios leading to pollution occur if the pipeline breaks accidentally and
the protection system subsequently fails. Protection failure in this context can mean no
instructions are given by the RTU, or there is an on-demand failure of equipment (valves
and pumps) to respond correctly. The former case (no RTU instruction) can result from
RTU failure or if the RTU does not react because it receives no CC instruction and its
reflex action is not triggered. The BDMP details these accidental events as safety leaves.

Hybrid scenarios involve a combination of accidental and malicious events. For example,
an attacker might remotely deactivate the protection system but then abandon the attack
(e.g., failing to create a water-hammer). If the pipeline then breaks accidentally before the

2SCADA (Supervisory Control And Data Acquisition) systems are used for high-level supervision of
industrial processes. In the context of this pipeline, the SCADA system includes the CC for overall
monitoring and command, the RTUs which execute local real-time control logic, and the field devices
(sensors, pumps, and valves) that the RTUs interface with and control.

37

Figure 5.2: The source BDMP of the case study (from [20]).

38

deactivation is detected and remedied, pollution occurs. Kriaa et al. [20] note that this
specific scenario has a very low probability, as it assumes the protection system deactivation
remains undetected until an accidental break.

5.3 Creating the DOG

As previously mentioned, the BDMP has a hierarchical structure, similar to attack and
fault trees. This similarity allows for a relatively straightforward translation of the BDMP
structure into the attack and fault trees of the DOG. Although BDMP can theoretically
combine attacks and faults within the same sub-trees, this was not a prominent feature
in the case study’s BDMP. The BDMP models the “pipeline break” node as an event
that can be triggered either by an attack or accidentally. The hybrid scenario discussed in
the source paper involves an attack that first disables the protection system, followed by
an accidental pipeline break. The authors noted that this specific scenario has a very low
probability. Consequently, for the translation into the DOG model, this particular situation
is disregarded as it is not directly modelable with the DOG formalism’s separation of attack
and fault trees. Given its very low probability, this simplification is considered acceptable.

The construction of the fault tree begins by largely replicating the “protection failure”
subtree from the BDMP. To model the “No reflex action” house event from the BDMP, an
event named No reflex action is defined in the fault tree. This event is assigned a prob-
ability of 1 and is guarded by the negation of object property Reflex_action_enabled.
This approach ensures that the model accurately reflects the safety measure’s status: the
No reflex action event is guaranteed to occur if the reflex action is disabled, and does
not occur if it is enabled. The top-level event in the fault tree is termed Accidental pol-
lution. The first child of this event is the Protection failure sub-tree. The other child is
Pipeline breaks accidentally, corresponding to one of the “pipeline break” children in
the BDMP. This structure accounts for the entirely accidental scenarios from the source
BDMP.

For the attack tree, instead of the accidental pipeline break, the attack-induced pipeline
break, i.e., the Waterhammer attack from the BDMP, is used. This Waterhammer
attack becomes the first child of the top-level attack event, Attacker causes pollution.
The other child of this top-level event requires careful construction. This subtree is based
on the “attack preparation” subtree in the BDMP. In the BDMP, the “attack preparation”
node has a child OR gate labeled “access SCADA system”. This gate represents various
methods to gain access to the SCADA system. Each child of this OR gate (representing
an access method) is linked to a specific attack preparation step, which it activates using a
trigger. Since attack trees do not feature triggers, these access nodes are instead modeled
as children of their respective attack preparation nodes in the DOG’s attack tree. The
“attack preparation” node from the BDMP is renamed to Attack protection system
in the attack tree. This Attack protection system node is an AND gate. Its children
include Understand system operation and Protection deactivation, corresponding
to the remaining children of the BDMP’s “attack preparation” node. The Protection
deactivation node retains the same children as in the BDMP, with each of these children
having an additional child derived from the access nodes of the BDMP.

The object graph is then created based on the objects identified in the system. Fig-
ure 5.1 depicts the schematic representation of the case study architecture and helps iden-
tify these objects. This figure shows the Control center, RTU s, Pumps, Valves, and Sensors.
Although the Pipeline itself is not explicitly labeled in the schematic, it is a central object
in this case study.

39

The source paper also mentions the SCADA system, which is also included as an object.
A SCADA system typically comprises a Control center, RTU s, and field-level equipment.
In this case the field-level equipment consists of Sensors, Pumps, and Valves. A parent
object called Equipment is introduced. This Equipment object is the parent of Pumps,
Valves, and Sensors, and a child of the SCADA system. This structuring allows for ana-
lyzing risks to all equipment collectively, leveraging WATCHDOG’s parthood relationship,
in addition to analyzing risks for each equipment type individually.

Objects can have multiple parents. Since Pumps, Valves, and Sensors are also compo-
nents of the Pipeline, parthood relationships are drawn accordingly.

Three types of links are also considered as objects: the link between an RTU and the
Control center, links between RTU s, and links between Sensors and RTU s. These are
modeled as distinct objects because they can possess different properties, such as being
encrypted or wireless. While one could argue that these links are parts of the objects
they connect (or vice versa), they are modeled as standalone objects. This decision avoids
an automatic implication of risk transfer between connected components due to WATCH-
DOG’s Assumption 3 (if an object participates in an event, its parts also participate). For
instance, an incorrect sensor measurement should not automatically imply that the link
between the sensor and the RTU is also at risk. If in a specific case such a dependency
were desired, the model could be adapted, for example, by having the link also participate
in the relevant event.

If the pipeline breaks and the protection system fails, significant environmental pollu-
tion occurs. Thus, the Environment is added as an object.

Lastly, an Operator object is included, as Faulty operator is considered a possible
cause of the No instruction from control center event in the fault tree.

Next, the appropriate objects are connected to each element in the attack and fault
trees. Probabilities are copied from the BDMP to the DOG. For elements in the BDMP
that have a time to occurrence, corresponding probabilities are assigned in the DOG based
on reasonable estimations.

These steps result in the initial DOG shown in Figure 5.3.
One of the unique features of WATCHDOG is its ability to analyze the impact of

different configurations of object properties on the risk exposure of the system. Addi-
tionally, since these object properties connect the attack and fault trees of a DOG, they
allow for modeling various safety-security interactions between measures. In the literature,
safety-security interactions have been identified in four different categories [19, 35]:

• Conditional dependency: Fulfilling a safety requirement depends on a security
requirement being fulfilled or vice-versa.

• Mutual reinforcement: Fulfilling a safety requirement reinforces the fulfillment of
a security requirement, or a safety measure also improves security, or vice-versa.

• Antagonism: Fulfilling a safety requirement hinders the fulfillment of a security
requirement, or a safety measure also decreases security, or vice-versa.

• Independence: No interaction between safety and security requirements or mea-
sures.

Mutual reinforcement and antagonism are also termed synergy and conflict, respectively.
Using object properties, different security and safety measures can be modeled, which may
be, for example, in synergy or conflict with each other. For conflicting properties, it is
possible to analyze which configuration most effectively reduces risk across both the attack
and fault domains. For measures in synergy, the optimal value is generally known, but

40

Attacker causes
pollution

6,7

-

Attack protection
system

1

-

Waterhammer attack

6

-

Accidental pollution

6,7

-

Protection
deactivation

1

-

Valve closing

9

0.7

Understand system
operation

1

0.0208

High pumping
pressure activation

8

0.7

Attack preparation 2

2,4,11

-

Attack preparation 3

4,10,13

-

Falsify RTU output

2,3,4

-

6

Pipeline

8

Pumps

9

Valves

10

Sensors

2

Control center

4

RTU

3

Equipment

1

SCADA system

5

Operator

7

Environment

11

RTU-CC Link

12

RTU-RTU Link

13

Sensors-RTU Link

Access via sensors-
RTU link

13

0.0008

Falsify sensors
measures

10

0.4

Access to control
center

2

0.005

Falsify control center
instructions

2

0.4

Deactivate reflex
action

4

-

No reflex action

4

1

Jam communication
between RTUs

4,12

0.7

Access to RTU

4

0.008

Falsify data sent to
other RTUs

4

0.6

Falsify data sent to
CC

2

0.6

Falsify instructions
sent to equipments

3

0.7

Attack preparation 1

2,4

-

Access via RTU-CC
link

11

0.0012

Send false
instructions to RTU

4

0.4

Report false data to
control center

2

0.4

!Reflex_action_enabled

Pipeline breaks
accidentally

6

0.00005

Protection failure

1

-

No instructions from
RTU

4

-

Equipment failure to
react

8,9

-

RTU broken

4

0.000138

No RTU reaction

4

-

No reflex action
activated by RTU

4

-

No instruction from
control center

2,4

-

No reflex action

4

1

Inter-RTU
communication lost

12

0.0007

Faulty sensor
measure

10

0.00023

CC-RTU
communication lost

11

0.00046

Control center broken

2

0.000114

Faulty operator

5

0.00023

Valves on demand
failure to close

9

0.00005

Pumps on demand
failure to stop

8

0.00001

!Reflex_action_enabled

Figure 5.3: The initial DOG of the case study, derived from the BDMP before the added object properties.

41

their impact on risk reduction can be quantified. This information can support informed
decisions regarding investment in potentially costly measures.

The initial model includes one object property, Reflex_action_enabled, indicating
whether the reflex action mechanism is enabled or disabled. This property appears in both
the attack and fault trees of the DOG, signifying it is not independent. Since it appears
negated on both sides (i.e., enabling it reduces risk on both sides), it is synergetic. To make
the case study more comprehensive, additional object properties are introduced, some of
which are conflicting.

First, consider replacing the current wireless links between RTUs with wired links.
Wired links would incur higher costs but could be justifiable if the risk reduction is signifi-
cant. Making this link wired would prevent an attacker from jamming inter-RTU commu-
nication. Additionally, it would prevent the accidental loss of inter-RTU communication
on the fault tree side. This object property is named Wireless_RTU_RTU_link.
It is synergetic (where ‘false‘ for Wireless_RTU_RTU_link implies wired and thus
beneficial).

Next, consider encrypting the communication between the RTUs and the CC. Encryp-
tion would hinder an attacker from exploiting the RTU-CC link. However, RTUs often
have limited computational resources, and encryption could introduce delays in processing
instructions due to decryption requirements. This delay might be significant enough to in-
troduce an additional cause for No instruction from control center, termed Delayed
instructions. This scenario exemplifies a conflicting property: RTU_CC_comm_-
encrypted, which enhances security at the expense of safety.

As mentioned in Section 5.2, the system incorporates a Reflex Action. It is conceivable
that a faulty sensor measurement could trigger this action accidentally (a false positive).
A possible countermeasure is to allow overriding the reflex action from the control center.
This would enable an operator to prevent an unnecessary shutdown. However, this over-
ride capability could also be exploited by an attacker with access to the control center or
the RTU-CC link. The object property Remote_CC_override_enabled models this
configuration choice. An attack Override reflex action is created as a sibling to Deac-
tivate reflex action. Their common parent becomes Deactivate or override reflex
action. Attack preparation 1 (access to CC) and Attack preparation 2 (access to
RTU-CC link) are connected to this new parent node. Attack preparation 3 (access to
RTU) remains connected to Deactivate reflex action, as this attack path does not grant
the ability to override from the CC. On the fault tree side, a parent node Pipeline rup-
ture is added to Pipeline breaks accidentally. Accidental waterhammer is added
as another child of Pipeline rupture. This Accidental waterhammer node is guarded
by a negated Remote_CC_override_enabled property, as enabling the override can
prevent an accidental waterhammer.

We can specify more detailed causes for RTU broken. This can result from hardware
failure or a firmware bug. A firmware bug could be newly introduced by an update or
an existing, undiscovered flaw. Since new software versions often contain bugs, the ability
to roll back firmware to a previous version might be beneficial. The object property
Allow_firmware_rollback is introduced for this. However, an attacker could trigger
this rollback to exploit a known vulnerability in an older firmware version to gain Access
to RTU. Presumably, finding and exploiting vulnerabilities in older firmware is easier than
in the latest version, leading to possible security risks.

In the fault tree, the pipeline can break accidentally or due to an accidental waterham-
mer. Different materials could be chosen for pipeline construction. A stronger material,
though more expensive, would be less prone to breaking accidentally. If a break did oc-

42

cur, it would presumably be smaller if a stronger material was used, reducing its impact.
This is modeled by creating two children for Pipeline breaks accidentally: Pipeline
strong material break and Pipeline weak material break. These children have
different probabilities and impacts. Pipeline strong material break is conditioned on
Strong_material, while Pipeline weak material break is conditioned on ¬Strong_-
material.

Similarly, the probability of Faulty sensor measure can be reduced by adding re-
dundant sensors. If one sensor fails, a redundant sensor could still provide accurate mea-
surements. This is modeled with two children events having different probabilities but the
same impact, as the consequence of a faulty sensor measure remains the same. This object
property is named Redundant_sensors.

Lastly, probabilities are assigned to the newly created basic events, and impact values
are ascribed to all nodes. For elements that were further specifications of existing BDMP
nodes, probability values similar to the original ones are used. For other new nodes, values
are chosen that seem reasonable in the context of existing node values.

Assigning impact values required a different approach, as there was no direct compari-
son in the BDMP. The top-level events are assigned an impact of 100. Other nodes receive
impacts based on their relative significance. Both top-level events (Attacker causes pol-
lution and Accidental pollution) have the same impact, reflecting equally catastrophic
outcomes.

Various DOGLog functions (e.g., TotalRisk
max

, TotalRisk
min

, OptimalConf) use the sum of
risks of all elements in which a particular object participates. Care must be taken when
assigning impact values to nodes that merely represent multiple pathways to an event,
to avoid double counting. For example, in the attack tree, there are multiple ways to
achieve Protection deactivation, all leading to the same outcome. The chosen modeling
approach assigns an impact to the parent Protection deactivation node, and not to
its children representing the specific methods. Assigning impacts to the children as well
would lead to double counting. Alternatively, assigning impacts only to the children and
zero to the parent would cause the risk to grow disproportionately with each additional
pathway. For instance, adding a fifth child to the Protection deactivation OR gate
would increase its probability and also add the impact of the new child, distorting the
overall risk assessment.

These modifications and additions result in the DOG depicted in Figure 5.4.

43

Remote_CC_override_enabled

Attacker causes
pollution

6,7

- 100

Attack protection
system

1

- 1

Waterhammer attack

6

- 27

Accidental pollution

6,7

- 100

Protection
deactivation

1

- 10

Valve closing

9

0.7 1

Understand system
operation

1

0.0208 1

High pumping
pressure activation

8

0.7 1.3

Attack preparation 2

2,4,11

- 0

Attack preparation 3

4,10,13

- 0

Falsify RTU output

2,3,4

- 3

6

Pipeline

8

Pumps

9

Valves

10

Sensors

2

Control center

4

RTU

3

Equipment

1

SCADA system

5

Operator

7

Environment

11

RTU-CC Link

12

RTU-RTU Link

13

Sensors-RTU Link

Access via sensors-
RTU link

13

0.0008 3

Falsify sensors
measures

10

0.4 3

Access to control
center

2

0.005 8

Falsify control center
instructions

2

0.4 3

Deactivate or override
reflex action

4

- 3

Override reflex action

4

0.99 1

Deactivate reflex
action

4

- 2

No reflex action

4

1 0

Jam communication
between RTUs

4,12

0.7 3

Access to RTU

4

- 3

Hack into RTU
firmware

4

0.0008 4

Exploit old firmware
vulnerability

4

- 3

Rollback Firmware

4

0.015 1

Execute exploit

4

0.9 1

Falsify data sent to
other RTUs

4

0.6 2

Falsify data sent to
CC

2

0.6 3

Falsify instructions
sent to equipments

3

0.7 2

Attack preparation 1

2,4

- 0

Access via RTU-CC
link

11

0.0012 6

Send false
instructions to RTU

4

0.4 3

Report false data to
control center

2

0.4 3

!Reflex_action_enabled

Wireless_RTU_RTU_link

!RTU_CC_comm_encypted

Allow_firmware_rollback

Pipeline rupture

6

- 27

Protection failure

1

- 10

Pipeline breaks
accidentally

6

- 0

Accidental
waterhammer

4,6

- 3

Pipeline strong
material break

6

0.00001 2

Pipeline weak
material break

6

0.0001 3

False reflex signal

4,12

0.00009 2.5

High pump pressure

8

0.0008 1

No instructions from
RTU

4

- 3

Equipment failure to
react

8,9

- 0

RTU broken

4

- 2.5

No RTU reaction

4

- 3

RTU Hardware
Broken

4

0.000138 3

Firmware Bug

4

- 0

Unknown Firmware
Bug

4

0.0001 3

Bug In New Firmware

4

0.05 1.5

No reflex action
activated by RTU

4

- 2

No instruction from
control center

2,4

- 3

No reflex action

4

1 0

Inter-RTU
communication lost

12

0.0007 4

Faulty sensor
measure

10

- 0

Faulty sensor
measure (no
redundancy)

10

0.00023 2

Faulty sensor
measure (with
redundancy)

10

0.00001 2

CC-RTU
communication lost

11

0.00046 5

Control center broken

2

0.000114 9

Faulty operator

5

0.00023 3

Delayed instructions

4,11

0.00023 2

Valves on demand
failure to close

9

0.00005 3

Pumps on demand
failure to stop

8

0.00001 2

!Remote_CC_override_enabled

!Allow_firmware_rollback

!Reflex_action_enabled

RTU_CC_comm_encypted

Redundant_sensors

!Redundant_sensors

Wireless_RTU_RTU_link

!Strong_material

Strong_material

Figure 5.4: The refined DOG of the case study, incorporating additional object properties and impact values.

44

5.4 DOGLog Analysis

The DOG for this case study contains many objects. The SCADA system is set as the root
object in the object graph because it has the most child objects. This does not necessarily
mean it is the most important object in the system.

First, the risks associated with the Pipeline are investigated. The Pipeline is a crucial
element of the system, as its failure could have catastrophic consequences. The maximum
and minimum total risk for the Pipeline are calculated to see its risk range. This also shows
to what extent different configurations can influence the amount of risk on the Pipeline.

Processing Formula 1:

MaxTotalRisk(Pipeline)

Maximum Total Risk: 13.236485099322643

Processing Formula 2:

MinTotalRisk(Pipeline)

Minimum Total Risk: 13.230548285373462

The analysis shows a maximum total risk of 13.2365 and a minimum total risk of 13.2305
for the Pipeline. The maximum risk is 0.04% larger than the minimum risk. This small
difference means that the Pipeline’s risk is not very sensitive to the different configurations.

Next, another important element, the Environment, is investigated. In the DOG, this
element is only attached to the most catastrophic events—the two top-level events. This
set of events is a strict subset of the events attached to the Pipeline.

Processing Formula 3:

MaxTotalRisk(Environment)

Maximum Total Risk: 0.0034829395170428747

Processing Formula 4:

MinTotalRisk(Environment)

Minimum Total Risk: 0.0002561253929022441

The results for the Environment are quite different. The maximum total risk is 3.4829e-
03, and the minimum total risk is 2.5613e-04. This means a suboptimal configuration can
increase the risk to the Environment by a factor of 13.60. This is a large factor. However,
in absolute terms, the difference between the maximum and minimum risk for the Envi-
ronment is comparatively small. The set of events in which the Environment participates
is a strict subset of the events in which the Pipeline participates. This implies that the
absolute difference between the maximum and minimum total risk for the Environment
must be less than or equal to that of the Pipeline.

It is unexpected that the Environment is so sensitive to different configurations, while
the Pipeline is not. The cause of this difference should be found in one or more of the events
where the Pipeline participates but the Environment does not. These include two subtrees:
Waterhammer attack in the attack tree, and Pipeline rupture in the fault tree. The
fault tree subtree, Pipeline rupture, should show some sensitivity to configurations.
This is because it is influenced by two object properties: Remote_CC_override_-

45

enabled and Strong_material. The attack tree subtree, Waterhammer attack, on the
other hand, is not influenced by any object properties. Therefore, it should be completely
insensitive to different configurations.

An investigation is conducted to determine how much of the Pipeline’s risk can be
attributed to the Waterhammer attack subtree. To do this, the probability of the
Waterhammer attack node is calculated. This probability is then multiplied by its
attached impact value of 27. Since this subtree is not influenced by any object properties,
the empty configuration can be used for the probability calculation.

Processing Formula 5:

{}
P(Waterhammer_attack) < 1

INFO: P(Waterhammer_attack) = 49/100 (~0.49)

Result: True

The calculated probability is 0.49. Multiplying this by the impact value gives a risk of
13.23.

This risk represents a significant part of the Pipeline’s total risk. It is 99.9959% of the
minimum total Pipeline risk and 99.9510% of the maximum total Pipeline risk. This shows
that the large risk of the Waterhammer attack overshadows the risk of other events in
which the Pipeline participates. This makes it seem as if the Pipeline’s risk exposure is
not very sensitive to different configurations. In this specific example, these surprising
results prompted a re-examination of the source BDMP. This re-examination revealed an
oversight in our initial interpretation of the BDMP. The source BDMP correctly models
that the protection system must be compromised before a Waterhammer attack can
be successfully executed. This dependency is represented in the BDMP using a trigger
pointing from “attack preparation” to “Waterhammer attack”. Our initial DOG did not
capture this. This oversight was not apparent until the DOGLog results were analyzed.
DOGLog played a crucial role in uncovering this misinterpretation, which is a valuable
insight.

Before continuing with the case study, we updated the DOG to accurately reflect this
understanding of the BDMP. We expect this will lead to more realistic and interesting
results. The correction involves making the existing Attack protection system node a
child of the Waterhammer attack node. This change ensures that the DOG correctly
models the prerequisite that the protection system must be compromised for the Water-
hammer attack to occur. This aligns with the dependency modeled by a trigger in the
source BDMP. With this change, the DOG is logically equivalent to a structure without
the redundant direct link between Attack protection system and Attacker causes
pollution. However, it was decided to retain Attack protection system as a direct
child of Attacker causes pollution as well, to maintain a more familiar-looking tree
structure. Figure 5.5 shows the DOG with this correction.

The risk of the Pipeline is calculated again, this time using the adapted DOG.

Processing Formula 1:

MaxTotalRisk(Pipeline)

Maximum Total Risk: 0.007421275290642874

46

Remote_CC_override_enabled

Attacker causes
pollution

6,7

- 100

Attack protection
system

1

- 1

Waterhammer attack

6

- 27

Accidental pollution

6,7

- 100

Protection
deactivation

1

- 10

Valve closing

9

0.7 1

Understand system
operation

1

0.0208 1

High pumping
pressure activation

8

0.7 1.3

Attack preparation 2

2,4,11

- 0

Attack preparation 3

4,10,13

- 0

Falsify RTU output

2,3,4

- 3

6

Pipeline

8

Pumps

9

Valves

10

Sensors

2

Control center

4

RTU

3

Equipment

1

SCADA system

5

Operator

7

Environment

11

RTU-CC Link

12

RTU-RTU Link

13

Sensors-RTU Link

Access via sensors-
RTU link

13

0.0008 3

Falsify sensors
measures

10

0.4 3

Access to control
center

2

0.005 8

Falsify control center
instructions

2

0.4 3

Deactivate or override
reflex action

4

- 3

Override reflex action

4

0.99 1

Deactivate reflex
action

4

- 2

No reflex action

4

1 0

Jam communication
between RTUs

4,12

0.7 3

Access to RTU

4

- 3

Hack into RTU
firmware

4

0.0008 4

Exploit old firmware
vulnerability

4

- 3

Rollback Firmware

4

0.015 1

Execute exploit

4

0.9 1

Falsify data sent to
other RTUs

4

0.6 2

Falsify data sent to
CC

2

0.6 3

Falsify instructions
sent to equipments

3

0.7 2

Attack preparation 1

2,4

- 0

Access via RTU-CC
link

11

0.0012 6

Send false
instructions to RTU

4

0.4 3

Report false data to
control center

2

0.4 3

!Reflex_action_enabled

Wireless_RTU_RTU_link

!RTU_CC_comm_encypted

Allow_firmware_rollback

Pipeline rupture

6

- 27

Protection failure

1

- 10

Pipeline breaks
accidentally

6

- 0

Accidental
waterhammer

4,6

- 3

Pipeline strong
material break

6

0.00001 2

Pipeline weak
material break

6

0.0001 3

False reflex signal

4,12

0.00009 2.5

High pump pressure

8

0.0008 1

No instructions from
RTU

4

- 3

Equipment failure to
react

8,9

- 0

RTU broken

4

- 2.5

No RTU reaction

4

- 3

RTU Hardware
Broken

4

0.000138 3

Firmware Bug

4

- 0

Unknown Firmware
Bug

4

0.0001 3

Bug In New Firmware

4

0.05 1.5

No reflex action
activated by RTU

4

- 2

No instruction from
control center

2,4

- 3

No reflex action

4

1 0

Inter-RTU
communication lost

12

0.0007 4

Faulty sensor
measure

10

- 0

Faulty sensor
measure (no
redundancy)

10

0.00023 2

Faulty sensor
measure (with
redundancy)

10

0.00001 2

CC-RTU
communication lost

11

0.00046 5

Control center broken

2

0.000114 9

Faulty operator

5

0.00023 3

Delayed instructions

4,11

0.00023 2

Valves on demand
failure to close

9

0.00005 3

Pumps on demand
failure to stop

8

0.00001 2

!Remote_CC_override_enabled

!Allow_firmware_rollback

!Reflex_action_enabled

RTU_CC_comm_encypted

Redundant_sensors

!Redundant_sensors

Wireless_RTU_RTU_link

!Strong_material

Strong_material

Figure 5.5: Corrected DOG where the Attack protection system node is a child of the Waterhammer attack node.

47

Processing Formula 2:

MinTotalRisk(Pipeline)

Minimum Total Risk: 0.0006037624678622442

The new maximum total risk is 7.4213e-03, and the new minimum total risk is 6.0376e-
04. The maximum total risk is 1129.17% larger than the minimum total risk, a slightly
smaller factor than we saw with the Environment before. This percentage seems more
plausible than the previous 0.04%.

Processing Formula 3:

MaxTotalRisk(Environment)

Maximum Total Risk: 0.0034829395170428747

Processing Formula 4:

MinTotalRisk(Environment)

Minimum Total Risk: 0.0002561253929022441

The risk values for the Environment do not change. This might seem strange at first,
since an extra condition was added to the Waterhammer attack. This addition should
decrease its probability, thereby decreasing the probability of the top-level event Attacker
causes pollution, and therefore the risk of the Environment. However, the added con-
dition was already a condition for Attacker causes pollution, so its probability did in
fact not change.

Let us now investigate how much of the Pipeline’s risk can be attributed to the Wa-
terhammer attack subtree in the adapted DOG. To find this percentage, the previous
method (calculating the probability using the empty configuration) cannot be used. This
is because the Waterhammer attack is now influenced by object properties. Instead, the
TotalRisk

max
and TotalRisk

min
functions are used to find the risk of the Waterhammer attack.

However, these functions only take objects as parameters, so they cannot be used directly.
A new pseudo-object can be created with an arbitrary, unique name. This pseudo-object
is then attached only to the Waterhammer attack event. We call this pseudo-object
WAO (Waterhammer Attack Object).

Processing Formula 6:

MaxTotalRisk(WAO)

Maximum Total Risk: 0.000936175968

Processing Formula 7:

MinTotalRisk(WAO)

Minimum Total Risk: 5.54770944e-05

In the maximum risk scenario, the Waterhammer attack’s risk is 12.61% of the
Pipeline’s risk. In the minimum risk scenario, it is 9.19% of the Pipeline’s risk. These
percentages seem more representative of the intended scenario than the previous 99.9510%
and 99.9959% values.

48

Now, let us examine the fault tree. The fault tree has some unique properties. At
two points in the tree, an object property influences the impact or probability of an event.
This is not natively supported in DOGLog. However, it can be achieved by creating an
intermediate node with an OR gate. This gate has two children with different impact or
probability values. One child has a condition that is true if the object property is true, and
the other has a condition that is true if the object property is false. For Faulty sensor
measure, the Redundant_sensors object property is used to change the probability: if
there are multiple redundant sensors, it reduces the probability of a Faulty sensor mea-
sure. Similarly, Pipeline breaks accidentally is influenced by the Strong_material
object property. Using a stronger material reduces the probability of breakage. It also
slightly reduces the impact, since the break would presumably be smaller.

All other object properties that appear in the fault tree also appear in the attack tree.
Some of these properties are in synergy (Reflex_action_enabled, Wireless_RTU_-
RTU_link). Others are in conflict (Remote_CC_override_enabled, RTU_CC_-
comm_encrypted, Allow_firmware_rollback). The optimal configuration is exam-
ined to see what can be concluded about the conflicting properties. Optimal configurations
are specific to individual objects. So, the optimal configurations for some of the most im-
portant objects are examined: Environment, Pipeline, SCADA system, and RTU.

Processing Formula 8:

OptimalConf(Environment)

INFO: There is one optimal configuration with a risk value of
0.0002561253929022441

Optimal Configurations:
- {Reflex_action_enabled: True, Strong_material: True,

Remote_CC_override_enabled: False, Redundant_sensors: True,
Allow_firmware_rollback: False , Wireless_RTU_RTU_link: False}

Processing Formula 9:

OptimalConf(Pipeline)

INFO: There is one optimal configuration with a risk value of
0.0006037624678622442

Optimal Configurations:
- {Reflex_action_enabled: True, Strong_material: True,

Remote_CC_override_enabled: False, Redundant_sensors: True,
Allow_firmware_rollback: False , Wireless_RTU_RTU_link: False}

Processing Formula 10:

OptimalConf(SCADA_system)

INFO: There is one optimal configuration with a risk value of
0.057970446012327835

Optimal Configurations:
- {Redundant_sensors: True, Allow_firmware_rollback: True,

Reflex_action_enabled: True, Wireless_RTU_RTU_link: False}

49

Processing Formula 11:

OptimalConf(RTU)

INFO: There is one optimal configuration with a risk value of
3.4721460015144587

Optimal Configurations:
- {Reflex_action_enabled: True, Wireless_RTU_RTU_link: False ,

Remote_CC_override_enabled: False, RTU_CC_comm_encrypted: False ,
Redundant_sensors: True, Allow_firmware_rollback: True}

There is one conflicting property between the configurations of Environment with
Pipeline, and SCADA system with RTU. The conflicting property is Allow_firmware_-
rollback. It is set to false for the Environment and Pipeline, and true for the SCADA
system and RTU. Since the Environment and Pipeline might be considered more impor-
tant to protect, one might be inclined to set this property to false. On the other hand,
the combined risk of the SCADA system and RTU is higher than that of the Environment
and Pipeline. This suggests that more attention should be paid to the SCADA system
and RTU. To make a more informed decision, the influence of this property on the risk
of these objects is investigated. The optimal configuration for these objects is calculated
again, but this time evidence is set for the Allow_firmware_rollback property to the
opposite value.

Processing Formula 12:

(OptimalConf(Environment) [Allow_firmware_rollback: 1])

INFO: There is one optimal configuration with a risk value of
0.003467626368441233

Optimal Configurations:
- {Remote_CC_override_enabled: True, Redundant_sensors: True,

Reflex_action_enabled: True, Wireless_RTU_RTU_link: False ,
Strong_material: True}

Processing Formula 13:

(OptimalConf(Pipeline) [Allow_firmware_rollback: 1])

INFO: There is one optimal configuration with a risk value of
0.004693802336441233

Optimal Configurations:
- {Remote_CC_override_enabled: True, Redundant_sensors: True,

Reflex_action_enabled: True, Wireless_RTU_RTU_link: False ,
Strong_material: True}

Processing Formula 14:

(OptimalConf(SCADA_system) [Allow_firmware_rollback: 0])

INFO: There is one optimal configuration with a risk value of
0.5257458934717115

Optimal Configurations:
- {Redundant_sensors: True, Reflex_action_enabled: True,

Wireless_RTU_RTU_link: False, Remote_CC_override_enabled: False}

50

Processing Formula 15:

(OptimalConf(RTU) [Allow_firmware_rollback: 0])

WARNING: Evidence {'Allow_firmware_rollback ': False} made node '
Exploit_old_firmware_vulnerability ' unsatisfiable.

WARNING: Evidence {'Allow_firmware_rollback ': False} made node '
Rollback_firmware ' unsatisfiable.

INFO: There is one optimal configuration with a risk value of
4.186653303125821

Optimal Configurations:
- {Reflex_action_enabled: True, Wireless_RTU_RTU_link: False ,

Remote_CC_override_enabled: False, RTU_CC_comm_encrypted: False ,
Redundant_sensors: True}

These results show that the risk increases more for the Environment and Pipeline than
for the SCADA system and RTU. The risks of the Environment and Pipeline increase
by 1253.88% and 677.43%, while the risks of the SCADA system and RTU increase by
806.92% and 20.58%. These larger relative increases, along with the opinion that the
Environment and Pipeline are more important to protect, lead to the conclusion that the
Allow_firmware_rollback property should be set to false.

As mentioned before, three object properties are in conflict between the attack tree and
fault tree. It seems that the previous optimal configuration results already decided which
option to pick for these properties. However, directly comparing risk values between attack
and fault trees can be difficult or misleading. This is because of their different natures:
the attacker makes choices, while the fault tree involves purely random events. Therefore,
it is a good idea to investigate the influence of these properties on the risk of both trees
individually. This can be done by calculating the optimal configuration for the attack tree
and fault tree separately. Again, pseudo-objects are used to achieve this.3

Processing Formula 16:

OptimalConf(ACPO)

INFO: There is one optimal configuration with a risk value of
0.00020547072

Optimal Configurations:
- {Allow_firmware_rollback: False, Reflex_action_enabled: True,

Remote_CC_override_enabled: False, Wireless_RTU_RTU_link: False}

Processing Formula 17:

OptimalConf(APO)

INFO: There is one optimal configuration with a risk value of
3.0796844123278364e-07

Optimal Configurations:
- {Reflex_action_enabled: True, Strong_material: True,

Remote_CC_override_enabled: True, Redundant_sensors: True,
Allow_firmware_rollback: True, Wireless_RTU_RTU_link: False}

Out of the three conflicting properties, one property, RTU_CC_comm_encrypted,
is found to be not conflicting in practice; it is not present in either of the optimal config-
urations! The reason for this is different for the two trees. Regarding the attack tree, the
reason is similar to what was seen before: the attack it influences, Attack preparation

3We create ACPO and APO for the top-level events of the attack tree and fault tree, respectively.

51

2, is not the most optimal attack. For the fault tree, however, the reason is different, as
fault trees are not based on choices but on random events. Instead, we need to look at the
subtree rooted at No RTU reaction more closely to find out why this property is not
present in the optimal configuration. No RTU reaction is an AND gate with two children.
No reflex action activated by RTU has three children, two of which are disabled by
the optimal configuration: No reflex action and Inter-RTU communication lost.
Therefore, for No RTU reaction to be true, Faulty sensor measure must be true.
Since Faulty sensor measure is also a child of No instruction from control center,
this means that all other children of No instruction from control center are irrelevant
outside of the No instruction from control center subtree. This explains why RTU_-
CC_comm_encrypted is not present in the optimal configuration for the fault tree, but
is present in the optimal configuration for RTU, since RTU participates in both No in-
struction from control center and Delayed instructions. Consequently, following
the optimal configuration of RTU, RTU_CC_comm_encrypted should definitely be
set to false.

For each of the remaining properties, their influence on the risk of the attack tree and
fault tree is investigated. This is done similarly to before, by setting evidence for the
Remote_CC_override_enabled and Allow_firmware_rollback properties to the
opposite value. First for Remote_CC_override_enabled:

Processing Formula 18:

(OptimalConf(ACPO) [Remote_CC_override_enabled: 1])

INFO: There is one optimal configuration with a risk value of
0.002018016

Optimal Configurations:
- {Allow_firmware_rollback: False, Reflex_action_enabled: True}

Processing Formula 19:

(OptimalConf(APO) [Remote_CC_override_enabled: 0])

INFO: There is one optimal configuration with a risk value of
3.101857918359319e-07

Optimal Configurations:
- {Redundant_sensors: True, Allow_firmware_rollback: True,

Reflex_action_enabled: True, Wireless_RTU_RTU_link: False ,
Strong_material: True}

The risk of the attack tree increases by 882.14%, and the risk of the fault tree increases
by 0.72%. Clearly, with an increase factor of almost 10, the attack tree is much more
sensitive to this property than the fault tree, suggesting that we should follow the optimal
configuration for the attack tree where this property is set to false. Fortunately, this also
aligns with the optimal configurations for Environment, Pipeline, and RTU, which all have
this property set to false.

Now, the same is done for Allow_firmware_rollback. Unlike Remote_CC_-
override_enabled, this property was also a conflicting property in the optimal configu-
rations between Environment and Pipeline, and SCADA system and RTU :

52

Processing Formula 20:

(OptimalConf(ACPO) [Allow_firmware_rollback: 1])

INFO: There is one optimal configuration with a risk value of
0.0034673184

Optimal Configurations:
- {}

Processing Formula 21:

(OptimalConf(APO) [Allow_firmware_rollback: 0])

INFO: There is one optimal configuration with a risk value of
5.0292570019171146e-05

Optimal Configurations:
- {Remote_CC_override_enabled: True, Redundant_sensors: True,

Reflex_action_enabled: True, Wireless_RTU_RTU_link: False ,
Strong_material: True}

The risk of the attack tree increases by 1588%. The risk of the fault tree increases by
16230%. This time, the fault tree is much more sensitive to this property than the attack
tree, by more than a factor of 10. This would side with the optimal configurations for
SCADA system and RTU, which both have this property set to true.

Ultimately, the results show that outcomes can vary drastically depending on which ob-
jects or which tree is being examined. This case study illustrates the utility of DOGLog in
navigating such complexities. By facilitating the analysis of system risks considering both
safety and security aspects, DOGLog helped identify non-obvious interactions. For exam-
ple, the Pipeline’s initial risk insensitivity resulted from the dominant Waterhammer
attack. Adjusting the model based on this insight yielded more plausible results. The in-
vestigation of object properties revealed synergies and conflicts. Clear optimal settings were
found for non-conflicting properties. Strong_material, Reflex_action_enabled, and
Redundant_sensors should be set to true. Wireless_RTU_RTU_link should be set
to false. While appearing conflicting at first sight, RTU_CC_comm_encrypted was
also found non-conflicting in practice and should be set to false. Determining settings for
the conflicting properties, Allow_firmware_rollback and Remote_CC_override_-
enabled, yielded interesting results. For Remote_CC_override_enabled, we found
that the attack tree is much more sensitive to this property than the fault tree, suggesting
that we should follow the optimal configuration for the attack tree where this property
is set to false. This also happened to align with the optimal configurations for objects
Environment, Pipeline, and RTU. The analysis of Allow_firmware_rollback gave con-
flicting results. Analysis prioritizing key objects suggested false, while analysis comparing
attack and fault tree sensitivity suggested true might be better. These conflicting findings
highlight that a single optimal configuration may not exist. The best choice depends on
the analysis perspective and specific risk priorities. WATCHDOG provides the framework
to explore these trade-offs and support informed decision-making.

53

Chapter 6

Discussion and Future Work

This chapter addresses the third research question: What are the current limitations of the
WATCHDOG framework and its associated logic DOGLog, and what are the most promis-
ing opportunities for future enhancements to improve its expressiveness and usability? It
reflects on the findings of the case study, discusses the limitations of the current WATCH-
DOG framework and DOGLog, and proposes several directions for future work.

The case study highlighted the role of DOGLog in model validation and refinement.
Analysis with DOGLog initially produced unexpected results concerning the risk sensitivity
of the Pipeline object. Specifically, the risk associated with the Pipeline seemed surpris-
ingly insensitive to different configurations. This finding prompted a re-examination of
both the source BDMP model and our DOG translation, which led to the discovery of
a misinterpretation of a dependency related to the Waterhammer attack. The origi-
nal BDMP correctly modeled that the protection system must be compromised before a
Waterhammer attack could be executed. This dependency was initially missed in our
DOG model. This experience underscores an iterative modeling process: an initial model is
constructed, analysis reveals surprising insights, which leads to model correction, followed
by re-analysis. The use of DOGLog was instrumental in uncovering this subtle oversight.
Such errors might be easily missed when using a more traditional approach, where the
model is analyzed in its entirety without zooming in on smaller parts of the model. In this
way, formal analysis with DOGLog can act as a valuable validation step, enhancing the
accuracy and reliability of the risk model.

6.1 WATCHDOG Limitations and Possible Extensions

Object-oriented DisruptiOn Graphs (DOGs) are, in their current form, static models. This
means they cannot represent the temporal aspects of system behavior. The case study
highlighted that translating dynamic models, such as BDMP, to DOGs can result in a loss
of temporal information. Over time, researchers have proposed various methods to extend
traditional fault and attack trees to incorporate a sense of time [29, 39]. Furthermore,
numerous formalisms beyond fault and attack trees are utilized for risk analysis. These
include BDMP [5] and Probabilistic Event Graphs [6], among others, with a recent survey
by Nicoletti et al. [29] compiling several such approaches. Given that DOGs represent a
new formalism, their initial focus on static, more simple, modeling is understandable.

The WATCHDOG framework introduces novel contributions, particularly in its object-
oriented approach to risk assessment, grounded in ontological principles from the COVER
framework [45]. The authors of WATCHDOG state that DOGs are the first formalism
to explicitly account for objects participating in events and to aggregate the risk of those

54

events for different objects [31]. Key distinguishing features of the WATCHDOG frame-
work, enabled by DOGs and the associated DOGLog logic and DOGLang query language,
include:

• The ability to model diverse objects that are at risk within the system.

• The ability to model how these objects participate in various events and attacks.

• The functionality to aggregate the risk posed by events and attacks specifically for
different objects.

• The capability to model the parthood relation, where one object is a part of another.

WATCHDOG defines risk as the product of impact and probability. Impact values
are assigned to all disruption tree nodes. Probabilities, on the other hand, are explicitly
assigned only to basic nodes; for all other nodes, probabilities are calculated based on
the probabilities of their child events and the logical gates connecting them. Essentially,
WATCHDOG requires that events in which objects participate have probabilities and im-
pacts. The concept of using probabilities and impacts for events is also present, or can be
readily incorporated, in several other risk analysis formalisms. Examples include Failure-
Attack-CounTermeasure FACT graphs [44] and Attack Tree Bow-ties [1, 32], as noted in
the survey by Nicoletti et al. [29]. Consequently, the object-oriented modeling additions in-
troduced by WATCHDOG could potentially be applied to these other formalisms, provided
they meet the necessary foundational requirements for WATCHDOG.

More broadly, the object-oriented reasoning capabilities of WATCHDOG might be
adaptable even to formalisms where not every event or attack has a direct probability
value. For instance, BDMP utilize rates of occurrence for some events instead of direct
probabilities. While the direct translation of “risk” in the WATCHDOG sense requires
further investigation in such contexts, it could be fruitful to explore object-oriented queries
in these formalisms. One might investigate questions such as “what is the maximal rate
of occurrence of an event affecting object o, given certain object properties?” Similarly,
one could explore “what is the optimal configuration of object properties to minimize the
rate of occurrence of events impacting object o?” Such explorations could pave the way for
integrating WATCHDOG’s object-oriented paradigm with a wider array of existing risk
analysis techniques, thereby enhancing their expressiveness and analytical depth. Future
research could focus on developing formal semantics to bridge WATCHDOG with these
diverse formalisms.

6.2 Potential Enhancements to DOGLog and WATCHDOG

This section discusses several potential enhancements to DOGLog and the WATCHDOG
framework. These were identified during the course of this research and the case study
analysis. These suggestions, offered as potential directions for future work, aim to improve
the expressiveness, usability, and modeling capabilities of WATCHDOG and DOGLog.

6.2.1 Nodes as Parameters for Layer 3 Functions

During the case study, a limitation in the current DOGLog logic became apparent. Specif-
ically, layer 3 functions, such as TotalRisk

min
, MostRisky∗, and OptimalConf, are defined to

accept only objects as parameters. In our analysis, we encountered a scenario where we
needed to determine the risk contribution of a specific attack tree node: Waterhammer
attack. To work around this limitation, we introduced a pseudo-object. This pseudo-
object, named WAO (Waterhammer Attack Object), exclusively participated in the Wa-

55

terhammer attack node. By analyzing this pseudo-object, we could indirectly assess the
risk of the targeted attack node. This approach works because layer 3 functions operate
on the set of disruption tree elements in which an object participates.

However, the necessity of creating pseudo-objects suggests a potential area for im-
provement in DOGLog. The restriction of layer 3 functions to object parameters appears
somewhat arbitrary. Relaxing this limitation to allow any node from a disruption tree
as a parameter to layer 3 functions would be beneficial. Such an extension would offer
greater flexibility in risk analysis. It would also eliminate the need for ad-hoc solutions
like pseudo-objects, leading to more direct and intuitive queries.

6.2.2 Direct Probability Calculation and Comparison

The current DOGLog layer 2 syntax focuses on comparing the probability of a layer 1
formula ϕ against a constant threshold. For example, one can query if P(ϕ) < 0.5. While
this is useful, determining the exact probability value of ϕ is less direct. Theoretically,
one could approximate the value by repeatedly querying against different thresholds. This
could perhaps employ a binary search strategy. However, this method is cumbersome and
inefficient for the user. Our current implementation mitigates this by logging the computed
probability value to the terminal whenever a probability comparison is evaluated. This
provides the user with the exact value. Nevertheless, the language itself still requires
framing the query as a comparison, even if the comparison aspect is not the primary
interest. A more straightforward approach would be to allow the term P(ϕ) to stand alone
in the grammar. When used this way, it would directly yield the probability value of ϕ,
similar to how layer 3 functions return specific risk values. This would enhance the usability
of layer 2 for direct probability queries. It is important to note that such a standalone
P(ϕ) expression would result in a numeric value, not a Boolean. Consequently, it could
not be combined using logical operators (e.g., ∧,∨,¬) in the same way that probability
comparisons like P(ϕ) < 0.5 can.

Furthermore, the current syntax does not support direct comparison of probabilities
of two different formulae. For instance, it is not possible to express a query like “is the
probability of ϕ1 greater than the probability of ϕ2?”. Extending layer 2 to allow expressions
such as P(ϕ1) > P(ϕ2) would enable more complex and nuanced probabilistic analyses.
This would allow for direct ranking of event likelihoods within the logic itself.

6.2.3 Support for Variables and Arithmetic Operations

Building upon the idea of directly calculating probability values, DOGLog could be fur-
ther enhanced by incorporating variables and arithmetic operations. Currently, values
computed by DOGLog functions are only presented as final outputs. Examples include
risk values from layer 3, or potential probability values from an extended layer 2. There
is no mechanism within DOGLog to store these values or perform further calculations on
them.

We propose extending DOGLog to support:

• Variable assignment: Allowing users to assign the result of a DOGLog function (e.g.,
a standalone P(ϕ) or TotalRisk

min
(o)) to a variable.

• Arithmetic operations: Enabling standard arithmetic operations on these variables
and numeric literals. These include addition, subtraction, multiplication, and divi-
sion.

56

• Comparisons: Allowing comparisons between variables and numeric literals. These
include (in)equality, less than (or equal to), greater than (or equal to).

Such features would significantly increase the expressive power of DOGLog. In the
case study, for instance, we frequently performed calculations outside the DOGLog envi-
ronment, e.g., comparing different risk values. We also calculated relative increases in risk
under different configurations, e.g., the 1129.17% increase for the risk of Pipeline between
the maximal and minimal risk scenarios. Integrating these capabilities into DOGLog itself
would allow for more complex and self-contained analyses. This would involve introducing
new statement types for variable assignment. It would also require expressions for arith-
metic and comparison, akin to those found in general-purpose programming languages.
Additionally, a dedicated ‘print‘ statement would be valuable. This would allow users to
output the values of variables or intermediate calculations directly from their DOGLog
queries.

6.2.4 Modeling Conditional Probabilities and Impacts in DOGs

The case study highlighted a new modeling requirement. This is the need to adjust the
probability or impact of a disruption tree node based on the state of object properties. For
example, the probability of a Faulty sensor measure might decrease if Redundant_-
sensors are installed. Similarly, the impact of a Pipeline rupture might be lower if the
pipeline is constructed using a Strong_material.

Our current approach to model such conditionality within the DOG formalism involves
a workaround. We create two (or more) sibling nodes in the disruption tree. Each sibling
represents a different probability or impact value. These sibling nodes are then guarded by
mutually exclusive conditions based on object properties. For instance, one node Pipeline
strong material break is active if Strong_material is true. Another node Pipeline
weak material break is active if ¬Strong_material is true. While this workaround
achieves the desired effect, it leads to a more verbose DOG structure.

A more elegant solution would be to extend the WATCHDOG framework to directly
support conditional probability and impact values for nodes. This means the probability or
impact of a node would not be a static value. Instead, it could be determined by a function
that maps combinations of object properties to a specific value. This extension would
require only slight changes to the semantics of WATCHDOG. Primarily, the probability
attribution function for basic nodes, α : BAS ∪ BE 7→ [0, 1], and the impact attribution
function, Im : NA ∪ NF 7→ R≥0, would need to be redefined. Their new signatures would
incorporate object configurations: α′ : (BAS ∪ BE)× C 7→ [0, 1] and Im ′ : (NA ∪NF)× C 7→
R≥0. Here, C represents the set of all possible configurations of object properties. This
change integrates well with the existing semantics. The functions α and Im are only used in
contexts where a specific configuration b⃗O is already available, namely in the calculation of
ρ(ϕ, b⃗O)A,F for layer 2, and objRiskVal(o, b⃗O) and MostRisky∗(o) for layer 3. Thus, making
these attributions dependent on b⃗O is a natural extension.

To incorporate this into the DOG definition language, several approaches can be con-
sidered. A straightforward method is to introduce support for a ternary operator. This
operator would be used directly within the probability and impact attributes of nodes.
The syntax for such a solution, using val for a numeric value expression and cond for a

57

condition expression over object properties, could be:

val ::= c | cond ? val : val

cond ::= op | ¬cond | cond = cond | cond ̸= cond | cond ∧ cond | cond ∨ cond

| cond =⇒ cond | (cond)

Here, c represents a constant numeric value (e.g., a probability or impact). op refers to
an object property (atomic proposition). The cond expression reuses the familiar Boolean
operators for combining object properties, as already used for node conditions in DOGs.

Another, more powerful, option could be to allow the definition of small functions.
These functions would take object properties as input and return the corresponding prob-
ability or impact value. This approach, however, introduces complexities. These complex-
ities relate to the types of statements allowed within such functions (e.g., if-statements,
loops). This could potentially build upon the previously discussed extensions for variables
and arithmetic in DOGLog. For the immediate use case of conditional probabilities and
impacts as seen in the case study, the ternary operator approach is likely sufficient, and is
simpler to implement. It would offer a concise way to express conditional values directly
in the DOG.

6.3 Correctness and Verification of ODF

The correctness of ODF is critical for reliable risk assessment using DOGLog. The im-
plementation is validated through an extensive automated test suite, as detailed in Sec-
tion 4.2.4. For layer 2 probability calculations, our approach combines the proven BDDDAG
and pTLE algorithms. The manual calculation example in Section 4.1.2.1 demonstrates
exact agreement between the BDD-based computation and exhaustive enumeration, pro-
viding additional confidence in this component. Together with the test suite, this provides
a degree of confidence in the tool’s correctness. However, it is important to acknowledge
the inherent limitations of this approach.

Testing can only verify behavior for the specific inputs and scenarios included in the test
suite. While these tests can find implementation bugs, they cannot prove their absence.
This limitation is particularly significant for risk assessment tools, where incorrect results
could lead to poor safety and security decisions.

For applications in safety-critical domains, formal verification would provide stronger
correctness guarantees. Such verification could involve:

1. Formal specification. Expressing DOGLog semantics in a theorem prover such as
Coq, Isabelle/HOL, or Lean.

2. Verified algorithms. Developing the algorithms with machine-checked proofs of
correctness with respect to the formal specification.

3. Equivalence proofs. Demonstrating that the implementation faithfully realizes the
intended semantics through formal proofs.

However, such formal verification is a substantial research undertaking that extends
well beyond the scope of this thesis. The development of verified implementations typically
requires significant additional effort and specialized expertise in formal methods.

The current ODF implementation provides a solid foundation for DOGLog analysis.
It has been validated through extensive testing and demonstrated with a practical case
study. For critical applications, users should understand the limitations of this validation
and consider additional verification if deemed necessary. Future work could explore formal

58

verification of the algorithms developed in this thesis and their implementation in ODF.
This would provide stronger correctness guarantees.

6.4 Performance Evaluation

The performance of ODF is currently uncharacterized. The case study was conducted on a
small model, where individual queries were evaluated in under 200 milliseconds. However,
it remains unclear how ODF will scale with larger models and more complex queries.
Performance testing and optimization are therefore important directions for future work.

A standard approach to performance evaluation is to use a benchmark suite. While
benchmark sets exist for traditional fault and attack trees [40], none are available for the
new DOG formalism. A practical alternative is to generate a collection of synthetic DOG
models with varying size and complexity.

A potential tool for this task is Grammarinator [16], which generates inputs based on a
context-free grammar. Grammarinator is designed for fuzz testing but offers features that
are useful for generating valid DOGs. It allows weighting grammar rules to control the
distribution of generated structures. It also supports constraints and the reuse of generated
elements. These features are necessary to ensure the generated DOGs are well-formed. For
example, an event can only be attached to an object that has been defined. Similarly, a
condition on an event can only reference object properties of objects that participate in
that event. A purely random generator would not be able to satisfy such constraints.

A key challenge is controlling the structural properties of the generated models. The
performance of query evaluation may be influenced by several factors. These include the
number of shared subtrees, the distribution of AND to OR gates, the number of events an
object participates in, the complexity of conditions, and many others. Indeed, related re-
search on evaluating Boolean Fault tree Logic (BFL) formulae on fault trees suggests that
the structure of the fault tree has a greater impact on performance than its size [43]. There-
fore, a benchmark suite should contain a wide variety of DOGs with different structural
characteristics.

It is uncertain whether Grammarinator provides sufficient control to generate such a
diverse set of models. If it proves too restrictive, a custom model generator may need to
be developed. This would ensure that the performance of ODF can be evaluated across a
comprehensive range of DOGs.

59

Chapter 7

Conclusion

This thesis presented the design and implementation of a model checker for DOGLog, the
custom logic of the WATCHDOG framework for object-oriented risk assessment. The work
addressed the practical challenge of analyzing object-oriented DisruptiOn Graphs (DOGs)
through the development of a complete toolchain that translates DOGLog queries into
Binary Decision Diagrams (BDDs) for efficient verification.

7.1 Answers to Research Questions

RQ1: How can model checking algorithms be designed and implemented for
the three layers of DOGLog? We developed model checking algorithms for DOGLog’s
three-layer logic. BDDs are at the core of our approach. DOGLog formulae are trans-
lated into BDD representations, before the algorithms we developed use them for analysis.
Specifically, these BDDs enable satisfiability checking and the computation of minimal
risk scenarios for layer 1 formulae. For layer 2, the algorithms use BDDs to calculate the
probability of formulae. In layer 3, BDDs are used for individual element analysis such
as identifying the most risky events or actions for an object, while Multi-Terminal BDDs
(MTBDDs) are used to determine total risk exposure and optimal configurations by ag-
gregating risk contributions from all nodes in which an object participates. Furthermore,
we implemented a tool named ODF that includes a parser for a custom domain-specific
language to define DOGs and to write DOGLog formulae, as well as the implementation
of a model checker that processes DOG models and evaluates DOGLog queries. The im-
plementation supports the full DOGLog syntax, enabling the modeling and analysis of
object participation and parthood relations, probability calculations, and risk aggregation
functions. The tool provides a command-line interface for practical use.

RQ2: How can DOGLog be used for performing risk analysis on a complex
system, and what conclusions can be drawn from the application of DOGLog
to such a system? Through a comprehensive case study based on a cyber-physical
pipeline system, we demonstrated the practical utility of our implementation. The object-
oriented approach of WATCHDOG, supported by this implementation, enables focused
analysis on specific system components. This allows analysts to examine risk from multiple
perspectives within the same model. This capability proved valuable for understanding
how different objects are affected by various attack and failure scenarios. The case study
demonstrated how risk modeling can be an iterative process, where formal analysis helps
refine the model. Formal analysis with DOGLog can uncover subtle modeling errors that
might be missed in traditional approaches. Specifically, unexpected results concerning

60

pipeline risk sensitivity in our analysis helped identify a misinterpretation of dependencies
in the original BDMP model. This highlighted how DOGLog analysis can also serve as
a validation step for risk models. Specific conclusions from the case study included the
identification of optimal system configurations to minimize risk, the quantification of risk
levels for critical objects, and the uncovering of non-obvious interactions and dependencies
between safety and security measures.

RQ3: What are the current limitations of the WATCHDOG framework and
its associated logic DOGLog, and what are the most promising opportunities
for future enhancements to improve its expressiveness and usability? As a
result of the case study, we identified and discussed several potential enhancements to
the WATCHDOG framework. These include support for nodes as parameters in layer 3
functions, direct probability calculation queries, variables and arithmetic operations, and
conditional probabilities and impacts based on object configurations. Further research
could focus on extending the framework to handle dynamic models for systems where
timing is critical, as DOGs are currently static. Additionally, the object-oriented paradigm
of WATCHDOG could potentially be applied to other risk analysis formalisms beyond fault
and attack trees. Future work could explore formal semantics to bridge WATCHDOG with
diverse existing approaches.

61

Bibliography

[1] H. Abdo et al. “A Safety/Security Risk Analysis Approach of Industrial Control
Systems: A Cyber Bowtie – Combining New Version of Attack Tree with Bowtie
Analysis”. In: Computers & Security 72 (Jan. 1, 2018), pp. 175–195. issn: 0167-4048.
doi: 10.1016/j.cose.2017.09.004. url: https://www.sciencedirect.com/
science/article/pii/S0167404817301931 (visited on 05/23/2025).

[2] Akers. “Binary Decision Diagrams”. In: IEEE Transactions on Computers C-27.6
(June 1978), pp. 509–516. issn: 1557-9956. doi: 10.1109/TC.1978.1675141. url:
https://ieeexplore.ieee.org/document/1675141 (visited on 12/12/2024).

[3] Israel Barragan santiago and Jean-Marc Faure. “FROM FAULT TREE ANALYSIS
TO MODEL CHECKING OF LOGIC CONTROLLERS”. In: IFAC Proceedings Vol-
umes. 16th IFAC World Congress 38.1 (Jan. 1, 2005), pp. 86–91. issn: 1474-6670.
doi: 10.3182/20050703-6-CZ-1902.01439. url: https://www.sciencedirect.
com/science/article/pii/S1474667016374511 (visited on 01/24/2025).

[4] Hichem Boudali, Pepijn Crouzen, and Marielle Stoelinga. “Dynamic Fault Tree Anal-
ysis Using Input/Output Interactive Markov Chains”. In: 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’07). 37th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’07). June 2007, pp. 708–717. doi: 10 . 1109 / DSN . 2007 . 37. url: https :
//ieeexplore.ieee.org/document/4273022 (visited on 01/25/2025).

[5] Marc Bouissou and Jean-Louis Bon. “A New Formalism That Combines Advantages
of Fault-Trees and Markov Models: Boolean Logic Driven Markov Processes”. In:
Reliability Engineering & System Safety 82.2 (Nov. 1, 2003), pp. 149–163. issn: 0951-
8320. doi: 10.1016/S0951-8320(03)00143-1. url: https://www.sciencedirect.
com/science/article/pii/S0951832003001431 (visited on 05/13/2025).

[6] Edwin Bourget et al. “Probabilistic Event Graph to Model Safety and Security for
Diagnosis Purposes”. In: Data and Applications Security and Privacy XXXII. Ed. by
Florian Kerschbaum and Stefano Paraboschi. Cham: Springer International Publish-
ing, 2018, pp. 38–47. isbn: 978-3-319-95729-6. doi: 10.1007/978-3-319-95729-6_3.

[7] Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”. In: IEEE
Transactions on Computers C-35.8 (Aug. 1986), pp. 677–691. issn: 1557-9956. doi:
10.1109/TC.1986.1676819. url: https://ieeexplore.ieee.org/document/
1676819 (visited on 12/10/2024).

[8] Carlos E. Budde and Mariëlle Stoelinga. “Efficient Algorithms for Quantitative At-
tack Tree Analysis”. In: 2021 IEEE 34th Computer Security Foundations Symposium
(CSF). 2021 IEEE 34th Computer Security Foundations Symposium (CSF). June
2021, pp. 1–15. doi: 10.1109/CSF51468.2021.00041. url: https://ieeexplore.
ieee.org/document/9505179 (visited on 11/20/2024).

62

https://doi.org/10.1016/j.cose.2017.09.004
https://www.sciencedirect.com/science/article/pii/S0167404817301931
https://www.sciencedirect.com/science/article/pii/S0167404817301931
https://doi.org/10.1109/TC.1978.1675141
https://ieeexplore.ieee.org/document/1675141
https://doi.org/10.3182/20050703-6-CZ-1902.01439
https://www.sciencedirect.com/science/article/pii/S1474667016374511
https://www.sciencedirect.com/science/article/pii/S1474667016374511
https://doi.org/10.1109/DSN.2007.37
https://ieeexplore.ieee.org/document/4273022
https://ieeexplore.ieee.org/document/4273022
https://doi.org/10.1016/S0951-8320(03)00143-1
https://www.sciencedirect.com/science/article/pii/S0951832003001431
https://www.sciencedirect.com/science/article/pii/S0951832003001431
https://doi.org/10.1007/978-3-319-95729-6_3
https://doi.org/10.1109/TC.1986.1676819
https://ieeexplore.ieee.org/document/1676819
https://ieeexplore.ieee.org/document/1676819
https://doi.org/10.1109/CSF51468.2021.00041
https://ieeexplore.ieee.org/document/9505179
https://ieeexplore.ieee.org/document/9505179

[9] Built-in Types. Python documentation. url: https : / / docs . python . org / 3 /
library/stdtypes.html (visited on 05/21/2025).

[10] E.M. Clarke et al. “Spectral Transforms for Large Boolean Functions with Applica-
tions to Technology Mapping”. In: Formal Methods in System Design 10.2 (Apr. 1,
1997), pp. 137–148. issn: 1572-8102. doi: 10.1023/A:1008695706493. url: https:
//doi.org/10.1023/A:1008695706493 (visited on 06/17/2025).

[11] Cudd: CUDD Documentation. Jan. 27, 2018. url: https://web.archive.org/web/
20180127051756/http://vlsi.colorado.edu/~fabio/CUDD/html/index.html
(visited on 05/21/2025).

[12] Adrien Derock, Patrick Hebrard, and Frédérique Vallée. “Convergence of the Latest
Standards Addressing Safety and Security for Information Technology”. In: ERTS
2010 Proceedings. Toulouse, France, May 2010. url: https://hal.science/hal-
02267717 (visited on 01/25/2025).

[13] David Peter Eames and Jonathan Moffett. “The Integration of Safety and Security
Requirements”. In: Computer Safety, Reliability and Security. International Confer-
ence on Computer Safety, Reliability, and Security. Springer, Berlin, Heidelberg,
1999, pp. 468–480. isbn: 978-3-540-48249-9. doi: 10.1007/3-540-48249-0_40. url:
https://link.springer.com/chapter/10.1007/3-540-48249-0_40 (visited on
01/25/2025).

[14] M. Fujita, P.C. McGeer, and J.C.-Y. Yang. “Multi-Terminal Binary Decision Dia-
grams: An Efficient Data Structure for Matrix Representation”. In: Formal Methods
in System Design 10.2 (Apr. 1, 1997), pp. 149–169. issn: 1572-8102. doi: 10.1023/A:
1008647823331. url: https://doi.org/10.1023/A:1008647823331 (visited on
06/17/2025).

[15] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Struc-
ture, Dynamics, and Function Using NetworkX”. In: Proceedings of the 7th Python
in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod Millman.
Pasadena, CA USA, 2008, pp. 11–15.

[16] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. “Grammarinator: A Grammar-
Based Open Source Fuzzer”. In: Proceedings of the 9th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation. A-TEST
2018. New York, NY, USA: Association for Computing Machinery, Nov. 5, 2018,
pp. 45–48. isbn: 978-1-4503-6053-1. doi: 10.1145/3278186.3278193. url: https:
//dl.acm.org/doi/10.1145/3278186.3278193 (visited on 06/17/2025).

[17] Nils Husung et al. “OxiDD: A Safe, Concurrent, Modular, and Performant Decision
Diagram Framework in Rust”. In: Proceedings of the 30th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’24).
2024. doi: 10.1007/978-3-031-57256-2_13.

[18] Joost-Pieter Katoen and Mariëlle Stoelinga. “Boosting Fault Tree Analysis by Formal
Methods”. In: ModelEd, TestEd, TrustEd. Springer, Cham, 2017, pp. 368–389. isbn:
978-3-319-68270-9. doi: 10.1007/978-3-319-68270-9_19. url: https://link.
springer.com/chapter/10.1007/978-3-319-68270-9_19 (visited on 01/24/2025).

[19] Siwar Kriaa et al. “A Survey of Approaches Combining Safety and Security for In-
dustrial Control Systems”. In: Reliability Engineering & System Safety 139 (July 1,
2015), pp. 156–178. issn: 0951-8320. doi: 10.1016/j.ress.2015.02.008. url:
https://www.sciencedirect.com/science/article/pii/S0951832015000538
(visited on 01/24/2025).

63

https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://doi.org/10.1023/A:1008695706493
https://doi.org/10.1023/A:1008695706493
https://doi.org/10.1023/A:1008695706493
https://web.archive.org/web/20180127051756/http://vlsi.colorado.edu/~fabio/CUDD/html/index.html
https://web.archive.org/web/20180127051756/http://vlsi.colorado.edu/~fabio/CUDD/html/index.html
https://hal.science/hal-02267717
https://hal.science/hal-02267717
https://doi.org/10.1007/3-540-48249-0_40
https://link.springer.com/chapter/10.1007/3-540-48249-0_40
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1145/3278186.3278193
https://dl.acm.org/doi/10.1145/3278186.3278193
https://dl.acm.org/doi/10.1145/3278186.3278193
https://doi.org/10.1007/978-3-031-57256-2_13
https://doi.org/10.1007/978-3-319-68270-9_19
https://link.springer.com/chapter/10.1007/978-3-319-68270-9_19
https://link.springer.com/chapter/10.1007/978-3-319-68270-9_19
https://doi.org/10.1016/j.ress.2015.02.008
https://www.sciencedirect.com/science/article/pii/S0951832015000538

[20] Siwar Kriaa et al. “Safety and Security Interactions Modeling Using the BDMP For-
malism: Case Study of a Pipeline”. In: Computer Safety, Reliability, and Security.
Ed. by Andrea Bondavalli and Felicita Di Giandomenico. Cham: Springer Interna-
tional Publishing, 2014, pp. 326–341. isbn: 978-3-319-10506-2. doi: 10.1007/978-
3-319-10506-2_22.

[21] Rajesh Kumar and Mariëlle Stoelinga. “Quantitative Security and Safety Analysis
with Attack-Fault Trees”. In: 2017 IEEE 18th International Symposium on High
Assurance Systems Engineering (HASE). 2017 IEEE 18th International Symposium
on High Assurance Systems Engineering (HASE). Jan. 2017, pp. 25–32. doi: 10.
1109/HASE.2017.12. url: https://ieeexplore.ieee.org/document/7911867
(visited on 01/24/2025).

[22] Lark-Parser/Lark. Lark - Parsing Library & Toolkit, May 20, 2025. url: https:
//github.com/lark-parser/lark (visited on 05/21/2025).

[23] C. Y. Lee. “Representation of Switching Circuits by Binary-Decision Programs”. In:
The Bell System Technical Journal 38.4 (July 1959), pp. 985–999. issn: 0005-8580.
doi: 10.1002/j.1538-7305.1959.tb01585.x. url: https://ieeexplore.ieee.
org/document/6768525 (visited on 12/12/2024).

[24] Milan Lopuhaä-Zwakenberg, Carlos E. Budde, and Mariëlle Stoelinga. “Efficient and
Generic Algorithms for Quantitative Attack Tree Analysis”. In: IEEE Transactions
on Dependable and Secure Computing 20.5 (Sept. 2023), pp. 4169–4187. issn: 1941-
0018. doi: 10.1109/TDSC.2022.3215752. url: https://ieeexplore.ieee.org/
document/9925106 (visited on 11/19/2024).

[25] Igor Nai Fovino, Marcelo Masera, and Alessio De Cian. “Integrating Cyber Attacks
within Fault Trees”. In: Reliability Engineering & System Safety. ESREL 2007, the
18th European Safety and Reliability Conference 94.9 (Sept. 1, 2009), pp. 1394–
1402. issn: 0951-8320. doi: 10 . 1016 / j . ress . 2009 . 02 . 020. url: https : / /
www.sciencedirect.com/science/article/pii/S0951832009000337 (visited on
01/25/2025).

[26] Stefano M. Nicoletti, E. Moritz Hahn, and Mariëlle Stoelinga. “BFL: A Logic to
Reason about Fault Trees”. In: 2022 52nd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN). 2022 52nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). June 2022,
pp. 441–452. doi: 10.1109/DSN53405.2022.00051. url: https://ieeexplore.
ieee.org/document/9833769 (visited on 11/26/2024).

[27] Stefano M. Nicoletti et al. ATM: A Logic for Quantitative Security Properties on
Attack Trees. May 17, 2024. doi: 10.48550/arXiv.2309.09231. arXiv: 2309.09231.
url: http://arxiv.org/abs/2309.09231 (visited on 11/19/2024). Pre-published.

[28] Stefano M. Nicoletti et al. DODGE: Ontology-Aware Risk Assessment via Object-
Oriented Disruption Graphs. Dec. 18, 2024. doi: 10.48550/arXiv.2412.13964.
arXiv: 2412.13964 [cs]. url: http://arxiv.org/abs/2412.13964 (visited on
01/12/2025). Pre-published.

[29] Stefano M. Nicoletti et al. “Model-Based Joint Analysis of Safety and Security:Survey
and Identification of Gaps”. In: Computer Science Review 50 (Nov. 1, 2023), p. 100597.
issn: 1574-0137. doi: 10 . 1016 / j . cosrev . 2023 . 100597. url: https : / / www .
sciencedirect.com/science/article/pii/S1574013723000643 (visited on 01/26/2025).

64

https://doi.org/10.1007/978-3-319-10506-2_22
https://doi.org/10.1007/978-3-319-10506-2_22
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1109/HASE.2017.12
https://ieeexplore.ieee.org/document/7911867
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://ieeexplore.ieee.org/document/6768525
https://ieeexplore.ieee.org/document/6768525
https://doi.org/10.1109/TDSC.2022.3215752
https://ieeexplore.ieee.org/document/9925106
https://ieeexplore.ieee.org/document/9925106
https://doi.org/10.1016/j.ress.2009.02.020
https://www.sciencedirect.com/science/article/pii/S0951832009000337
https://www.sciencedirect.com/science/article/pii/S0951832009000337
https://doi.org/10.1109/DSN53405.2022.00051
https://ieeexplore.ieee.org/document/9833769
https://ieeexplore.ieee.org/document/9833769
https://doi.org/10.48550/arXiv.2309.09231
https://arxiv.org/abs/2309.09231
http://arxiv.org/abs/2309.09231
https://doi.org/10.48550/arXiv.2412.13964
https://arxiv.org/abs/2412.13964
http://arxiv.org/abs/2412.13964
https://doi.org/10.1016/j.cosrev.2023.100597
https://www.sciencedirect.com/science/article/pii/S1574013723000643
https://www.sciencedirect.com/science/article/pii/S1574013723000643

[30] Stefano M. Nicoletti et al. “PFL: A Probabilistic Logic for Fault Trees”. In: Formal
Methods. Ed. by Marsha Chechik, Joost-Pieter Katoen, and Martin Leucker. Cham:
Springer International Publishing, 2023, pp. 199–221. isbn: 978-3-031-27481-7. doi:
10.1007/978-3-031-27481-7_13.

[31] Stefano M. Nicoletti et al. “WATCHDOG: An Ontology-aWare Risk AssessmenT ap-
proaCH via Object-Oriented DisruptiOn Graphs”. In: Advanced Information Systems
Engineering. Ed. by John Krogstie et al. Cham: Springer Nature Switzerland, 2025,
pp. 314–331. isbn: 978-3-031-94571-7. doi: 10.1007/978-3-031-94571-7_18.

[32] Dan S. Nielsen. The Cause/Consequence Diagram Method as a Basis for Quantitative
Accident Analysis. Report 87-550-0084-3. Roskile, Denmark: Risø National Labora-
tory, 1971. url: https://orbit.dtu.dk/en/publications/the-causeconsequence-
diagram-method-as-a-basis-for-quantitative-a.

[33] Ludovic Piètre-Cambacédès and Marc Bouissou. “Attack and Defense Modeling with
BDMP”. In: Computer Network Security. Ed. by Igor Kotenko and Victor Skormin.
Berlin, Heidelberg: Springer, 2010, pp. 86–101. isbn: 978-3-642-14706-7. doi: 10.
1007/978-3-642-14706-7_7.

[34] Ludovic Piètre-Cambacédès and Marc Bouissou. “Beyond Attack Trees: Dynamic
Security Modeling with Boolean Logic Driven Markov Processes (BDMP)”. In: 2010
European Dependable Computing Conference. 2010 European Dependable Computing
Conference. Apr. 2010, pp. 199–208. doi: 10.1109/EDCC.2010.32. url: https:
//ieeexplore.ieee.org/document/5474179 (visited on 05/13/2025).

[35] Ludovic Piètre-Cambacédès and Marc Bouissou. “Modeling Safety and Security In-
terdependencies with BDMP (Boolean Logic Driven Markov Processes)”. In: 2010
IEEE International Conference on Systems, Man and Cybernetics. 2010 IEEE In-
ternational Conference on Systems, Man and Cybernetics. Oct. 2010, pp. 2852–
2861. doi: 10.1109/ICSMC.2010.5641922. url: https://ieeexplore.ieee.
org/document/5641922 (visited on 05/13/2025).

[36] Chunling ZHU Quan JIANG. “Qualitative analysis for state/event fault trees using
formal model checking”. In: Journal of Systems Engineering and Electronics 30.5
(Oct. 9, 2019), pp. 959–973. issn: 1004-4132. doi: 10.21629/JSEE.2019.05.13.
url: https://www.jseepub.com/CN/abstract/abstract7037.shtml (visited on
01/24/2025).

[37] Antoine Rauzy. “New Algorithms for Fault Trees Analysis”. In: Reliability Engi-
neering & System Safety 40.3 (Jan. 1, 1993), pp. 203–211. issn: 0951-8320. doi:
10 . 1016 / 0951 - 8320(93) 90060 - C. url: https : / / www . sciencedirect . com /
science/article/pii/095183209390060C (visited on 11/26/2024).

[38] R. Rudell. “Dynamic Variable Ordering for Ordered Binary Decision Diagrams”. In:
The Best of ICCAD: 20 Years of Excellence in Computer-Aided Design. Ed. by An-
dreas Kuehlmann. Boston, MA: Springer US, 2003, pp. 51–63. isbn: 978-1-4615-0292-
0. doi: 10.1007/978-1-4615-0292-0_5. url: https://doi.org/10.1007/978-1-
4615-0292-0_5 (visited on 05/21/2025).

[39] Enno Ruijters and Mariëlle Stoelinga. “Fault Tree Analysis: A Survey of the State-
of-the-Art in Modeling, Analysis and Tools”. In: Computer Science Review 15–16
(Feb. 1, 2015), pp. 29–62. issn: 1574-0137. doi: 10.1016/j.cosrev.2015.03.001.
url: https://www.sciencedirect.com/science/article/pii/S1574013715000027
(visited on 11/19/2024).

65

https://doi.org/10.1007/978-3-031-27481-7_13
https://doi.org/10.1007/978-3-031-94571-7_18
https://orbit.dtu.dk/en/publications/the-causeconsequence-diagram-method-as-a-basis-for-quantitative-a
https://orbit.dtu.dk/en/publications/the-causeconsequence-diagram-method-as-a-basis-for-quantitative-a
https://doi.org/10.1007/978-3-642-14706-7_7
https://doi.org/10.1007/978-3-642-14706-7_7
https://doi.org/10.1109/EDCC.2010.32
https://ieeexplore.ieee.org/document/5474179
https://ieeexplore.ieee.org/document/5474179
https://doi.org/10.1109/ICSMC.2010.5641922
https://ieeexplore.ieee.org/document/5641922
https://ieeexplore.ieee.org/document/5641922
https://doi.org/10.21629/JSEE.2019.05.13
https://www.jseepub.com/CN/abstract/abstract7037.shtml
https://doi.org/10.1016/0951-8320(93)90060-C
https://www.sciencedirect.com/science/article/pii/095183209390060C
https://www.sciencedirect.com/science/article/pii/095183209390060C
https://doi.org/10.1007/978-1-4615-0292-0_5
https://doi.org/10.1007/978-1-4615-0292-0_5
https://doi.org/10.1007/978-1-4615-0292-0_5
https://doi.org/10.1016/j.cosrev.2015.03.001
https://www.sciencedirect.com/science/article/pii/S1574013715000027

[40] Enno J. J. Ruijters et al. “FFORT: A Benchmark Suite for Fault Tree Analysis”. In:
ESREL 2019: Proceedings of the 29th European Safety and Reliability Conference.
29th European Safety and Reliability Conference, ESREL 2019. Research Publishing,
2019, pp. 878–885. doi: 10.3850/978-981-11-2724-3_0641-cd. url: https:
//research.utwente.nl/en/publications/ffort-a-benchmark-suite-for-
fault-tree-analysis (visited on 06/17/2025).

[41] Caz Saaltink. CazSaa/Dd. Mar. 7, 2025. url: https://github.com/CazSaa/dd
(visited on 05/21/2025).

[42] Caz Saaltink. ODF: Object-oriented Disruption Framework. Version v1.0.0. Zenodo,
June 26, 2025. doi: 10 . 5281 / zenodo . 15744808. url: https : / / zenodo . org /
records/15744808 (visited on 06/26/2025).

[43] Caz Saaltink et al. “Solving Queries for Boolean Fault Tree Logic via Quantified
SAT”. In: Proceedings of the 9th ACM SIGPLAN International Workshop on Formal
Techniques for Safety-Critical Systems. FTSCS ’23: 9th ACM SIGPLAN Interna-
tional Workshop on Formal Techniques for Safety-Critical Systems. Cascais Portugal:
ACM, Oct. 18, 2023, pp. 48–59. isbn: 979-8-4007-0398-0. doi: 10.1145/3623503.
3623535. url: https://dl.acm.org/doi/10.1145/3623503.3623535 (visited on
11/26/2024).

[44] Giedre Sabaliauskaite and Aditya P. Mathur. “Aligning Cyber-Physical System Safety
and Security”. In: Complex Systems Design & Management Asia. Springer, Cham,
2015, pp. 41–53. isbn: 978-3-319-12544-2. doi: 10.1007/978-3-319-12544-2_4.
url: https://link.springer.com/chapter/10.1007/978-3-319-12544-2_4
(visited on 01/25/2025).

[45] Tiago Prince Sales et al. “The Common Ontology of Value and Risk”. In: Conceptual
Modeling. Ed. by Juan C. Trujillo et al. Cham: Springer International Publishing,
2018, pp. 121–135. isbn: 978-3-030-00847-5. doi: 10.1007/978-3-030-00847-5_11.

[46] B. Schneier. “Attack Trees”. In: Dr. Dobb’s Journal (Dec. 1999). url: https://
www.schneier.com/academic/archives/1999/12/attack_trees.html (visited on
12/12/2024).

[47] Mu Sun et al. “Addressing Safety and Security Contradictions in Cyber-Physical
Systems”. In: (). url: https://seclab.illinois.edu/addressing-safety-and-
security-contradictions-in-cyber-physical-systems.

[48] Andreas Thums and Gerhard Schellhorn. “Model Checking FTA”. In: FME 2003:
Formal Methods. International Symposium of Formal Methods Europe. Springer,
Berlin, Heidelberg, 2003, pp. 739–757. isbn: 978-3-540-45236-2. doi: 10.1007/978-
3-540-45236-2_40. url: https://link.springer.com/chapter/10.1007/978-3-
540-45236-2_40 (visited on 01/25/2025).

[49] Tulip-Control/Dd. Temporal Logic Planning (TuLiP) toolbox, Apr. 23, 2025. url:
https://github.com/tulip-control/dd (visited on 05/21/2025).

[50] Weiwei Zhou et al. “Integrating Security Factors into Fault Tree Analysis: A Safety
and Security Co-Analysis Approach for AADL Models”. In: International Conference
on Computer Application and Information Security (ICCAIS 2023). International
Conference on Computer Application and Information Security (ICCAIS 2023). Vol. 13090.
SPIE, Apr. 8, 2024, pp. 219–225. doi: 10.1117/12.3025564. url: https://www.
spiedigitallibrary.org/conference-proceedings-of-spie/13090/130900X/
Integrating-security-factors-into-fault-tree-analysis--a-safety/10.
1117/12.3025564.short (visited on 12/12/2024).

66

https://doi.org/10.3850/978-981-11-2724-3_0641-cd
https://research.utwente.nl/en/publications/ffort-a-benchmark-suite-for-fault-tree-analysis
https://research.utwente.nl/en/publications/ffort-a-benchmark-suite-for-fault-tree-analysis
https://research.utwente.nl/en/publications/ffort-a-benchmark-suite-for-fault-tree-analysis
https://github.com/CazSaa/dd
https://doi.org/10.5281/zenodo.15744808
https://zenodo.org/records/15744808
https://zenodo.org/records/15744808
https://doi.org/10.1145/3623503.3623535
https://doi.org/10.1145/3623503.3623535
https://dl.acm.org/doi/10.1145/3623503.3623535
https://doi.org/10.1007/978-3-319-12544-2_4
https://link.springer.com/chapter/10.1007/978-3-319-12544-2_4
https://doi.org/10.1007/978-3-030-00847-5_11
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://seclab.illinois.edu/addressing-safety-and-security-contradictions-in-cyber-physical-systems
https://seclab.illinois.edu/addressing-safety-and-security-contradictions-in-cyber-physical-systems
https://doi.org/10.1007/978-3-540-45236-2_40
https://doi.org/10.1007/978-3-540-45236-2_40
https://link.springer.com/chapter/10.1007/978-3-540-45236-2_40
https://link.springer.com/chapter/10.1007/978-3-540-45236-2_40
https://github.com/tulip-control/dd
https://doi.org/10.1117/12.3025564
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13090/130900X/Integrating-security-factors-into-fault-tree-analysis--a-safety/10.1117/12.3025564.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13090/130900X/Integrating-security-factors-into-fault-tree-analysis--a-safety/10.1117/12.3025564.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13090/130900X/Integrating-security-factors-into-fault-tree-analysis--a-safety/10.1117/12.3025564.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13090/130900X/Integrating-security-factors-into-fault-tree-analysis--a-safety/10.1117/12.3025564.short

Appendix A

Declarations

A.1 Use of AI

During the implementation of ODF, GitHub Copilot code completions were enabled.
GitHub Copilot was occasionally used to help write unit tests. During the preparation
of the thesis, the author used Claude 3.5 Sonnet and Gemini 2.5 Pro in order to help
rewrite sentences and create a more coherent text. After using these tools, the author
reviewed and edited the content as needed and takes full responsibility for the content of
the work.

67

	Introduction
	Preliminaries
	Fault Trees
	Attack Trees
	Binary Decision Diagrams
	Complement Edges

	Multi-Terminal Binary Decision Diagrams
	WATCHDOG
	Formal Definitions
	DOGLog Syntax

	Related Work
	Specification and Verification of Fault Tree and Attack Tree Properties
	Custom Logics for Fault Trees and Attack Trees
	Boolean Fault Tree Logic (BFL)
	Probabilistic Fault Tree Logic (PFL)
	Attack Tree Metrics Logic (ATM)
	Relation to WATCHDOG and DOGLog

	Methodology
	Model Checking
	Layer 1 Formulae
	Layer 2 Formulae
	Layer 3 Formulae

	Implementation
	Technology
	Numerical Precision
	Optimal Configuration Representation
	Testing Methodology

	Case Study
	Introduction
	Pipeline System
	BDMP Modeling

	Creating the DOG
	DOGLog Analysis

	Discussion and Future Work
	WATCHDOG Limitations and Possible Extensions
	Potential Enhancements to DOGLog and WATCHDOG
	Nodes as Parameters for Layer 3 Functions
	Direct Probability Calculation and Comparison
	Support for Variables and Arithmetic Operations
	Modeling Conditional Probabilities and Impacts in DOGs

	Correctness and Verification of ODF
	Performance Evaluation

	Conclusion
	Answers to Research Questions

	Declarations
	Use of AI

