
MSc Computer Science
Final Project

XtractIO: Statically locating
MMIO addresses in non-Linux
firmware

Mitchel Scholtens

Supervisor: Jorik van Nielen
Andrea Continella

July, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Abstract

As embedded devices become increasingly inte-
grated into our everyday lives, so does the risk
of malicious actors compromising our security. To
secure these devices, various analyses, including
static and fuzz-testing (fuzzing), are developed to
identify vulnerabilities before they are exploited.
One key area of research is Memory Mapped
Input-Output (MMIO), as these enable untrusted
input from peripherals (such as Bluetooth and
Ethernet) to reach the CPU.

A common approach researchers use to extract
MMIO addresses is to manually look them up
in datasheets and other types of documentation.
This is possible when analysing minimal amounts
of firmware. However, this will be challenging to
do when we need to examine them in bulk. Ad-
ditionally, when the microcontroller (MCU) is un-
known, we are also unable to locate its datasheet,
making MMIO address lookups impossible. To fa-
cilitate analysis in these situations, we developed
XtractIO, which automatically locates MMIO ad-
dresses in non-Linux firmware. Our approach uses
patterns to locate MMIO operations, after which
it extracts the referenced addresses.

We evaluated our approach against a set of
40 firmware images consisting of ARM Cortex-M
and Xtensa architectures. XtractIO performs, on
average, 30 per cent better compared to a naive
approach. However, even though XtractIO out-
performs a naive approach, it still has an average
F1-score of 60 to 70 per cent, indicating that it
still produces both false positives and negatives.
These results demonstrate that it is possible to lo-
cate MMIO addresses automatically, but further
research is necessary to make the results reliable.

1 Introduction

Nowadays, a wide variety of embedded devices are
connected to the Internet, with devices ranging
from smart speakers and smart doorbells to adap-
tive cruise controls found in cars. The market for
embedded devices was valued at 94.77 billion dol-
lars in 2022 [1]. This market increased to 100.04
billion dollars in 2023 and is projected to reach
a value of 171.86 billion dollars in 2030. With
the popularity of embedded devices, there has also
been an increase in attack frequency [2], where
the exploited vulnerabilities can range from buffer

overflows [3] to default credentials [4] and from im-
proper authentication to injection [5].

To safeguard embedded devices, it is essen-
tial to identify vulnerabilities before they are ex-
ploited. Two popular research directions are static
analysis and fuzz-testing (fuzzing). Static analy-
sis allows us to detect vulnerabilities without exe-
cuting the code, while a fuzzer automatically de-
tects vulnerabilities and defects by injecting in-
valid, malformed, or unexpected inputs [6]. An ad-
vantage of these approaches is that they are both
automated, which saves a considerable amount of
time compared with methods like manual code re-
view.

Fuzzing is often done using re-hosting [7–12],
which allows embedded firmware to run in an
emulated environment with more resources than
would be available on the device itself. This en-
ables a higher throughput, resulting in improved
fuzzing performance. Another advantage is that
we only need the firmware for testing and not
the hardware. For re-hosting, three main interac-
tions must be emulated: Memory Mapped Input-
Output (MMIO), Direct Memory Access (DMA)
and interrupts [7]. The manufacturers have fortu-
nately described many of the necessary addresses
for these interactions in datasheets.

MMIO addresses are one of the interactions
that need to be emulated for re-hosting. Through
MMIO addresses, peripherals communicate and
exchange data with the CPU via read and write
instructions [13]. These instructions appear iden-
tical to regular read and write instructions, such
as those used for RAM and flash [14]. Combin-
ing this with the fact that MMIO addresses also
share the same memory address space as RAM and
flash, distinguishing them from one another can be
challenging [15].

Since peripherals are external hardware de-
vices, data obtained through MMIO addresses
should be considered untrusted by the system.
Malicious actors can manipulate this data to
change the firmware’s behaviour, potentially caus-
ing unwanted and harmful actions. An example
of manipulating the input is by altering the al-
titude of a drone by modifying the values of the
Barometer [16]. As a result, the drone performs
differently than intended. Another example is that
by using a Bluetooth peripheral, a malicious ac-
tor can remotely alter the current or voltage of a
power supply, causing damage to the unit and the

2

connected device [17]. To prevent untrusted in-
put from performing unwanted and malicious be-
haviour, we want to locate the MMIO addresses.
Once located, these can be used for automated
analysis, such as fuzzing or static analysis.

The majority of works locate MMIO addresses
by manually looking them up from datasheets
for their analysis [7–12, 18–23]. This method is
possible when analysing one firmware at a time.
However, relying on datasheets introduces man-
ual work, which prevents scaling the analysis to a
large batch of firmware. Another limitation is that
some works extract firmware from over-the-air up-
dates [24]. Although they identify the architecture
through various methods, they do not determine
the specific microcontroller (MCU) for which the
firmware was built. Without this information, we
cannot look up the MMIO addresses from the cor-
responding datasheet.

We aim to eliminate these limitations by auto-
matically locating MMIO addresses solely from the
firmware and its architecture. To do this, we first
identify patterns in firmware that indicate MMIO
addresses. After this, we develop static analysis
methods based on those patterns to locate MMIO
addresses. Finally, we incorporate these methods
into a pipeline and evaluate the performance on
ARM Cortex-M and Xtensa firmware images.

Our evaluation shows that the patterns we
identified locate numerous MMIO addresses. Hav-
ing a score between 60 and 70 per cent F1-score on
average. Which is higher than looking at it naively,
scoring only between 30 and 40 per cent on aver-
age. However, despite the improvement compared
to the naive approach, we still introduce false pos-
itives and negatives because our patterns do not
exclusively locate MMIO addresses and fail to lo-
cate all MMIO addresses. Ultimately, our results
show that automatically locating MMIO addresses
is possible, but further research is necessary to
make it more reliable.

2 Background

This research focuses on identifying MMIO
addresses within non-Linux firmware. First,
we briefly explain the properties of non-Linux
firmware and how it differs from other firmware.
Then, we introduce MMIO, emulation, intermedi-
ate representation language and firmware region
identification. Finally, we explain different kinds

of firmware analysis where MMIO addresses can
be used as input.

2.1 Firmware types

Firmware is the software running on embedded
devices, containing all the instructions to start
up, transmit data to other devices, and interact
with the physical world through peripherals [25].
Firmware for embedded devices falls into three cat-
egories: Type-1, Type-2 and Type-3 [26].

• Type-1 firmware consists of a general-
purpose Operating System (OS) often com-
bined with a lightweight user-space environ-
ment and security modules like the Mem-
ory Management Unit (MMU). It provides
the most functionality, security and flexibil-
ity. Type-1 firmware typically includes de-
bug symbols. These symbols contain meta-
data such as the location of variables and
functions, descriptions of code structures
and other related information [27]. Using
the symbols makes it rather easy to ex-
tract the architecture and base address of
the firmware.

• Type-2 firmware is tailored for lower-
power devices. It often has a specific-
purpose OS with a logical separation be-
tween the application and the kernel, mak-
ing it more functional than Type-3 firmware.
However, Type-2 (and Type-3) firmware is
generally more prone to errors than Type-
1 firmware because it lacks modules like the
MMU, which can lead to undetected memory
corruption bugs. Type-2 firmware also lacks
debugging symbols, making it more challeng-
ing to extract the architecture and base ad-
dress. This Type is often written in C and
compiled into a single binary. In this binary,
the data and instruction are interwoven with
each other.

• Type-3 firmware has the least amount
of resources compared with the other cate-
gories. It operates without an OS, relying on
a single-loop structure. This loop is only bro-
ken when peripherals that receive external
information trigger an interrupt. Like Type-
2, it is typically written in C, combines data
and instructions into one binary, and lacks

3

debugging symbols [7]. Its architecture and
base address are, like Type-2, also unknown.

What distinguishes Type-1 firmware from
Type-2 and Type-3 is that Type-1 has a filesys-
tem with a known structure, whereas Type-2 and
Type-3 combine code and data into a single exe-
cutable that lacks debugging symbols. Identifying
the architecture and base address without these
symbols requires additional effort, making the se-
curity analysis more challenging. If the base ad-
dress and architecture are unknown, then it would
be hard to decompile the code. Picking the wrong
architecture will lead to unreadable assembly, and
having the incorrect base address will lead to abso-
lute pointers referencing incorrect addresses [28].

This research will focus on Type 2 and Type 3
firmware, which we call "non-Linux firmware".

2.2 MMIO

MMIO is a mechanism by which peripheral reg-
isters are mapped to the CPU’s memory address
space as fixed memory addresses [29]. As those
registers originate from external hardware, MMIO
presents a source of untrusted input for the CPU.
Using MMIO, the CPU can interact with peripher-
als such as Bluetooth, Display, and Ethernet using
ordinary read/write instructions [13]. The MMIO
memory range of a peripheral consists of multi-
ple segments, each segment representing a differ-
ent MMIO register that serves a different purpose.
A few examples of these registers are status, data
and configuration registers. The status register is
used by the peripheral to communicate its state to
the CPU, the configuration register configures the
peripheral, and the data register sends or receives
data from another source. The values of these reg-
isters can change frequently based on what they
do [7, 8, 10, 17].

Similar to MMIO, DMA and Port-Mapped In-
put/Output (PMIO) can also access peripherals.
However, this work focuses solely on MMIO for
two reasons. Firstly, we are interested in the com-
munication between peripherals and the CPU. Sec-
ondly, the memory range used by MMIO is the
same as for RAM and flash [15]. Where the read-
/write operations and the instructions that per-
form them look the same [14], making them hard
to distinguish. Even though this second reason
also applies to DMA, what makes it different is
that DMA has a specific hardware controller that

communicates with the peripherals, circumventing
the need for the CPU [7, 30]. While PMIO are
mapped to an entirely different address space [31].
A visual comparison between MMIO, PMIO and
DMA can be seen in fig. 2.

To ensure accurate identification of MMIO reg-
isters, manufacturers often release datasheets of
their MCU, including a detailed memory map of
the MMIO region. You can find an example
of this in fig. 1, which shows the memory map
for the ARM STM32F103x MCU. Here, you can
see that the entire peripheral segment spans from
0x40000000 to 0x60000000 with different ranges
allocated for different peripherals [32].

MSv73632V1

TIM2

TIM3

TIM4

Reserved

RTC

WWDG

IWDG

Reserved

SPI2

Reserved

USART2

USART3

Reserved

I2C1

I2C2

USB registers

shared 512 byte
USB/CAN SRAM

bxCAN

Reserved

BKP

PWR

Reserved

AFIO

EXTI

Port A

Port B

Port C

Port D

Port E

Reserved

ADC1

ADC2

TIM1

SPI1

Reserved

USART1

Reserved

DMA

Reserved

RCC

Reserved

Flash interface

Reserved

CRC

Reserved

Reserved

Reserved

APB memory space
0xFFFF FFFF

0xE010 0000

0x6000 0000

0x4002 3400

0x4002 3000

0x4002 2400

0x4002 2000

0x4002 1400

0x4002 1000

0x4002 0400

0x4002 0000

0x4001 3C00

0x4001 3800

0x4001 3400

0x4001 3000

0x4001 2C00

0x4001 2800

0x4001 2400

0x4001 1C00

0x4001 1800

0x4001 1400

0x4001 1000

0x4001 0C00

0x4001 0800

0x4001 0400

0x4001 0000

0x4000 7400

0x4000 7000

0x4000 6C00

0x4000 6800

0x4000 6400

0x4000 6000

0x4000 5C00

0x4000 5800

0x4000 5400

0x4000 4C00

0x4000 4800

0x4000 4400

0x4000 3C00

0x4000 3800

0x4000 3400

0x4000 3000

0x4000 2C00

0x4000 2800

0x4000 0C00

0x4000 0800

0x4000 0400

0x4000 0000

0x0000 0000

SRAM

Peripherals

Cortex-M3
internal

peripherals

0x2000 0000

0x4000 0000

0x6000 0000

0x8000 0000

0xA000 0000

0xC000 0000

0xE000 0000

0xE010 0000

0xFFFF FFFF

Reserved

7

6

5

4

3

2

1

0

Figure 1: The MMIO address range with
peripherals for the STM32F103x MCU.
The range spans from address 0x40000000
to 0x60000000 and contains multiple dif-
ferent peripherals and reserved spaces [32].

2.3 Emulation

Emulation is an approach to imitate the behaviour
of software or firmware [33]. It can be used to con-
nect devices, run software on different hardware
or provide the software with more resources. The
last two cases are often combined for embedded
firmware analysis, which is called re-hosting.

For re-hosting to be possible, a few interac-
tions must be emulated: MMIO, DMA and inter-

4

CPU CPU CPU

DMAPMIOMMIO

Peripheral Peripheral Peripheral

Perip
h
eral ad

d
ress 1

Perip
h
eral ad

d
ress 2

Perip
h
eral ad

d
ress 3

Perip
h
eral ad

d
ress 1

Perip
h
eral ad

d
ress 2

Perip
h
eral ad

d
ress 3

Perip
h
eral ad

d
ress 1

Perip
h
eral ad

d
ress 2

Perip
h
eral ad

d
ress 3

D
M

A
Memory asddress spaceMemory address spaceMemory address space Device address space

MMIO
R/W R/W

MMIO
R/W

DMA
R/W

MMIO
R/W R/W

DMA
R/W R/W

Figure 2: The difference between MMIO, PMIO and DMA from the firmware’s perspective.
The MMIO on the left has only one address space. The PMIO in the middle has two address
spaces. One for the main memory and one for the device. DMA on the right also has one
address space. However, unlike MMIO (and PMIO), DMA uses a dedicated mechanism for
communication between peripheral hardware and peripheral addresses without CPU interven-
tion.

rupts [7]. The addresses for these interactions are
commonly documented in datasheets by the MCU
manufacturer. As previously mentioned, MMIO
enables the firmware to communicate with the pe-
ripherals, while DMA facilitates this communica-
tion too but without CPU intervention. Inter-
rupts differ from DMA and MMIO, as they allow
the CPU to pause current processes to facilitate
higher-priority tasks [34]. After this task is com-
pleted, the CPU returns to normal execution by
continuing the paused process. Once emulated,
re-hosting allows for dynamic analysis, where tools
such as fuzzing can be used to automate test cases.

2.4 Intermediate Representation

An intermediate representation (IR) is a repre-
sentation of a program that exists between the
high-level program language and low-level assem-
bly code [35, 36]. IR has three levels: High,
Medium and Low [37]. High-level IR resembles
the high-level program language, while low-level
IR resembles the underlying assembly. Finally,
middle-level IR is situated in the middle, trying
to be independent of both the high-level program
language and the low-level assembly code. IR can
be used to simplify analysis. This is because dif-
ferent languages have different syntax for the same
operation. In listing 1 you can see an example of
these different syntaxes in assembly. By using IR,
we can translate this to one kind of instruction as
seen in listing 2. Here, the only difference is that
the register name differs per language, while the
whole structure of the instruction itself stays the

same.

1 ldr r2, [r3,#0x28]
2 l32i a2, a3,#0x28
3 lw a2, 0x28(a3)

Listing 1: LDR instruction of ARM
Cortex-M, Xtensa and RISC-V respec-
tively.

1 unique[98000:4] = $3 + 0x28
2 $2 = *[ram]unique[98000:4]

Listing 2: LDR instruction using the low
level IR pypcode ($ is the placeholder for
the register letter).

2.5 Firmware region identification

Identifying MMIO regions in firmware and auto-
matically obtaining information about them re-
quires a solid understanding of firmware analysis
techniques, which can be split into static and dy-
namic approaches.

2.5.1 Static analysis

Static analysis analyses the firmware without re-
quiring execution, eliminating the need to know
the datasheet entirely beforehand. Different static
analysis techniques are disassembling, decompila-
tion and symbolic execution. With disassembling,
you break a binary down to its assembly language,

5

which is a human-readable language [38]. De-
compilation is a technique that reverts a binary
to high-level code without altering its function-
ality [39]. Finally, symbolic execution is used to
execute a program abstractly. Instead of using
concrete values, it simulates multiple executions
at the same time using different inputs. Symbolic
execution focuses on parts of the code where the
inputs follow the same execution. By using this
technique, symbolic execution can identify and re-
turn constraints representing the output for those
inputs [40, 41].

Although static analysis does not need prior
knowledge of the memory map, it does introduce
some challenges. To be precise, firmware images
often rely on absolute pointers, which are point-
ers that are fixed to a certain memory address. A
challenge that can be introduced because of this is
a mismatch between normal execution and static
analysis. This is because decompiler tools use a
standard base address from which they start load-
ing the firmware if no information is provided. The
absolute pointers that are present in the firmware
are only usable if the right base address is used,
meaning if this is not the case it can cause issues.
While contributions are made to resolve this prob-
lem [28], it still relies on having enough absolute
pointers available to build off of, which is not al-
ways the case. This challenge is not limited to
static analysis because, in dynamic analysis, the
environment needs to know what the base address
is to load in the firmware correctly.

2.5.2 Dynamic analysis

In contrast to static analysis, dynamic analysis
allows us to analyse non-Linux firmware during
run-time. For dynamic analysis of the MMIO
addresses, prior information about the different
memory segments is necessary. If we know these
segments, we can use techniques such as informa-
tion interception, where we, for example, can de-
fine a boundary using a segment and use it to inter-
cept addresses found within [7]. Another approach
to dynamic analysis is by defining all segments in
the firmware, leaving a single one out. When the
firmware runs this way, crashes or undefined be-
haviours can occur when specific addresses in this
undefined segment are accessed, which can then be
extracted [42]. This dynamic analysis technique is
our educated guess based on the paper from Gui
e.a. However, because it is not explicitly stated,

we cannot confirm this. Dynamic analysis intro-
duces some challenges, as we need to know a sig-
nificant amount of information beforehand so that
the emulator can work correctly. Gathering this
information will be problematic if the MCU of the
firmware is unknown, because we cannot obtain
this information from, for example, the datasheet.

2.6 Vulnerability analysis

2.6.1 Fuzzing

Fuzzing is an automated technique that can detect
vulnerabilities by feeding the target with manipu-
lated inputs and watching it till an exception oc-
curs. These inputs are mutated based on the feed-
back received from the fuzzer during program exe-
cution. It is often used for testing the blockchain,
OS kernels [43] and firmware. Fuzzing has a high
throughput resulting in many cases being tested
in a short time.

A popular fuzzing approach is coverage-guided
fuzzing, where the fuzzer uses coverage feedback
from past executions to find new inputs [10, 43–
45]. The fuzzer adds instrumentation tools to the
target, which report back different kinds of cover-
age information, like bitmaps, which are used to
track branch execution. By using these tools, the
fuzzer can, for example, keep track of new edge
cases. The fuzzer can then save this information
and use it to mutate a new input which is simi-
lar to the original. Using this approach, a fuzzer
can steer towards more interesting use cases than
a completely random approach.

Where regular software fuzzing focuses on
discovering vulnerabilities in software applica-
tions [46], firmware fuzzing’s primary focus is on
MMIO addresses. These addresses facilitate com-
munication exchange with peripherals in the sys-
tem [7]. For this, it is necessary to know before-
hand where these addresses reside in the memory.
However, in many cases, finding MMIO addresses
is challenging and often relies on documentation.
How the documentation is used differs from case
to case. In one approach, they use the whole
documentation as input [22], while in another ap-
proach, they use it as a boundary for their heuristic
search [7].

Currently, most research uses the entire MMIO
segment as input for fuzzing [10, 19]. However,
in this segment multiple peripherals exist, each
with its own distinct MMIO addresses (as shown

6

in fig. 1). Knowing these individual MMIO ad-
dresses can be valuable because it allows us to
develop fuzzing techniques that can handle spe-
cific inputs from these different kinds of addresses.
This approach can then improve the efficiency and
accuracy of testing.

2.6.2 Static analysis

Static analysis can identify bugs and vulnerabili-
ties without executing the firmware. By analysing
assembly instructions directly, it can discover log-
ical bugs like race conditions [47, 48], MMIO-
related bugs [17, 23, 28], and more.

Symbolic execution is a static analysis tech-
nique that can be used for this. The technique
uses predefined entry points within the firmware as
a starting point and traverses all execution paths
until specific conditions are met [17]. These condi-
tions can be, for example, predefined rules or con-
straints. Another input for symbolic execution are
MMIO addresses [12]. These addresses can be used
as symbolic data to identify MMIO models. Dur-
ing execution, the code can return different con-
secutive values from the same MMIO address. By
using these different values, it is possible to create
constraints for an MMIO address, which can then
be used for an MMIO model. These models can,
among other things, be used as input for emulating
firmware.

A second technique that can be used for stat-
ically analysing the firmware is a Control Flow
Graph (CFG) [28]. A CFG is a graphical repre-
sentation of the flow within firmware [49]. It rep-
resents the possible paths of execution by show-
ing basic blocks as nodes and the connection be-
tween them as edges. By using a CFG, it is possi-
ble to show different kinds of transitions, such as
if-else statements, (do-)while loops and for loops.
By analysing the CFG, it is possible to track the
execution flow. This can be done in a forward
and backward way. Backward traversal allows the
identification of instructions that are responsible
for calculating values of relevance, such as config-
uration values. Forward traversal shows how the
point of interest affects later operations. An ex-
ample of how a CFG can be used is for calculating
MMIO configuration values [28]. These values can
then be analysed using external documentation or
tools to identify vulnerabilities.

A static analysis technique that uses the CFG
is data flow analysis [50]. This technique analyses

how the data flows through a program. It tracks
variables and expressions as they are being used.
Data flow analysis uses the CFG to propagate its
information [51].

Finally, it is also possible to use custom tech-
niques to extract information from the firmware.
In these cases, custom patterns or heuristics are
employed to identify, for example, bugs or vul-
nerabilities. A possible input for these kinds of
analyses are MMIO addresses. Current research
shows that MMIO addresses can be used to iden-
tify possible locations for attacker-controlled in-
put [17] and to define the boundary of an inter-
action between the firmware and peripherals [23].
This boundary can then help identify, for example,
concurrency bugs.

2.7 Contributions and goals

We assume for our research that we have a binary
firmware image with prior knowledge of its un-
derlying architecture (ARM Cortex-M or Xtensa).
Using these as input, we want to automatically
locate the MMIO addresses from the firmware im-
age so that they can be used for further static and
dynamic analysis. To achieve the automatic ex-
traction of MMIO addresses, we did the following:

• The identification of firmware MMIO pat-
terns used for locating MMIO addresses.

• The design of a firmware analysis pipeline
that can detect MMIO addresses through
pattern analysis.

• The evaluation of the pipeline’s performance
on a ground truth collection consisting of
ARM Cortex-M and Xtensa firmware sam-
ples.

We address the stated contributions and goals
in the remainder of this thesis.

3 Identification of MMIO pat-
terns

To identify MMIO address patterns in firmware,
we manually analyse ARM Cortex-M and Xtensa
firmware samples to build an intuition on how
firmware uses MMIO addresses. We distil patterns
that occur for both architectures to make our ap-
proach versatile.

7

Our analysis results in five patterns. In the
remainder of this section, we describe the different
patterns that we identified with disassembly
examples from real-world firmware. For the IR of
the pattern examples, we refer to appendix A.

Load, Modify, Store (LMS): The first pattern
we identified is referred to as LMS. When data
communication occurs between the peripheral and
the CPU, the peripheral’s state changes. Think,
for example, of being busy when data is being
transferred or free when it is not. We observe that
this is reflected in the firmware, where data is first
loaded from an MMIO address. Following this,
a bitwise operation is performed (either AND or
OR). Finally, the result of this will be stored at
the MMIO address from which it was previously
loaded. This results in changing a set of bits within
the peripheral or entirely clearing the bits. The
pattern can be seen in listing 3.

1 129e8 5b 6c ldr r3,[r3,#0x44] => DAT_40023844
2 129ea 43 f0 orr r3, r3,#0x10
3 10 03
4 129ee 53 64 str r3,[r2,#0x44] => DAT_40023844

Listing 3: The load, modify, store pattern
in ARM Cortex-M assembly.

Function Related Instructions (FRI): The
second pattern we identified is referred to as FRI.
When an LMS pattern occurs in a function, the
firmware tends to have the remaining load and
store instructions within that function also inter-
act with peripherals. The reason for this is that
you want to have the least amount of processing
between MMIO instructions. If more processing
is done between instructions, then there is a
higher chance of an interrupt being triggered.
This is because an interrupt can be triggered at
any time [52]. An interrupt can lead to a delay
in, for example, data exchange, which can halt
other processes down the line. We observe the
FRI pattern in the assembly as multiple load and
store instructions communicating with peripherals
outside of the LMS pattern within a function,
as illustrated in listing 4. The amount of LMS
patterns occurring in a function can vary. We
identified that an increase in LMS patterns within
a function often indicates that the remaining
load and store instructions are also more likely

1 6bce 9a 69 ldr r2,[r3,#0x18] => DAT_40021018
2 6bd0 42 f0 orr r2, r2, #0x4
3 04 02
4 6bd4 9a 61 str r2,[r3,#0x18] => DAT_40021018
5 6bd6 9b 69 ldr r3,[r3,#0x18] => DAT_40021018
6 ...
7 6be8 9a 69 ldr r2,[r3 #0x18] => DAT_40021018
8 6bea 42 f0 orr r2, r2, #0x8
9 08 02

10 6bee 9a 61 str r2,[r3,#0x18] => DAT_40021018
11 6bf0 9b 69 ldr r3,[r3,#0x18] => DAT_40021018
12 ...
13 6c00 9a 69 ldr r2,[r3,#0x18] => DAT_40021018
14 6c02 42 f0 orr r2, r2, #0x10
15 10 02
16 6c06 9a 61 str r2,[r3,#0x18] => DAT_40021018
17 6c08 9b 69 ldr r3,[r3,#0x18] => DAT_40021018
18 ...
19 6c18 9a 69 ldr r2,[r3,#0x18] => DAT_40021018
20 6c1a 42 f0 orr r2, r2, #0x20
21 20 02
22 6c1e 9a 61 str r2,[r3,#0x18] => DAT_40021018
23 6c20 9b 69 ldr r3,[r3,#0x18] => DAT_40021018

Listing 4: MMIO addresses found in func-
tion containing multiple LMS patterns in
ARM Cortex-M assembly, where load ad-
dress outside of the LMS pattern are also
MMIO addresses.

to reference MMIO addresses. This is logical
because more LMS patterns in a function suggest
that the function’s primary purpose is interacting
with peripherals. So the auxiliary store and load
instructions are also highly likely to communicate
with the peripherals.

Proximity: The third pattern we identified is re-
ferred to as Proximity. When firmware exchanges
data with peripherals, it loads the peripheral’s
data into a register for later use. Because MMIO
addresses are volatile [53, 54], data that is loaded
in succession results in different data. Another
reason why peripherals are accessed in succession
is when multiple configurations need to be set. A
simple example of this is when we want to enable a
yellow colour on an RGB light. To do this, we first
need to enable a bit so the light becomes green,
and then a second bit to make it yellow. For both
the load and store cases, we observe that the as-
sembly accesses the same load or store instructions
sequentially, as shown in listing 5. What we no-
ticed is that when we group many of the load (or
store) instructions, we are more certain that the
address they reference is an MMIO address. This
makes sense because a large number of load in-
structions are sometimes needed when exchanging
data, while some peripherals have multiple bits in
a configuration that need to be set to work cor-
rectly.

8

1 199a 9a 6a ldr r2,[r3,#0x28]=> DAT_e000ed28
2 199c 9a 6a ldr r2,[r3,#0x28]=> DAT_e000ed28
3 199e 9a 6a ldr r2,[r3,#0x28]=> DAT_e000ed28
4 19a6 9a 6a ldr r2,[r3,#0x28]=> DAT_e000ed28

Listing 5: The same MMIO address is
referenced sequently in ARM Cortex-M as-
sembly.

Store Instructions Variation (SIV): The
fourth pattern we identified is referred to as SIV.
When firmware boots up, multiple interactions are
initiated with peripherals. One of these interac-
tions involves setting the configuration of the pe-
ripherals. Since the CPU is connected to multiple
peripherals, various configurations need to be set
sequentially before the main operation executes.
We observe in the assembly that, for efficiency,
this is achieved by storing the same data (where
possible) to different peripherals. Specifically, the
register to which the data is sent differs, while the
register holding the data remains the same. This
pattern can be seen in listing 6. If we group many
of these instructions, we become more certain that
the addresses they reference are MMIO addresses.
Our certainty increases because multiple peripher-
als exist on an MCU, implying that there are also
multiple configuration addresses. As some config-
uration addresses need to be set as soon as possible
before the main execution begins, it is logical that
a group consisting of many of these instructions is
about the configuration.

1 2e90 33 60 str r3,[r6,#0x0]=> DAT_40038014
2 2e92 13 60 str r3,[r2,#0x0]=> DAT_4003801c
3 2e94 2b 60 str r3,[r5,#0x0]=> DAT_40038024
4 2e96 23 60 str r3,[r4,#0x0]=> DAT_4003802c
5 2e98 3b 60 str r3,[r7,#0x0]=> DAT_40038034

Listing 6: Multiple MMIO addresses that
are in proximity where the register that
data is send to is different, while the other
register and the offset stay the same in
ARM Cortex-M assembly.

Offset: The final pattern we identified is referred
to as Offset. This pattern differs from the pat-
terns mentioned before, as it utilises previously lo-
cated MMIO addresses to locate new ones. What
we observed is that ARM Cortex-M and Xtensa
firmware use a register in combination with an off-
set for their store and load operations. We can
utilise this characteristic to locate new MMIO ad-
dresses using previously located MMIO addresses.
This can be done by removing the offset from a

previously located MMIO address. After which,
we search through the assembly for addresses that
use the same base address. If a matching base ad-
dress is identified, we add the offset of the respec-
tive instruction to the base address to locate the
new MMIO address. The mentioned offset logic
can be seen in listing 7.

1 1cc2 1a 62 str r2,[r3,#0x20]=> DAT_40023820
2 1cd0 5a 62 str r2,[r3,#0x24]=> DAT_40023824
3 1cde 1a 61 str r2,[r3,#0x10]=> DAT_40023810
4 1cec 5a 61 str r2,[r3,#0x14]=> DAT_40023814
5 1cfa 9a 61 str r2,[r3,#0x18]=> DAT_40023818

Listing 7: MMIO addresses where the
base address is the same but the offset is
different in ARM Cortex-M assembly.

To determine the best combination of the previ-
ously mentioned patterns, we perform a ground
truth analysis in section 5.3. For this analysis, we
tested all possible combinations of the identified
patterns. Among these, three patterns require nu-
merical parameters to perform their functionality.
We chose the parameter ranges defined below, as
higher values did not alter our results, while lower
values defeated the purpose of the patterns.

• FRI has an integer range from 1 to 6. An
integer of 1 means that only one LMS is
present in a function, while, for example, 6
means there are six LMS patterns present in
a function.

• Proximity and SIV have two parameters.
In both cases, the first parameter defines
how many proximity instructions are near
each other. This range goes from 2 to 6. An
integer of 2 indicates that two load (or store)
instructions are close to each other, while 6
indicates that there are six. The second pa-
rameter relates to what near means. It de-
fines the bytes between the assembly instruc-
tions. For this, we select a range from 0 to
64, where 0 means that the instructions are
immediately adjacent, while 64 means there
are 64 bytes separating them.

4 Pipeline design

The above patterns are integrated into a pipeline,
which is illustrated in fig. 3. This pipeline consists
of three components, which are explained below.

9

Firmware image
with known architecture MMIO addresses

Figure 3: XtractIO overview. Our static analysis automatically locates MMIO addresses for
ARM Cortex-M and Xtensa firmware by processing instructions using identified patterns.

1○ Data Extraction: After the pipeline re-
ceives a firmware image with its architecture, it
first performs data extraction. This data ex-
traction involves first performing a linear sweep
over the data to decode the bytes of the instruc-
tions [55]. These decoded bytes will then be used
as input for our IR lifting and constant propaga-
tion analysis. We lift our decoded bytes to an IR
because we want to generalise our analysis instead
of making a specific algorithm for each architec-
ture. Constant propagation analysis, which re-
places variables with known constants, is used to
extract the referenced memory addresses from the
firmware where possible. The IR and referenced
memory addresses are the output of this compo-
nent.

2○ Pattern matching: When the pattern
matching component receives the IR and refer-
enced memory addresses, the pipeline starts its
pattern matching. The IR matches with our iden-
tified patterns to locate MMIO addresses. Be-
fore matching with our Offset pattern, the pipeline
sends the instruction first to the address resolu-
tion component 3○ to resolve some missing ref-
erenced addresses. After this component receives
the updated data, it matches with the final Off-
set pattern. This component outputs the MMIO
addresses located by the pipeline.

3○ Address resolution: As the final com-
ponent of our pipeline, we have the address res-
olution. This component resolves addresses us-
ing symbolic execution that were not resolved by
component 2○, due to, indirect jumps, function re-
turns, etc. These resolved addresses will then be
sent back as output to the pattern-matching com-
ponent.

4.1 Implementation

In this subsection, we will explain the implemen-
tation of the different components.

1○ Data extraction: We leverage two frame-
works to run the linear sweep algorithm: Angr and
Ghidra. We use Angr because, in our observa-
tion, it decodes more bytes than Ghidra, result-
ing in more disassembled code to analyse. Ghidra
was selected because it supports a broader range
of architectures. Following the linear sweep, we
used Pypcode as the library for lifting the decoded
bytes to IR. Pypcode was chosen for this because
it supports the same architectures as the frame-
works do. Besides the IR lifting, we also provided
the decoded bytes as input to the constant prop-
agation analysis. This analysis is only performed
with Ghidra because, at the time of writing, Angr
does not have an option for this.

2○ Pattern matching: For matching with
our identified patterns, we use the IR instructions.
An IR instruction can consist of multiple lines, as
seen in, for example, listing 2. Each line has its
own separate instruction called an opcode [56]. In
the listing we have at line 1 the instruction (INTE-
GER_ADDITION) and at line 2 the instruction
LOAD. Opcodes are used in the pipeline to locate
MMIO addresses. We can identify with opcode
if, for example, multiple load or store instructions
are in proximity to each other, which points to the
Proximity and SIV pattern. We can also identify
with opcode if a load instruction is followed by a
bitwise and store instruction, signifying an LMS
pattern. When we have identified these patterns,
we can also locate MMIO addresses through the
Offset and FRI patterns. For the Offset pattern,
we use the IR instructions as well as the referenced

10

Nr. Pattern FRI Threshold SIV Threshold Proximity threshold Offset Symbolic execution unique
1 SIV, Proximity - 34/2 50/3 No No No
2 SIV, Offset - 34/2 - Yes No No
3 LMS, FRI, SIV 3 56/2 - No No No
4 LMS, FRI, SIV 6 54/4 - No No No
5 SIV, Proximity, Offset - 34/2 34/2 Yes No No
6 SIV, Proximity, Offset - 34/6 8/5 Yes No No
7 LMS, FRI, SIV, Proximity 1 36/3 2/2 No No No
8 LMS, FRI, SIV, Proximity 6 40/6 4/6 No No No
9 LMS,FRI, SIV, Proximity, Offset 1 62/2 56/2 Yes No No
10 LMS,FRI, SIV, Proximity, Offset 1 62/2 54/2 Yes No Yes
11 LMS,FRI, SIV, Proximity, Offset 1 48/2 52/2 Yes Yes No
12 LMS,FRI, SIV, Proximity, Offset 1 8/4 2/2 LMS Yes No
13 LMS,FRI, SIV, Proximity, Offset 2 34/2 30/2 Yes No No
14 LMS,FRI, SIV, Proximity, Offset 3 34/6 22/4 Yes No No
15 LMS,FRI, SIV, Proximity, Offset 5 14/4 22/3 Yes Yes No
16 LMS,FRI, SIV, Proximity, Offset 5 34/6 10/5 Yes No No

Table 1: Table describing the different patterns with the used threshold and other auxiliary
information. LMS in the offset column means that the Offset pattern is only used on the LMS
pattern, in all other cases, it is used on all the patterns. Additionally, the unique column
provides information on whether an address is counted once or multiple times, and whether it
appears in the firmware more than once. Finally, in the SIV and Proximity columns, you see
two parameters separated by a slash. The first one means the bytes between the instructions,
while the second one means the number of instructions.

addresses as input. When we identify a pattern,
we mark the referenced addresses that belong to
the underlying instructions as MMIO. When an
instruction does not have a referenced address, we
send it to 3○.

3○ Address resolution: For resolving un-
known referenced addresses of instructions that
belong to a pattern, we use the symbolic execution
engine of Angr with a time constraint. Symbolic
execution is performed locally, starting at the func-
tion’s entry point and continuing up to the instruc-
tion whose value needs to be resolved. As symbolic
execution can take a long time to analyse certain
cases, we limited it to 5 seconds per value reso-
lution. This duration was chosen because MMIO
addresses are generally constant, so they should be
relatively quick to resolve, and as a practical trade-
off between coverage and execution time. During
analysis, we observed that 5 seconds was sufficient
to resolve the majority of the referenced addresses.
Increasing the timeout would significantly increase
the duration of the pipeline’s runtime, while pro-
viding only slightly more coverage. We did not au-
tomatically fine-tune this parameter, as this would
not have been feasible because of time constraints.
When the 5 second duration has been reached, the
pipeline terminates the symbolic execution process
for that resolution.

5 Evaluation

In this section, we first introduce our setup, in-
cluding the hardware used, targets and MMIO seg-

ments. After this, we measure the performance of
the pipeline.

5.1 Hardware

The hardware used for almost the entire project
was a laptop containing an Intel Core i7-12700H
(14 cores) processor with 48 GB of DDR4 RAM, a
2.70 GHz clock speed, and an SSD, running Win-
dows as the OS.

For fine-tuning the SIV and Proximity param-
eters regarding the bytes between instructions, we
used a different machine. This was the EEMCS
High-Performance Computing (HPC) cluster, lo-
cated at the University of Twente, containing an
AMD EPYC 7302P (32 cores), 256GB RAM, 3
GHz clock speed, and a HDD raidz2.

5.2 Dataset

Our dataset used a collection containing two dif-
ferent architectures, ARM Cortex-M and Xtensa.
We focus on these architectures because previ-
ous research shows that they make up the major-
ity of non-Linux firmware [24]. For this collec-
tion, we sampled, for ARM Cortex-M, twenty im-
ages from the Monolithic Firmware Collection [57].
This sampling was done pseudorandomly to en-
sure a diverse set for our analysis. This means
we did not choose two images that were similar in
name, such as blink_led and blink_led_2. An-
other thing that we kept in mind while sampling
was that the MCU of the sample can be identified.
As we want to use this to find the corresponding

11

Category filter pattern precision recall f1-score

Address
specific

Best precision pattern 8 89.26% 44.28% 55.61%
Best recall pattern 9 44.28% 63.0% 46.85%

Best f1-score pattern 7 71.7% 57.84% 61.72%

Segment
specific

Best precision pattern 6 63.27% 84.17% 66.92%
Best recall pattern 13 48.92% 91.25% 60.37%

Best f1-score pattern 6 63.27% 84.17% 66.92%

(a) ARM Cortex-M & Xtensa.

Category filter pattern precision recall f1-score

Address
specific

Best precision pattern 8 94.78% 27.82% 41.44%
Best recall pattern 11 45.95% 60.26% 48.07%

Best f1-score pattern 12 70.52% 56.33% 61.76%

Segment
specific

Best precision pattern 16 74.58% 74.17% 70.48%
Best recall pattern 15 42.18% 93.33% 57.26%

Best f1-score pattern 14 71.25% 78.33% 71.5%

(b) ARM Cortex-M.

Category filter pattern precision recall f1-score

Address
specific

Best precision pattern 4 83.78% 61.4% 70.24%
Best recall pattern 10 40.38% 77.11% 51.92%

Best f1-score pattern 3 78.94% 69.74% 73.6%

Segment
specific

Best precision pattern 1 58.55% 75.0% 60.79%
Best recall pattern 5 39.87% 100.0% 55.15%

Best f1-score pattern 2 52.37% 97.5% 64.4%

(c) Xtensa.

Table 2: Overview of the best-performing patterns for three architectures. Each table presents
the pattern resulting in the highest precision, recall and F1-score for the address and segment-
specific categories. Precision refers to the percentage of addresses we locate that are MMIO
compared to non-MMIO. Recall refers to the percentage of MMIO addresses we locate compared
to those we do not locate. The F1-score balances both. Patterns listed in the table refer to
those in table 1.

datasheet. For Xtensa, we compiled twenty sam-
ples ourselves. For this, we used the Zephyr [58]
and ESP IDF [59] frameworks. We did the com-
pilation for three MCUs: ESP32, ESP32-S2, and
ESP32-S3. Among these, we divided the twenty
images evenly. All the samples we acquired can be
found in appendix B. After acquiring our samples,
we used the corresponding MCUs to locate their
datasheets. From this datasheet, we extracted the
segments that correspond to the MMIO segments.
After we extracted this information, we performed
a post-processing step. In this post-processing
step, we extracted all the referenced addresses
from the firmware and cross-referenced them with
the datasheet segments to identify which segments
are used by our samples. We did this because
we noticed that not all segments described on the
memory map are used. An example of this is that
the sample st-plc has on its MCU datasheet a seg-
ment 0x5000000-0x5fffffff as part of its periph-
eral segments [60]. However, after our analysis, we
identified that this sample does not use this seg-
ment. After we completed our postprocessing, we
ended with the segments we use in our analysis
below. Our defined MMIO segments can be found
in appendix B.

5.3 Performance

We measure the accuracy of locating MMIO ad-
dresses against our dataset. For this, we use
three performance metrics: recall, precision and
F1-score. For the average F1-score, we used the
macro F1-score, as we want to treat each sample
equally [61].

The results are separated into two categories:
address-specific and segment-specific. In the
address-specific category, we focus on the indi-
vidual addresses. This means that a false posi-
tive occurs when we locate a non-MMIO address,
while a false negative occurs when we do not lo-
cate an MMIO address. Consequently, even a
single address can affect the final result. The
segment-specific category is broader, as it fo-
cuses on whether we successfully locate all seg-
ments that contain MMIO addresses, for example,
0x40000000-0x50000000 as a segment for ARM
Cortex-M. This means that a false positive occurs
when we locate one address within a non-MMIO
segment, while a false negative occurs when we
miss all the addresses of an MMIO segment. The
two categories can be found in table 2. This table
also shows us the patterns that result in the least
amount of false positives (precision), false nega-

12

Category architecture precision recall f1-score

Address
specific

ARM Cortex-M & Xtensa 26.22% 100% 38.97%
ARM Cortex-M 32.18% 100% 45.90%

Xtensa 20.26% 100% 32.03%

Segment
specific

ARM Cortex-M & Xtensa 17.20% 100% 28.59%
ARM Cortex-M 21.75% 100% 35.12%

Xtensa 12.65% 100% 22.06%

Table 3: Overview of the naive approach performance. The table presents the precision, recall
and F1-score for the different architectures across the address and segment-specific categories.

Category architecture median f1-score

Address
specific

ARM Cortex-M & Xtensa 61.86%
ARM Cortex-M 66.24%

Xtensa 79.99%

Segment
specific

ARM Cortex-M & Xtensa 66.67%
ARM Cortex-M 73.34%

Xtensa 66.67%

Table 4: The median macro f1-score for the different architectures separated over address and
segment-specific categories.

tives (recall), and the resulting F1-score, which
balances both.

5.3.1 Naive approach

We compare our approach against a benchmark
naive approach. For the naive approach, we take
all the located referenced addresses as input and
calculate our performance without any filtering,
as shown in table 3. Compared to the naive ap-
proach, XtractIO is on average 30 to 40 per cent
better. It was to be expected that our approach
would be higher than a naive approach, as taking
all addresses as input tends to get numerous false
positives.

5.3.2 Different categories

The result of the average best F1-score, which op-
timally balances the trade-off between false pos-
itives and false negatives, shows us in table 2
that we get fewer false negatives than false pos-
itives for the segment-specific category. In con-
trast, for the address-specific category, the situ-
ation is reversed. These results are as expected
because for the segment-specific category, we only
have a limited number of segments that need to be
matched. This means that if we match a segment,
then our false negative rate decreases drastically.
However, because of these limited segments, it is
also easier to increase the false positive rate more
quickly. This is because if one address matches a
non-MMIO segment, it already counts as a false-
positive for that entire segment. Therefore, if we
have, for example, sixteen segments where one is
MMIO and the rest are non-MMIO, then match-
ing with one non-MMIO segment can already give

us 50 per cent false positives. In contrast, when
we examine the address-specific category, we do
not have this small group of segments. Here we
have a far larger group consisting of all the indi-
vidual referenced addresses. Therefore, it is easier
to miss multiple addresses for the address-specific
category than for the segment-specific category, re-
sulting in a higher number of false negatives. How-
ever, having this large group also means that we
can have a lot of MMIO addresses compared to
non-MMIO addresses. This results in a lower false
positive rate than for the segment-specific cate-
gory.

5.3.3 Median F1-score

Comparing our average best F1-score in table 2
with the median displayed in table 4, we observe
that generally for both the address and segment-
specific categories, the median is higher than its
respective average, ranging from a few per cent be-
hind the comma to around six per cent. Breaking
down our average results into individual samples,
as shown in appendix C, we get an idea of why this
is the case. The individual results show us that
our patterns are more effective in some cases and
less effective in others. Notably, our best address-
specific results have an F1-score of around 90 per
cent, while our lowest scores average around 27 per
cent. This difference is also evident in the segment-
specific results, as the highest scores are 100 per
cent, while the lowest score averages around 22 per
cent. Because our results contain a slightly larger
number of low scores than high scores, we observe
that our average is being lowered, resulting in an
outcome where our median is higher than our av-
erage. The difference between our samples was not

13

LM
S

FR
I

SI
V

Pr
ox

im
ity

0

50

100

P
er

ce
nt

ag
e

(%
)

ARM Cortex-M & Xtensa

LM
S

FR
I

SI
V

0

20

40

P
er

ce
nt

ag
e

(%
)

Xtensa

LM
S

FR
I

Pr
ox

im
ity

Offs
etSI

V
0

20

40

60

P
er

ce
nt

ag
e

(%
)

ARM Cortex-M

(a) Average false positives for each architecture per pattern.

Sin
gle

ad
dr

ess

Abs
olu

te
ad

dr
ess

Li
ttl

e M
M
IO

in
fun

cti
on

Pr
ox

im
ity

+
Oth

er
0

10

20

30

40

P
er

ce
nt

ag
e

(%
)

ARM Cortex-M & Xtensa

Sin
gle

ad
dr

ess

Abs
olu

te
ad

dr
ess

Li
ttl

e M
M
IO

in
fun

cti
on

Pr
ox

im
ity

+
Oth

er
0

20

40
P
er

ce
nt

ag
e

(%
)

Xtensa

Sin
gle

ad
dr

ess

Abs
olu

te
ad

dr
ess

Li
ttl

e M
M
IO

in
fun

cti
on

Pr
ox

im
ity

+
Oth

er
0

20

40

60

P
er

ce
nt

ag
e

(%
)

ARM Cortex-M

(b) Average false negatives for each architecture per category. The other category shows
false positives that could not be linked to any of the other categories.

Figure 4: False positive and false negative distributions of the best F1-score for ARM Cortex-
M, Xtensa and the combined address-specific categories. The percentages of the different pat-
terns/categories are generally more than 100 per cent. This is due to some false positives (or
negatives) contributing to more than one pattern/category.

what we expected because we cross-referenced our
identified patterns across multiple samples. We
expected that by using this technique, we would
get results that are clustered closely together and
not as spread out as they are now.

5.3.4 Average F1-score

When we examine the best F1-score, which pro-
vides the optimal trade-off between false positives
and negatives on average for our results in table 2,
we observe that they are around 60 to 70 per cent,
indicating that we introduce both false positives
and negatives. These scores are lower than we ex-
pected. After performing additional research, we
identified multiple reasons why this is the case.
These are described in the false positive and nega-
tive sections below, where the results of them are
illustrated in fig. 4. In these subsections, we focus
solely on the macro F1-score of the address-specific
category. This is because we are interested in pre-

cisely what causes the false negatives and positives
on the individual address level.

5.3.5 False positive

Our pipeline identifies false positives due to one
reason. This is because our patterns are not solely
used by MMIO addresses but also by non-MMIO
addresses. If we split the false positives into the
individual patterns that create them, we see a few
things.

• LMS: This pattern locates false positives
because it is a pattern used to clear and set
bits directly. This kind of behaviour is not
reserved only for peripherals, as we also see it
in RAM. An example of this is for updating
error codes, where to update the error code
to a specific error, we see that this operation
is also performed, as shown in listing 14.

• FRI: As mentioned in section 3, the FRI

14

pattern relies on the LMS pattern to iden-
tify functions that contain MMIO instruc-
tions. If LMS incorrectly identifies an MMIO
as non-MMIO, it results in flawed input for
the FRI. As a result, the FRI will capture
all the load and store instructions from the
function where this flawed LMS occurred,
even though the instructions will reference
non-MMIO addresses.

• Proximity: This pattern locates minimal
false positives. However, the false positives
it creates stem from the fact that multi-
ple function calls are performed sequentially,
where before the function call, the same reg-
ister is loaded with the same data. This is
done, for example, when the same function
argument is used for multiple function calls.

• SIV: This pattern locates false positives be-
cause the bytes between instructions get too
big, for a group that is too small. We observe
that the SIV’s false positives are primarily
found in Xtensa. When we look at the re-
sult in table 2 with the corresponding pat-
terns described in table 1. We observe that
Xtensa achieves its best F1-score, where the
trade-off of false positives and negatives is
minimised, when the bytes between instruc-
tions are set to 56 and the group size is set to
just two. During our analysis, we observed
that these parameters are the problem, as
it is not uncommon for the same register to
store data to two different registers within a
sufficiently wide byte space.

• Offset: Finally, we see that the Offset pat-
tern also locates multiple false positives on
average for only ARM Cortex-M. It is ex-
pected that this pattern locates false posi-
tives. This is because RAM also uses the
pattern where multiple addresses share the
same base address. This means that when
the Offset pattern receives a non-MMIO ad-
dress as input, it identifies its base address
and searches through the code for addresses
that use the same base address, which are
also non-MMIO addresses.

Although the patterns locate false positives, we
also observe that they locate a significant number
of true positives. To be precise 60 to 70 per cent of
the memory addresses located are true positives.

This indicates that the patterns we used are to a
certain extent effective. To ensure that the pat-
terns work even better, we must define parame-
ters logically so that arbitrary read/write opera-
tions cannot be incorporated. Additionally, cre-
ating anti-patterns which locate non-MMIO ad-
dresses also helps, as this can be used to suppress
the false positives for the patterns.

5.3.6 False negative

In contrast to what we described for the false pos-
itives, we have multiple reasons why MMIO ad-
dresses are not found. We have separated these
into different categories and are listed below.

• Single addresses: We identified that when
an address is only referenced once in the en-
tire firmware, we do not detect it. This is be-
cause four of our patterns locate an MMIO
address using multiple addresses as input, if
an address is only referenced once, we do not
have any auxiliary information to correlate
it with. Additionally, when these single ad-
dresses do not share a base address with the
addresses we do locate, we also cannot use
our Offset pattern to locate them. This is
because this pattern examines shared base
addresses to identify new addresses. The re-
sults show that, on average, this gives ap-
proximately 49 per cent of the false nega-
tives identified for Xtensa. While for ARM
Cortex-M, this gives us 28 per cent.

• Absolute addresses: We also identified
that multiple addresses are referenced with
only an absolute load and not a register-
relative load, an example of the difference is
seen in listing 8. This category results in 60
per cent false negatives for ARM Cortex-M,
while around 18 per cent for Xtensa. That
an address is only referenced through an ab-
solute load happens when the address itself is
used in e.g. a comparison or for calculating
dynamic addresses. Our patterns are only
focused on the register-relative load. This
results in us not being able to locate these
addresses.

15

1 129e6 27 4b ldr r3,[DAT_00012a84] = 40023800h
2 129e8 5b 6c ldr r3,[r3,#0x44]=>DAT_40023844

Listing 8: The first instruction illustrates
an absolute load while the second instruc-
tion illustrates a register relative load for
ARM Cortex-M.

• Little MMIO in a function: In some
cases, we observe that MMIO addresses are
located in a function that consists primar-
ily of non-MMIO addresses. We struggle to
detect these, as the patterns locate MMIO
addresses using multiple addresses as input.
When an MMIO address is in a function that
has few to no MMIO addresses, we cannot
use these patterns.

• Proximity+: Another thing we observe is
that firmware loads or stores data to differ-
ent MMIO addresses that share the same
base address in quick succession. This logic
can, for example, happen when the same
value needs to be stored to multiple configu-
ration addresses or when configuration data
from multiple registers needs to be loaded.
We do not detect this because we only focus
on the recurrence of one address. However,
we do note that this logic is also often used
by non-MMIO addresses.

6 Discussion

In this section, we will discuss our previous find-
ings.

Our results show that we can reliably locate
MMIO addresses and MMIO segments for some
samples. This is, for example, the case for the sam-
ple button_s3 when looking at the address specific
category and for the sample p2im_reflow_oven for
the segment specific category. Using our pipeline,
we get almost 85 per cent F1-score for button_s3.
Showing that the results we got are mostly MMIO
addresses with only a few MMIO addresses miss-
ing. Using our tool on p2im_reflow_oven, we see
that we get an F1-score of 100 per cent, mean-
ing that it successfully found all segments contain-
ing MMIO addresses without misidentifying non-
MMIO segments.

The result shows us that we can use our
pipeline to create an initial scope for finding which

segment contains MMIO addresses. This should
then be fine-tuned by another tool to remove the
false positives that are present. We can also use
our pipeline as input for manual analysis. Al-
though it does not locate all addresses, we elim-
inate a significant number of false positives. This
means that if someone performs manual analy-
sis on our results for further processing, they
can obtain a subset of MMIO addresses more
quickly compared to manually analysing the en-
tire firmware.

Unfortunately, even though our pipeline can
perform well for the approaches above, we will be
less likely to use it for an approach where accu-
racy is crucial, e.g. fuzzing. For fuzzing, we want
to focus only on the MMIO addresses. Our re-
sults show that our pipeline does not locate all
MMIO addresses. Because of this, the fuzzer will
miss vulnerabilities when using our data as input.
Additionally, our pipeline also locates non-MMIO
addresses, which are less interesting to fuzz com-
pared to MMIO addresses. Another approach our
pipeline is less likely to be used for is re-hosting. If
we want, for example, to build a memory map of
the peripherals using our output as input, which
is then used for an emulator, we get undefined be-
haviour.

When we examine the different patterns used
for our results, as shown in table 1, we see that all
identified patterns help locate MMIO addresses.
Looking at it in more depth, we observe that for
eight of our results, we use all the identified pat-
terns. If we look at it more broadly, we see that
we use the LMS, FRI and SIV patterns in thir-
teen of them. We observe that when all patterns
are used, we generally obtain the lowest number
of false negatives. This applies to both Xtensa
(only address specific) and ARM Cortex-M, as well
as the combined result. However, these patterns
also show a high false positive rate, indicating that
these approaches also locate multiple non-MMIO
addresses. To improve this, we can identify anti-
patterns, which are, in this case, patterns that lo-
cate typical non-MMIO addresses. With this ap-
proach, we will get our false positive rate to a de-
sired level.

Another thing that our results in table 2 show
is that our patterns can locate the MMIO segment
for ARM Cortex-M better than for Xtensa. When
we want to locate the MMIO addresses themselves,
then our patterns are doing better for Xtensa. The

16

reason why the performance for locating individual
MMIO addresses in ARM Cortex-M is lower than
that of Xtensa is that the results we obtain contain
more non-MMIO addresses than those for Xtensa,
leading to a higher false positive rate. Addition-
ally, our patterns locate fewer MMIO addresses for
ARM Cortex-M than for Xtensa, resulting in more
false negatives. Combining these two means that
the combined result is also lower. The reason why
the performance for locating segments in Xtensa
is lower than for ARM Cortex-M is that the seg-
ments Xtensa has containing MMIO addresses are
smaller than those of ARM Cortex-M. This means
that more segments exist than for ARM Cortex-
M. As a direct result, it is easier for performance
to decline because addresses can be found in more
segments, while it is also easier to miss segments.

Another interesting observation is that when
we combine ARM Cortex-M and Xtensa as shown
in table 2, we see that the combined results do
not precisely fall between the individual results.
When we look at this some more, we notice that
different patterns are generally used for this com-
bined result. This suggests that one pattern is
more optimal for locating MMIO addresses when
we look at multiple architectures simultaneously,
while another pattern is more optimal when look-
ing at architectures one at a time.

Limitations: The first limitation of our
pipeline is that it only supports the architectures
that are provided by the frameworks [62]. Even
though there are many architectures in here, if
there is one that is not provided by it, then we
cannot use our pipeline to locate MMIO addresses.

The second limitation we face is related to our
symbolic execution method. As said in section 4.1,
we stop our symbolic execution after 5 seconds,
as referenced MMIO addresses are generally con-
stant. However, it is possible that the symbolic
execution gets temporarily stuck in a loop or en-
counters a state explosion. This can result in that
5 seconds is not enough to resolve the addresses,
even though they are constant.

Our third limitation is that we examined pat-
terns in ARM Cortex-M firmware and tried to
match them to Xtensa firmware, which in this
work was not a problem, as we focused on ARM
Cortex-M and Xtensa. However, if we want to
extend it to, for example, RISC-V or proprietary
firmware, we need to ensure that we cross-reference
the found patterns with more architectures to ver-

ify they also work on these.
Our final limitation is that we rely on the

Ghidra headless mode for some of our results.
However, during some experimentation, we no-
ticed minor dissimilarities between running our
code through headless mode and through the
Ghidra script manager from the GUI. The dis-
similarities we encountered were that some func-
tions were not found through the headless mode,
while the GUI did locate them. As we were unable
to find a way to run our code outside of headless
mode, we note this as a limitation.

Future work: In the future, our work can be
expanded upon in three directions: enrichment,
generalisation and higher-level analysis.

As shown before, our approach works better
than a naive approach. However, we still need to
enrich our pipeline with more patterns to ensure
that our false negatives decrease, while we need to
identify anti-patterns to reduce our false positives.

Additionally, we focused in this paper on ARM
Cortex-M and Xtensa. These two are archi-
tectures that are prominently seen in non-Linux
firmware [24]. However, they are not the only ones.
Taking more architectures into account, like RISC-
V and proprietary ones, will be another direction
we can work towards in the future.

Finally, the patterns that we identified are fo-
cused on what happens inside a function. How-
ever, functions also interact with each other.
These interactions can also provide valuable in-
sights into the working of MMIO addresses, which
can help locate them.

7 Related Work

MMIO addresses can be located in several ways.
In this section, we have grouped the works that
share a commonality in their methods for locat-
ing MMIO addresses. In general, current research
focuses on the ARM Cortex-M architecture for lo-
cating MMIO addresses.

7.1 MCU documentation

A common approach is to manually look up MMIO
segments from the datasheet [7–12, 17–21]. Be-
sides looking them up, Gustafson et al. also has
special rules to classify how data communicates
with peripherals, allowing them to track IO op-
erations [17]. Zhou et al. use the datasheet to

17

manually extract peripheral register tables using
Python libraries such as Tabula [22]. Using this,
they create textual descriptions of the MMIO reg-
isters that can be used as input for their approach.

Compared to these approaches, our approach
does not rely on an external datasheet to look up
or extract MMIO addresses from. We only use
the information coming from the firmware itself.
Additionally, Gustafson et al. have a rule called
"read-modify-write". This is a similar rule to our
LMS pattern, with as difference that our pattern
is more specific by limiting the modify instruction
between the load and store to one bitwise opera-
tion.

Similarly to the datasheet, manufacturers
share files such as System View Description and
Host-Specific Development Tool Libraries, which
also contain information regarding the MMIO ad-
dresses. Kim et al. programmatically parse
through these files to look up the different MMIO
segments a peripheral has [23].

Like before, this approach also relies on docu-
mentation to work. While for our approach, this
is not necessary.

7.2 Static analysis

Some works use static analysis instead of relying
on the MCU documentation. Wen et al., for ex-
ample, use the knowledge that a Software Devel-
opment Kit (SDK) function will eventually read or
write to MMIO addresses [28]. Using this knowl-
edge, they monitor the data flow and identify the
locations of the MMIO addresses.

While Wen et al. focus on specific SDK func-
tions, our approach does not focus on a particular
function and applies patterns to all the functions
present in the firmware.

Shen et al. focus solely on constant point-
ers. They locate MMIO addresses by assuming
that all memory instructions with constant pointer
operands are MMIO accesses [63].

This work differs from ours in that we use pat-
terns to locate MMIO addresses, whereas this ap-
proach examines constant pointer operands to lo-
cate MMIO addresses.

7.3 Dynamic analysis

Gui et al. use a firmware emulator which in-
cludes hooks that monitor read and write opera-
tions to unmapped memory addresses during em-

ulation [42]. If an exception is triggered outside
of their predefined memory segments, then their
system records this as peripheral access and cap-
tures the peripheral type and memory addresses
accessed. Unfortunately, it is not clear from this
work how the predefined memory segments are ex-
tracted.

Instead of doing dynamic analysis. Our work
focuses solely on static analysis, removing the need
for an emulator. Additionally, we do not need
to know the predefined memory segments before-
hand.

8 Conclusion

In this paper, we introduced XtractIO, a way
to statically locate MMIO addresses from ARM
Cortex-M and Xtensa firmware. This is the first
research done for automatic MMIO identification
across multiple architectures, to the best of our
knowledge. We have shown that MMIO addresses
have multiple patterns which can be used to locate
them. Another thing we have shown is that by
applying our pipeline, we can better locate MMIO
addresses than by using a naive approach. How-
ever, still improvements can be made by, for exam-
ple, identifying patterns for MMIO addresses that
only occur once in a firmware, taking into account
addresses that only have absolute references and
locating MMIO addresses that appear in functions
that contain mostly non-MMIO addresses. In the
end, this paper shows that automatically locat-
ing MMIO addresses is possible, but improvements
still need to be made to make it reliable.

9 Acknowledgements

I want to thank my supervisors, Jorik van Nie-
len and Andrea Continella, for their guidance
throughout the thesis period.

During my thesis, ChatGPT and Grammarly
assisted me with my work. ChatGPT was used
to help debug some code, help write functions,
and repair a handful of broken sentences, while
Grammarly was used as a grammar checker. All
the changes resulting from these two tools were
double-checked by me.

18

References

1. Embedded Systems Market Size, Share &
Growth | Report [2030] Oct. 2024. https:
/ / www . fortunebusinessinsights . com /
embedded-systems-market-108767.

2. The Past, Present and Future of Cyberse-
curity for Embedded Systems 2020. https:
/ / blackberry . qnx . com / content /
dam / bbcomv4 / qnx / resource - center /
pdf / Cybersecurity % 20for % 20Embedded %
20Systems%20-%20QNX%20Whitepaper.pdf.

3. Serper, Y. ‘FriendlyName’ Buffer Overflow
Vulnerability in Wemo Smart Plug V2 May
2023. https://sternumiot.com/iot-blog/
mini - smart - plug - v2 - vulnerability -
buffer-overflow/.

4. Zieniūtė. What is the Mirai botnet, and
how does it spread? Apr. 2024. https : / /
nordvpn.com/nl/blog/mirai-botnet/.

5. Naraine. GreyNoise Credits AI for Spotting
Exploit Attempts on IoT Livestream Cams
Nov. 2024. https : / / www . securityweek .
com / greynoise - credits - ai - for -
spotting - exploit - attempts - on - iot -
livestream-cams/.

6. Fuzz Testing 2020. https : / / www .
blackduck.com/glossary/what-is-fuzz-
testing.html.

7. Scharnowski, T. et al. Fuzzware: Using Pre-
cise MMIO Modeling for Effective Firmware
Fuzzing. en.

8. Kim, J., Yu, J., Lee, Y., Kim, D. D. & Yun,
J. HD-FUZZ: Hardware Dependency-Aware
Firmware Fuzzing via Hybrid MMIO Model-
ing. en.

9. Gustafson, E. et al. Toward the Analysis
of Embedded Firmware through Automated
Re-hosting. en.

10. Farrelly, G., Chesser, M. & Ranasinghe,
D. C. Ember-IO: Effective Firmware Fuzzing
with Model-Free Memory Mapped IO en.
arXiv:2301.06689 [cs]. Jan. 2023. http : / /
arxiv.org/abs/2301.06689 (2024).

11. Scharnowski, T., Wörner, S., Buchmann, F.
& Holz, T. Hoedur: Embedded Firmware
Fuzzing using Multi-Stream Inputs. en.

12. Johnson, E., Mason, J., College, O. & Savage,
S. Jetset: Targeted Firmware Rehosting for
Embedded Systems. en.

13. Murray, J. M. & Wiatrowski, C. A. Mi-
crocomputer Peripherals. IEEE Transactions
on Industrial Electronics and Control Instru-
mentation IECI-25, 303–322 (1978).

14. Sarangi, S. R. Basic Computer Architecture
1st edition. isbn: 1636403034 (White Falcon
Publishing, Sept. 2021).

15. Summerville, D. Embedded Systems Inter-
facing for Engineers using the Freescale
HCS08 Microcontroller II: Digital and Ana-
log Hardware Interfacing. Synthesis Lectures
on Digital Circuits and Systems 4, 1–139
(Aug. 2009).

16. Khan, A., Kim, H., Lee, B., Xu, D. &
Bianchi, A. M2MON: Building an MMIO-
based Security Reference Monitor for Un-
manned Vehicles. en.

17. Gustafson, E. et al. Shimware: Toward Prac-
tical Security Retrofitting for Monolithic
Firmware Images en. in Proceedings of the
26th International Symposium on Research
in Attacks, Intrusions and Defenses (ACM,
Hong Kong China, Oct. 2023), 32–45. isbn:
9798400707650. https://dl.acm.org/doi/
10.1145/3607199.3607217 (2024).

18. Cao, C., Guan, L., Ming, J. & Liu, P. Device-
agnostic Firmware Execution is Possible: A
Concolic Execution Approach for Peripheral
Emulation en. in Annual Computer Security
Applications Conference (ACM, Austin USA,
Dec. 2020), 746–759. isbn: 978-1-4503-8858-
0. https://dl.acm.org/doi/10.1145/
3427228.3427280 (2024).

19. Chesser, M. MultiFuzz: A Multi-Stream
Fuzzer For Testing Monolithic Firmware. en.

20. Feng, B., Mera, A. & Lu, L. P2IM: Scalable
and Hardware-independent Firmware Test-
ing via Automatic Peripheral Interface Mod-
eling. en.

21. Zhou, W. Automatic Firmware Emulation
through Invalidity-guided Knowledge Infer-
ence. en.

19

https://www.fortunebusinessinsights.com/embedded-systems-market-108767
https://www.fortunebusinessinsights.com/embedded-systems-market-108767
https://www.fortunebusinessinsights.com/embedded-systems-market-108767
https://blackberry.qnx.com/content/dam/bbcomv4/qnx/resource-center/pdf/Cybersecurity%20for%20Embedded%20Systems%20-%20QNX%20Whitepaper.pdf
https://blackberry.qnx.com/content/dam/bbcomv4/qnx/resource-center/pdf/Cybersecurity%20for%20Embedded%20Systems%20-%20QNX%20Whitepaper.pdf
https://blackberry.qnx.com/content/dam/bbcomv4/qnx/resource-center/pdf/Cybersecurity%20for%20Embedded%20Systems%20-%20QNX%20Whitepaper.pdf
https://blackberry.qnx.com/content/dam/bbcomv4/qnx/resource-center/pdf/Cybersecurity%20for%20Embedded%20Systems%20-%20QNX%20Whitepaper.pdf
https://blackberry.qnx.com/content/dam/bbcomv4/qnx/resource-center/pdf/Cybersecurity%20for%20Embedded%20Systems%20-%20QNX%20Whitepaper.pdf
https://sternumiot.com/iot-blog/mini-smart-plug-v2-vulnerability-buffer-overflow/
https://sternumiot.com/iot-blog/mini-smart-plug-v2-vulnerability-buffer-overflow/
https://sternumiot.com/iot-blog/mini-smart-plug-v2-vulnerability-buffer-overflow/
https://nordvpn.com/nl/blog/mirai-botnet/
https://nordvpn.com/nl/blog/mirai-botnet/
https://www.securityweek.com/greynoise-credits-ai-for-spotting-exploit-attempts-on-iot-livestream-cams/
https://www.securityweek.com/greynoise-credits-ai-for-spotting-exploit-attempts-on-iot-livestream-cams/
https://www.securityweek.com/greynoise-credits-ai-for-spotting-exploit-attempts-on-iot-livestream-cams/
https://www.securityweek.com/greynoise-credits-ai-for-spotting-exploit-attempts-on-iot-livestream-cams/
https://www.blackduck.com/glossary/what-is-fuzz-testing.html
https://www.blackduck.com/glossary/what-is-fuzz-testing.html
https://www.blackduck.com/glossary/what-is-fuzz-testing.html
http://arxiv.org/abs/2301.06689
http://arxiv.org/abs/2301.06689
https://dl.acm.org/doi/10.1145/3607199.3607217
https://dl.acm.org/doi/10.1145/3607199.3607217
https://dl.acm.org/doi/10.1145/3427228.3427280
https://dl.acm.org/doi/10.1145/3427228.3427280

22. Zhou, W., Zhang, L., Guan, L., Liu, P.
& Zhang, Y. What Your Firmware Tells
You Is Not How You Should Emulate It: A
Specification-Guided Approach for Firmware
Emulation en. in Proceedings of the 2022
ACM SIGSAC Conference on Computer and
Communications Security (ACM, Los Ange-
les CA USA, Nov. 2022), 3269–3283. isbn:
978-1-4503-9450-5. https://dl.acm.org/
doi/10.1145/3548606.3559386 (2024).

23. Kim, T. et al. PASAN: Detecting Peripheral
Access Concurrency Bugs within Bare-Metal
Embedded Applications. en.

24. Nino, N. et al. Unveiling IoT Security in Re-
ality: A Firmware-Centric Journey in 33rd
USENIX Security Symposium (USENIX Se-
curity 24) (USENIX Association, Philadel-
phia, PA, Aug. 2024), 5609–5626. isbn: 978-
1-939133-44-1. https : / / www . usenix .
org / conference / usenixsecurity24 /
presentation/nino.

25. What Is Firmware? Types and Examples
https://www.fortinet.com/resources/
cyberglossary/what-is-firmware.

26. Muench, M., Stijohann, J., Kargl, F., Fran-
cillon, A. & Balzarotti, D. What You Cor-
rupt Is Not What You Crash: Challenges in
Fuzzing Embedded Devices en. in Proceed-
ings 2018 Network and Distributed System
Security Symposium (Internet Society, San
Diego, CA, 2018). isbn: 978-1-891562-49-5.
https://www.ndss- symposium.org/wp-
content/uploads/2018/02/ndss2018_01A-
4_Muench_paper.pdf (2024).

27. Eager, M. J. Introduction to the DWARF
Debugging Format in (2007). https : / /
api . semanticscholar . org / CorpusID :
14261900.

28. Wen, H., Lin, Z. & Zhang, Y. FirmXRay: De-
tecting Bluetooth Link Layer Vulnerabilities
From Bare-Metal Firmware en. in Proceed-
ings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security
(ACM, Virtual Event USA, Oct. 2020), 167–
180. isbn: 978-1-4503-7089-9. https://dl.
acm.org/doi/10.1145/3372297.3423344
(2024).

29. Liu, J. et al. RISC-Q: A Generator for Real-
Time Quantum Control System-on-Chips
Compatible with RISC-V 2025. arXiv: 2505.
14902 [cs.AR]. https://arxiv.org/abs/
2505.14902.

30. Oshana, R. in DSP Software Develop-
ment Techniques for Embedded and
Real-Time Systems (ed Oshana, R.)
159–227 (Newnes, Burlington, 2006).
isbn: 978-0-7506-7759-2. https : / / www .
sciencedirect . com / science / article /
pii/B9780750677592500089.

31. Yu, T., Qu, X. & Cohen, M. B. VDTest: an
automated framework to support testing for
virtual devices Austin, Texas, 2016. https:
//doi.org/10.1145/2884781.2884866.

32. Datasheet - stm32f103x8 stm32f103xb Sept.
2023. https://www.st.com/resource/en/
datasheet/stm32f103c8.pdf.

33. Emulation https://www.imaginationtech.
com/glossary/emulation/.

34. Interrupts Sept. 2024. https : / / www .
geeksforgeeks.org/interrupts/.

35. https://cs.lmu.edu/~ray/notes/ir/.

36. Click, C. & Paleczny, M. A simple graph-
based intermediate representation. SIG-
PLAN Not. 30, 35–49. issn: 0362-1340.
https://doi.org/10.1145/202530.202534
(Mar. 1995).

37. Johnson. Intermediate Representation July
2010. https://web.stanford.edu/class/
archive/cs/cs143/cs143.1128/handouts/
230%20Intermediate%20Rep.pdf.

38. Rouse, M. Disassembler Dec. 2011. https:
//www.techopedia.com/definition/6860/
disassembler.

39. Cifuentes, C. & Gough, K. J. Decompila-
tion of binary programs. Software: Practice
and Experience 25, 811–829. eprint: https:
/ / onlinelibrary . wiley . com / doi / pdf /
10 . 1002 / spe . 4380250706. https : / /
onlinelibrary.wiley.com/doi/abs/10.
1002/spe.4380250706 (1995).

40. Aldrich, J. & Goues, C. L. Lecture Notes:
Symbolic Execution. en.

20

https://dl.acm.org/doi/10.1145/3548606.3559386
https://dl.acm.org/doi/10.1145/3548606.3559386
https://www.usenix.org/conference/usenixsecurity24/presentation/nino
https://www.usenix.org/conference/usenixsecurity24/presentation/nino
https://www.usenix.org/conference/usenixsecurity24/presentation/nino
https://www.fortinet.com/resources/cyberglossary/what-is-firmware
https://www.fortinet.com/resources/cyberglossary/what-is-firmware
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://api.semanticscholar.org/CorpusID:14261900
https://api.semanticscholar.org/CorpusID:14261900
https://api.semanticscholar.org/CorpusID:14261900
https://dl.acm.org/doi/10.1145/3372297.3423344
https://dl.acm.org/doi/10.1145/3372297.3423344
https://arxiv.org/abs/2505.14902
https://arxiv.org/abs/2505.14902
https://arxiv.org/abs/2505.14902
https://arxiv.org/abs/2505.14902
https://www.sciencedirect.com/science/article/pii/B9780750677592500089
https://www.sciencedirect.com/science/article/pii/B9780750677592500089
https://www.sciencedirect.com/science/article/pii/B9780750677592500089
https://doi.org/10.1145/2884781.2884866
https://doi.org/10.1145/2884781.2884866
https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
https://www.imaginationtech.com/glossary/emulation/
https://www.imaginationtech.com/glossary/emulation/
https://www.geeksforgeeks.org/interrupts/
https://www.geeksforgeeks.org/interrupts/
https://cs.lmu.edu/~ray/notes/ir/
https://doi.org/10.1145/202530.202534
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/230%20Intermediate%20Rep.pdf
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/230%20Intermediate%20Rep.pdf
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/230%20Intermediate%20Rep.pdf
https://www.techopedia.com/definition/6860/disassembler
https://www.techopedia.com/definition/6860/disassembler
https://www.techopedia.com/definition/6860/disassembler
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250706
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250706
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250706
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250706
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250706
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250706

41. Baldoni, R., Coppa, E., D’elia, D. C., Deme-
trescu, C. & Finocchi, I. A Survey of Sym-
bolic Execution Techniques. en. ACM Com-
puting Surveys 51, 1–39. issn: 0360-0300,
1557-7341. https://dl.acm.org/doi/10.
1145/3182657 (2024) (May 2019).

42. Gui, Z., Shu, H. & Yang, J. FIRMNANO:
Toward IoT Firmware Fuzzing Through Aug-
mented Virtual Execution in 2020 IEEE 11th
International Conference on Software Engi-
neering and Service Science (ICSESS) ISSN:
2327-0594 (Oct. 2020), 290–294. https://
ieeexplore.ieee.org/document/9237719/
?arnumber=9237719 (2024).

43. Feng, X. et al. Snipuzz: Black-box Fuzzing of
IoT Firmware via Message Snippet Inference
en. in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communica-
tions Security (ACM, Virtual Event Republic
of Korea, Nov. 2021), 337–350. isbn: 978-1-
4503-8454-4. https://dl.acm.org/doi/10.
1145/3460120.3484543 (2024).

44. Seidel, L., Maier, D. & Muench, M. Forming
Faster Firmware Fuzzers. en.

45. Malmain, R., Fioraldi, A. & Francillon, A.
LibAFL QEMU: A Library for Fuzzing-
oriented Emulation. en.

46. What is fuzz testing? https : / / about .
gitlab.com/topics/devsecops/what-is-
fuzz-testing/.

47. Race Condition Vulnerability Aug. 2024.
https://www.geeksforgeeks.org/race-
condition-vulnerability/.

48. Varma, R. A Deep Dive into Static vs Dy-
namic Code Analysis Dec. 2023. https://
www . buildpiper . io / blogs / a - deep -
dive - into - static - vs - dynamic - code -
analysis/.

49. Software engineering-control-flow-graph-cfg
Nov. 2024. https://www.geeksforgeeks.
org / software - engineering - control -
flow - graph - cfg / https : / / www .
geeksforgeeks . org / software -
engineering-control-flow-graph-cfg/.

50. Data flow analysis in Compiler Oct. 2024.
https://www.geeksforgeeks.org/data-
flow-analysis-compiler/.

51. Data flow analysis: an informal introduc-
tion https : / / clang . llvm . org / docs /
DataFlowAnalysisIntro.html.

52. Zhang, P. in Advanced Industrial Con-
trol Technology (ed Zhang, P.) 613–683
(William Andrew Publishing, Oxford, 2010).
isbn: 978-1-4377-7807-6. https : / / www .
sciencedirect . com / science / article /
pii/B9781437778076100166.

53. Understanding the “Memory Mapped
I/O” and Volatile Qualifier https :
/ / learningmicro . wordpress . com /
understanding - the - memory - map - of -
peripherals/.

54. Maldini, M. Memory Mapped I/O in C July
2024. https://www.embeddedrelated.com/
showarticle/1683.php?.

55. Prasad, M. Disassembly Challenges Apr.
2003. https://www.usenix.org/legacy/
publications / library / proceedings /
usenix03 / tech / full _ papers / prasad /
prasad_html/node5.html.

56. Opcodes and operands https : / / www .
bbc . co . uk / bitesize / guides / z6x26yc /
revision/4.

57. monolithic-firmware-collection https : / /
github . com / ucsb - seclab / monolithic -
firmware-collection.

58. Zephyr Project https : / / www .
zephyrproject.org/.

59. ESP-IDF Programming Guide https : / /
docs.espressif.com/projects/esp-idf/
en/v4.2.2/esp32/index.html.

60. STM32F427xx STM32F429xx May 2025.
https : / / www . st . com / resource / en /
datasheet/stm32f427vg.pdf.

61. Leung, K. Micro, Macro & Weighted Av-
erages of F1 Score, Clearly Explained Jan.
2023. https://www.kdnuggets.com/2023/
01/micro-macro-weighted-averages-f1-
score-clearly-explained.html.

62. Architecture Support https://api.angr.
io / projects / pypcode / en / latest /
languages.html.

21

https://dl.acm.org/doi/10.1145/3182657
https://dl.acm.org/doi/10.1145/3182657
https://ieeexplore.ieee.org/document/9237719/?arnumber=9237719
https://ieeexplore.ieee.org/document/9237719/?arnumber=9237719
https://ieeexplore.ieee.org/document/9237719/?arnumber=9237719
https://dl.acm.org/doi/10.1145/3460120.3484543
https://dl.acm.org/doi/10.1145/3460120.3484543
https://about.gitlab.com/topics/devsecops/what-is-fuzz-testing/
https://about.gitlab.com/topics/devsecops/what-is-fuzz-testing/
https://about.gitlab.com/topics/devsecops/what-is-fuzz-testing/
https://www.geeksforgeeks.org/race-condition-vulnerability/
https://www.geeksforgeeks.org/race-condition-vulnerability/
https://www.buildpiper.io/blogs/a-deep-dive-into-static-vs-dynamic-code-analysis/
https://www.buildpiper.io/blogs/a-deep-dive-into-static-vs-dynamic-code-analysis/
https://www.buildpiper.io/blogs/a-deep-dive-into-static-vs-dynamic-code-analysis/
https://www.buildpiper.io/blogs/a-deep-dive-into-static-vs-dynamic-code-analysis/
https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/
https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/
https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/
https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/
https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/
https://www.geeksforgeeks.org/data-flow-analysis-compiler/
https://www.geeksforgeeks.org/data-flow-analysis-compiler/
https://clang.llvm.org/docs/DataFlowAnalysisIntro.html
https://clang.llvm.org/docs/DataFlowAnalysisIntro.html
https://www.sciencedirect.com/science/article/pii/B9781437778076100166
https://www.sciencedirect.com/science/article/pii/B9781437778076100166
https://www.sciencedirect.com/science/article/pii/B9781437778076100166
https://learningmicro.wordpress.com/understanding-the-memory-map-of-peripherals/
https://learningmicro.wordpress.com/understanding-the-memory-map-of-peripherals/
https://learningmicro.wordpress.com/understanding-the-memory-map-of-peripherals/
https://learningmicro.wordpress.com/understanding-the-memory-map-of-peripherals/
https://www.embeddedrelated.com/showarticle/1683.php?
https://www.embeddedrelated.com/showarticle/1683.php?
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/full_papers/prasad/prasad_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/full_papers/prasad/prasad_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/full_papers/prasad/prasad_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/full_papers/prasad/prasad_html/node5.html
https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/4
https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/4
https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/4
https://github.com/ucsb-seclab/monolithic-firmware-collection
https://github.com/ucsb-seclab/monolithic-firmware-collection
https://github.com/ucsb-seclab/monolithic-firmware-collection
https://www.zephyrproject.org/
https://www.zephyrproject.org/
https://docs.espressif.com/projects/esp-idf/en/v4.2.2/esp32/index.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.2/esp32/index.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.2/esp32/index.html
https://www.st.com/resource/en/datasheet/stm32f427vg.pdf
https://www.st.com/resource/en/datasheet/stm32f427vg.pdf
https://www.kdnuggets.com/2023/01/micro-macro-weighted-averages-f1-score-clearly-explained.html
https://www.kdnuggets.com/2023/01/micro-macro-weighted-averages-f1-score-clearly-explained.html
https://www.kdnuggets.com/2023/01/micro-macro-weighted-averages-f1-score-clearly-explained.html
https://api.angr.io/projects/pypcode/en/latest/languages.html
https://api.angr.io/projects/pypcode/en/latest/languages.html
https://api.angr.io/projects/pypcode/en/latest/languages.html

63. Shen, M., Davis, J. C. & Machiry, A.
Towards Automated Identification of Lay-
ering Violations in Embedded Applications
(WIP) en. in Proceedings of the 24th ACM
SIGPLAN/SIGBED International Confer-
ence on Languages, Compilers, and Tools for
Embedded Systems (ACM, Orlando FL USA,
June 2023), 143–147. isbn: 9798400701740.
https : / / dl . acm . org / doi / 10 . 1145 /
3589610.3596271 (2024).

22

https://dl.acm.org/doi/10.1145/3589610.3596271
https://dl.acm.org/doi/10.1145/3589610.3596271

A Intermediate representation of patterns

1 IMARK ram[129e8:2]
2 unique[92600:4] = r3 + 0x44
3 r3 = *[ram]unique[92600:4]
4

5 IMARK ram[129ea:4]
6 unique[87700:4] = 0x10
7 shift_carry = CY
8 r3 = r3 | unique[87700:4]
9 tmpCY = shift_carry

10 tmpOV = OV
11 tmpNG = r3 s< 0x0
12 tmpZR = r3 == 0x0
13

14

15 IMARK ram[129ee:2]
16 unique[92600:4] = r2 + 0x44
17 *[ram]unique[92600:4] = r3

Listing 9: The load, modify, store pattern in pypcode IR.

1 IMARK ram[199a:2]
2 unique[98000:4] = r3 + 0x28
3 r2 = *[ram]unique[98000:4]
4

5 IMARK ram[199c:2]
6 unique[98000:4] = r3 + 0x28
7 r2 = *[ram]unique[98000:4]
8

9 IMARK ram[199e:2]
10 unique[98000:4] = r3 + 0x28
11 r2 = *[ram]unique[98000:4]
12

13 IMARK ram[19a6:2]
14 unique[98000:4] = r3 + 0x28
15 r2 = *[ram]unique[98000:4]

Listing 10: The same MMIO address is referenced sequently in pypcode IR.

1 IMARK ram[6bce:2]
2 unique[98000:4] = r3 + 0x18
3 r2 = *[ram]unique[98000:4]
4

5

6 IMARK ram[6bd0:4]
7 unique[87700:4] = 0x4
8 shift_carry = CY
9 r2 = r2 | unique[87700:4]

10 tmpCY = shift_carry
11 tmpOV = OV
12 tmpNG = r3 s< 0x0
13 tmpZR = r3 == 0x0
14

15

16 IMARK ram[6bd4:2]
17 unique[98000:4] = r3 + 0x18
18 *[ram]unique[98000:4] = r2

23

19

20 IMARK ram[6bd6:2]
21 unique[98000:4] = r3 + 0x18
22 r3 = *[ram]unique[98000:4]
23

24 IMARK ram[6be8:2]
25 unique[98000:4] = r3 + 0x18
26 r2 = *[ram]unique[98000:4]
27

28

29 IMARK ram[6bea:4]
30 unique[87700:4] = 0x8
31 shift_carry = CY
32 r2 = r2 | unique[87700:4]
33 tmpCY = shift_carry
34 tmpOV = OV
35 tmpNG = r3 s< 0x0
36 tmpZR = r3 == 0x0
37

38

39 IMARK ram[6bee:2]
40 unique[98000:4] = r3 + 0x18
41 *[ram]unique[98000:4] = r2
42

43 IMARK ram[6bf0:2]
44 unique[98000:4] = r3 + 0x18
45 r3 = *[ram]unique[98000:4]
46

47 IMARK ram[6c00:2]
48 unique[98000:4] = r3 + 0x18
49 r2 = *[ram]unique[98000:4]
50

51

52 IMARK ram[6c02:4]
53 unique[87700:4] = 0x10
54 shift_carry = CY
55 r2 = r2 | unique[87700:4]
56 tmpCY = shift_carry
57 tmpOV = OV
58 tmpNG = r3 s< 0x0
59 tmpZR = r3 == 0x0
60

61

62 IMARK ram[6c06:2]
63 unique[98000:4] = r3 + 0x18
64 *[ram]unique[98000:4] = r2
65

66 IMARK ram[6c08:2]
67 unique[98000:4] = r3 + 0x18
68 r3 = *[ram]unique[98000:4]
69

70 IMARK ram[6c18:2]
71 unique[98000:4] = r3 + 0x18
72 r2 = *[ram]unique[98000:4]
73

74

75 IMARK ram[6c1a:4]
76 unique[87700:4] = 0x20

24

77 shift_carry = CY
78 r2 = r2 | unique[87700:4]
79 tmpCY = shift_carry
80 tmpOV = OV
81 tmpNG = r3 s< 0x0
82 tmpZR = r3 == 0x0
83

84

85 IMARK ram[6c1e:2]
86 unique[98000:4] = r3 + 0x18
87 *[ram]unique[98000:4] = r2
88

89 IMARK ram[6c20:2]
90 unique[98000:4] = r3 + 0x18
91 *[ram]unique[98000:4] = r3

Listing 11: MMIO addresses found in function containing multiple LMS patterns in pypcode
IR.

1 IMARK ram[1cc2:2]
2 unique[98000:4] = r3 + 0x20
3 *[ram]unique[98000:4] = r2
4

5 IMARK ram[1cd0:2]
6 unique[98000:4] = r3 + 0x24
7 *[ram]unique[98000:4] = r2
8

9 IMARK ram[1cde:2]
10 unique[98000:4] = r3 + 0x10
11 *[ram]unique[98000:4] = r2
12

13 IMARK ram[1cec:2]
14 unique[98000:4] = r3 + 0x14
15 *[ram]unique[98000:4] = r2
16

17 IMARK ram[1cfa:2]
18 unique[98000:4] = r3 + 0x18
19 *[ram]unique[98000:4] = r2

Listing 12: MMIO addresses where the base address is the same but the offset is different in
pypcode IR.

1 IMARK ram[2e90:2]
2 unique[98000:4] = r6 + 0x0
3 *[ram]unique[98000:4] = r3
4

5 IMARK ram[2e92:2]
6 unique[98000:4] = r2 + 0x0
7 *[ram]unique[98000:4] = r3
8

9 IMARK ram[2e94:2]
10 unique[98000:4] = r5 + 0x0
11 *[ram]unique[98000:4] = r3
12

13 IMARK ram[2e96:2]
14 unique[98000:4] = r4 + 0x0
15 *[ram]unique[98000:4] = r3
16

25

17 IMARK ram[2e98:2]
18 unique[98000:4] = r7 + 0x0
19 *[ram]unique[98000:4] = r3

Listing 13: Multiple MMIO addresses that are in proximity where the register that data is
send to is different, while the other register and the offset stay the same in pypcode IR.

B Ground truth dataset

Firmware name Architecture MCU models MMIO segments in firmware containing addresses
atmel_6lowpan_udp_rx ARM Cortex-M Atmel SAMR21 0x40000000-0x42ffffff

csaw_esc19_csa ARM Cortex-M MK20DX256VLH7 0x40000000-0x4ffffff, 0xe0000000-0xe00fffff
expat_panda ARM Cortex-M STM Nucleo-L152RE 0x40000000-0x4fffffff, 0xe0000000-0xe00fffff
nucleo_read ARM Cortex-M STM Nucleo-L152RE 0x40000000-0x4fffffff, 0xe0000000-0xe00fffff

Nucleo_blink_led ARM Cortex-M STM Nucleo-L152RE 0x40000000-0x4fffffff, 0xe0000000-0xe00fffff
st-plc ARM Cortex-M STM32F429ZI 0x40000000-0x4fffffff, 0xe0000000-0xffffffff

p2im_controllino_slave ARM Cortex-M STM32F429ZI 0x40000000-0x4fffffff, 0xe0000000-0xffffffff
stm32_tcp_echo_client ARM Cortex-M STM32F429ZI 0x40000000-0x4fffffff, 0x50000000-0x5fffffff, 0xe0000000-0xffffffff

nxp_lwip_udpecho ARM Cortex-M NXP FRDM-K64F 0x40000000-0x4fffffff, 0xe0000000-0xe00fffff
p2im_car_controller ARM Cortex-M SAM3X8E 0x40000000-0x4fffffff, 0xe0000000-0xe00fffff

p2im_gateway ARM Cortex-M STM32F103RB 0x40000000-0x4fffffff, 0x50000000-0x5fffffff, 0xe0000000-0xe00fffff
p2im_robot ARM Cortex-M STM32F103RB 0x40000000-0x4fffffff, 0xe0000000-0xe00fffff

p2im_reflow_oven ARM Cortex-M STM32F103RB 0x40000000-0x4fffffff, 0xe0000000-0xe00fffff
rf_door_lock ARM Cortex-M MAX32600 0x40000000-0x4fffffff, 0xe0000000-0xe00fffff

sensor_oad_cc26x2lp ARM Cortex-M CC26x2 0x40000000-0x4fffffff, 0x50000000-0x5fffffff, 0xe0000000-0xe00feffc
thermostat ARM Cortex-M MAX32600 0x40000000-0x4fffffff, 0xe0000000-0xe00fffff

zephyr-CVE-2021-3329 ARM Cortex-M STM32L432KC 0x40000000-0x4fffffff, 0x50000000-0x5fffffff, 0xe0000000-0xffffffff
hello-world-arm ARM Cortex-M TI CC2538DK 0x40000000-0x4fffffff, 0xe0000000-0xe0100000

snmp-server ARM Cortex-M TI CC2538DK 0x40000000-0x4fffffff, 0xe0000000-0xe0100000
basic_exercises ARM Cortex-M LPC1549 0x40000000-0x400f0000. 0xe0000000-0xe0100000, 0x1c018000-0x1c028000

gatt_client_demo Xtensa ESP32 0x3ff00000-0x3ff7ffff,
ethernet_basic Xtensa ESP32 0x3ff00000-0x3ff7ffff,

ip_internal_network Xtensa ESP32 0x3ff00000-0x3ff7ffff,
scan_adv Xtensa ESP32 0x3ff00000-0x3ff7ffff,

synchronization Xtensa ESP32 0x3ff00000-0x3ff7ffff,
apsta_mode Xtensa ESP32 0x3ff00000-0x3ff7ffff,

ptp Xtensa ESP32 0x3ff00000-0x3ff7ffff,
esp_Zigbee_gateway Xtensa ESP32-S3 0x60000000-0x600d0fff

hello_world Xtensa ESP32-S3 0x60000000-0x600d0fff
proximity_polling Xtensa ESP32-S3 0x60000000-0x600d0fff

button Xtensa ESP32-S3 0x60000000-0x600d0fff
capture Xtensa ESP32-S3 0x60000000-0x600d0fff

peripheral_esp Xtensa ESP32-S3 0x60000000-0x600d0fff
ibeacon Xtensa ESP32-S3 0x60000000-0x600d0fff
blink Xtensa ESP32-S2 0x3f400000-0x3f4fffff, 0x61800000-0x61803fff, 0x60000000-0x600bffff

fuel_gauge Xtensa ESP32-S2 0x3f400000-0x3f4fffff, 0x61800000-0x61803fff, 0x60000000-0x600bffff
philosophers Xtensa ESP32-S2 0x3f400000-0x3f4fffff, 0x61800000-0x61803fff, 0x60000000-0x600bffff

minimal Xtensa ESP32-S2 0x3f400000-0x3f4fffff, 0x61800000-0x61803fff, 0x60000000-0x600bffff
mqtt_publisher Xtensa ESP32-S2 0x3f400000-0x3f4fffff, 0x61800000-0x61803fff, 0x60000000-0x600bffff

virtual Xtensa ESP32-S2 0x3f400000-0x3f4fffff, 0x61800000-0x61803fff, 0x60000000-0x600bffff

Table 5: Ground truth analysis samples.

26

C Ground truth individual sample result

Firmware name precision recall f1-score
atmel_6lowpan_udp_rx 17.61 19.74 18.61

csaw_esc19_csa 26.9 14.57 18.9
sensor_oad_cc26x2lp 28.06 29.51 28.77
ip_internal_network 30.56 39.12 34.31
gatt_client_demo 28.56 45.13 34.98

st_plc 75.91 31.65 44.67
esp_zigbee_gateway 36.27 65.71 46.74

zephyr_CVE_2021_3329 67.52 36.36 47.27
p2im_robot 76.02 34.78 47.73

p2im_controllino_slave 98.74 34.85 51.52
stm32_tcp_echo_client 76.02 39.66 52.13

p2im_car_controller 100.0 35.71 52.63
blink 48.09 59.2 53.07

p2im_reflow_oven 99.2 40.38 57.4
scan_adv 59.12 60.73 59.91

p2im_gateway 95.89 43.75 60.09
rf_door_lock 75.27 51.22 60.96
expat_panda 83.5 48.94 61.71
thermostat 75.27 52.5 61.86

Nucleo_read 75.27 52.5 61.86
Nucleo_blink_led 75.27 52.5 61.86

ethernet_basic 68.34 59.49 63.61
nxp_lwip_udpecho 89.58 53.33 66.86

peripheral_esp 62.53 79.08 69.84
apsta_mode 71.02 72.18 71.6

ibeacon 66.43 79.25 72.28
virtual 65.58 81.02 72.49

snmp_server 100.0 59.09 74.28
hello_world_arm 100.0 59.09 74.28

ptp 77.96 72.18 74.96
capture 71.41 79.33 75.16

mqtt_publisher 70.68 81.02 75.5
synchronization 89.47 70.77 79.03
basic_exercises 81.36 78.79 80.05
fuel_gauge_S2 81.39 81.2 81.29

minimal 81.39 81.2 81.29
philosophers_S2 81.8 81.2 81.5

button_S3 87.59 80.28 83.78
proximity_polling_s3 87.67 80.28 83.81

hello_world 84.73 96.43 90.2

Firmware name precision recall f1-score
esp_zigbee_gateway 7.14 100.0 13.33

blink 13.33 66.67 22.22
gatt_client_demo 18.18 100.0 30.77

zephyr_CVE_2021_3329 33.33 33.33 33.33
ethernet_basic 25.0 50.0 33.33

ip_internal_network 22.22 100.0 36.36
stm32_tcp_echo_client 50.0 33.33 40.0

capture 33.33 100.0 50.0
sensor_oad_cc26x2lp 50.0 66.67 57.14
p2im_car_controller 100.0 50.0 66.67

expat_panda 100.0 50.0 66.67
nxp_lwip_udpecho 100.0 50.0 66.67

p2im_gateway 66.67 66.67 66.67
atmel_6lowpan_udp_rx 50.0 100.0 66.67

basic_exercises 66.67 66.67 66.67
snmp_server 100.0 50.0 66.67

hello_world_arm 100.0 50.0 66.67
p2im_robot 66.67 66.67 66.67
hello_world 50.0 100.0 66.67

proximity_polling_s3 50.0 100.0 66.67
button_S3 50.0 100.0 66.67

peripheral_esp 50.0 100.0 66.67
ibeacon 50.0 100.0 66.67

mqtt_publisher 60.0 100.0 75.0
virtual 60.0 100.0 75.0
st_plc 66.67 100.0 80.0

rf_door_lock 66.67 100.0 80.0
csaw_esc19_csa 66.67 100.0 80.0

thermostat 66.67 100.0 80.0
Nucleo_read 66.67 100.0 80.0

Nucleo_blink_led 66.67 100.0 80.0
p2im_controllino_slave 100.0 66.67 80.0

apsta_mode 66.67 100.0 80.0
ptp 66.67 100.0 80.0

fuel_gauge_S2 75.0 100.0 85.71
philosophers_S2 75.0 100.0 85.71

minimal 75.0 100.0 85.71
p2im_reflow_oven 100.0 100.0 100.0

scan_adv 100.0 100.0 100.0
synchronization 100.0 100.0 100.0

Table 6: Ground truth results on all firmware samples sorted by highest average F1-score,
where the left table is the address-specific category and the right the segment-specific category.

27

Firmware name precision recall f1-score
sensor_oad_cc26x2lp 12.48 32.54 18.04

csaw_esc19_csa 27.61 14.38 18.91
atmel_6lowpan_udp_rx 21.8 30.26 25.34

p2im_robot 65.58 40.43 50.02
zephyr_CVE_2021_3329 69.23 40.52 51.12

p2im_reflow_oven 75.14 50.94 60.72
rf_door_lock 72.82 55.81 63.19
expat_panda 79.71 55.77 65.62

nxp_lwip_udpecho 86.0 53.33 65.83
stm32_tcp_echo_client 72.54 60.92 66.22

Nucleo_read 73.95 60.0 66.25
thermostat 72.87 60.87 66.33

Nucleo_blink_led 74.19 60.0 66.34
p2im_gateway 74.85 60.71 67.04

p2im_car_controller 84.09 57.14 68.04
p2im_controllino_slave 96.99 66.94 79.21

basic_exercises 81.54 80.56 81.05
st_plc 79.19 85.47 82.21

snmp_server 93.15 80.49 86.36
hello_world_arm 96.72 79.49 87.26

Firmware name precision recall f1-score
stm32_tcp_echo_client 50.0 33.33 40.0

nxp_lwip_udpecho 50.0 50.0 50.0
sensor_oad_cc26x2lp 50.0 66.67 57.14

zephyr_CVE_2021_3329 50.0 66.67 57.14
p2im_car_controller 100.0 50.0 66.67

p2im_gateway 66.67 66.67 66.67
atmel_6lowpan_udp_rx 50.0 100.0 66.67

snmp_server 100.0 50.0 66.67
hello_world_arm 100.0 50.0 66.67

p2im_robot 66.67 66.67 66.67
st_plc 66.67 100.0 80.0

expat_panda 66.67 100.0 80.0
rf_door_lock 66.67 100.0 80.0

csaw_esc19_csa 66.67 100.0 80.0
thermostat 66.67 100.0 80.0

Nucleo_read 66.67 100.0 80.0
Nucleo_blink_led 66.67 100.0 80.0

p2im_controllino_slave 100.0 66.67 80.0
basic_exercises 75.0 100.0 85.71

p2im_reflow_oven 100.0 100.0 100.0

Table 7: Ground truth results on ARM Cortex-M firmware samples sorted by highest average
F1-score, where the left table is the address-specific category and the right the segment-specific
category.

Firmware name precision recall f1-score
gatt_client_demo 42.14 51.62 46.4

ip_internal_network 50.95 43.53 46.95
blink 50.3 59.2 54.39

esp_zigbee_gateway 48.2 63.14 54.67
scan_adv 76.82 59.92 67.33

ethernet_basic 89.12 55.06 68.07
apsta_mode 81.91 69.17 75.0

peripheral_esp 80.12 72.38 76.05
ibeacon 81.78 72.61 76.92

ptp 87.11 69.17 77.11
virtual 79.66 78.1 78.87
capture 83.59 74.67 78.88

synchronization 94.63 68.46 79.45
mqtt_publisher 82.95 78.1 80.45
fuel_gauge_S2 89.29 78.2 83.38

minimal 89.29 78.2 83.38
philosophers_S2 89.47 78.2 83.46

proximity_polling_s3 94.03 76.06 84.1
button_S3 94.35 76.06 84.22
hello_world 93.18 92.86 93.02

Firmware name precision recall f1-score
esp_zigbee_gateway 7.14 100.0 13.33
gatt_client_demo 16.67 100.0 28.58

ip_internal_network 18.18 100.0 30.77
blink 18.75 100.0 31.58

ethernet_basic 25.0 50.0 33.33
capture 33.33 100.0 50.0

hello_world 50.0 100.0 66.67
proximity_polling_s3 50.0 100.0 66.67

button_S3 50.0 100.0 66.67
peripheral_esp 50.0 100.0 66.67

ibeacon 50.0 100.0 66.67
mqtt_publisher 60.0 100.0 75.0

virtual 60.0 100.0 75.0
apsta_mode 66.67 100.0 80.0

ptp 66.67 100.0 80.0
fuel_gauge_S2 75.0 100.0 85.71
philosophers_S2 75.0 100.0 85.71

minimal 75.0 100.0 85.71
scan_adv 100.0 100.0 100.0

synchronization 100.0 100.0 100.0

Table 8: Ground truth results on Xtensa firmware samples sorted by highest average F1-score,
where the left table is the address-specific category and the right the segment-specific category.

28

D False positive and negative per architecture

Xten
sa

&
ARM

Cort
ex

-M
Xten

sa

ARM
Cort

ex
-M

0

20

40

60

A
m

ou
n t

False positive

Xten
sa

&
ARM

Cort
ex

-M
Xten

sa

ARM
Cort

ex
-M

0

20

40

60

A
m

ou
nt

False negative

Figure 5: The results on the left show the average amount of unique false positives for all the
architectures. The result on the right shows the average amount of unique false negatives for
all the architectures.

E False positive and negative per architecture

1 void FLASH_SetErrorCode(void)
2
3 {
4 if ((uRam40023c0c & 0x10) != 0) {
5 uRam20001524 = uRam20001524 | 0x10;
6 uRam40023c0c = 0x10;
7 }
8 if ((uRam40023c0c & 0x20) != 0) {
9 uRam20001524 = uRam20001524 | 8;

10 uRam40023c0c = 0x20;
11 }
12 if ((uRam40023c0c & 0x40) != 0) {
13 uRam20001524 = uRam20001524 | 4;
14 uRam40023c0c = 0x40;
15 }
16 if ((uRam40023c0c & 0x80) != 0) {
17 uRam20001524 = uRam20001524 | 2;
18 uRam40023c0c = 0x80;
19 }
20 if ((uRam40023c0c & 0x100) != 0) {
21 uRam20001524 = uRam20001524 | 1;
22 uRam40023c0c = 0x100;
23 }
24 if ((uRam40023c0c & 2) != 0) {
25 uRam20001524 = uRam20001524 | 0x20;
26 uRam40023c0c = 2;
27 }
28 return;
29 }

Listing 14: Code snippet showing that the LMS pattern also can be used with RAM instead
of MMIO. The uRam200x address symbol name in the ELF is pFlash.ErrorCode.

29

	Introduction
	Background
	Firmware types
	MMIO
	Emulation
	Intermediate Representation
	Firmware region identification
	Static analysis
	Dynamic analysis

	Vulnerability analysis
	Fuzzing
	Static analysis

	Contributions and goals

	Identification of MMIO patterns
	Pipeline design
	Implementation

	Evaluation
	Hardware
	Dataset
	Performance
	Naive approach
	Different categories
	Median F1-score
	Average F1-score
	False positive
	False negative

	Discussion
	Related Work
	MCU documentation
	Static analysis
	Dynamic analysis

	Conclusion
	Acknowledgements
	Intermediate representation of patterns
	Ground truth dataset
	Ground truth individual sample result
	False positive and negative per architecture
	False positive and negative per architecture

