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Abstract 

Understanding how visual representation shapes social cognition is essential to our 

understanding of social perception. This study used functional near-infrared spectroscopy 

(fNIRS) to examine neural responses to social animations in virtual reality (VR), comparing 

geometric shapes and humanoid avatars adapted from the classic Heider and Simmel (1944) 

paradigm. In a within-subjects lab design, participants (N = 30) viewed both animation types 

while fNIRS recorded activation in Theory of Mind (ToM) regions: medial Pre-Frontal Cortex, 

Anterior Temporal Lobe, Superior Temporal Sulcus, and Temporoparietal Junction. Participants 

also provided narrative interpretations and confidence ratings. Both conditions elicited 

significant ToM-related activations compared to baseline, with the strongest effects in the 

Superior Temporal Sulcus (geometric: p < .001, d = 0.83; humanoid: p = .002, d = 0.77). 

Humanoid avatars produced 50% more coded narrative content than geometric shapes (p < .001), 

yet no significant neural activation differences between animation types were found across any 

ToM region (all p > .38), nor in confidence ratings (p = .79). Thematic analysis revealed similar 

interpretive patterns across conditions, suggesting motion cues alone suffice to trigger social 

cognitive processes. These findings clarify the neural basis of social perception in VR and 

highlight the narrative-enhancing, but not functionally essential, role of anthropomorphic 

features. 
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Neural Correlates of Social Cognition: Replicating the Heider and Simmel Paradigm in 

Virtual Reality 

Humans have evolved to be social creatures reliant on cooperation, communication, and 

collective action to survive (Henrich & Henrich, 2007). Unlike solitary creatures, human 

evolutionary success has been stimulated by our ability to cope with intricate social contexts, 

cohabit in cohesive units, and interpret others' behaviours and intentions. The social brain theory 

argues that increasingly complex societies drove brain development to accommodate Theory of 

Mind (ToM), pro-sociality, collective intentionality, and social reasoning (Tomasello et al., 2012; 

Gowlett, Gamble, & Dunbar, 2012). This reliance on collective living, as suggested by 

Tomasello’s (2012) interdependence theory, developed neural systems that process social cues 

and reinforce social reasoning and “mind reading” in human behaviour. Thus, just as 

Dobzhansky (1973) argued, evolution provides the framework through which all biological 

phenomena must be understood including the social nature of humans, which is both the product 

of and driver for our sophisticated social and cognitive abilities. 

Human’s prosocial tendencies translate into a bias for detecting social events, and the 

ability of humans to detect social meaning in minimal or artificial stimuli is a key area of 

investigation. Classic and established paradigms such as Heider and Simmel's (1944) animation 

(Appendix A) demonstrate that individuals even tend to attribute agency and intention to simple 

geometric shapes. However, what remains under explored is how these attribution processes 

occur in immersive environments, where realism and embodiment, compounded by 

anthropomorphism, may amplify social engagement. This would allow us to investigate social 

attribution in a more controlled, ecologically valid and immersive way. To explore this, the 

current study combines immersive Virtual Reality (VR) and functional Near-Infrared 
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Spectroscopy (fNIRS) to examine how the form of an agent (humanoid vs. geometric) and the 

immersive quality of a task influence narrative interpretations, confidence ratings, and neural 

activation in core ToM regions. 

Understanding these processes requires a critical assessment of the broader framework of 

social cognition and ToM, which provide the conceptual and neural foundation for interpreting 

social meaning from observed behaviour. 

 

Social Cognition and Theory of Mind 

Social cognition is an umbrella term for the mental processes that are involved in 

perceiving, interpreting, and acting upon the intentions and actions of other people (Frith, 2008). 

It underlies basic human capacities such as communication, empathy, cooperation, and social 

cohesion. Although social cognition only gained widespread academic attention during the 

cognitive revolution of the 1960s–70s (Ratner, 2020), it traces all the way back to Holt and 

Brown’s (1933) work on imitation in humans, which anticipated future neurocognitive concepts 

only formulated decades later. 

Modern more nuanced approaches, for instance, the Interactionist View (Vlasceanu et al., 

2018), emphasize a wider conceptual definition. From the perspective of this view, social 

cognition has its roots in both innate mechanisms, like infant imitative behaviours, and life-long 

social learning based on culture. One of the central elements is ToM, which Premack and 

Woodruff (1978) characterise as having the capacity to attribute mental states (e.g., beliefs, 

desires, intentions) to others and to acknowledge that these may diverge from one's own. It is a 

crucial axis on which to coordinate social life and predict others' behaviour (Bohl & 
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Gangopadhyay, 2013). Understanding not only what mental states we attribute to others, but how 

certain we are of these attributions, is equally important. 

Closely related to ToM is metacognition, our capacity to reflect on and evaluate our own 

thought processes. In social contexts, this includes metacognitive confidence, or how certain we 

are about the mental state attributions we make. While this confidence can inform adaptive social 

decisions, it does not always reflect accuracy. Neuroimaging evidence shows that higher 

metacognitive confidence is associated with stronger activation in self-referential and social 

processing networks, suggesting a link between reflective certainty and underlying neural 

engagement (Frith, 2012). 

ToM has philosophical roots in Descartes’ meditations (1641/1996) and Dennett’s (1987) 

intentional stance, which describes the human tendency to assume that other agents act with 

purpose and intention. Developmental research shows that precursors to ToM, such as joint 

attention and imitation, emerge in infancy (Charman et al., 2000), with more advanced mental-

state reasoning developing through social experiences and peer interactions, as emphasized by 

Piaget and Inhelder (1972). Although some non-human primates show rudimentary ToM-like 

behaviours like gaze-following and goal inference (Heyes, 1998), fully developed ToM is 

believed to be uniquely human (Brüne & Brüne-Cohrs, 2005). 

Research shows animals do exhibit certain traits which hint towards ToM. For example, 

chimpanzees can understand goal-directed behaviour (Warneken & Tomasello, 2006), and 

corvids can deceive others about hidden food (Clayton et al., 2007). Yet most animals cannot tell 

when another agent believes something untrue (Krupenye & Call, 2019). Moreover, a recent 

study by Schafroth et al. (2021) supports this finding, showing that monkeys were able to track 
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visual motion in a Heider and Simmel (1944) animation, yet were not able to interpret complex 

social behaviours.  

The uniquely human tendency to see social behaviour in abstract shapes was first shown 

by Heider and Simmel (1944). In their classic study, people watched a silent animation of 

triangles and a circle moving around a rectangle and almost everyone created detailed social 

stories, describing the shapes as chasing, fighting, or protecting each other. Research by Weiß et 

al. (2025) suggests that social framing and attributed agency may be as critical as visual fidelity, 

as they found a wooden puppet with social framing could induce physiological social responses 

while a point cloud could not. These findings show that humans can activate ToM from 

movement alone, which is now seen as central to social perception. 

Recent work has extended Heider and Simmel’s (1944) work to immersive environments. 

For instance, Torabian & Grossman (2023) and Marañes et al. (2024) found that presenting 

Heider–Simmel animations in a VR environment, even as a simple 2D plane, not only increases 

intentionality ratings but enhances the emotional and social resonance of the stimuli. These 

studies suggest that the human capacity to attribute mental states, even to abstract, artificial 

agents, is robust and may be further amplified by more immersive, ecologically valid 

presentation formats. 

 

Heider & Simmel Paradigm 

The original 1944 Heider and Simmel experiment demonstrated that participants 

automatically attributed agency, animacy and meaning to abstract moving geometric shapes. 

This was an early and influential finding that revealed human’s tendency to project intentionality 

onto abstract stimuli and integrate this attribution in social narratives, reflecting underlying ToM 
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processes. In their experiment, they first showed participants a short animation which depicted 

two triangles and a circle moving around a rectangle, and then asked them to freely describe 

what they saw, paying attention to the shapes' actions and intentions. Interestingly, the vast 

majority of participants gave anthropomorphic meaning to the movements they saw. They 

attributed personalities, emotions and intentions to the shapes. They described scenarios like 

"chasing," "fighting," or a "bully" pursuing a "victim" (Torabian & Grossman, 2023). The 

general narrative among most participants was clear; one bigger triangle as aggressive or 

dominant and the smaller triangle and circle as fearful or seeking protection. Some even 

attributed gender to the shapes, reporting a love story or familial dynamics. This study proved 

that humans possess an automatic tendency to perceive social meaning from motion patterns 

alone, even in the complete absence of human-like features or explicit social cues. 

Recently, Marañes et al. (2024) demonstrated that by simply changing the medium of 

presentation of the animation to a more immersive one in VR, led to increased intentionality 

attribution and enhanced social processing. Their findings could argue that elements such as 

depth perception and immersion amplify social attributions, as they are more effectively 

engaging perceptual, cognitive and neural mechanisms. This provides strong justification for 

further expanding the 3D dimension when presenting the Heider and Simmel animation, and in 

social cognition research as a whole.  

However, while VR environments are able to enhance social attribution, an important 

question remains unresolved which is that of how does the level of anthropomorphism affect 

these processes. Some research suggests that anthropomorphic features are able to increase social 

engagement and empathy (Ma et al., 2025), while other studies indicate that abstract stimuli may 

provide purer measures of social attribution without confounding factors such as visual biases or 
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uncanny valley effects (Mathur et al., 2019). These two differences become particularly relevant 

in immersive environments where enhanced realism might either amplify or interfere with social 

cognitive processes. 

The current research thus embraces full VR immersion to explore its effects on social 

interpretation, ToM and neural processing. Additionally, this research addresses the unclear 

effect of anthropomorphisation of the characters, abstract vs. humanlike, on ToM and social 

cognition in immersive VR environments. 

 

What is the Case for Virtual Reality? 

The case for virtual reality in further studying the neural mechanisms of social attribution 

and ToM is supported by the positive results of Marañes et al. (2024). They demonstrated that 

VR is an appropriate medium for the continuation of social cognition research, especially when 

considering the Heider and Simmel task. It is known that VR is a good vehicle for immersion 

enhancement since it provides the possibility for creating realistic and ecologically valid 

environments that can be well controlled (Kourtesis et al., 2020). In addition to improving 

immersion, theories such as the proteus effect (Yee et al., 2009; Ratan et al., 2024), argue that 

the avatar embodiment that VR can achieve also has an impact on self-perception and social 

interaction through theories such as the Proteus Effect where humans adapt their responses to the 

appearance of an avatar (Yee et al., 2009). 

 

How Social Cognition shapes the brain 

Social cognition and ToM rely on a vast network of areas in the brain. Of particular 

interest in this study are the medial prefrontal cortex (mPFC), temporoparietal junction (TPJ), 
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anterior temporal lobe (ATL), and superior temporal sulcus (STS), which have been well-

established to play dedicated roles in processing social interactions and attributing intentionality 

to agents (Figure 1). If the VR manipulation of immersion and appearance has an effect on ToM, 

we would expect to observe differences in the activation of the ToM network in the brain. 

 

Figure 1 

Regions of interest in the brain in relation to the ToM network 

 

Note. Brain regions of interest (ROIs) implicated in social cognition are highlighted: the temporoparietal junction (TPJ), anterior 

temporal lobe (ATL), superior temporal sulcus (STS), and medial prefrontal cortex (mPFC), all on the right hemisphere. 

 

Previous studies with the classic Heider-Simmel animation demonstrate that individuals 

automatically assign intentions, emotions, and social roles to moving geometric shapes, which 

were further heighted when these animations were presented in a VR setting. Therefore, by 
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combining fNIRS brain imaging and VR technology, the present research examines the influence 

of immersion and stimulus type on neural processing and intentionality attribution to different 

agents. 

 

Why Use fNIRS? 

fNIRS is a proven neuroimaging method for measuring brain activity through changes in 

blood oxygenation, offering a non-invasive and motion-tolerant way to monitor cortical 

responses in real time. While fNIRS is limited to cortical regions and lacks the depth penetration 

of fMRI, it offers more spatial resolution than EEG and is particularly suited to VR research due 

to its high motion artifact tolerance. Unlike EEG, which measures electrical activity and is 

extremely vulnerable to movement-induced noise as well as electromagnetic interference, fNIRS 

measures blood oxygen level changes that are less likely to be corrupted by participant 

movement (Naseer & Hong, 2015). 

This motion stability is crucial for VR studies where head movement, gestures, and 

natural interaction are essential for ecological validity. The ability to capture real-time neural 

activity in active, immersive conditions without the contamination of motion artifact makes 

fNIRS the optimal neuroimaging technique with which to investigate social cognition within 

naturalistic VR scenarios (Minagawa et al., 2018). 

 

Research Questions and Hypotheses 

Previous neuroimaging studies have compared human faces to computer-generated 

avatars, showing differential processing in regions like the amygdala, the fusiform gyrus and 

STS (Moser et al., 2006; Kegel et al., 2020). However direct comparisons of geometric versus 
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humanoid forms within VR social cognitive tasks remain unexplored. Understanding the way in 

which the brain processes social interactions can inform the development of more effective VR-

based treatments for social-cognitive deficit disorders. It can also advance our theoretical 

understanding of the influence of embodiment and immersion context on social interpretation 

and intentionality attribution. Therefore, this study investigates whether the visual form of 

agents, anthropomorphised versus abstract geometric, modulates activation in social brain 

regions during a 3D adaptation of the classic Heider and Simmel animation, presented in VR. 

Both versions depict the same social interaction scenario, allowing us to examine how enriched 

social cues in humanoid figures influence the attribution of agency and intentionality. In 

addition, the study examines whether viewing the animations in VR enhances social 

interpretation compared to traditional 2D presentations, by analyzing participants’ neural 

responses alongside their narrative descriptions and confidence ratings. 

 

Methods 

Design 

This study employed a within-subject, block design. It was conducted in a controlled 

laboratory at the University of Twente (Appendix A2) between April and May 2025. The 

independent variable was animation type (geometric shapes vs. humanoid avatars), and the 

dependent variables included fNIRS activation in predefined ToM ROIs, open-ended narrative 

responses, and confidence ratings on a 7-point likert scale. Participants viewed both animation 

types in counterbalanced order. The study received ethical approval from the BMS Ethics 

Committee (Application Number: 250081, February 2025) (Appendix G1) and followed best-

practice guidelines for fNIRS reporting (Yücel et al., 2021), data preprocessing (Artinis guide, 

appendix H1) and analysis (MNE guide appendix H2 and H3). 
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Participants 

Participants were recruited via convenience sampling and were entered into a gift card 

lottery. All gave written informed consent; procedures were approved by the institutional review 

board and designed to preserve anonymity. 

Inclusion criteria were: (1) no self-reported neurological or psychiatric disorders, (2) no 

history of epilepsy or sensitivity to flashing lights, (3) normal or corrected-to-normal vision 

sufficient for VR perception, (4) no diagnoses of autism spectrum disorder, and (5) no diagnoses 

of other neurodevelopmental conditions such as cerebral palsy or tourettes. 

 

Sample Size Calculation 

A G*Power analysis (Faul et al., 2009) (f = 0.25, α = .05, 1–β = .90, r = .70, 1 group and 

2 measurements) indicated that 28 participants would suffice for a within-participant study. The 

medium effect size of f = 0.25 follows standard conventions and is considered a realistic and 

conservative estimate in exploratory neuroimaging research where prior data is lacking (Cohen, 

1988; Lakens, 2013). The usage of high statistical power (1–β = .90) allows to prevent type II 

error and is especially relevant in fNIRS due to its issue of low signal-to-noise ratio (SNR) 

(Yücel et al., 2021), especially in VR environments. A two tailed alpha level of α = .05 is a 

standard value which compromises between false-positive risk and discovery sensitivity. Finally, 

the correlation among repeated measures (r = .70) reflects a realistic test–retest reliability 

estimate for hemodynamic responses in cognitive tasks, consistent with psychometric 

benchmarks for behavioural measures in neuropsychological research (Nguyen et al., 2018). 

 

Experimental Design 
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Participants completed the experiment in immersive VR, beginning with a Stroop task 

(Stroop, J. R., 1935a) which acted as a non-ToM-related cognitive control. They then viewed 

two animated scenarios: one featuring geometric shapes and one with humanoid avatars, both 

depicting the same social interaction based on the Heider and Simmel paradigm. The order of 

presentation was counterbalanced across participants. After each animation, participants 

provided open-ended verbal responses and rated their confidence on a 7-point Likert scale. These 

confidence ratings served as proxy measures of perceived metacognitive certainty. A second 

Stroop task followed the animations to assess potential cognitive fatigue. Finally, participants 

were given a set of questions comparing both animations, now having seen and reflected on both. 

 

Figure 2 

Stimuli Examples: Geometric and Humanoid Animation Conditions 

 
Note. Sample frames from geometric (top) and humanoid (bottom) animations. 

 
The stimuli (Figure 2) were presented in 3D using a custom-built Unity VR environment 

(Unity 6.0.0), which also handled stimulus timing and internal logging. Characters were either 
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modelled and animated in-house or sourced and rigged through Mixamo. Animations were 

implemented using Unity’s Timeline and Animator systems to ensure consistent motion and 

timing across conditions. fNIRS data were recorded continuously throughout key phases, 

including animation viewing and Stroop tasks. The timeline and procedure are illustrated in 

Figure 3. Detailed descriptions of the stimuli, Unity implementation, and 3D setup are provided 

in Appendix A. 

Figure 3 

Experimental Procedure 

 
Note. Participants completed a Stroop task, viewed two animated scenarios (geometric and humanoid), and answered open 
questions with confidence ratings. fNIRS was recorded during all key phases. 
 

Session duration was determined using fNIRS logs, audio timestamps, and Unity 

application data. The average experiment session length was 17 minutes and 12 seconds (SD = 

4.12), with setup time (from pre-questionnaire to session start) averaging 10 minutes and 55 

seconds (SD = 4.97). 
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Participant instructions, training, and interactions 

Participants received in-VR text instructions outlining each phase of the experiment, 

including the Stroop tasks, animation viewing, verbal interpretation, and confidence ratings (1–7 

Likert scale). A researcher was present throughout to assist with clarification and provide support 

if needed. Instructions emphasized natural, spontaneous descriptions of action, interaction, and 

intent. A one-minute speaking guideline was suggested to help participants pace their verbal 

responses, though this was not enforced. Participants remained seated throughout the entire 

session. The fNIRS headset was worn continuously for the full duration of the experiment. The 

VR headset was also worn throughout, but participants were permitted to temporarily remove it 

during the question-answering phases if they experienced discomfort. Full participant 

instructions and setup procedures are provided in Appendix A. 

fNIRS Data Acquisition device and parameters 

The Brite MKIII CW system (21 channels; 760/850 nm; 25 Hz) was used with source-

detector spacing at ~30 mm. The system uses <1 mW diodes and meets safety standards (Barolet 

et al., 2015). Individual hair characteristics were managed through optode adjustment; one 

participant withdrew due to poor signal quality. Setup procedures details are in Appendix A and 

B. Data acquisition and initial visualization were performed using OxySoft, Artinis’ proprietary 

software. 

All the procedures were in line with institutional ethical guidelines and manufacturer 

safety protocols (Appendix G2). Irradiance levels were not measured exactly, but the system is 

not invasive and non-ionizing and hence safe for subjects during the experiment. 

 

Optode Placement and Montage 
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 Optode layout was guided by three primary sources: (1) the predefined optode channel 

configurations available in the Artinis OxySoft software, (2) the fNIRS Optodes’ Location 

Decider (fOLD) toolbox (Morais et al., 2018), which supports region-specific placement using 

the 10–10 EEG coordinate system, and (3) relevant literature (Figure 1) on fNIRS targeting of 

brain areas involved in social cognition (Figure 4). These guided the selection and placement of 

transmitters and receivers to cover the aforementioned ROIs, resulting in each ROI being 

covered by four to six optodes (Figure 4). 

 Placement was aligned with the 10–10 EEG system and digitized within OxySoft, then 

validated for spatial consistency using MNE-Python (Figure 5). 

 

Figure 4 

fNIRS Optode Placement showing receivers, transmitters and ROIs 

 

Note. Panel A shows transmitter (yellow) and receiver (blue) optode placement using the 10–10 EEG system. Panel B shows 

ROIs: mPFC (green), ATL (magenta), STS (cyan), and TPJ (orange), selected to target ToM regions in the right hemisphere. 

 

fNIRS Data Processing 
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Preprocessing was done according to standard fNIRS procedures (Yücel et al., 2021) with 

MNE-Python and MNE-NIRS toolboxes. Raw intensity data were converted to optical density, 

filtered (0.01Hz), and converted to hemoglobin concentration changes (HbO/HbR) using the 

Modified Beer-Lambert Law (Baker et al., 2014). Channel quality estimation resulted in 

rejection of 39 channels in 23 participants (4.5% of all channels) due to low signal quality or 

optode coupling issues. Figure 5 shows the complete preprocessing pipeline. Sample timeline 

examples from the annotated fNIRS data are provided in Appendix C. 

 

Figure 5 

Data Preprocessing pipeline.  

 

Note. OD = optical density; PPF = partial pathlength factor; HbO/HbR = oxygenated/deoxygenated hemoglobin. A 0.1 Hz low-

pass filter was applied prior to chromophore separation and epoching. 

 

 Following quality assessment, optode positions were projected onto a standard 

cortical surface model to verify anatomical coverage of target brain regions. Figure 6 shows the 

four-view visualization of optode coverage across ToM networks. Channels were grouped into 

four anatomically-defined ROIs (see Figure 4 for abbreviations and locations): mPFC (5 

channels), ATL (3 channels), STS (8 channels), and TPJ (6 channels), with responses averaged 

within each ROI separately for HbO and HbR chromophores to create robust regional estimates. 

Detailed channel assignments for each ROI are provided in Appendix Table A1. 
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Figure 6 

fNIRS Optode Coverage projected onto Cortical Surface

 

Note. Optode pairs are projected onto a standard cortical surface to illustrate spatial coverage. Lines represent measurement 

channels between transmitter–receiver pairs targeting frontal and right temporal regions. 

 

fNIRS Statistical Analysis 

  In order to compare differences in brain activation between conditions, subject-level data 

for the Geometric and Humanoid Animation trials were first extracted and aggregated at a group 

ROI level. They were contrasted against a baseline defined as the first 75 seconds of the 

experiment, during which participants received minimal instructions to avoid cognitively 

engaging them. Data were downsampled to 0.5 Hz, and mean signals for each brain region of 

interest, and for both chromophores (HbO and HbR) were calculated following standard Artinis 

and MNE preprocessing conventions.  

Model-Based Approach. To fully address the research questions and account for 

participant variability, a Generalised Linear Model (GLM) was used to test key comparisons 

across all brain regions and chromophores. A GLM is a flexible statistical framework that 

models the relationship between one or more predictors and a continuous or categorical outcome 

variable. In this context, it allowed us to estimate brain activation differences between conditions 

while accounting for within-subject correlations. The model included animation type 

(geometric/humanoid) as a within-subjects factor and participant as a random effect to account 

for repeated measures. Multiple comparison correction was applied using the False Discovery 
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Rate (FDR) method of Benjamini-Hochberg (Benjamini & Hochberg, 1995) to control for Type I 

error across the statistical tests. 

 

Audio Transcription and Verbal Data Analysis 

To complement the neuroimaging data, qualitative analysis was conducted on 

participants’ spoken interpretations of the animations. These verbal responses were collected 

immediately after each animation viewing during the in-VR interpretation phase (see Figure 2 

for procedural timeline). This phase aimed to capture participants' spontaneous descriptions and 

interpretations of the social dynamics they perceived, offering insight into how different visual 

agent types may influence narrative construction and attribution processes. 

Participant responses were transcribed with the AmberScript software and manually 

cleaned to remove filler speech and irrelevant segments, retaining only content related to the 

experimental prompts. In total 8 hours and 59 minutes of spoken language was transcribed. 

Cleaned transcripts were imported into ATLAS.ti for thematic analysis. Coding was conducted 

using an AI-assisted approach using the built-in OpenAI pipeline in ATLAS.ti, with oversight 

from the researcher to ensure accuracy and interpretive validity (Information about the LLM 

version can be found in the AI statement). The two prompts which were fed to the AI-assisted 

approach can be found in Appendix E5. 

Two rounds of deductive thematic analysis were performed. In the first, transcripts were 

coded holistically to achieve a general overview of all participants' transcripts. These were used 

to create a general narrative understanding.  

In the second round, codes were created explicitly around descriptions of the two 

animation types, and compared across the two conditions to identify condition-specific themes.      
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A list of key task-related terms was created to further clean the transcripts by removing filler 

speech and irrelevant content (full list available in Appendix E). After, word frequency analyses 

were generated for each condition and used to produce word clouds illustrating salient concepts 

(Appendix E).  

This qualitative analysis complements the fNIRS findings by revealing participant’s real-

time interpretations of social meaning. Differences in thematic content across conditions align 

with neural activation patterns, while individual variation in responses offers insight into 

variability in brain data. 

Results 

Participant Characteristics 

A sample of 30 participants was recruited for the study. An overview of the participant’s 

demographic characteristics is presented in Table 1. 

Table 1 

Participant demographics 

Variable Value 

Mean Age (SD) 22.6 (SD = 2.3) 

Gender Distribution 16 males to 14 females 

Number of Nationalities Represented  15 

Participants with VR experience 93% of participants (n = 28) 

Regular Gamers (≥ 1x/week) 37% of participants (n = 11) 

Note. Participant demographic information including age, gender, nationality, and familiarity with VR and gaming. 

Neural Differences Between Geometric vs Humanoid Agents (RQ1) 

Direct Comparison: Humanoid vs Geometric Animations 
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Contrary to the initial hypothesis, GLM analysis revealed no statistically significant 

differences between the humanoid and geometric animations in any of the four ToM brain 

regions, nor across either chromophore (all p-values > .38; see Table 2). Effect sizes were 

consistently small (Cohen’s d < 0.25), suggesting only minimal differences in activation 

strength. While the humanoid condition showed slightly higher average activation in mPFC 

HbO, this difference was not statistically meaningful. Overall, these results suggest that both 

animation types elicited comparable levels of activation within the social brain network. 

Table 2 

Direct Comparison of Humanoid vs Geometric Animations (FDR-Corrected) 

ROI Chromophore Effect (μM) T-value Cohens-D 
FDR 

corrected  
P-value 

mPFC HbO 0.04 0.33 0.07 .88 

 HbR -0.15 -1.25 -0.25 .38 

ATL HbO -0.09 -0.75 -0.15 .65 

 HbR -0.06 -0.5 -0.10 .78 

STS HbO -0.06 -0.5 -0.10 .76 

 HbR -0.09 -0.75 -0.15 .64 

TPJ HbO -0.08 -0.67 -0.13 .68 

 HbR -0.01 -0.08 -0.02 .93 

Note. Group-level GLM results comparing activation between humanoid and geometric animations across ROIs. No significant 

differences emerged. Effect sizes (Cohen’s d) were calculated, indicating uniformly small effects. HbO = oxyhemoglobin; HbR = 

deoxyhemoglobin. All ROI abbreviations can be found in Figure 1. 

Figure 7 

fNIRS Cortical Projection of Contrast: Humanoid vs Geometric Animations 
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Note. T-statistics for the contrast between humanoid and geometric animations (HbO left, HbR right). Black dots show optode 

positions. White circles would indicate significant channels (p < .05, FDR-corrected), but none were found. 

 

Animation Engagement: Both Conditions vs Baseline 

Both animation types significantly activated core ToM regions, with the strongest effects 

in the STS (d = 0.83 geometric; 0.77 humanoid). Humanoid animations showed slightly larger 

effect sizes and lower p-values in some ROIs, suggesting a trend toward stronger engagement. 

Significant results are shown in Table 3; full results are available in Appendix D1. 

Table 3 
Animation Types vs Baseline (FDR-Corrected) GLM significant results 

Animation 
Type ROI Chromophore Effect (μM) T-value Cohens-D 

FDR 
corrected  
P-value 

Geometric mPFC HbO 0.61 2.90 0.57 .03 

 ATL HbO 0.70 3.33 0.65 .01 

  HbR -0.54 -2.57 -0.50 .05 

 STS HbO 0.89 4.24 0.83 <.001 
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Humanoid mPFC HbO 0.65 3.1 0.61 .02 

  HbR -0.50 -2.38 -0.47 .07 

 ATL HbO 0.62 2.95 0.58 .03 

  HbR -0.60 -2.86 -0.56 .03 

 STS HbO 0.83 3.95 0.77 .002 

  HbR -0.55 -2.62 -0.51 .04 

Note. Group-level GLM results comparing activation for humanoid and geometric animations to baseline across ROIs. Effect 

sizes (Cohen’s d) are reported alongside FDR-corrected p-values. HbO = oxyhemoglobin; HbR = deoxyhemoglobin. Full table 

can be found in Appendix D1. All ROI abbreviations can be found in Figure 1. 

 

The Superior Temporal Sulcus (STS) showed the strongest activation across both 

animation types (Cohen’s d = 0.83 geometric; 0.77 humanoid, both p < .01). The mPFC and 

ATL were also significantly engaged, reflecting ToM network activation. In contrast, TPJ was 

not significantly activated, suggesting it was less responsive to the task demands. 

 
Figure 8 

Cortical Projection of fNIRS Activation: Animation vs. Baseline 
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Note. T-statistics for contrasts between humanoid and geometric animations versus baseline, shown separately for HbO (left 

column) and HbR (right column). Black dots represent optode positions. White circles indicate statistically significant channels 

(p < .05, FDR-corrected). 

 

Stroop Task Effects: Cognitive Load Validation 

To validate our experimental paradigm, we examined activation patterns during the pre- 

and post-animation Stroop tasks, which served as non-social cognitive control conditions. 

Table 4 

Pre and Post Stroop vs Baseline Comparison (FDR-Corrected) GLM significant results 

Stroop 
condition ROI Chromophore Effect (μM) T-value Cohens-D 

FDR 
corrected  
P-value 

Pre mPFC HbO 0.46 2.42 0.47 .03 
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 ATL HbO 0.60 3.16 0.62 .01 

  HbR -0.47 -2.47 -0.48 .05 

 STS HbO 0.86 4.53 0.89 <.001 

Post ATL HbR -0.55 -2.89 -0.57 .03 

 STS HbO 0.71 3.74 0.73 .003 

  HbR -0.50 -2.63 -0.52 .04 

Note. GLM results showing significant activation for pre- and post-Stroop conditions compared to baseline. Cohen’s d and FDR-

corrected p-values are reported. HbO = oxyhemoglobin; HbR = deoxyhemoglobin. All ROI abbreviations can be found in Figure 

1. 

The Stroop tasks successfully activated regions within our measurement array, with pre-

Stroop showing stronger activation in mPFC, ATL, and STS. The reduced post-Stroop activation 

may reflect adaptation effects following animation viewing. 

 

Table 5 

Post vs Pre Stroop Comparison (FDR-Corrected) GLM significant results 

ROI Chromophore Effect (μM) T-value Cohens-D 
FDR 

corrected  
P-value 

mPFC HbO -0.47 -4.70 -0.92 <.001 

ATL HbO -0.30 -3.01 -0.59 .01 

Note. GLM results comparing post- to pre-Stroop activation. Negative values reflect reduced activation. Cohen’s d and FDR-

corrected p-values are reported. HbO = oxyhemoglobin; HbR = deoxyhemoglobin. All ROI abbreviations can be found in Figure 

1. 

A comparison between pre- and post-Stroop tasks revealed statistically significant 

reductions in activation in mPFC and ATL (HbO), with large effect sizes (Cohen’s d = –0.92 and 

–0.59 respectively; see Table 5). This decline may reflect the onset of executive fatigue or neural 
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adaptation following the animation phase. Although the STS remained active post-Stroop, mPFC 

activity dropped to near-baseline levels (mean HbO = 0.01 µM), suggesting a region-specific 

decline in sustained cognitive control. The full table of results can be found in Appendix D5. 

 

VR Enhancement Effects on social cognition evaluations (RQ2)  

Neural Basis from RQ1 

Both animation types significantly activated core social cognition regions compared to 

baseline, confirming that participants were engaged in social cognitive processing during the 

task. However, direct comparisons between geometric and humanoid animations revealed no 

significant differences (all p > .38), indicating equivalent neural engagement across conditions. 

 

Thematic Comparison 

The initial coding process generated 53 codes across five thematic groups (Appendix E6). When 

viewing the humanoid animations, many participants spontaneously used language related to 

power dynamics (e.g., “power complex,” “control”), social relationships (“mother,” “boyfriend,” 

“child”), and gendered framing (e.g., “the woman was with a guy”). These interpretations were 

quicker and more consistent across participants, suggesting that human-like features help trigger 

familiar social ideas. 

While both animation types included references to conflict and agency (e.g., “angry 

triangle,” “chasing”), the geometric interpretations were generally more abstract and showed 

greater variability across individuals. Although participants frequently attributed intentionality 

and emotion to the geometric agents, the absence of human-like features may have led to more 

diverse or less role-specific narratives. 
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Participants’ subjective preferences varied. Several indicated that they found the 

humanoid animations more expressive, particularly in terms of body language and facial cues 

(e.g., “the woman was crouching,” “hands on her face”), which helped them interpret emotions 

and intentions. Others preferred the geometric animations, citing their simplicity and lower 

cognitive demand as advantages. These differing preferences suggest that while 

anthropomorphic agents may enrich narrative depth, minimal abstract forms may appeal to 

participants who prefer reduced visual complexity or interpretive ambiguity. 

Representative quotes describing these differences and preferences are found in 

Appendix E. 

 

Qualitative Word Use and Narrative Content 

Word frequency analysis revealed extensive lexical similarity between conditions with 84 

similar words and only 14 unique condition specific words (85.7% similarity) (Figure 8). A 

paired t-test on total word counts showed no significant difference between conditions (t = 

0.0008, p = .999), indicating that participants spoke equally across both. This supports that 

differences in social codes reflect content, not speech quantity. However, significant differences 

were observed in overall word production, with humanoid animations generating 743 coded 

references compared to 493 for the geometric animations (p < .001), representing a 50% higher 

vocabulary density. 

Figure 9 

Venn Diagram of Unique and Shared Word Usage by Animation Type 
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Note. This figure illustrates the overlap in vocabulary used by participants when describing humanoid and geometric animations. 

A total of 80 words were common to both conditions, while 9 were unique to the humanoid condition and 4 were unique to the 

geometric condition, suggesting a high degree of lexical similarity despite the differing visual stimuli. 

Statistical analysis of shared vocabulary revealed systematic preferences (t = -6.46, p 

<.001, Cohen's d = -0.71), with strongest humanoid-preferred terms including "abuse" (5:1 ratio) 

and "man" (19:4 ratio), while geometric-preferred terms included "bullying," "daughter," and 

"flee" (all 2:1 ratios). This pattern suggests humanoid animations elicited more intense usage of 

emotion and relationship terms. Effect size analysis (Cohen's d = -0.71) indicated a large 

practical difference in vocabulary richness, with humanoid animations generating 1.5× more 

coded content across both exclusive vocabulary (10 vs. 4 unique terms) and shared vocabulary 

preferences. 

 

Confidence Ratings 

Confidence scores did not significantly differ (p = .79) across conditions. The average 

change in confidence between rating the two different animations was ΔM = 0.07 (SD = 1.17), 

with minimal differences based on animation order (–0.07 if humanoid was shown first, 0.20 if 
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geometric was first). Distribution plots are available in Appendix D. 

 

Discussion 

This research aimed at investigating the neural correlates of social cognition. In the first 

part, this study tested whether anthropomorphised versions of abstract geometric shapes from the 

classic Heider and Simmel animation activate social brain regions more strongly than the 

original geometric shapes. This was done during observation of social interactions in a 3D-VR 

environment. Additionally, this study attempted to assess if presenting the Heider and Simmel 

animation in a 3D-VR format, enhanced intentionality attribution, in comparison to the 

traditional 2D presentations of the Heider-Simmel animation.  

Summary of main results. Neural activation was observed in the mPFC, ATL, and STS 

for both animation types in comparison to baseline, with STS showing the strongest overall 

response, especially during geometric animations. While both conditions showed similar patterns 

of activation compared to baseline, the humanoid condition produced a higher amount of 

statistically significant results across ROIs. However, direct comparisons between humanoid and 

geometric conditions revealed no significant differences across any ToM region or chromophore, 

indicating broadly similar levels of neural engagement. 

Qualitative and cognitive performance data aligned closely with these neural findings. 

Increased error rates during the second Stroop task, together with decreased mPFC activation 

patterns (Appendix D3), point to emerging signs of executive fatigue, which is supported by 

prior research linking sustained cognitive load to diminished prefrontal engagement (Li et al., 

2009). Although the total task duration was relatively short (~17 minutes), the combination of 

immersive VR and cognitively demanding content may have accelerated the onset of mental 
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fatigue. This interpretation aligns with Zhang et al. (2022), who demonstrated that VR 

experiences lead to greater reductions in brain network efficiency and connectivity compared to 

traditional 2D displays. These findings suggest that neural efficiency can decline even during 

brief but intense cognitive experiences, particularly in immersive environments like VR.  

Despite the different visual characteristics of the animations, participants demonstrated 

highly similar patterns of social attribution across conditions. Lexical analysis revealed 

substantial overlap in word usage, yet humanoid animations elicited significantly more total 

coded terms, and a greater frequency of socially loaded and relevant terms. However, this 

increase reflected narrative richness rather than a shift in social interpretation. 

Confidence ratings showed no significant differences between conditions or presentation 

order, suggesting that the increased narrative elaboration observed for humanoid agents was not 

accompanied by increased metacognitive certainty. Together, these converging lines of evidence: 

neural, verbal, and self-reported, indicate that both animation types successfully trigger core 

social cognitive mechanisms. While humanoid agents may enrich narrative depth, geometric 

agents appear equally capable of eliciting fundamental social responses. These findings 

demonstrate that immersive 3D-VR environments preserve classical patterns of social 

attribution, replicating effects observed in the 2D literature while offering a viable medium for 

future social cognition research. 

 

Does anthropomorphizing geometric shapes enhance social brain activation during VR-

based observation of social interactions? 

Research Gap and Core Findings. The findings of this study address a critical gap in VR 

social cognition research, as previous studies demonstrated differential neural processing 



31 

between human and computer-generated faces (Moser et al., 2006; Kegel et al., 2020), yet direct 

comparisons of geometric versus humanoid forms during VR social tasks remained unexplored. 

Our findings reveal an important dissociation: while humanoid and geometric animations 

activated social brain regions equivalently, humanoid forms generated 50% more coded narrative 

content. This suggests that core neural mechanisms for social perception operate on motion 

patterns alone, while anthropomorphic features selectively enhance higher-order narrative 

elaboration without requiring additional neural resources from fundamental ToM networks. This 

dissociation offers new insights into the hierarchical nature of social cognition. 

Motion Drives Social Attribution.These findings align with Heider & Simmel's (1944) 

original experiment, which demonstrated that motion patterns, rather than visual form, trigger 

social engagement. The current results provide additional evidence that motion patterns 

themselves, not specific anthropomorphic visual features, drive the fundamental neural 

mechanisms underlying social attribution in immersive environments. This supports Dennett's 

(1987) concept of the intentional stance, which posits that humans automatically adopt a 

framework for interpreting behaviour in terms of beliefs, desires, and intentions, even when 

applied to minimal abstract agents. From an evolutionary perspective, motion primacy is 

adaptive. Early humans had to quickly detect and interpret movement to spot threats, allies, or 

social cues, well before processing detailed visuals (Troje, 2008). Our findings suggest these 

ancient motion-detection systems still play a key role, even in modern immersive settings. 

Differential Processing Levels. The qualitative narrative data revealed richer narratives 

told about the anthropomorphised humanoid avatars. This suggests that while core social brain 

networks respond in similar ways to movement-based social events, higher-order interpretive 

processes may be influenced by visual anthropomorphic features. These findings are supported 
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by Torabian and Grossman (2023), who demonstrated that motion perception alone is sufficient 

to drive ToM, with visual anthropomorphic features serving to elaborate rather than initiate 

social cognitive processing. This highlights that anthropomorphic features enhance narrative 

depth without requiring additional neural resources from fundamental social cognition networks.  

These findings enhance our understanding of how the human brain processes social 

information in naturalistic contexts, revealing that while visual anthropomorphic cues may enrich 

narrative interpretation, the fundamental ToM network recruitment is primarily driven by motion 

patterns rather than visual form in immersive presentation formats. 

Evolutionary and Clinical Implications. From an evolutionary perspective, humans 

developed sophisticated neural systems to process social cues with remarkably low activation 

thresholds (Tomasello et al., 2012). Our findings are consistent with the literature (Jicol et al., 

2023; Weiß et al. 2025), which demonstrated that perceived agency, not visual realism, is the 

primary driver of presence, a core proxy for social and emotional engagement in immersive 

environments. These findings provide crucial neural justification for VR therapy research using 

minimalist stimuli, particularly beneficial for individuals with social phobias or conditions where 

reduced cognitive load may be advantageous, such as Autism Spectrum Disorder. Therefore, 

abstract agents are sufficient for triggering core social brain regions and offer a cost-effective 

approach for VR social interventions, allowing more flexibility to create complex behavioural 

dynamics while sacrificing visual fidelity. 

 

Does presenting the Heider and Simmel animation in 3D enhance social attribution, 

intentionality, animacy, and engagement? 
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This study hypothesized that presenting the Heider and Simmel animation in 3D-VR 

would enhance social attribution, intentionality judgments, and neural engagement compared to 

traditional 2D formats. The results showed that the VR animations successfully activated the 

ToM network, consistent with prior neuroimaging studies using 2D stimuli (Schurz et al., 2014). 

However, there was no evidence of significantly stronger neural activation in the VR condition. 

Qualitative analyses revealed that participants generated rich and intentional narratives, often 

matching or slightly exceeding the narrative quality found in 2D studies. These findings support 

the ecological validity of VR as a tool for studying social cognition, aligning with prior work by 

Marañes et al. (2024) and Kourtesis et al. (2020), which suggests that VR can enhance emotional 

engagement and perceived realism in experimental settings. 

 

Limitations. Several limitations of the current study should be acknowledged. The first category 

of limitations is those of technical and methodological nature. While fNIRS technology is 

highly advantageous for VR social cognition studies due to low invasiveness, robustness and 

good spatial specificity, it is only able to indirectly measure cortical activity using a slow blood 

flow signal. While we targeted highly relevant social cognition and ToM-related ROIs were 

targeted, fNIRS is unable to measure deeper brain structures such as the amygdala, which is 

highly relevant for social interpretation and emotion formation. 

The second category revolves around experimental design and stimulus limitations. 

While our introduction emphasized humans as intrinsically social creatures reliant on 

cooperation, our study used passive observation rather than interactive social scenarios that 

would better leverage VR's collaborative potential. Assessing only the Heider-Simmel animation 

limits generalizability across different social situations. Furthermore, the decision to omit the 
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original 2D animation from the experiment limited direct comparison between 2D and 3D 

conditions. 

Another set of limitations relates to participants and sample characteristics, as the 

sample was homogeneous, consisting mainly of young, VR-familiar university students which 

limits the generalization of the results to the wider population 

Finally, in terms of statistical analysis, not having connectivity analysis limits our ability 

to examine functional networks and inter-regional communication patterns, such as the 

synchronization or directional influence between brain regions. This type of analysis is crucial 

for understanding how different areas of the brain interact during social cognitive processing, 

and its absence restricts deeper insight into the neural mechanisms underlying the observed 

behavioural effects. 

Further Improvements & Future Directions. Future research should address various 

issues. On the technical side, improvements should be aimed at creating a more holistic and 

multimodal understanding of social cognition. This would include collecting data from a wider 

range of physiological points, such as heart rate, eye tracking, and galvanic skin response, in 

addition to the already collected brain activity, narrative responses, and confidence ratings. 

Moreover, combining fNIRS with other brain imaging methods like EEG or fMRI could provide 

better temporal and spatial sensitivity. Moreover it will give access to deeper brain areas 

important for social understanding. For example understanding the relation between ToM 

regions and deep cortical areas such as the visual cortex, which could be involved in the visual 

aspects of ToM detection, as inferred by Torabian and Grossman’s (2023) findings, or the 

amygdala which is highly involved in emotion formation. This would achieve a more holistic 

and informed picture of how people process social information. Additionally, processing and 
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analysing this wider dataset with advanced techniques such as machine learning, may reveal 

patterns that standard statistical models cannot.  

The biggest methodological improvement would be directly comparing 2D and 3D 

conditions in the same participants to clearly show the specific benefits of VR. To increase 

ecological validity, and participant engagement, future research should also move away from 

passive viewing tasks, and towards interactive scenarios in which participants are actively 

making choices in VR. This approach would better reflect how humans naturally interact socially 

and make better use of VR's potential for creating dynamic social environments. 

Testing clinical populations offers the most promising application of the approach 

presented here, especially people with autism, social anxiety, or other social difficulties. 

Including participants of different ages would show how VR driven social processing develops 

over time, while creating VR-based therapy programs could improve social skills training. 

Although this research further highlighted that low-fidelity animations are sufficient for social 

cognition, more research should go into how hyper realistic avatars and more nuanced social 

scenarios would make findings more applicable to real-world social situations. 

These improvements would help establish VR as a valuable tool for both understanding 

and treating social cognition challenges, moving the field toward more practical and clinically 

relevant applications that could benefit diverse populations with varying social needs. 

 

Conclusion 

This research demonstrates that anthropomorphised avatars and abstract geometric shapes in VR 

elicit remarkably similar neural activation in social cognition and ToM brain regions, while 

humanoid characters generate significantly richer narrative content. These findings support a 
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two-level model of social cognition in immersive environments: (1) fundamental neural 

activation driven by motion patterns regardless of visual form, and (2) narrative enrichment 

selectively enhanced by anthropomorphic features. This dissociation reveals that core brain 

regions involved in social cognition respond primarily to movement dynamics suggesting 

interactions or relationships (e.g., chasing, helping, avoiding), while higher-order narrative 

elaboration benefits from human-like visual features. In other words, it's not the complexity or 

realism of the visuals that drives neural social processing, but whether the stimuli convey social 

meaning through their dynamics. While the findings validate VR as an effective medium for 

social cognition research, they do not confirm that VR is inherently superior to other 

visualization formats. 
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AI statement 

During the preparation of this work the author used the following AI tools for different 

phases of the thesis process. After using these tools, the author reviewed and edited the content 

as needed and takes full responsibility for the content of the work. 

● ChatGPT-4o (OpenAI): Used for brainstorming, ideation, and decluttering complex 

ideas. It was also used in voice-based interaction as a conversational companion during 

the early writing stages. 

● ChatGPT-4o, Grammarly AI, Claude Sonnet 3.7 & 4.0 (Anthropic): Employed for 

writing assistance, including editing, improving clarity, and formatting according to APA 

7 guidelines. 

● Claude Sonnet 3.7 & 4.0: Used to support programming tasks in Unity and for assistance 

with data analysis workflows (including Python-based fNIRS processing). 

● Google Gemini 2.5 and NotebookLM: Used for literature review, synthesis of academic 

texts, and background research across topics in neuroscience, social cognition, and 

immersive technology. 

● ATLAS.ti AI Coding (Beta): Used for initial rounds of qualitative data analysis and code 

generation. This feature is powered by OpenAI's GPT models; however, the specific 

version is not disclosed by the software. All AI-generated codes were manually reviewed, 

refined, and contextualized by the author. 

All outputs from these tools were critically reviewed and revised by the author to ensure 

academic rigor and alignment with the project’s methodological framework.  
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Appendix A: Stimuli and Experimental Materials 

A1. Stimuli examples 

Geometric shapes animation 

 

Humanoid avatars animation 

 
 

A2. 3D model from Unity VR and fNIRS environment setup (special permission given by 
participant) 

https://poly.cam/capture/C2312991-DDF4-453E-AED9-CE8F83A8CF0A 
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A3. Original Heider Simmel Image and youtube link 

 

https://www.youtube.com/watch?v=sx7lBzHH7c8 

Appendix B: Optode and fNIRS Technical Details 

B1. fNIRS channel groups as seen on OxySoft 
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B2. fNIRS cap as seen on participant 

 

 

Appendix C: fNIRS Data Preprocessing and Quality Checks 
 

C1. Sample plots of raw vs. filtered signals (HbO/HbR) 
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C2. Time-annotated fNIRS data structure examples 

Humanoid first 

 
Geometric first 
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Full recording with superimposed signal 
 

 

Appendix D: Additional Statistical Analysis Outputs 

D1. Full output tables for all Animation Types vs Baseline (FDR-Corrected) 

Animation 
Type ROI Chromophore Effect (μM) T-value Cohens-D 

FDR 
corrected  
P-value 



51 

Geometric mPFC HbO 0.61 2.9 0.57 .03 

  HbR -0.34 -1.62 -0.32 .26 

 ATL HbO 0.70 3.33 0.65 .01 

  HbR -0.54 -2.57 -0.50 .05 

 STS HbO 0.89 4.24 0.83 <.001 

  HbR -0.45 -2.14 -0.42 .10 

 TPJ HbO 0.29 -1.38 -0.27 .35 

  HbR -0.40 -1.9 -0.37 .18 

Humanoid mPFC HbO 0.65 3.1 0.61 .02 

  HbR -0.50 -2.38 -0.47 .07 

 ATL HbO 0.62 2.95 0.58 .03 

  HbR -0.60 -2.86 -0.56 .03 

 STS HbO 0.83 3.95 0.77 .002 

  HbR -0.55 -2.62 -0.51 .04 

 TPJ HbO 0.21 1.0 0.20 .60 

  HbR -0.41 -1.95 -0.38 .16 

Note. Group-level GLM results comparing activation for humanoid and geometric animations to baseline across ROIs. Effect 

sizes (Cohen’s d) are reported alongside FDR-corrected p-values. HbO = oxyhemoglobin; HbR = deoxyhemoglobin. 

 
               

D2. Confidence rating differences distribution plot 
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D3. Reaction time and error rate data for pre and post animation viewing Stroop tasks 

Condition Mean Congruent RT Mean Incongruent RT Average Error rate 

Pre-stroop 0.68 0.76 5.49 

Post-stroop 0.69 0.74 10.09 

 

D4. Pre and Post Stroop vs Baseline Comparison (FDR-Corrected) GLM results 

Stroop 
condition ROI Chromophore Effect (μM) T-value Cohens-D 

FDR 
corrected  
P-value 

Pre mPFC HbO 0.46 2.42 0.47 .03 

  HbR -0.22 -1.16 -0.23 .26 

 ATL HbO 0.60 3.16 0.62 .01 

  HbR -0.47 -2.47 -0.48 .05 

 STS HbO 0.86 4.53 0.89 <.001 
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  HbR -0.41 -2.16 -0.42 .10 

 TPJ HbO 0.24 1.26 0.25 .35 

  HbR -0.28 -1.47 -0.29 .18 

Post mPFC HbO 0.01 0.05 0.01 .99 

  HbR -0.34 -1.79 -0.35 .21 

 ATL HbO 0.30 1.58 0.31 .28 

  HbR -0.55 -2.89 -0.57 .03 

 STS HbO 0.71 3.74 0.73 .003 

  HbR -0.50 -2.63 -0.52 .04 

 TPJ HbO 0.05 0.26 0.05 .89 

  HbR -0.31 -1.63 -0.32 .26 

Note. Group-level GLM results comparing activation for humanoid and geometric animations to baseline across ROIs. Effect 

sizes (Cohen’s d) are reported alongside FDR-corrected p-values. HbO = oxyhemoglobin; HbR = deoxyhemoglobin. 

 

 

D5. Pre Vs Post Stroop Comparison (FDR-Corrected) GLM results 

ROI Chromophore Effect (μM) T-value Cohens-D 
FDR 

corrected  
P-value 

mPFC HbO -0.47 -4.7 -0.92 <.001 

 HbR -0.11 -1.1 -0.22 .47 

ATL HbO -0.3 -3.0 -0.59 .02 

 HbR -0.08 -0.8 -0.16 .64 

STS HbO -0.15 -1.5 -0.29 .30 

 HbR -0.09 -0.9 -0.18 .59 

TPJ HbO -0.19 -1.9 -0.37 .18 



54 

 HbR -0.03 -0.3 -0.06 .86 

 

Appendix E: Audio Transcription and Thematic Coding 

E1. Example cleaned transcript excerpts based on 5 coding subgroups 

● Character Dynamics 

○  “The small triangle arrived with the ball while the big one was inside. The big 

triangle went out and seemed to confront the smaller one. The movements were 

quite aggressive… the ball seemed to hide away and be quite shy.” (Participant, 

5_2552-Cleaned_Transcript) 

● Emotional States 

○  “The orange character… was looking afraid by like having the hands in front of 

the face, like covering a little bit down… the others were rigid, aggressive.” 

(Participant, 27_2135-Cleaned_Transcript) 

● Intent Interpretation 

○  “One was really kind of aggressive and was chasing the other two… The pink 

one looked like it was seeking help or trying to hide. The blue one… like it had a 

plan to distract the aggressor.” 

 (Participant, 2_4071-Cleaned_Transcript) 

● Relationship Dynamics 

○ “I can see the bigger triangle being like the absentee alcoholic father… the 

smaller one like a guardian more in touch with the child. The ball was a weak 

child who was afraid.” (Participant, 15_5535-Cleaned_Transcript) 

● Visual Cues 
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○ “Now the same characters were avatars… the aggressive triangle was now a big 

avatar with animations like wiggling arms… emotions were visible and they 

looked afraid.” (Participant, 24_8332-Cleaned_Transcript) 

E2. Word clouds for each condition 

Word Clouds by Animation Type (Left = Humanoid, Right = Geometric) 

 

E3. Frequency of Conflict-Related Terms by Animation Type 

Term Humanoid (n) Geometric(N) 

aggressive 12 9 

scared 10 8 

fight/fighting 8 6 

afraid 7 5 

conflict 5 6 

abuse 4 3 

 

E4. Unique word frequency tables 

Unique Words by Animation Type 
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Geometric Animations Humanoid Animations 

block bystander 

destroy control 

dynamics defend 

perspective partner 

 power 

 rescue 

 sibling 

 sneaky 

 walk 

E5. Prompts given to Open-AI ATLAS.ti 

Whole text analysis prompt: 
 
 “I’m analyzing short texts where people describe what they saw in animated videos  
 showing characters interacting. Please help me code these texts into five categories: 

1. Character Dynamics – What roles or actions do the characters take? (e.g., chasing, 
escaping, helping, leading). 
 

2. Emotional States – What emotions do the characters seem to feel or express? (e.g., fear, 
anger, happiness, sadness). 
 

3. Intent Interpretation – What are the characters trying to do? What are their goals or 
intentions? (e.g., being aggressive, helping someone, avoiding danger). 
 

4. Relationship Dynamics – How do the characters relate to each other? (e.g., fighting, 
bonding, ignoring each other). 
 

5. Visual Cues – What things in the animation help the viewer understand what’s 
happening? (e.g., how the characters move, how close they are, what they look like).” 

Whole text analysis led to these questions: 
 



57 

Question: What roles or actions do the characters take? 
 Code Category: Character Dynamics 
 
Question: What emotions do the characters seem to feel or express? 
 Code Category: Emotional States 
 
Question: What are the characters trying to do? What are their goals or intentions? 
 Code Category: Intent Interpretation 
 
Question: How do the characters relate to each other? 
 Code Category: Relationship Dynamics 
 
Question: What things in the animation help the viewer understand what’s happening? 
 Code Category: Visual Cues 

 
Geometric vs Humanoid analysis prompt: 

Prompt: 

This study explores how people interpret two different types of animations: one using 
humanoid avatars and the other using geometric shapes. Both types depict similar 
social scenes, but we want to understand how the form of the agents influences 
interpretation. 

Please analyze the following response and identify whether the participant is describing a 
Humanoid animation or a Geometric animation (based on cues in the text or known 
assignment). Then, code the content according to the appropriate category: 

● Humanoid Themes – Use this code if the text reflects interpretations, reactions, 
or descriptions specifically about the humanoid animation. Focus on humanlike 
traits, emotions, motivations, or interactions attributed to the avatars. 
 

● Geometric Themes – Use this code if the text is about the geometric animation. 
Focus on mechanical or abstract interpretations, and how social meaning is 
inferred despite the lack of human features. 

Geometric vs Humanoid analysis led to these questions: 
●  

○ How do participants interpret humanoid animations? 
 

○ How do participants interpret geometric animations? 
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E6. Code group distribution for whole text analysis 

 

 
Appendix F: Guideline following 

F1. fNIRS best practice Yucel et al 2020  

(Y= Yes, P=Partially, N=No) 

Table of Contents 
Completed Reasoning 

1 Motivation 
Y 

The introduction provides a 
clear rationale for using VR 
and fNIRS to study social 
cognition, grounded in 
evolutionary, philosophical, 
and neuroscientific 
perspectives. 

 

2 Title, Abstract, and 
Introduction 

Y 
The title accurately reflects 
the study scope; the abstract 
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is structured and 
comprehensive, and the 
introduction provides 
theoretical background. 

 

 2.1 A Good Title and 
Abstract Structure 

Y 
Title is concise and 
descriptive. Abstract includes 
background, methods, results, 
and conclusions. 

  2.1.1 Choosing a good 
title 

Y 
"Neural Correlates of Social 
Cognition: Replicating the 
Heider and Simmel Paradigm 
in Virtual Reality" accurately 
describes study content and 
scope. 

  2.1.2 Structured 
abstract: Clarity and 
consistency 

Y Abstract clearly outlines the 
research questions, methods, 
results, and interpretation. 

 2.2 Introduction Sections 
in Functional Near-Infrared 
Spectroscopy (fNIRS) Papers: 
Structure and Content 

Y The introduction covers 
historical background, 
theoretical context, the gap in 
the literature, and the study 
aim. 

  2.2.1 Scope, context, 
significance, and aim of the 
work 

Y Scope (VR social cognition), 
context (Heider & Simmel), 
and significance (neural 
evidence in VR) are clearly 
defined. 

3 Methods: Making a Study 
Reproducible 

Y Methodological details are 
comprehensive, including 
equipment, preprocessing, 
statistical models, and 
participant info. 

 3.1 Participants 
Y Inclusion/exclusion criteria, 

recruitment, compensation, 
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and ethical approval are 
clearly described. 

  3.1.1 Human 
participants 

Y Ethics approval and informed 
consent mentioned in both 
text and Appendix G. 

  3.1.2 Sample size and 
statistical power analysis 

Y G*Power analysis described 
using proper parameters and 
justification. 

 3.2 Experimental 
Paradigm and Instructions 

Y Experimental design and 
stimuli are clearly outlined 
and visualized (Figures 2, 
Appendix A). 

  3.2.1 Experimental 
design (or “study design”) 

Y Within-subject design, 
counterbalancing, and 
dependent variables are 
specified. 

  3.2.2 Participant 
instructions, training, and 
interactions 

Y Instructions and interaction 
flow in VR are clearly 
documented and referenced in 
Appendix A. 

 3.3 System and Acquisition 
Y fNIRS system and acquisition 

parameters described in full. 

  3.3.1 fNIRS device and 
acquisition parameters 
description 

Y Brite MKIII specs, optode 
distances, frequencies, and 
safety guidelines included. 

  3.3.2 Optode array 
design, cap, and targeted 
brain regions 

Y Described with visual 
diagrams (Figures 3 and 5) 
and validated spatially. 

  3.3.3 For publications 
on instrumentation/hardware 
development 

N The study does not involve 
new hardware development. 

 3.4 Preprocessing Steps 
Y Data cleaning, filtering, 

HbO/HbR conversion, and 
channel rejection are 
described in detail. 
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  3.4.1 fNIRS signal 
quality metrics and channel 
rejection 

Y Rejection of 39 channels 
across 23 participants 
documented. 

  3.4.2 Motion artifacts 
Y Justified choice of fNIRS for 

its motion tolerance and 
addressed artifact rejection in 
preprocessing. 

  3.4.3 Modified Beer–
Lambert law, parameters and 
correction 

Y Described and cited 
appropriately. 

  3.4.4 Impact of 
confounding systemic signals 
on fNIRS 

Y General filtering and 
averaging strategies minimize 
systemic noise; low-pass 
filtering mentioned. 

  3.4.5 Strategy for 
statistical tests and removal of 
confounding signals 

Y T-Tests for preliminary 
comparisons and GLM used 
to model subject variability 
and compare conditions. 

  3.4.6 Filtering and drift 
regression 

Y 0.1 Hz low-pass filter applied 

 3.5 Physiological 
Confounds in the fNIRS 
Signal: Strategies 

P Motion and filtering 
addressed, but no 
measurement of systemic 
physiology (e.g., heart rate) 
included. 

  3.5.1 Strategies for 
enhancing the reliability of 
brain activity measurements 

Y Included spatial validation, 
channel rejection, and GLM 
modeling. 

  3.5.2 Strategy 1: 
Enhance depth sensitivity 
through instrumentation and 
signal processing 

P Mentioned limitations of 
cortical-only data, but didn’t 
apply specific depth-
enhancing strategies. 

  3.5.3 Strategy 2: Signal 
processing without intrinsic 
depth sensitive measurements 

Y Standard filtering and 
HbO/HbR signal separation 
used. 
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  3.5.4 Strategy 3: 
Incorporating measurements 
of changes in systemic 
physiology in the NIRS signal 
processing 

N No concurrent physiological 
recordings (e.g., pulse, 
respiration). But mentioned 
for further improvements. 

 3.6 Analysis and Statistical 
Methods 

Y Both exploratory and model-
based statistical tests 
described with appropriate 
citations. 

  3.6.1 Hemodynamic 
response function estimation: 
Block averaging versus 
general linear model 

Y GLM clearly defined and 
preferred over simple block 
averaging. 

  3.6.2 HRF estimation: 
Selection of the HRF 
regressor in GLM approaches 

Y GLM parameters (e.g., ROI, 
chromophores) matched to 
HRF estimation goals. 

  3.6.3 Statistical analysis: 
General remarks 

Y Included t-tests, GLMs, 
confidence ratings, and 
qualitative coding. 

  3.6.4 Statistical analysis 
of GLM results 

Y Reported GLM outcomes per 
ROI, aligned with APA style. 

  3.6.5 Statistical analysis: 
Multiple comparisons 
problem 

Y False Discovery Rate (FDR) 
method of Benjamini-
Hochberg. This was used to 
control for Type I error across 
the statistical tests, and the 
results tables are explicitly 
labeled as "FDR-Corrected". 

  3.6.6 Specific guidelines 
for data processing in clinical 
populations 

N No clinical population. 

  3.6.7 Specific guidelines 
for data processing in 
neurodevelopmental studies 

N Adult neurotypical 
participants only. 
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  3.6.8 Connectivity 
analysis 

N Not performed but mentioned 
as a limitation. 

  3.6.9 Image 
reconstruction 

N Not part of the current 
analysis pipeline. 

  3.6.10 Single trial 
analysis and machine 
learning 

N Not included, mentioned as a 
future direction. 

  3.6.11 Multimodal 
fNIRS integration 

N Not implemented, discussed 
as future improvement. 

4 Results: How and What to 
Report 

Y Results reported clearly with 
figures, tables, APA 
formatting, and alignment to 
hypotheses. 

 4.1 Figures and 
Visualization 

Y Figures were appropriate, 
labeled, and supplemented 
with notes (Figures 1–7). 

 4.2 Concise Text and Rigor 
Y Text is concise, with 

interpretations linked to 
results and consistent 
terminology. 

5 Discussion and 
Conclusion: The Implications 
of the Work for the Bigger 
Picture 

Y Discussion interprets results 
in light of literature and 
broader implications. 

 5.1 Discussion of the 
Results in Light of Existing 
Studies: Strengths, 
Limitations, and Future Work 

Y Limitations, replication, and 
VR implications discussed 
thoroughly. 

 5.2 Conclusion 
Y Summarizes findings and 

future applications 
effectively. 

6 Bibliography 
Y References comprehensive 

and in APA 7 format. 
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 6.1 Proper Citations 
Y In-text citations and 

references formatted 
correctly. 

7 Supplementary Data: 
Reinforcing Reproducibility 

Y Appendices contain fNIRS 
data procedures, transcripts, 
coding, and visualizations. 

 7.1 Preregistration, Data, 
and Code Sharing 

P No preregistration or 
data/code shared but can be 
requested to researchers. 

8 Appendix 
Y Appendices A–I included all 

supplementary methods, 
figures, and transcripts. 

Acknowledgments 
N No dedicated section; may be 

added if desired. 

References 
Y Included, complete, and APA 

7 compliant. 

 

Appendix G: Ethics and Documentation 
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G1. Ethics Committee BMS / Domain Humanities & Social Sciences ethical approval data and 
Informed consent form template 
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G2. Informed consent form 

 

Appendix H: Guidelines used 

H1. Artinis MNE-nirs guide:  

https://www.artinis.com/blogpost-all/2021/fnirs-analysis-toolbox-series-mne-python 

H2. MNE-nirs Utilising Anatomical Information example:  

https://mne.tools/mne-nirs/stable/auto_examples/general/plot_70_visualise_brain.html#sphx-glr-
auto-examples-general-plot-70-visualise-brain-py 

H3. MNE-nirs Group level GLM.  

https://mne.tools/mne-nirs/stable/auto_examples/general/plot_12_group_glm.html 
 

Appendix I: Acronym and terms glossary 

 

Term / Abbreviation Definition 
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VR 

Virtual Reality – A simulated environment experienced 
through devices such as head-mounted displays, enabling 

immersive interaction with 3D environments. 

fNIRS 

Functional Near-Infrared Spectroscopy – A non-invasive 
optical imaging technique that measures brain activity by 

detecting changes in oxygenated and deoxygenated 
hemoglobin. 

ToM 

Theory of Mind – The cognitive ability to attribute mental
states (e.g., beliefs, desires, intentions) to oneself and 

others. 

mPFC 

Medial Prefrontal Cortex – A brain region involved in 
social cognition, self-referential processing, and 

understanding others’ intentions. 

TPJ 

Temporoparietal Junction – A region at the boundary of 
the temporal and parietal lobes involved in perspective-

taking and belief attribution. 

ATL 

Anterior Temporal Lobe – A brain area that processes 
social knowledge, such as personal traits and social 

scripts. 

STS 

Superior Temporal Sulcus – A region involved in 
perceiving biological motion, gaze direction, and goal-

directed actions. 

ROI 
Region of Interest – Specific brain areas selected a priori 

for focused neuroimaging analysis. 

HbO 

Oxygenated Hemoglobin – The form of hemoglobin 
bound to oxygen; used as a marker of increased neural 

activity in fNIRS. 

HbR 

Deoxygenated Hemoglobin – Hemoglobin that has 
released its oxygen; often decreases in regions with 

increased neural activity. 

CW 

Continuous Wave – A type of fNIRS system that emits a 
constant stream of near-infrared light for measuring 

hemodynamic responses. 

EC 

European Credit – A standardized unit for measuring 
academic workload in the European Credit Transfer and 
Accumulation System (ECTS); 1.25 EC roughly equals 

35 hours of study. 

Stroop Task 

A cognitive task used to measure executive function and 
interference control, involving color-word naming with 

conflicting stimuli. 

Heider-Simmel Paradigm 

A classic animation-based experiment where participants 
spontaneously attribute social meaning to moving 

geometric shapes. 
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Intentional Stance 

A philosophical concept by Dennett (1987) referring to 
the human tendency to interpret behaviour in terms of 

beliefs, desires, and goals. 

Proteus Effect 

A phenomenon where an individual’s behaviour 
conforms to the characteristics of their digital avatar in 

virtual environments. 

fOLD Toolbox 

fNIRS Optodes’ Location Decider – A software tool used 
to guide optode placement over specific cortical regions 

based on standardized EEG coordinates. 

MNE-Python / MNE-NIRS 

Open-source Python toolkits used for processing MEG, 
EEG, and fNIRS data, including signal preprocessing, 

ROI mapping, and statistical analysis. 

 

 

 

 

 

 


