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Abstract

The goal of this paper is presenting the construction of the Daniell integral together with
the proof of the Riesz-Markov-Kakutani representation theorem. Moreover, this article
also presents results related to the so-called Bochner integral.

Like any other notion of integration, the Daniell integral is a functional that acts on a
space of functions. However, the approach is different from the one used for the Lebesgue
integral as it does not require a predefined notion of a measure. Therefore, one may al-
ternatively define the measure of a set A (given that certain conditions are satisfied) by
applying the Daniell integral on the indicator function of A.

This construction provides a natural proof of the Riesz-Markov-Kakutani represen-
tation theorem, which states that the dual space of continuous functions defined on a
locally-compact Hausdorff space Ω is the set of all measures on Ω.

One may further define the integral as a functional acting on the space of functions
mapping a subset of Rn to an arbitrary Banach space X. This is the so-called Bochner
integral and will be presented in this paper as well.

∗Email: d.cocianu@student.utwente.nl
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1 Introduction

We start by considering L, a linear space of functions which is closed under taking the
maximum and the minimum. On this space, we consider a functional that maps positive
functions to positive real numbers, while ensuring that it converges to 0 point-wise, as
the function approaches 0. Such a functional is called an integral. We will then extend
the integral on the space of monotone increasing limits of sequences in L, denoted by U .
This is done by defining the I(f) := limn→∞ I(fn) for all f ∈ U , where fn is a monotone
increasing sequence in L that converges to f . A similar process will be done to extend the
integral on the space −U , defined as −U := {f | − f ∈ U}.

We will then call a function f integrable if it "fits" between a function g ∈ −U and
a function h ∈ U for which the integral yields a finite result and such that I(h − g) is
arbitrarily small. We can then define the integral of f as inf I(h) or, equivalently sup I(g),
where h and g are prescribed as above. The space of integrable functions will be called L1.

We continue by defining the space of Baire functions. This is the smallest monotone
family of functions containing our vector space L. Then we consider the space L1 to be the
intersection of the previously defined L1 with the space of Baire functions. Now, we call
a function f ∞−integrable if either f+ := max{f, 0} or f− := min{−f, 0} are integrable
functions and define its integral as I(f) := I(f+) − I(f−), with ±∞ allowed as possible
values.

In contrast to the Lebesgue approach, we did not need the notion of a measure so
far. Hence, this concept can be defined by using the already constructed integral, as the
argument will not be circular. Therefore, we will call a set A whose indicator function
is in L1 a measurable set and define its measure by µ(A) := I(1A). If the measure of A
is of finite value, we further call A a summable set. We will then present a few results
which will allow us to conclude that for any f ∈ B+ we have that I(f) =

∫
fdµ, with

∫
representing the standard Lebesgue integral. This statement is a big part of the Riesz-
Markov-Kakutani representation theorem, which is the main point of interest of this paper.
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The Riesz-Markov-Kakutani representation theorem states that for any functional ϕ
on C([a, b]) there exists a unique measure µ such that ϕ(f) :=

∫ b
a fdµ for all f ∈ C([a, b]).

The proof follows in a natural manner by exploiting our new approach of integration.

We will then turn our attention to the so-called Bochner integral. Namely, we will
formally define a method of integrating functions which map to arbitrary Banach spaces.
This construction starts by considering a σ−finite measure space (Ω,Σ, µ). In the case of
functions mapping from Ω ⊆ Rn to a Banach space X, f is called simple if the image of Ω
under f is a finite set and the preimage of all x ∈ X \ {0} is a set of finite measure in the
σ−algebra Σ.

Furthermore, we will say that a function f is Bochner-measurable if it can be ap-
proximated almost everywhere by a sequence of simple functions. We then construct the
Bochner-Lebesgue Lp spaces by defining Lp := Lp/∼, where Lp is the space of Bochner-
measurable functions with ∥f∥X < ∞ and the equivalence relation ∼ is given by f ∼
g ⇐⇒ f = g almost everywhere. This spaces will turn out to be Banach spaces, with the
space of simple functions being a dense subspace of these Bochner-Lebesgue spaces. Using
these results, we can finally define the Bochner integral as the continuous linear extension
of the mapping f →

∑
x∈X xµ(f−1(x)), defined on the space of simple functions from Ω

to X and taking values in X.

As we have constructed the Bochner integral by employing a similar approach as for the
one used for defining the Lebesgue integral, we expect that the Daniell approach can also
be used to construct an alternative, equivalent notion of the Bochner integral. Therefore,
we will conclude the paper by presenting Pettis’ theorem, a result which indeed supports
this idea.

2 Preliminaries

This paper makes use of a few notions from measure theory and functional analysis. How-
ever, as those courses are not part of the regular Bachelor’s programme, the relevant
notions will be very briefly introduced. Furthermore, as we will also require some results
from these two courses, the essential theorems and lemmas will be presented.

Definitions and results related to functional analysis, such as functionals and bound-
edness come from [1], while for measure theoretic aspects we use notions from [2].

Definition 2.1. A linear functional is a linear map from an arbitrary Banach space X to
its underlying scalar field (in general R or C).

Definition 2.2. A linear functional ϕ on a Banach space X is said to be bounded if
∃ a ∈ R such that ∀x ∈ X : ∥ϕ(x)∥ ≤ a · |x|
where ∥·∥ is the norm on X.

A useful characterization of continuity of a functional is presented in the next theorem.

Theorem 2.3. A linear functional is continuous if and only if it is bounded.

Proof. Let ϕ be a continuous linear functional defined on the Banach space X. As this
implies continuity at 0 ∈ X, we know that ∃δ > 0 such that ∀y ∈ X with ∥y∥ ≤ δ the
inequality ∥ϕ(y)−ϕ(0)∥ < 1. By linearity, we know that ϕ(0) = 0, therefore the inequality
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becomes ∥ϕ(y)∥ < 1 for all y ∈ X with ∥y∥ ≤ δ.
Now for any point x ∈ X, by linearity of ϕ it holds that ∥ϕ(x)∥ = ∥∥x∥

δ ϕ(δ x
∥x∥)∥ =

∥x∥
δ ∥ϕ(δ x

∥x∥)∥. As ∥δ x
∥x∥∥ = δ, we can apply the previously found result and hence obtain

∥ϕ(x)∥ < ∥x∥
δ 1 = ∥x∥

δ . Therefore, the functional is bounded.

Conversely, assuming that ϕ is a bounded linear functional, we know that ∥ϕ(x+ y)−
ϕ(x)∥ = ∥ϕ(y)∥ < C∥y∥ for every x, y ∈ X and some constant C > 0. By letting y → 0
we conclude that the functional is continuous at any x ∈ X.

Definition 2.4. A simple function ϕ defined on Ω and mapping to S ⊆ R is defined to
be a linear combination of indicator functions of intervals. To be precise, this means that
a simple function is of the form ϕ(x) = ci if x ∈ Ai where Ai are countably many disjoint
sets such that their union is precisely Ω, and ci ∈ R.

Definition 2.5. The integral of a simple function θ over a domain Ω with respect to a
measure µ is defined as

∫
Ω θdµ =

∑N
i=1 ciµ(Ai), where the sets Ai are measurable sets (as

defined in [2]) and they are as in definition 2.4.

Definition 2.6. The integral of a function f over a domain Ω with respect to a measure
µ is defined as

∫
Ω fdµ := sup{

∫
Ω θdµ|θ ≤ f, θ simple function}.

Theorem 2.7. A functional ϕ over a space of functions F which is closed under addition,
function multiplication and division by functions that are non-zero at every point, defined
on a domain Ω can be split into a positive and a negative part such that ϕ = ϕ+−ϕ−, such
that both ϕ+ and ϕ− are positive.

Proof. Let us define a new functional ϕ+ : F+ → R, by ϕ+(f) := sup{ϕ(h)|h ∈ F+, h ≤ f}
for all functions f ∈ F+. Here, F+ denotes the space of all positive functions in F. More-
over, we wish to extend the definition of this functional on the entire function space F. We
will do so by defining ϕ+(f) = ϕ+(f+)−ϕ+(f−) for all f ∈ F, where the functions f+ and
f− represent the unique decomposition of the function f , namely f+(x) = max{f(x), 0}
and f−(x) = max{−f(x), 0} for every x ∈ Ω.
Moreover, we can simply define ϕ− := ϕ+−ϕ. Hence, we have constructed a decomposition
of ϕ according to the statement.

It remains to be proven that these functionals are indeed linear. To this end consider
f, g ∈ F+. Then ϕ+(f) = sup{ϕ(h1)|h1 ∈ F+, h1 ≤ f} and ϕ+(g) = sup{ϕ(h2)|h2 ∈
F+, h2 ≤ g}. If h1 ≤ f, h2 ≤ g then h1 + h2 ≤ f + g and h1 + h2 ∈ F+, therefore
ϕ(h1 + h2) ≤ sup{ϕ(h)|h ∈ F+, h ≤ f + g} = ϕ+(f + g). We know that ϕ is linear, and
hence ϕ(h1) + ϕ(h2) ≤ ϕ+(f + g). Taking the supremum over h1 ≤ f, h2 ≤ g, we obtain
that for all f, g ∈ F+, ϕ+(f) + ϕ+(g) ≤ ϕ+(f + g).

Consider now l ∈ F+, l ≤ f + g and define l1 := f
f+g l and l2 := g

f+g l. Clearly, it holds
that

• l1, l2 ∈ F+

• l1 + l2 = l

• l1 ≤ f, l2 ≤ g
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By linearity of ϕ, we can write ϕ(l) = ϕ(l1) + ϕ(l2) ≤ ϕ+(f) + ϕ+(g). This inequality hold
∀l ∈ F+, l ≤ f + g, thus by taking the supremum we obtain ϕ+(f + g) ≤ ϕ+(f) + ϕ+(g)
for all f, g ∈ F+.

Hence we conclude that ∀f, g ∈ F+, ϕ+(f + g) = ϕ+(f) + ϕ+(g). In a similar fashion,
one can prove that the equality holds also for f, g ∈ F−, and hence it holds for all functions
f, g ∈ F.

For a scalar c > 0 and f ∈ F+, we have that ϕ+(cf) = sup{ϕ(h)|h ∈ F+, h ≤ cf} =
sup{ϕ(ch)|h ∈ F+, h ≤ f} = c sup{ϕ(h)|h ∈ F+, h ≤ f} = cϕ+(f). This equality extends
to c ∈ R by extension to the whole space F.

Therefore, the functional ϕ+ is linear on F+. Moreover, the functional ϕ− is also linear
on F+, as it is defined as the difference of two linear functionals. Similarly, one shows
linearity on F−, and hence ϕ+(f) = ϕ+(f+) − ϕ+(f−) and ϕ−(f) = ϕ+(f) − ϕ(f) are
indeed linear on F.

Theorem 2.8. If ϕ is bounded, then the functionals ϕ+ and ϕ− are also bounded.

Proof. By construction, |ϕ+(f)| ≤ |ϕ(f)|, hence |ϕ+(f)| ≤ |ϕ(f)| ≤ a∥f∥,∀f ∈ F. There-
fore, ϕ+ is a bounded functional. Moreover, using the triangle inequality, we obtain
|ϕ−| = |ϕ+ − ϕ| ≤ |ϕ|+ |ϕ+| ≤ 2a∥f∥. Therefore, ϕ− is also a bounded functional.

Definition 2.9. Consider a set Ω and its power set P (Ω). A subset Σ ⊆ P (Ω) is called a
σ-algebra if the following conditions hold:

• Ω ∈ Σ

• X ∈ Σ =⇒ Ω \X ∈ Σ

• X1, X2, ... ∈ Σ =⇒
⋃
Xn ∈ Σ

Definition 2.10. A measure space is a triple (Ω,Σ, µ) where:

• Ω is a set

• Σ is a σ-algebra on Ω

• µ is a measure on (Ω,Σ)

Definition 2.11. A measure µ on (Ω,Σ) is called σ-finite if one of the following hold
equivalent criteria holds:

• ∃X1, X2, ... with µ(Xn) < ∞,∀n ∈ N and ∀i ̸= j,Xi ∩Xj = ∅ such that
⋃
Xn = Ω

• ∃ strictly positive function f such that
∫
fdµ < ∞.

A measure space on which the measure is σ-finite will be called a σ-finite measure
space.

Definition 2.12. A sequence of functions fn defined on a measure space (Ω,Σ, µ) is said
to converge to f almost everywhere (or shortly denoted as a.e.) if the set A := {x ∈
Ω| limn→∞ fn(x) ̸= f(x)} has µ(A) = 0.
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Definition 2.13. A set X is said to be a µ-null set if µ(X) = 0.

Definition 2.14. A function f will be said to be Lebesgue-measurable if the preimage
under f of any interval is a measurable set.

Theorem 2.15 (The monotone convergence theorem). If a monotone increasing sequence
of Lebesgue-measurable, non-negative functions fn defined on a measurable set X converges
to some function f point-wise a.e., then limn→∞

∫
X fndµ =

∫
X fdµ

The proof of the monotone convergence theorem will be skipped, as it requires further
results that are not needed in this paper. So is the case for the dominated convergence
theorem, which is stated below.

Theorem 2.16 (The dominated convergence theorem). Assume that for the sequence of
measurable functions fn defined on a measurable set Ω there exists a function g which is
integrable over Ω and such that |fn| ≤ g a.e. on Ω. If fn → f a.e. as n → ∞, then f is
integrable on Ω and limn→∞

∫
Ω fn(ω)dµ =

∫
Ω f(ω)dµ.

Throughout the paper we will prove equivalent versions of the monotone convergence
theorem and dominated convergence theorem.

3 Construction of the Daniell integral

We wish to construct a notion of integration which does not depend on measures, as was
done in the original paper, cf. [3].

Let us start by considering a vector space L consisting of bounded real-valued functions
on a set Ω. Moreover, assume that L is closed under the following lattice operations:

• f ∨ g := max (f, g)

• f ∧ g := min(f, g)

Definition 3.1. An integral is a linear functional I on L that satisfies that following
conditions:

• C1: f ≥ 0 ⇒ I(f) ≥ 0

• C2: fn ↓ 0 ⇒ I(fn) ↓ 0 point-wise.

Note that the condition C1 is in fact the same as f ≥ g ⇒ I(f) ≥ I(g) as the integral is
a linear functional. In fact, in [4] it is even considered as a third condition in the definition.

To better visualize these new concepts, consider the standard Riemann integral of con-
tinuous functions. In this case, the Riemann integral is our linear operator I, acting on the
space C(Ω) of continuous real-valued functions on the set Ω, which in turn is our vector
space L. Another example would be taking the Lebesgue integral as our I, while for the
vector space L we may have the span of all indicator functions of intervals on Ω.

Now we are interested in extending I to a larger class of functions that has the same
properties as L, namely closure under the lattice operations. This is motivated by the
fact that, for example, there are functions which are not continuous, yet they are Riemann
integrable. To this end we will now consider a new vector space U that we define to be
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the set of point-wise limits of monotone increasing sequences of functions in L, equipped
with the standard addition and non-negative scalar multiplication. In this paper, infinity
will be allowed as a possible value of the limit function.

Trivially, L ⊆ U , as for any function f ∈ L we may consider the sequence fn := f
∀n ∈ N. This sequence is clearly increasing (non-strictly) and converges to f .

Due to the properties of taking limits, this newly constructed vector space U is closed
under addition, non-negative scalar multiplication and the lattice operations "∧" and "∨".

In order to extend the integral I to the space U , we will define

Inew(f) := lim
n→∞

I(fn)

for some sequence fn of elements in L that is monotone increasing and converges to f .
Furthermore, we will allow ∞ as a possible value of Inew.

Because of C2, this construction is well defined as, by the uniqueness of limits, it does
not matter which monotone increasing sequence that converges to f we choose.

For convenience, we will from now on refer to Inew simply as I.

Theorem 3.2. If fn is a monotone increasing sequence in U that converges point-wise to
f , then f ∈ U and I(fn) ↑ I(f) as n → ∞.

Proof. As fn ∈ U , we know by the definition of the space U that there exists monotone
increasing sequences gmn ∈ L such that limm→∞ gmn = fn. Defining hn := gn1 ∨ gn2 ∨ ... ∨ gnn
we obtain a sequence in L, as L is closed under the lattice operations. Moreover, this
sequence is increasing. Furthermore, note that ∀m ≤ n, gnm ≤ hn ≤ fn. Letting n → ∞,
we obtain fm ≤ limn→∞ hn ≤ f . Moreover, taking the limit as m goes to infinity, we
obtain f ≤ limn→∞ hn ≤ f , hence f ∈ U . Applying the same trick for the inequality
I(gnm) ≤ I(hn) ≤ I(fn), we conclude that I(fn) ↑ I(f) as n → ∞.

We will now look at a natural extension, as we wish to further extend the integral such
that it also works for negative values. To this end we will define the set −U := {f |−f ∈ U}.

On this new set we further define

• Inew(f) := −I(−f) , ∀f ∈ −U

• Inew(f) := I(f) , ∀f ∈ U

Note that −U is closed under taking monotone decreasing limits, standard addition,
non-negative scalar multiplication and the lattice operators. Again, for our convenience,
we will from now on refer to Inew as I.

Definition 3.3. A function f will be said to be I-integrable if ∀ϵ > 0,∃g ∈ −U, h ∈ U
such that:

• g ≤ f ≤ h
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• I(g) < ∞, I(h) < ∞

• I(h)− I(g) < ϵ

By varying g an h in the above definition, we may further define I(f) := inf I(h) =
sup I(g).

We will denote by L1 the set of all I-integrable functions.

Let us check that this new definition of I is the same as Inew for all f ∈ U and f ∈ −U .
Hence, we start by considering the case f ∈ U . By definition of the space U , we know that
there exists a monotone increasing sequence fn ∈ L such that fn ↑ f as n → ∞. Moreover,
we have that Inew(f) ≥ infh≥f I(h) ≥ supg≤f I(g) ≥ I(fn) for all n ∈ N. However, by
Theorem 3.2, it holds that I(fn) ↑ I(f). Thus Inew(f) ≥ infh≥f I(h) ≥ supg≤f I(g) ≥
I(fn) → Inew(f) as n → ∞ =⇒ inf I(h) = sup I(g) and hence f is I−integrable and
Inew(f) = I(f).

It is very important to note that when considering L = C(Ω) for some compact Ω ⊂ R,
we have 1(a,b) ∈ L1. This will be used later in the main proof of this paper. To show
this, by definition of I-integrable functions we need to find two sequences of functions gn,
hn which approximate 1(a,b) from below and above respectively. To this end define the
sequence

gn(x) :=


(x− a)n, if x ∈

[
a, a+ 1

n

)
1, if x ∈

[
a+ 1

n , b−
1
n

)
(b− x)n, if x ∈

[
b− 1

n , b
) (1)

Now gn ∈ C(Ω), gn < 1(a,b) for all n ∈ N and gn → 1(a,b) as n → ∞. Similarly, one can
construct a sequence hn ∈ C(Ω) with hn > 1(a,b) and hn → 1[a,b] as n → ∞ by defining

hn(x) :=


(x− a+ 1

n)n, if x ∈
[
a− 1

n , a
)

1, if x ∈ [a, b)

(b+ 1
n − x)n, if x ∈

[
b, b+ 1

n

)
Note that gn is a monotone increasing sequence in L, while hn is monotone decreasing.
Thus, the indicator function 1(a,b) ∈ U and 1(a,b) ∈ −U . Therefore, as we have shown
I(f) = Inew(f) on U and −U , we have that 1(a,b) ∈ L1 and 1[a,b] ∈ L1.

Lemma 3.4. L1 is a linear space.

Proof. Consider arbitrary f1 and f2 in L1, together with an arbitrary constant c ∈ R.
Now, by definition of the space L1, we can choose g1, g2 in −U and h1, h2 in U such that

• g1 ≤ f1 ≤ h1, g2 ≤ f2 ≤ h2

• I(h1)− I(g1) ≤ ϵ, I(h2)− I(g2) ≤ ϵ.

Clearly, if c ≥ 0, we have

g1 + cg2 ≤ f1 + cf2 ≤ h1 + ch2

and

I(h1 + ch2)− I(g1 + cg2) = I(h1)− I(g1) + cI(h2)− cI(g2) ≤ (1 + c)ϵ

where ϵ can be made arbitrarily small. Thus, for c ≥ 0, it holds that f1 + cf2 ∈ L1. If
c < 0, we can then write
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• g1 + ch2 ≤ f1 + cf2 ≤ h1 + cg2

• I(h1 + cg2)− I(g1 + ch2) = I(h1)− I(g1) + cI(g2)− cI(h2) ≤ (1− c)ϵ

and thus we also conclude that f1 + cf2 ∈ L1 for negative c.

Note that the previous result also holds for the lattice operations, i.e., f1, f2 in L1

implies that f1 ∧ f2 ∈ L1, f1 ∨ f2 ∈ L1. The proof is very much the same as before.

Lemma 3.5. If f ≥ g and f, g are I-integrable, then I(f) ≥ I(g).

Proof. Given f ≥ 0, we have that h ≥ 0 and I(f) = inf I(h) ≥ 0 by the definition of
the extended I together with the property of the previously defined one. Therefore, if
f ≥ g, we then have f − g ≥ 0 and thus I(f − g) ≥ 0. By linearity of I, we conclude that
I(f) ≥ I(g).

Theorem 3.6. Assume that fn is a monotone increasing sequence in L1 that converges to
some function f and limn→∞ I(fn) < ∞. Then f ∈ L1 and I(fn) ↑ I(f).

Proof. Assume without loss of generality that f0 = 0. Consider a sequence hn in U such
that

• 0 ≤ fi − fi−1 ≤ hi

• I(hi) ≤ I(fi − fi−1) +
ϵ
2i

Such a sequence exists because the sequence fn is, by assumption, I-integrable. These two
properties yield, by summing over i, the following inequalities:

• fn ≤
∑n

i=1 hi

•
∑n

i=1 I(hi) ≤ I(fn) + ϵ
∑n

i=1
1
2i

The first inequality follows from the fact that the right-hand side is a telescopic sum.
For the second inequality the same argument was used, together with the linearity of I.
The second inequality may be extended by recognizing that, for finite m, the sum is strictly
less than 1. Therefore, it now becomes∑n

i=1 I(hi) < I(fn) + ϵ

Now, looking at h :=
∑∞

i=1 hi, we can say that the series converges in U by theo-
rem 3.2, as partial sums are elements of U by the spaces’ closure under addition, to-
gether with the fact that

∑n
i=1 hi is monotone in n, as hi ≥ 0 by definition. The se-

quence consisting of partial sums is increasing and hence, as infinity is allowed as a pos-
sible limit value, it converges. Furthermore, by theorem 3.2 we may also conclude that
I(h) = limn→∞

∑n
i=1 I(hi) =

∑∞
i=1 I(hi), where we again used the linearity of I. More-

over, we know that f ≤ h and I(h) ≤ limn→∞ I(fn) + ϵ for arbitrary ϵ > 0.

In a similar fashion we may also consider a sequence gn in U and its corresponding
g :=

∑∞
i=1 gi that will satisfy g ≤ f and limn→∞ I(fn) − ϵ ≤ I(g). The second inequality

implies that I(h)−I(g) ≤ 2ϵ, which can be made arbitrarily small, and thus f ∈ L1 by the
definition of this space. As the sequence fn converges to f and it is monotonic increasing,
we know that there exists a N ∈ N for which g ≤ fn ≤ f ≤ h,∀n ≥ N . By using Lemma
1.5 together with the squeeze theorem, we may now conclude that I(f) = limn→∞ I(fn)
and thus the proof is complete.
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Therefore, L1 and I have all the properties of the initially considered L and I.

Note that in theorem 3.6 we may also consider a sequence of monotone decreasing
functions converging to f and limn→∞ I(fn) > −∞. By setting gn := −fn, we may use
the original version of the theorem to show that f ∈ L1 and I(fn) ↓ I(f). Theorem 3.6 is
also known as the Beppo Levi theorem.

Looking back at the indicator function 1(a,b) for L = C(Ω), we observe that the previ-
ously constructed sequences gn and hn are monotone increasing and decreasing respectively.
Hence, by using the Beppo Levi theorem, one can indeed verify that I(1(a,b)) = b− a, if I
is the standard Riemann integral.

We will now show a similar version of the dominated convergence theorem. This result
is a really important one in measure theory, and hence we already expect it to play a big
role for the Daniell integration approach as well.

Theorem 3.7 (Dominated convergence theorem). Given a sequence fn ∈ L1 that converges
to a function f point-wise and such that |fn| ≤ g for some g ∈ L1 for all n ∈ N, then
f ∈ L1.

Proof. Let us start by considering the sequence Fn := supk≥n fk. One can observe that
Fn is a monotone decreasing sequence by construction which converges point-wise to f as
n → ∞.

Now let us have a look at f̃n,m := maxn≤k≤m fk = fn∨fn+1∨ ...∨fm. Clearly, f̃n,m ≤ g
for all n,m ∈ N and f̃n,m ∈ L1. Moreover, f̃n,m is monotone increasing in m. Furthermore,

I(f̃n,m) = I( max
n≤k≤m

fk) ≤ I(g) < ∞

since g ∈ L1. Observe that limm→∞ f̃n,m = Fn, thus by Theorem 3.6 we know that Fn ∈ L1.

Now, since Fn is a monotone decreasing sequence in L1 that converges point-wise to f ,
Theorem 3.6 lets us conclude our desired result if we manage to show that limn→∞ I(Fn) >
−∞. One can quickly observe that this indeed holds, as

|fn| ≤ g,∀n ∈ N =⇒ fn > −g,∀n ∈ N =⇒ I(sup
n≤k

fn) ≥ I(−g) > −∞,∀n ∈ N

thus limn→∞ Fn > −∞. Therefore, we have shown that f ∈ L1.

Definition 3.8. A function f ∈ B will be said to be ∞-integrable if either f+ := f ∨ 0 or
f− := −f ∧ 0 is in L1. Furthermore, we may now define I(f) := I(f+)− I(f−). Note that
I(f) may have ∞ or −∞ as possible values.

A function f will now be called integrable if it is ∞-integrable and |I(f)| < ∞.

Remark 3.9. If two functions are integrable, then so is any linear combination of them.
There is a slight ambiguity regarding the value of I(f + g) = I(f) + I(g) when the two
integrals are of infinite values, with opposite signs. However, this does not concern us in
this paper, and thus it will be neglected.

Remark 3.10. If fn is an integrable increasing sequence with I(f1) > ∞ that converges to
a function f , then the limit is integrable and I(fn) ↑ I(f) as n → ∞.
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4 Measures

Let us now consider a set A ⊂ Ω. We can define the indicator function of A as 1A(x) := 1
if x ∈ A and 1A(x) := 0 if x /∈ A.

For simplicity, we will assume that I(1) < ∞. For the Riesz-Markov-Kakutani repre-
sentation theorem, this assumption holds. If one prefers not using this assumption, then
eventually one will need to make use of the fact that 1 ∈ L1 ⇐⇒ m.v.{f, 1,−f} ∈ L1

for all f ∈ L1, where m.v. represents the median value defined as m.v.(f, g, h)(x) :=
f(x) + g(x) + h(x)−max{f(x), g(x), h(x)} −min{f(x), g(x), h(x)}.

Definition 4.1. A set A ∈ Ω for which its indicator function 1A ∈ L1 will be called an
measurable set. Furthermore, we define the measure of A by µ(A) := I(1A).

Theorem 4.2. If A and B are two measurable sets, then so are A ∩B,A ∪B and A \B.

Proof. Clearly, one can see that 1A∪B = 1A ∨ 1B, 1A∩B = 1A ∧ 1B and 1A\B = 1A −
1A∩B. As L1 is closed under the lattice and the algebraic operations, we conclude that the
indicator functions of the sets A ∩B,A ∪B and A \B are all functions in L1.

Theorem 4.3. If {An} is a sequence of disjoint measurable sets such that
∑∞

n=1 µ(An) <
∞, then

⋃∞
n=1An is measurable and µ(

⋃∞
n=1An) =

∑∞
n=1 µ(An).

Proof. The sequence consists of disjoint sets, and thus 1∪∞
n=1An =

∑∞
n=1 1An . This is

because any point x ∈ Ω belongs to at most one set of the sequence, and thus the series is
either 0 (when ∀i ∈ N∗, x /∈ Ai) or 1 (when x ∈ Ai for one i ∈ N∗). When x does not lie in
any set, it obviously will not lie in their union, and thus the indicator will be evaluated as 0
at such a point, whereas when x lies in one set it will also lie in the union, meaning that the
indicator will again be evaluated as the series. Moreover, due to theorem 2.2, the elements
of the sequence {Uk} defined as Uk := ∪k

n=1An are measurable sets and the sequence is
increasing and converging to U := ∪∞

n=1An. Now, by applying theorem 1.6 for fk = 1Uk
,

we obtain that I(∪∞
n=11An) = limk→∞ I(∪k

n=1An) = limk→∞
∑k

n=1 I(1An) =
∑∞

n=1 I(1An)
and thus, by the definition of measure, µ(∪∞

n=1An) =
∑∞

n=1 µ(An).

Remark 4.4. Note that we have now shown that the measurable sets form a σ−algebra,
with µ being a measure on it.

Theorem 4.5. For any function f ∈ L1 and any constant a > 0, the set A := {x|f(x) > a}
is a measurable set.

Proof. In order to prove the first statement we will start by considering the sequence of
functions {fn} defined by fn := [n(f − f ∧ a)] ∧ 1. The elements of this sequence are
functions in L1 and they are constructed such that limn→∞ fn = 1A. This convergence
is easy to check by applying the functions on a point x ∈ Ω. If x is such that f(x) > a,
then fn(x) = [n(f(x) − a)] ∧ 1. As f(x) − a > 0 and is constant with respect to n, for n
sufficiently large we have that n[f(x)− a] > 1. Therefore, when letting n go to infinity, we
obtain limn→∞ fn(x) = 1. On the other hand if x is such that f(x) ≤ a, then fn(x) = 0,
thus its limit is 0. These two results lead us to the conclusion that limn→∞ fn = 1A.
Hence, the indicator function of A is in L1, which implies that A is indeed a measurable
set and I(fn) ≤ I(1).
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Furthermore, theorem 4.5 yields the following corollary

Corollary 4.6. If f ∈ L1+, then I(f) =
∫
fdµ. Here, the integral is as in definition 2.6.

This result will turn out to be of very high importance later in this paper.

Proof. We will construct, for given a > 1, the sets

Aa
n := {x|an < f(x) ≤ an+1}

with n ∈ Z. These sets are integrable as they can be seen as the set difference between
{x|f(x) > an} and {x|f(x) > an+1} which, by assumption, are measurable sets. Further-
more, we define the function

fa :=
∑∞

n=−∞ an1Aa
n

As the sets are integrable, the indicator functions are in L1, hence fa ∈ L1 by monotonicity.
For an arbitrary point x ∈ Ω, we can evaluate fa(x) =

∑∞
n=−∞ an1Aa

n
(x). The elements of

the sequence {Aa
n} are disjoint sets, and thus fa(x) = 0 if ∀n ∈ Z, x /∈ Aa

n or fa(x) = am

if x ∈ Aa
m for some unique m ∈ Z. In both cases, as f ≥ 0 and f(x) > am if x ∈ Aa

m, we
get that fa ≤ f , hence fa ∈ L1.
Applying the functional I on fa, we obtain I(fa) =

∑∞
−∞ anI(1Aa

n
) =

∑∞
−∞ anµ(Aa

n).
Since fa is defined as a simple function, we can see that applying I of it yields precisely
its integral with respect to the measure µ, as per definition 2.6. Hence I(fa) =

∫
fadµ.

By the same argument, we further conclude that I(afa) =
∫
afadµ. Note that µ is the

measure induced by I as per Definition 4.1.

By the properties of I, we know that I(fa) ≤ I(f) ≤ I(afa). Moreover, it is also true
that

∫
fadµ ≤

∫
fdµ ≤

∫
afadµ. Moreover, |I(f)−

∫
fdµ| ≤ (a−1)I(fa) ≤ (a−1)I(f) for

every a > 1. Let us now take the limit as a goes to 1. The right-hand side of the inequality
will converge to 0 as I(f) is independent of a. Therefore, by the squeeze theorem, we
conclude that |I(f)−

∫
fdµ| → 0 as a ↓ 1. However, |I(f)−

∫
fdµ| does not depend on a,

hence we have proven that I(f) =
∫
fdµ.

Corollary 4.6 essentially states that the functional I is equal to the Lebesgue integral,
given they both exist on the considered space of functions. Moreover, it is known that the
Lebesgue and the Riemann integrals of some function f are also the same, given that f
is both Riemann and Lebesgue integrable. Hence, for a continuous function, these three
different notions of integration are in fact the same, cf. [5].

Remark 4.7 (Equivalence to the Lebesgue approach). Note that when given a measure
space (Ω,Σ, µ), using the Lebesgue approach we define the integral with respect to µ of a
simple function f as I(f) :=

∑
i αiµ(Ai), where f(x) = αi for all x ∈ Ai. This definition

verifies the conditions C1 and C2, therefore it is an integral also in the sense of Definition
3.1. Following the Lebesgue approach, we reach a definition of integration equivalent to
the one we have presented throughout section 3.
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5 The Riesz-Markov-Kakutani representation theorem

In the previous sections we have gathered enough knowledge to complete the main proof
of this paper, namely the proof of the Riesz-Markov-Kakutani representation theorem.

A general assumption that will be used in all the results of this section is that

Ω is a compact set

Lemma 5.1. Consider a sequence of functions fn ∈ L1 such that fn ↓ 0. Then fn ↓ 0
uniformly.

Proof. For any given ϵ > 0, consider the set Sn :=
⋃

k≥n{x ∈ Ω|fk(x) ≥ ϵ}. Clearly,
these sets are nested i.e, ∀m > n Sm ⊂ Sn. Now assume by contradiction that fn → 0 not
uniformly. The there exists ϵ > 0 and a sequence xk ∈ Ω such that |fn(xk)| > ϵ. Therefore,
xk ∈ Sn. However, Sn is a closed subset of the compact set Ω, hence it is compact as well.
By Bolzano-Weierstrass, xk has a convergent subsequence xkp which converges to x0 ∈ Ω.

Now we have that
⋂∞

n=1 Sn is not empty, as it must contain x0. Therefore, for infinitely
many n we have that |fn(x0)| > ϵ and clearly this implies that fn does not converge to 0,
contradicting the assumption. Thus, we conclude that fn ↓ 0 uniformly.

Lemma 5.2. All non-negative linear functionals on C([a, b]) are bounded with respect to
∥·∥∞.

Proof. Consider the non-negative linear functional I and the arbitrary functions f ∈ L1

and g ∈ L+ with g ≥ 1. By definition of the supremum norm, |f | ≤ ∥f∥∞, hence
|f | ≤ g∥f∥∞. Then, |I(f)| ≤ ∥f∥∞I(g). Therefore ∥I∥ = supf∈L1,f ̸=0

|I(f)|
∥f∥∞ ≤ I(g) and

thus I is bounded.

Theorem 5.3. All non-negative linear functionals on C([a, b]) are integrals.

Proof. Consider the non-negative linear functional I. All that is needed to be verified is
condition C2 in definition 3.1. To this end consider a sequence of functions fn ∈ L1 such
that fn ↓ 0. By lemma 5.1 this already tells us that fn ↓ 0 uniformly. By lemma 5.2 we
know that I is bounded, thus |I(fn)| ≤ c∥fn∥∞ for some constant c > 0. We can now
conclude by using the squeeze theorem that I(fn) ↓ 0, thus I is indeed an integral.

Theorem 5.4 (The Riesz-Markov-Kakutani representation theorem). Let ϕ be a bounded
functional on the space of continuous functions defined on the interval [a, b], generally
denoted by C([a, b]). Then there exists a unique measure µ on the Borel subsets of [a, b]

such that ϕ(f) =
∫ b
a fdµ, ∀f ∈ C([a, b]).

Proof. Given a functional ϕ on C([a, b]) we will start by showing the existence of a measure
that satisfies ϕ(f) =

∫ b
a fdµ, ∀f ∈ C([a, b]). To this end, we will consider the decompo-

sition of ϕ in two positive functionals, as presented in theorem 2.7. By theorem 5.3, we
know that these functionals are integrals, as per definition 3.1.
Applying the extensions described in section 3, together with corollary 4.6, we know that
there exist two measures µ+ and µ− such that, for all f ∈ C([a, b]) ϕ+(f) =

∫
fdµ+ and

ϕ−(f) =
∫
fdµ−. Moreover, these measures are positive. This is true since for all Borel

sets A ⊆ [a, b] we have µ+(A) = ϕ+(1A) ≥ 0, as ϕ+ is positive. The same holds for µ−.
Note that the indicator function of a set A is not necessarily continuous on [a, b] (unless
A = [a, b]). However, in section 3 we have shown that 1A is in L1 and hence the extended
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functionals may act on it.
Therefore, we have shown that ∀f ∈ C([a, b]), ϕ(f) = ϕ+(f) − ϕ−(f) =

∫ b
a fdµ+ −∫ b

a fdµ− =
∫ b
a fdµ, where µ is the unique signed measure which has the Hahn decomposi-

tion1 µ = µ+ − µ−. Hence, we have proved the existence part of the theorem.

As ϕ(f) =
∫ b
a fdµ =

∫ b
a fdν for all functions f , we are free to choose any function f on

which the functional and the integral may act. Moreover, as discussed before, this function
does not need to be in C([a, b]), as it may be chosen in the extension L1. Therefore, let
us choose f = 1[c,d] for some [c, d] ⊆ [a, b]. For this choice of f we get that ϕ(1[c,d]) =
µ([c, d]) = ν([c, d]). As the intervals generate the Borel sets, we have that µ(A) = ν(A)
for all intervals A =⇒ µ(B) = ν(B) for all Borel sets B. Hence, we have shown that the
measures are equal. This concludes the proof for the uniqueness part of the Riesz-Markov-
Kakutani representation theorem.

Definition 5.5. A topological space X is a Hausdorff space if ∀x, y ∈ X ∃Ox, Oy open
sets such that x ∈ Ox, y ∈ Oy and Ox ∩OY = ∅.

Definition 5.6. A topological space X is said to be locally compact if ∀x ∈ X there exist
O open set and K compact set such that x ∈ O ⊆ K.

Remark 5.7. The Riesz-Markov-Kakutani representation theorem can be generalized for
the space of continuous functions defined on any arbitrary locally-compact Hausdorff space
X. The proof of this stronger version is similar to the one that we have provided, and
therefore will be skipped in this paper.

6 The Bochner integral

In this section we aim to extend the concept of integration as a function from a subset
Ω ⊆ Rn to an arbitrary Banach space X, as done in [6]. We will thus consider a σ-finite
measure space (Ω,Σ, µ). As in the construction of the Daniell and Lebesgue integrals, we
will first have a look at the simple functions defined on Ω which map to X.

Definition 6.1. A function f : Ω → X is said to be a simple functions if:

• the image of Ω under f is a finite set

• ∀x ∈ X \ {0} it holds that f−1(x) ∈ Σ and µ(f−1(x)) < ∞.

It is easy to check that when X ⊆ R this new definition of simple functions is equivalent
to the old.

Definition 6.2. A function f : Ω → X is said to be Bochner-measurable if there exists
a sequence of simple functions fn on Ω mapping to X such that limn→∞ fn = f almost
everywhere.

For p ∈ [1,∞] we may define the spaces Lp(Ω, X) := {f : Ω → X|f Bochner-
measurable, ∥f∥X ∈ Lp(Ω)}. Here Lp(Ω) denotes the set of all Lebesgue-integrable func-
tions mapping from Ω to a subset of R.

As in the case of the Lebesgue spaces, we are interested in the equivalence classes of
these Lp(Ω, X) spaces, where the equivalence relation is defined as f ∼ g ⇐⇒ B := {x ∈
Ω|f(x) ̸= g(x)} has µ(B) = 0.

1This is defined in [2], namely decomposition of signed measures
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Definition 6.3. For p ∈ [1,∞] the so-called Bochner-Lebesgue p-space are defined as
Lp(Ω, X) := Lp(Ω, X)/∼, equipped with the well-known p-norms

• ∥f∥p := (
∫
Ω∥f(ω)∥

p
Xdµ(ω))1/p for any p < ∞

• ∥f∥∞ := supω∈Ω∥f(ω)∥X .

Note that these spaces are linear spaces, hence they are closed to addition and scalar
multiplication.

For the following lemma we will omit the proof, as it requires further results which will
not be used for other purposes. However, the lemma is very important as it will allow us
to prove a not so surprising theorem.

Lemma 6.4. Consider a sequence of functions fn : Ω → X and f : Ω → X. If fn is
Bochner-measurable for every n ∈ N and fn → f a.e. as n → ∞, then f is Bochner-
measurable.

For the Lebesgue p-spaces, it is a well known result that Lp(Ω) is a Banach space for
all p ∈ [1,∞] and furthermore L2(Ω) is even a Hilbert space. One expects similar results
for the Bochner-Lebesgue p-spaces, hence we will have a look at the following theorem.

Theorem 6.5. The Bochner-Lebesgue p-spaces (Lp(Ω, X), ∥·∥p) are Banach spaces. More-
over, if X is in fact a Hilbert space, then so is (L2(Ω, X), ∥·∥2).

Proof. Recall that a normed space is said to be Banach if and only if it is complete. To
this end, consider a Cauchy sequence fn ∈ Lp(Ω, X). As fn is Cauchy, there exists a sub-
sequence fnk

such that ∥fnk+1
− fnk

∥p < 2−k. Now define the sequence gk := fnk+1
− fnk

in Lp(Ω, X) which clearly has the property
∑∞

k=1∥gk∥p <
∑∞

k=1 2
−k < ∞.

We can further define a sequence of functions mapping from Ω to R such that hk(ω) :=
∥gk(ω)∥X . We can see that hk ∈ Lp(Ω), as ∥hk∥pLpΩ =

∫
Ω∥gk(ω)∥

p
Xdµ(ω) = ∥gk∥pLp(Ω,X) <

∞ ∀p ∈ [1,∞). For p = ∞, this result also trivially holds. This new sequence has the
property that

∑∞
k=1∥hk∥Lp(Ω) =

∑∞
k=1∥gk∥Lp(Ω,X) < ∞. It is well known that the space

Lp(Ω) is complete, hence ∃h ∈ Lp(Ω) such that h =
∑∞

k=1 hk and h(ω) < ∞ a.e.

Therefore we can observe that
∑∞

k=1∥gk(ω)∥X =
∑∞

k=1 hk(ω) = h(ω) < ∞ a.e. As X
is assumed to be a complete normed space, there exists a function g : Ω → X such that
g(ω) =

∑∞
k=1 gk(ω) for almost all ω ∈ Ω. By lemma 6.4, g is Bochner-measurable.

It remains to be shown that g ∈ Lp(Ω, X) and that
∑m

k=1 gk → g as m → ∞ in
the Lp(Ω, X) norm. This is equivalent to showing that

∑∞
k=m gk ∈ Lp(Ω, X) and that∑∞

k=m gk → 0 as m → ∞, since this would mean that g −
∑m

k=1 gk ∈ Lp(Ω, X) and
g −

∑m
k=1 gk → 0 as m → ∞.

• Case 1: p = ∞
As gk ∈ L∞(Ω, X), we have that ∥gk(ω)∥X ≤ ∥gk∥∞ for almost all ω ∈ Ω. Moreover,
we have that

∥
∞∑

k=m

gk(ω)∥X ≤
∞∑

k=m

∥gk(ω)∥X ≤
∞∑

k=m

∥gk∥∞ < ∞

hence
∑∞

k=m gk(ω) ∈ L∞(Ω, X). Moreover, as the series
∑∞

k=1∥gk∥∞ < ∞, its tail
converges i.e.

∑∞
k=m∥gk∥∞ → 0 as m → ∞. Thus, by the squeeze theorem and the

definiteness of the norm ∥·∥X ,
∑∞

k=m gk(ω) → 0 as m → ∞.
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• Case 2: p < ∞
Consider now

∥
∞∑

k=m

gk(ω)∥p = (

∫
Ω
∥

∞∑
k=m

gk(ω)∥pXdµ(ω))1/p = (

∫
Ω
∥ lim
j→∞

j∑
k=m

gk(ω)∥pXdµ(ω))1/p

By the monotone convergence theorem, this implies that

∥
∞∑

k=m

gk(ω)∥p = lim
j→∞

(

∫
Ω
∥

j∑
k=m

gk(ω)∥pXdµ(ω))1/p ≤ lim
j→∞

(

j∑
k=m

∫
Ω
∥gk(ω)∥pXdµ(ω))1/p

= lim
j→∞

j∑
k=m

∥gk∥p =

∞∑
k=m

∥gk∥p

Here, we have use the triangle inequality to swap the integral with the sum. This
inequality, together with the arguments presented in case 1, allows us to conclude
that

∑∞
k=m gk(ω) ∈ Lp(Ω, X) and

∑∞
k=m gk(ω) → 0 as m → ∞.

We will now go back to the original Cauchy sequence fn in Lp(Ω, X). We have con-
structed a subsequence such that fnk

= fn1 +
∑k−1

i=1 gk. Taking the limit as k → ∞, we
can see that the subsequence converges to f := fn1 +

∑∞
i=1 gi ∈ Lp(Ω, X). Hence, we have

obtained a candidate limit for the sequence fn. Let us now finally show that fn indeed
converges to f in Lp(Ω, X).

As fn is Cauchy in Lp(Ω, X), ∀ϵ > 0 ∃N1 ∈ N such that ∥fn − fm∥p < ϵ
2 ,∀n,m > N1.

Moreover, as the subsequence fnk
converges to f , ∀ϵ > 0 ∃N2 ∈ N such that ∥fnk

−f∥p < ϵ
2

∀nk > N2. Therefore, by choosing N = max{N1, N2}, we have that for all n, nk > N
∥fn − f∥p ≤ ∥fn − fnk

∥p + ∥fnk
− f∥p < ϵ. Therefore, fn → f in Lp(Ω, X) as n → ∞.

Hence, Lp(Ω, X) are Banach spaces ∀p ∈ [1,∞]. If X is a Hilbert space, we know that
the norm on X comes from an inner-product. One may easily check that the inner-product
⟨f, g⟩L2(Ω,X) :=

∫
Ω⟨f, g⟩Xdµ(ω) is well-defined and that indeed ⟨f, f⟩1/2

L2(Ω,X)
= ∥f∥L2(Ω,X),

thus L2(Ω, X) is in fact a Hilbert space.

We will now prove a density result which will enable us to formulate a clear definition
of the Bochner integral.

Theorem 6.6. The space of all simple functions defined on Ω and mapping to X is dense
in Lp(Ω, X) for all p ∈ [1,∞].

Proof. Consider a function f ∈ Lp(Ω, X). Then, f is Bochner-measurable and hence, by
definition, there exists a sequence of simple functions fn such that fn → f as n → ∞ a.e.
Moreover, assume that the functions ∥fn(ω)∥X and ∥f(ω)∥X are Lebesgue-measurable for
almost all ω ∈ Ω.

Consider now the sets In := {ω ∈ Ω| the functions ∥fn(ω)∥X , ∥f(ω)∥X) are Lebesgue-
measurable and ∥fn(ω)∥X ≤ 2∥f(ω)∥X} which are measurable sets. Now we can define
the sequence of functions f̃n := fn1In . These functions are simple functions mapping from
Ω to X. We will now show that f̃n → f as n → ∞, which will prove the theorem.
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If f(ω) = 0, then the sequence f̃n(ω) = 0 trivially converges to f(ω). For f(ω) ̸= 0
there exists an N ∈ N large enough such that ∥fn(ω)∥X ≤ 2∥f(ω)∥X for all n > N , since
fn → f as n → ∞ and the norm on X is continuous. Therefore, we can see that ∀ω ∈ Ω
such that f(ω) ̸= 0 we have that ω ∈ Im for some m ∈ N. Therefore, f̃n(ω) = fn(ω) and
the sequence converges point-wise to f(ω). Hence, applying the dominated convergence
theorem, it yields that ∥f̃n − f∥Lp(Ω,X) =

∫
Ω∥f̃n(ω)− f(ω)∥pXdµ(ω) → 0 as n → ∞.

Theorem 6.7. The mapping
∫
Ω dµ defined on the space of simple functions from Ω to X

with values in X which maps f to
∑

x∈X xµ(f−1(x)) is linear and continuous.

Proof. We will start by proving linearity. To this end, consider simple functions f, g and
a constant c ∈ R. Note that

(f + cg)−1(x) = {ω ∈ Ω | f(ω) + cg(ω) = x}

=
⋃
y∈X

(
{ω1 ∈ Ω | f(ω1) = y} ∩ {ω2 ∈ Ω | g(ω2) =

x−y
c }

)
=

⋃
y∈X

f−1(y) ∩ g−1
(x−y

c

)
Hence, we have∫

Ω
(f + cg)dµ =

∑
x∈X

xµ(
⋃
y∈X

f−1(y)∩ g−1(
x− y

c
)) =

∑
x∈X

∑
y∈X

xµ(f−1(y)∩ g−1(
x− y

c
))

Moreover, we may write x = y+cx−y
c , conveniently switch the summation order and obtain∫

Ω
(f+cg)dµ =

∑
y∈X

∑
x∈X

yµ(f−1(y)∩g−1(
x− y

c
))+

∑
x∈X

∑
y∈X

c
x− y

c
µ(f−1(y)∩g−1(

x− y

c
))

Interchanging the measures with the sum in x we obtain∑
x∈X

yµ(f−1(y) ∩ g−1(
x− y

c
)) = yµ(f−1(y) ∩ (

⋃
x∈X

g−1(
x− y

c
))) = yµ(f−1(y))

and similarly,∑
y∈X

x− y

c
µ(f−1(y) ∩ g−1(

x− y

c
)) =

∑
y∈X

czµ(f−1(y) ∩ g−1(z)) = czµ(g−1(z))

Therefore, we have shown that∫
Ω
(f + cg)dµ =

∑
y∈X

yµ(f−1(y)) + c
∑
z∈X

zµ(g−1(z)) =

∫
Ω
fdµ+ c

∫
Ω
gdµ

For continuity, one may use an extended version of theorem 2.3, stating that the same
characterization of continuity holds for functions mapping to arbitrary Banach spaces, so
not just R. To this end, we have

∥
∫
Ω
fdµ∥X = ∥

∑
x∈f(Ω)

xµ(f−1(x))∥X ≤
∑

x∈f(Ω)

∥x∥Xµ(f−1(x)) =

∫
Ω

∑
x∈f(Ω)

∥x∥X1f−1(x)dµ

We recognize the right-hand side as
∫
Ω∥f∥Xdµ, therefore we conclude

∥
∫
Ω
fdµ∥X ≤ ∥f∥L1(Ω,X)

and this proves the statement.
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By the Hahn-Banach extension principle (see [1]), this mapping has a unique continu-
ous linear extension on L1(Ω, X), as it is linear, continuous and defined on a dense subset
of this space. The extension is called the Bochner integral.

Moreover, for a set A in the σ−algebra Σ, we define
∫
A fdµ :=

∫
Ω f1Adµ.

We will now look at a theorem which links the Bochner integral defined via the
"measure-theoretical" approach with the Daniell integral. This result hints at a possible
construction of the Bochner integral by using the method presented in sections 3 and 4,
which may have further benefits, as it was the case of the proof of Riesz-Markov-Kakutani
representation theorem when defining integration the way we did.

Theorem 6.8 (Pettis). A function f : Ω → X is Bochner-measurable if and only if:

• ∀ϕ functional over the space X, it holds that ϕ ◦ f : Ω → R is Bochner-measurable

• f is almost separably-valued

We will not look at the proof of this result, as it requires further definitions and results.
Moreover, we are not interested in the second condition, as it is not of high relevance for
this paper. Nevertheless, we can observe the strong connection with the dual space of X,
space which we have analyzed throughout the paper.

If the reader is interested in further results regarding the Bochner integral, paper [7] is
recommended.

7 Conclusion

Throughout the paper we have seen a new approach to integration that provides a very
natural and elegant proof of the Riesz-Markov-Kakutani representation theorem. Without
this approach, another proof may be provided, but it requires more effort and even more
advanced knowledge in functional analysis.

Even if measure theory is not required, we have made use of various results in order to
properly compare the two approaches to integration. There may be even more applications
where the Daniell approach provides easier proofs or more clear answers. It is up to the
reader to later decide which method of integration best suits certain goals.
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