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Abstract

The study of living-cell sequences at the microscopic level is critical for advancing our understanding of
cell dynamics and interactions. This knowledge is particularly valuable in fields such as disease moni-
toring and drug development, where it can provide insights into phenomena like cancer progression and
the behavior of newly developed treatments. Despite its importance, high-quality 4D living-cell data
remains sparse. Implicit neural representations (INRs) offer a promising solution by enhancing the tem-
poral resolution of the cell shape sequences. However, they often suffer from overfitting to training data.
This thesis investigates the application of optimal transport (OT)-based regularization to enhance 3D
time-lapse INRs. We propose two regularization methods: one minimizes the Sinkhorn distance between
consecutive time points, and the other guides the INR using OT-based interpolations at intermediate
time points. Experiments on synthetic datasets demonstrate that both methods improve temporal inter-
polation, reduce output variability, and enhance visual coherence, particularly in modeling bifurcating
structures. Nevertheless, there remains room for improvement, especially if the data contains abrupt
deformations and high-frequency motion. Additionally, in terms of latent space generalization, the pro-
posed methods did not yield significant benefits. Overall, this work highlights the potential of OT-based
methods to improve temporal consistency in 3D time-lapse INRs, especially in structured or moderately
complex settings.
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Chapter 1

Introduction

Living-cell dynamics and interactions have been an important part of medical research for a long time.
Understanding cellular behavior is particularly valuable in fields such as disease monitoring and drug
development, where it can provide insights into phenomena like cancer progression or the effects of newly
developed treatments [1, 2, 3]. This understanding largely depends on 3D microscopy images, which are
able to capture time-dependent changes in the shapes and interactions of living cells [4, 5].

However, acquiring high-quality 3D time-lapse imaging data of living cells presents substantial chal-
lenges, as high-intensity illumination can damage biological samples or reduce image quality. These
challenges are two-fold. First, the quantity of available cell data is limited, as preparing suitable biologi-
cal samples and acquiring high-resolution images is both time-consuming and resource-intensive. Second,
for the datasets that do exist, the temporal resolution is often insufficient, potentially missing critical
dynamic processes in cellular behavior.

To help mitigate the latter issue, temporal interpolation techniques can be used. More precisely, by
constructing new data at intermediate time points, temporal density can be improved without the need
for additional imaging. Consequently, these methods reduce the need for excessive imaging and therefore
have the potential to enhance overall data quality [6, 7, 8].

Multiple approaches for temporal interpolation of cell data exist. More conventional approaches per-
form interpolation directly in the image domain, this is called video frame interpolation (VFI). This is a
subfield of computer vision that aims to generate intermediate frames between existing ones. For cellular
data, the primary approaches usually involve the use of convolutional neural networks (CNNs) [9, 10, 11,
12, 13]. However, these methods often produce inaccurate predictions or introduce artifacts, particularly
when applied to datasets with complex motion or occlusions [14].

Alternatively, temporal interpolation can be done using shapes instead of images. This relies on
shape representation methods. Traditionally, shape representation methods use discrete forms, such as
3D point clouds [15]. A shape is then described by a collection of 3D points in space, meaning that the
topology of a shape can not be derived. Another approach is to train 2D manifolds [16], but this often
results in shapes that are not closed and requires further techniques like a spherical parameterization [17]
to solve this problem. Furthermore, both approaches require a large amount of memory and computation
power for high resolution representations.

More recently, implicit neural representations (INRs) have been used to represent shapes in a resolution-
independent way, by fitting a continuous function that describes the shape. Examples include, signed
distance functions (SDF) [18], where the value of the function is equal to the shortest distance to the
shape’s surface and occupancy functions [19] where the value of the function is simply an indicator of
whether a point is inside or outside of the shape. By training a neural network to approximate such
a function, you get a shape representation that can be evaluated at any point in space, and uses little
storage (just the network weights) compared to for example mesh-based methods where a single shape
is stored by a large number of small surfaces.
Furthermore, an INR can represent multiple shapes at once by conditioning the neural network on an
initially randomized vector called a ”latent code”. Each shape in the ground truth dataset is then rep-
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resented by a distinct latent code and the neural network can be interpreted to describe a distribution
of shapes. Taking this idea even further, instead of having a function describe a single shape, you can
make the function time-dependent. In that case each latent code describes a sequence of shapes over
time, examples include [20, 21].

Using an INR to represent a cell-shape sequence, temporal interpolation can be done at arbitrary
resolution by just evaluating the learned function at the chosen point in time [22]. Therefore, accurate
INRs of cell shapes have the potential to artificially increase the temporal resolution of microscopy data
without the need for additional imaging. However, due to the limited number of time frames that cell
shape sequence datasets usually have, the trained INR is prone to exhibit bias towards these time frames.
This is problematic when we keep in mind that the goal is to create an accurate model of the cell at all
points in time.

The usual approach to deal with bias in machine learning and deep learning is by introducing regular-
ization to the model. Temporal regularization methods for INRs feature temporal total variation loss [23]
or penalizing the temporal derivatives [24, 25]. However, these approaches lack structural depth. They
treat time as a flat axis and ignore the underlying geometry of the data, often penalizing meaningful or
structured transformations. As a result, they offer limited capacity regularize temporal behavior in a
principled way.

To address this, more structured methods have been proposed. A popular approach involves model-
ing the temporal evolution of shapes through learned 3D deformation fields [21, 26, 27]. These methods
represent shape changes over time as continuous spatial transformations, enabling smooth and coherent
motion modeling. However, they often require careful regularization to avoid implausible deformations,
and may struggle with shape sequences involving topological changes or occlusions.

Another principled approach is to use optimal transport (OT) as a reference for temporal interpola-
tion. OT provides a mathematically grounded way to define smooth transitions between complex shapes
by treating them as distributions and computing minimal-cost flows between them. This perspective
has proven effective in a variety of shape analysis and interpolation contexts, offering geodesic paths
through shape space that are both structurally consistent and temporally smooth [28, 29, 30, 31]. These
properties make OT a promising tool for temporal regularization in neural representations of 3D shapes,
particularly when available time frames are limited. By encouraging smooth, energy-efficient evolution
between observed shapes, OT-based regularization could help mitigate overfitting to discrete time points
and improve the continuity of the learned temporal dynamics.
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1.1 Contributions

In this thesis, we investigate how optimal transport based regularization can be applied to implicit neural
representations that represent living-cell sequences. The contributions of this thesis are as follows:

• We introduce two novel regularization methods based on OT theory to improve INRs for modeling
3D time-lapse living-cell sequences. The first method minimizes the Sinkhorn distance between con-
secutive time steps, while the second uses OT-based predictions at intermediate points to promote
temporal consistency.

• Temporal interpolation tasks reveal that the proposed regularization methods improve performance
at unseen time steps and reduce output variability on the synthetic datasets. In particular, the
model offers more sensible interpolation in bifurcating structures.

• We analyze the impact of OT-based regularization on generalization of the latent space by testing
the model’s ability to reconstruct unseen shape sequences via latent code optimization. In this case
the OT-regularization did not significantly improve performance.

• This thesis demonstrates the potential of OT-based regularization methods to enforce temporal
coherence and produce more natural and biologically plausible visualizations in 3D time-lapse
INRs. While limitations remain in complex real-world data, our findings provide a principled basis
for future work on regularization strategies for dynamic implicit representations.

To our knowledge, this thesis presents the first optimal transport based temporal regularization of im-
plicit neural representations.

1.2 Thesis Outline

This thesis is organized as follows: Chapter 2 covers relevant background theory of shape representation
methods and optimal transport, Chapter 3 describes how we implement the optimal transport regu-
larization in practice, Chapter 4 displays experiments performed to compare the used methods to the
unregularized case, Chapter 5 concludes the findings of this research and finally Chapter 6 discusses
limitations of the methods and offer recommendations for further research.
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Chapter 2

Background

This chapter provides theoretical background information on implicit neural representations of shapes
and optimal transport. A solid understanding of implicit neural representations (INRs) is important for
following the technical details in this thesis, as they form the core of the methods discussed. In contrast,
the concepts from optimal transport are presented at a higher level, as the detailed mathematics are less
critical to the primary contributions.

2.1 Implicit Neural Representations for 3D Shape Learning

Shapes can be implicitly represented using signed distance functions (SDFs), continuous functions that
measure the distance of any point in space to the surface of the shape it represents, with a sign indicating
whether the point is inside or outside of the shape. The actual shape is represented by the zero level set
of such a function. As an example, you can think of a circle with unit radius. The SDF of this shape is
given in Figure 2.1.

Figure 2.1: The zero level set of the function SDF(x, y) =
√
x2 + y2 − 1 is a unit circle with its center

at the origin.

In this example, the value of the SDF depends only on the location in 2D space. This concept can easily
be extended to 3D shapes, which are in turn represented by the zero-level set of a function that takes
three input coordinates, for example SDF(x, y, z) =

√
x2 + y2 + z2 − 1, for which the zero level set is a

unit sphere.
Taking this idea another step further, we can introduce a fourth input to the SDF, representing time.
Consequently, we have a single function that represents a 3D object, which changes in shape over time.
As a straightforward example, imagine a sphere that grows from unit radius at t = 0 to having a radius
of 2 at t = 1 (see Figure 2.2). The SDF representing this object could look something like this:

SDF(x, y, z, t) =
√
x2 + y2 + z2 − (1 + t), 0 ≤ t ≤ 1. (2.1)
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 2.2: Cross-sectional slices of a 3D time-lapse SDF, described by equation 2.1. It represents a
sphere growing in radius over time.

Thus, we can use an SDF with four input variables to represent one shape, evolving in time. Now
we extend the function once more, such that we can use a single function to represent a whole family of
shape sequences. We do this by associating each shape sequence Si with a latent vector zi. The latent
vector implicitly describes details about the sequence. Let us look at an example once more. Suppose
we have two sequences:

• S1 is a sphere centered at (0, 1, 0). At t = 0 its radius is 1 and over time it expands, such that it
has a radius of 3

2 at t = 1.

• S2 is a sphere centered at (0,−1, 0). At t = 0 its radius is 1 and over time it shrinks, such that it
has a radius of 1

2 at t = 1.

These two spheres can be represented by letting the first element of z, denoted by z(1), control the
y-coordinate of the center of the sphere. The growth (or shrinkage) of the radius over time is controlled
by z(2). When we include the latent code we then get the following function:

SDF(x, t, z) =
√
(x− z(1))2 + y2 + z2 − (1 + z(2)t), 0 ≤ t ≤ 1, (2.2)

where shape sequences S1 and S2 are represented by z1 = [1 1
2 ]

T and z2 = [−1 − 1
2 ]

T respectively.

Equation 2.2 is capable of representing more than just S1 and S2, any other latent code represents
another SDF that can be described in this way. Together, all of these latent vectors form the latent
space (see Figure 2.3). This latent space allows for meaningful interpolation between any two shape
sequences by interpolating their corresponding latent vectors and then applying the resulting vector in
equation 2.2.

z(1)

z(2)

(1, 0.5)(−1, 0.5)

(−1,−0.5) (1,−0.5)

Figure 2.3: Latent space associated with equation 2.2, four points are highlighted and the associated
SDF sequence is shown.
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Although we have shown that a family of shape sequences can be represented by a single function, in
general, finding such a function is infeasible. However, deep neural networks can be used to approximate
such a function by learning from ground truth data. A neural network that implicitly represents a shape
or scene is called an implicit neural representation (INR).

The earliest implementations of INR were done by Mescheder et al. [19], using occupancy functions
and Park et al. [18] using SDFs. On their own, these methods often struggle to capture high frequency
details of shapes. In order to deal with this low-frequency bias, usually one of two approaches is taken.
With positional encoding, the input coordinates are mapped to a higher dimensional space using sinu-
soidal functions [32]. With SIREN, the typical ReLU activation functions are replaced by periodic ones
[33]. The exact architecture that we use in this thesis is explained in section 3.1.

As mentioned before, instead of using SDFs for shape representation, one could use occupancy func-
tions. These are functions that simply take the value 1 whenever a coordinate is inside the shape, and
0 whenever it is outside. This may seem like a more straightforward idea, but there are a couple of
advantages to using SDFs:

• SDFs have more regular gradients, the spatial gradient of an SDF is 1 everywhere in the domain,
whereas the gradients of an occupancy function are very small at points far away from the shapes’
boundary and very large at points close to the boundary due to the sharp change in the function
value. Regular gradients are particularly desirable when training a neural network to approximate
this function.

• SDFs capture richer geometric information, improving the network’s ability to learn complex, high-
frequency shape details.

• SDFs predict an exact surface boundary, wherever the function is equal to zero, whereas occupancy
functions have to use some threshold value that is to be determined heuristically.

Thus, SDFs offer clear advantages, even though occupancy functions are more intuitive representations
considering ground truth segmentation masks of cell sequences are often in the occupancy function
format.
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2.2 Optimal Transport

This section provides a brief overview of optimal transport theory, focusing on the concepts most relevant
to the developments in this thesis. The material is adapted in part from [34], which also offers a more
thorough discussion of the subject.

Optimal transport is a mathematical framework that describes how two distinct distributions in space
can be optimally transformed into one another, based on a certain cost function. As an example, we can
imagine a pile of sand and a hole with the same volume as the pile. We want to move the sand such that
the hole is perfectly filled. In this case, optimal transport describes the most efficient way to accomplish
this. In particular, it describes how every individual grain of sand should be moved such that the total
effort of moving all sand is minimized. The minimal total effort required to do this task is called the
Wasserstein distance.

We mathematically describe the Wasserstein distance using the Kantorovich formulation. Suppose
we have two distributions µ and ν in the same space X, where X is the space of probability distributions
over domain Ω. A transport plan γ is a distribution on Ω×Ω that describes how mass is moved from µ to
ν. Let us denote the set of all valid transport plans by T , which ensure that all mass from µ is moved to ν:

γ(A× Ω) = µ(A)

γ(Ω×B) = ν(B)

for all A,B ⊆ X

Now suppose we have a cost function c(x,y) which represents the cost of moving a unit of mass from
x to y. Then, an optimal transport map would be one where the cost of moving all mass from µ to
ν is minimal. The total cost of this optimal transport map between µ and ν is called the Wasserstein
distance and is mathematically defined by:

W(µ, ν) = min
γ∈T

∫
Ω×Ω

c(x,y)dγ(x,y). (2.3)

The cost function c(x, y) is often chosen to be the p-norm. In this case, we get:

Wp(µ, ν) = min
γ∈T

∫
Ω×Ω

||x− y||pdγ(x,y). (2.4)

The Wasserstein distance provides a measure of the similarity between two distributions. However,
for arbitrary continuous distributions, a closed-form solution for this distance typically does not exist.
Instead, continuous distributions can be approximated by discrete distributions. This is done by creating
a regular grid that spans over the domain, evaluating the continuous distribution at each point on the grid
and placing a point mass at each grid point proportional to the value. Then, the values are normalized
such that the total mass is equal to the total mass of the continuous distribution. Doing this for both
distributions still yields a meaningful measure and transforms the problem into a linear program that
can be solved efficiently.

The space X, equipped with Wp is a metric space. Additionally, this metric space is proven to be a
geodesic space, which has useful geometrical properties. In a geodesic space, we can interpolate between
two points by minimizing the average metric distance from each point to a certain midpoint. When the
space consists of distributions, this midpoint distribution provides a meaningful interpolation between
the two distributions. More precisely, given distributions µ0 and µ1, their midpoint interpolation in the
Wasserstein space is given by:

µbar = arg min
µ∈X

(Wp(µ, µ0) +Wp(µ, µ1)) . (2.5)

In other words, we interpolate by taking the midpoint of a geodesic curve connecting distribution µ0

and µ1. Instead of finding just the midpoint, we can find other points along the curve as well by adding
weights for each distribution:

µbar = arg min
µ∈X

(λWp(µ, µ0) + (1− λ)Wp(µ, µ1)) . (2.6)
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In a similar way, we can find the barycenter between n distributions, weighing each distribution accord-
ingly:

µbar = arg min
µ∈X

n∑
i=1

λiWp(µ, µi). (2.7)

We demonstrate that this interpolation in the Wasserstein space provides a more meaningful interpo-
lation in the context of shapes than an interpolation in the Euclidean space. Given a circular distribution
in the left of the domain and a circular distribution on the right of the domain, sensible interpolations
would show the distribution gradually traveling from left to right, not disappearing and reappearing on
the other side (see Figure 2.4).

Figure 2.4: Comparison between interpolations of two circular probability distributions in the Wasserstein
space (top row) and the Euclidean space (bottom row).

In practice, computing the Wasserstein distance in high-dimensional settings can be computationally
expensive. To address this, the Sinkhorn algorithm has become a widely adopted approximation tech-
nique. Originally introduced by Sinkhorn and Knopp [35] in the context of matrix scaling and adapted to
optimal transport by Cuturi [36], the method introduces an entropic regularization term controlled by a
parameter ϵ, often referred to as the blur parameter. This parameter smooths the transport problem and
enables efficient iterative updates of a transport matrix. Smaller values of ϵ lead to solutions closer to
the true Wasserstein distance but require more iterations, while larger values result in faster convergence
at the cost of increased smoothing. This approach provides a fast and scalable approximation to the
Wasserstein distance. In this thesis, we use the GeomLoss library [37], which offers highly optimized and
GPU-accelerated implementations of the Sinkhorn algorithm.
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Chapter 3

Methods

This chapter first introduces the baseline model on which this research is based. Then, it presents two
ways of incorporating regularization optimal transport theory.

3.1 Implicit Neural Representations for 3D Shape Sequences

The ultimate goal is to create a model that accurately describes deforming shapes over time. Given N
shapes, this can be represented as approaching a family of signed distance functions Si

t : Ω → R, with
spatial domain Ω ⊂ R3 and temporal domain τ = [0, 1] for i = 1, ..., N . This can be expressed as the
following minimization problem:

min
{fi(x,t)}i=1,...,N

N∑
i=1

∫
τ

∫
Ω

|Si
t(x)− fi(x, t)|dxdt, (3.1)

A practical implementation of this is presented by Wiesner et al. [22]. In particular, Si
t is approxi-

mated using a multilayer perceptron (MLP) fθ(x, t, zi), conditioned on a latent code zi which encodes
shape characteristics. In general, data is only available at some discrete time points T = {t1, ..., tM} ⊂ τ .
Additionally, the integral over the spatial domain is approximated by taking a sample of points X =
{x1, ...,xK} ⊂ Ω. The loss function associated with reconstruction of the original shape at a certain
location x and time t is then given by:

Lrecon(Si
t(x), fθ(x, t, zi)) = |Si

t(x)− fθ(x, t, zi)|. (3.2)

To encourage a smooth latent space, regularization of the latent code is included, with parameter σ:

Lcode(zi, σ) =
1

σ2
||zi||22. (3.3)

Combining the reconstruction loss and the code regularization loss, the baseline model is trained using
the following loss function:

Lsimple =

N∑
i=1

(
Lcode(zi, σ) +

∑
t∈T

∑
x∈X

Lrecon(Si
t(x), fθ(x, t, zi))

)
. (3.4)

To investigate whether the theory from optimal transport can be applied to regularize shape sequence
INRs, we introduce an additional loss term that describes how well the model conforms to optimal
transport principles. There are several ways to implement this but we limit our focus on two methods.
The first method uses the Sinkhorn distance between any two sequential shapes explicitly. The second
method uses an OT-based estimation of what the shape should look like at intermediate time points and
then measures the difference between this estimation and the model prediction.
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3.2 Sinkhorn-based Regularization

The intuition behind this approach is that a cell’s shape typically evolves gradually over time, so its form
at one moment should be similar to its form shortly afterward. To capture this temporal continuity,
we require a meaningful way to quantify differences between 3D shapes. The Wasserstein distance is
particularly suitable in this context, as it measures the minimal amount of ”work” needed to transform
one shape into another. This makes it sensitive not only to where mass is located, but also to how far
it must move, reflecting gradual deformations in shape. By using this distance to define a loss function,
we can encourage temporal consistency by penalizing large shape changes over short time intervals.

However, to use the Wasserstein distance, the shapes need to be represented as probability distribu-
tions. To make the SDF compatible with the Wasserstein distance, we need to transform it into a valid
probability distribution. This can be done in three steps:

1. For all points with fθ > 0, we set the value to zero. These points are outside the shape and should
not contribute to the distribution.

2. For points with fθ ≤ 0, we assign a constant positive value. This creates a uniform ”mass” over
the shape’s interior.

3. We then scale the function so that the total integral sums to one, resulting in a valid probability
distribution.

This transformation can be implemented using a reversed step function centered at fθ = 0. Specifi-
cally, the function outputs a positive constant when fθ ≤ 0 and zero otherwise.

However, to incorporate the Wasserstein distance into a loss function, it must be computed in a
differentiable manner. Since, step functions are not differentiable, a smooth approximation of the reversed
step function is required. Several differentiable alternatives exist, among which the reversed sigmoid
function

σ−
β (fθ) =

1

1 + eβfθ
(3.5)

stands out as the most computationally efficient (see Figure 3.1). Using this function and normalizing
afterwards, we can map SDFs to probability distributions.

Figure 3.1: The reversed sigmoid function that we use as a differentiable approximation of the reversed
step function. The parameter β controls the steepness of the function around fθ = 0

To encourage efficient mass transport across the entire shape sequence, we evaluate the model at
regular time intervals and calculate the Wasserstein distance between any pair of consecutive shapes.
Assuming we sample M points in time for each shape, we then get the following loss term:

LWass(fθ(x, t, z)) =
1

N

N∑
i=1

M−1∑
j=1

Wp

(
σ−
β (fθ(x, tj , zi))∫

Ω
σ−
β (fθ(x, tj , zi))dx

,
σ−
β (fθ(x, tj+1, zi))∫

Ω
σ−
β (fθ(x, tj+1, zi))dx

)
, (3.6)
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where Wp(·, ·) is the Wasserstein distance, equipped with the p-norm distance measure.
While in theory we have access to fθ at an unlimited spatial resolution, we calculate the Wasserstein
distance on a discrete approximation for computational reasons. For this, we approximate the spatially
continuous function fθ(x, t, z) by evaluating it on a regular 3D grid, resulting in a discrete function

denoted by f̂θ(x, t, z). Even then, calculating the Wasserstein distance is often computationally infeasible
and thus we approximate it using the Sinkhorn algorithm. Hence, the loss term that we use is finally
given by:

LSink(f̂θ(x, t, z)) =
1

N

N∑
i=1

M−1∑
j=1

Sp,ϵ

(
σ−
β (f̂θ(x, tj , zi))∑

Ω σ−
β (f̂θ(x, tj , zi))

,
σ−
β (f̂θ(x, tj+1, zi))∑

Ω σ−
β (f̂θ(x, tj+1, zi))

)
, (3.7)

where Sp,ϵ(·, ·) is the Sinkhorn distance, equipped with the p-norm distance measure and blur parameter ϵ.

During training, LSink is calculated each batch and added to the loss function with hyperparameter
α to tune the importance given to the optimal transport loss. The ’Sinkhorn regularized’ loss function
is then given by:

LSR = Lsimple + αLSink. (3.8)

In practice, applying the Sinkhorn regularized loss from the start of training is inefficient. Because
the autodecoder is initialized with identical values across all spatiotemporal locations, the Sinkhorn
distance between consecutive time steps is initially low. As the model begins to fit the ground truth
data, the distance increases—causing the Sinkhorn loss to rise and potentially slowing convergence. This
phenomenon essentially slows down the convergence of the model towards the correct solution. Therefore,
instead of using Sinkhorn regularization from the start of training, we set α = 0 for the first 200 training
epochs. Then we use the Sinkhorn loss from the 200th epoch onward to guide the model towards a
solution that minimizes transport.

3.3 Barycentric Regularization

This method is based on the idea that, given a shape at two consecutive time points, the intermediate
shape should lie close to their corresponding barycenter. This method aims to improve the capability of
the model to make sensible predictions at intermediate time points, even when the ground truth data
includes two consecutive time points where the shape suddenly changes.

3.3.1 Computing Barycenters

We compute barycenters using a multiscale convolutional Sinkhorn algorithm, where an exponentially
decaying blur parameter is used to promote convergence. Since the algorithm operates on nonnegative
functions, the SDFs must first be converted to the occupancy function domain. This is achieved using
a reversed step function, which maps all nonnegative values to zero (outside the shape) and negative
values to one (inside the shape).

The barycenters are then computed in this binary occupancy representation. To convert the result
back to the SDF domain, we compute the difference between the distance to the nearest point outside the
shape and the distance to the nearest point inside. The result is an SDF that represents the barycenter
in the original domain.

Importantly, because these barycenters depend solely on the ground truth data, they can be precom-
puted and stored prior to training, eliminating runtime computation overhead. In the next section we
denote the stored barycenters of shape i by fbary(x, t, zi).
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3.3.2 Regularization via Barycenters

To ensure that the model predictions are similar to the barycenters over the entire time domain, we
compute barycenters between any two consecutive ground truth shapes and compare to the model’s
prediction at the corresponding points in time (see Figure 3.2). The comparison is made by evaluating
the model on a regular 3D grid and comparing the predicted values to the barycenter values using an L1
loss. If you compute K barycenters between every two consecutive ground truth points, the loss term is
as follows:

Lbary(f̂θ(x, t, z)) =

N∑
i=1

M−1∑
j=1

K∑
k=1

||f̂θ(x, tj +
k

K + 1
(tj+1 − tj), zi)− f̂bary(x, tj +

k

K + 1
(tj+1 − tj), zi)||1,

(3.9)

where f̂bary is the barycenter SDF evaluated on the 3D grid.

...

...

...

...

λ = 0.25 λ = 0.5 λ = 0.75

t = 0.1 t = 0.125 t = 0.15 t = 0.175 t = 0.2

Ground truth

Barycenters

Model predictions

+ +L1 loss L1 loss L1 loss

Figure 3.2: Visualization of the barycenter regularization method. Between any two ground truth
frames, a number of barycenters is generated before training (in this case K = 3). During training,
Lbary is calculated by summing the L1 loss between each barycenter and the model’s prediction at the
corresponding point in time.

Once more, we introduce a hyperparameter γ to regulate how much influence the barycenter loss
should have on the total training loss. The barycenter regularized loss function is then given by:

LBR = Lsimple + γLbary. (3.10)
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Chapter 4

Experiments

In this chapter, we evaluate the effectiveness of the regularization methods introduced previously in
guiding the neural network’s learning process. The goal of this research is to reduce the bias of the
baseline model towards the provided dataset by introducing optimal transport regularization. We begin
by evaluating temporal interpolation exploration through an academic problem, with a known solution.
Then we investigate the effect of the regularization on modeling bifurcations, and finally we perform
experiments on real-world cellular data. Then we investigate the effect of the regularization on the la-
tent space as a whole. All experiments were conducted over 1000 training epochs using a Tesla L40 GPU.

For the Sinkhorn regularization, we evaluated the decoder on an 11x11x11 spatial grid at 30 time
points. These values were used to calculate the Sinkhorn loss in equation 3.7. We used p = 2 such
that the distance measure is the L2 norm, and we used a blur parameter of ϵ = 0.05. The parameter
controlling the steepness of the reversed sigmoid function was set to β = 8, such that the function
was sufficiently steep, without resulting in exploding gradients. The factor controlling the amount the
Sinkhorn loss contributes to the total loss was set to α = 0.1.

For the barycenter regularization, we subsampled each barycenter by a factor 2, in order to reduce
memory requirements. Unless stated otherwise, we generated one barycenter between each set of con-
secutive frames in the ground truth dataset. The factor controlling the amount the barycenter loss
contributes to the total loss was set to γ = 0.5.

4.1 Temporal Interpolation

4.1.1 Expanding and Shrinking Spheres

To assess whether the proposed regularization methods effectively reduce the model’s bias toward the
training dataset, we conduct a temporal interpolation experiment using a synthetic academic example
with SDFs. This controlled setting allows for precise, quantitative evaluation.

The ground truth SDF used in this experiment is introduced in Section 2.1 and defined by Equa-
tion 2.2. Specifically, we generate four sequences:

• A sphere centered at (0, 1, 0), starting at radius 1 at t = 0 and expanding to a radius of 3
2 at t = 1.

• A sphere centered at (0, 1, 0), starting at radius 1 at t = 0 and shrinking to a radius of 1
2 at t = 1.

• A sphere centered at (0,−1, 0), starting at radius 1 at t = 0 and expanding to a radius of 3
2 at

t = 1.

• A sphere centered at (0,−1, 0), starting at radius 1 at t = 0 and shrinking to a radius of 1
2 at t = 1.

We train the model with and without optimal transport-based regularization, using ground truth data
sampled from the known SDFs. The model is then evaluated at intermediate time points not included
in the training set. Its predictions are compared to the ground truth SDF at those interpolated times,
using the Hausdorff distance, Chamfer distance, and Dice score as evaluation metrics. The Chamfer and
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Hausdorff distances are calculated on a surface point cloud, which we extract using the Marching Cubes
algorithm [38]. The Dice score is calculated using binary voxel volumes, formed by combining all voxels
with a negative SDF value. While the Chamfer and Hausdorff distance should be as low as possible, the
Dice score should be as close to 1 as possible.

We conduct the experiment under two different training conditions to evaluate the influence of tem-
poral supervision:

• Dense Supervision: The model is trained using five time points per sequence, including the start
and end frames.

• Sparse Supervision: The model is trained using only the start and end points of each sequence.

This setup allows us to assess the model’s ability to generalize and interpolate temporal dynamics under
varying degrees of temporal guidance. The results are shown in Figure 4.1.

Figure 4.1: Quantitative evaluation of temporal interpolation on the expanding and shrinking spheres
dataset. Results are shown for two training conditions: sparse supervision (top row) and dense supervi-
sion (bottom row). The lines represent the mean score over the four sequences, and the areas surrounding
the line are their respective interquartile ranges (IQRs), provided as a measure of variability. The time
points at which ground truth is available to the model are marked with white dots.

In the sparse supervision setting, the baseline model performs well at the first and last time steps,
where data is available. However, at the intermediate time points, the performance worsens noticeably,
especially as the model moves further away from the supervised steps. In addition, the interquartile
range (IQR) is quite wide, showing that the quality of interpolation strongly depends on which training
sequence the model is working with. These two issues indicate a bias in the model, which our regular-
ization methods are designed to address.

With Sinkhorn regularization, the average performance is roughly similar to the unregularized model,
and in terms of Hausdorff distance, results are slightly worse. However, the variability across all three
metrics is clearly reduced, suggesting that this method helps to some extent in reducing the model’s bias
toward specific sequences.
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Finally, barycenter regularization leads to clear improvements in both Chamfer distance and Dice
score. While the model still performs best at the time steps where data was provided, the overall average
results are better, and the variation in performance is much smaller compared to the unregularized case.

In the dense supervision setting, the bias towards the data is less present, even in the unregularized
case. Still, the results of both regularized models is significantly better than the baseline, with the
Sinkhorn regularization slightly outperforming the barycenter regularization in this case.

Overall, the regularization methods appear to both improve performance and reduce variability,
suggesting that they help mitigate bias in the model. Sinkhorn regularization seems to be more effective
in densely supervised settings, whereas barycenter regularization shows benefits in both sparse and dense
supervision.

A possible explanation for this difference is as follows: Barycenter regularization introduces explicit
structural targets, in the form of intermediate shapes, which provide the model with additional guid-
ance, independent of how much supervision is available. In contrast, Sinkhorn regularization encourages
smoother transitions between consecutive time steps by minimizing the optimal transport loss. This ap-
proach is more effective when the baseline model already captures the correct structure to some extent,
as it refines rather than redefines the model’s trajectory.

4.1.2 Bifurcation

The baseline model, trained without any form of regularization, performs poorly in scenarios involving
shape bifurcation. To find out if regularization can mitigate this limitation, we constructed a benchmark
problem in which a single sphere splits into two identical spheres. The signed distance function (SDF)
for this setup is defined using the smooth union of two spheres, each translating at a constant speed of
3
2 units per time step to the left and right, respectively. The SDFs of the two moving spheres are given
by:

c1 =
√
(x− 3

2 t)
2 + y2 + z2 − 1,

c2 =
√
(x+ 3

2 t)
2 + y2 + z2 − 1.

To prevent sharp edges and large gradients in the combined SDF, we apply exponential smoothing
following the method described in [39]. The blended SDF is defined as:

SDF (x, y, z, t) = −1

k
ln(e−kc1 + e−kc2),

where k is a blending parameter that controls the smoothness of the transition. In our experiments, we
set k = 5 to obtain a natural-looking bifurcation. The corresponding surfaces of this synthetic dataset
are shown in Figure 4.3 (top row).

Once again, we train the model with and without regularization under different levels of supervision.
The evaluation metrics are given in Figure 4.2 and, for the sparse supervision case, surface representations
of the predicted shapes are given for a number of time points in Figure 4.3.

Under sparse supervision, the baseline model again demonstrates a satisfactory fit at time points near
the beginning and end of the sequence, where ground truth data are available. At intermediate time
points, particularly around t = 0.5, performance on all three evaluation metrics declines markedly. This
observation is supported by the surface representations: the prediction at t = 0.5 comprises three shapes
of varying sizes, asymmetrically distributed across the spatial domain.

When employing Sinkhorn regularization, the most prominent improvement is observed in the Cham-
fer distance and Dice score around t = 0.5, while the Hausdorff distance remains largely unchanged.
Examination of the surface representations reveals that the bifurcation is modeled in a more natural and
symmetrical manner compared to the baseline.

With barycenter regularization, using three barycenters in this case to provide additional structure,
the metric scores are similar to those obtained using Sinkhorn regularization. However, this approach
performs less effectively at earlier time points and better at later ones. The corresponding surface repre-
sentations also exhibit increased symmetry and a more natural morphology relative to the baseline model.
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Figure 4.2: Quantitative evaluation of temporal interpolation of the bifurcation dataset. Results are
shown for two training conditions: sparse supervision (top row) and dense supervision (bottom row).
The time points at which ground truth is available to the model are marked with white dots.

Comparison of the predicted surface representations with the ground truth reveals that all three
methods anticipate the bifurcation to occur earlier in time than it does in the reference data. Since the
model is provided only with the initial and final frames, this discrepancy should not be interpreted as
an objective error, but rather as an alternative modeling of the bifurcation process. Nonetheless, the
visualizations suggest that both regularization methods yield predictions that are more symmetrical and
natural, while still aligning with the available ground truth.

Under dense supervision, the baseline model achieves strong performance, and bias towards ground
truth seems no longer present. In this setting, the regularization methods do not appear to confer addi-
tional benefits, and may even slightly degrade overall performance.

4.1.3 C. Elegans Cells

Having demonstrated that regularization methods can improve temporal interpolation performance in
a controlled academic setting, we now investigate whether these benefits extend to real-world biological
data.

For this experiment, we utilize two C. elegans cell sequences, each comprising 30 time points. At
each time point, an SDF is provided at a resolution of 256×256×256 [40]. This particular dataset was
selected because it is used as a training sequence in the baseline method’s original paper and features a
clear bifurcation approximately midway through the sequence, offering an opportunity to validate if the
regularization methods improve the behavior around bifurcations for real-world data as well.

To test the interpolation ability of the model with and without regularization we use a subset of
time frames from the original dataset for training and evaluate on all 30 time points. Since this dataset
has more radical changes between consecutive frames, we choose to use a higher number of frames for
training than for the previous two experiments. More precisely, under sparse supervision we use every
fourth frame of each sequence, and under dense supervision, we retain every second frame for training.
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Ground Truth

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Baseline model

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Sinkhorn Regularization

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Barycenter Regularization

Figure 4.3: Surface representations of the results from training on the bifurcation dataset under sparse
supervision with and without our regularization methods. The blue shapes indicate time points where
ground truth data is available to the model.
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We observe from the metric scores in Figure 4.4 that the model’s performance drops significantly
around the bifurcation point at t = 14, even under dense supervision. The proposed regularization
methods do not lead to improvements in these scores. Among them, barycenter regularization produces
visually smoother transitions and reduces the formation of artifacts, as shown in Figure 4.5. However,
this comes at the cost of reduced fidelity to the ground truth, indicating a trade-off between visual
smoothness and accuracy.

A likely explanation for this behavior lies in the nature of the dataset. For most of the sequence,
consecutive frames show minimal shape variation. Then, between t = 12 and t = 13, the shape abruptly
shrinks to nearly half its size. Following this, between t = 14 and t = 15, the cell suddenly bifurcates,
without any gradual transition or intermediate signal. This means that the SDF values around the center
of the domain are swapped from negative to positive, while the opposite happens at the location of the
two new cell shapes. These sudden changes require the SDF to exhibit sharp gradients within just a
small subset of its temporal domain, which poses a challenge for the regularization methods used.

Figure 4.4: Quantitative evaluation of temporal interpolation of the C. Elegans dataset under sparse and
dense supervision. The dataset features a bifurcation between time frames 14 and 15.
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t = 12 t = 13 t = 14 t = 15 t = 16

Ground Truth

t = 12 t = 13 t = 14 t = 15 t = 16

Baseline Model

t = 12 t = 13 t = 14 t = 15 t = 16

Sinkhorn Regularization

t = 12 t = 13 t = 14 t = 15 t = 16

Barycenter Regularization

Figure 4.5: Surface representations of the results from training on the C. Elegans dataset with and
without our regularization methods. This was done under both sparse and dense supervision (first and
second row of each method), the blue shapes indicate time points where ground truth data is available
to the model. 21



4.2 Latent Space Exploration

Regularization methods are generally introduced to improve a model’s ability to generalize beyond the
training data. In this work, however, the proposed methods are specifically designed to promote gener-
alization in the temporal domain, rather than in the latent space. To explore how the model behaves
outside of its intended scope, we conduct an additional experiment that investigates generalization in the
latent space. While not the primary target of our regularization strategies, this analysis offers insight
into the extent and nature of the model’s capacity to adapt to unseen latent codes.

This experiment revisits the setup introduced in Section 4.1.1, involving expanding and shrinking
spheres. Here, each training sequence is generated using a ground-truth latent code zgen ∈ R2, which
parameterizes Equation 2.2. Four such sequences, each with a different zgen, are used to train the au-
todecoder.

The autodecoder itself assigns a learned latent code zmodel ∈ Rd to each input sequence, where d is
the dimension of the model’s internal latent space (in this case d = 64). These zmodel codes are optimized
during training to minimize reconstruction loss for their respective sequences.

To test generalization, we generate new sequences using unseen values of zgen drawn from the same
distribution. For each such sequence we determine whether a corresponding zmodel exists, that allows
the trained model to accurately reconstruct the sequence, without retraining the network. If such a
zmodel can be found for any new zgen, this would suggest that the latent space learned by the model ef-
fectively captures the entire family of sequences, indicating that the model has good generalization ability.

The experiment is setup as follows: we construct a grid of 25 ground truth latent codes (see Figure
4.6) and generate their corresponding sequences using equation 2.2. For each sequence, we optimize the
corresponding latent code using the Adam optimizer [41] with learning rate 0.005 for 400 epochs. The
loss function that we use is a simple L1 loss between the ground truth SDF and the SDF generated by
the model when using the current latent code over 10 different points in time. Each latent code has 64
elements and is initialized according to a Normal distribution N (0, 0.012).

Figure 4.6: The 25 latent codes used for generating sequences are sampled on a grid. The grid is created
in such a way that the spheres remain completely inside the autodecoder’s spatial domain [−3, 3]3 at any
point in time.
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We assess the generalizability of the model by computing the same evaluation metrics used in the
temporal interpolation experiment, allowing for a direct comparison of performance. A model with good
generalizability should exhibit consistent performance across all zgen within the domain. The corre-
sponding results are presented in Figure 4.7.

Figure 4.7: Qualitative evaluation of reconstructions for 25 sequences excluded from the training set.
The model was trained under sparse supervision (top row) and dense supervision (bottom row). The
solid lines denote the mean metric values across the sequences, while the shaded regions indicate the
IQRs, providing a measure of variability.

Across most time steps, there is a modest decrease in performance relative to the metrics obtained
on the training data, regardless of the presence of regularization. Notably, performance declines more
substantially toward the end of the sequences. This trend can be attributed to the greater variability in
shape at later time points, where sequences typically reach their maximum or minimum size.

Although the metric scores with barycenter regularization under dense supervision are marginally
higher than those of the baseline, this improvement mirrors the pattern observed on the ground truth
data. This suggests that while barycenter regularization yields a slightly better-performing model, it
does not necessarily enhance the model’s generalizability with regard to the latent space.

These results underscore the fact that the regularization methods proposed in this work are not
designed to encourage generalization across the latent space, but rather to improve temporal coherence
and interpolation. As such, the observed limitations in latent space generalization are not unexpected.
Enhancing the model’s capacity to generalize to unseen latent codes would likely require alternative
regularization strategies that explicitly promote structure or continuity in the latent representation.
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Chapter 5

Conclusions

In this research, we explored the potential of optimal transport (OT)-based regularization to enhance
3D time-lapse implicit neural representations (INRs), particularly by addressing their tendency to overfit
known data. We proposed two OT-inspired regularization strategies. The first involves directly min-
imizing the Sinkhorn distance between consecutive time steps, while the second leverages OT-based
predictions at intermediate time points to guide the model toward more stable and generalized solutions.

To evaluate the effectiveness of these methods, we conducted temporal interpolation experiments
on both synthetic and real-world datasets. On synthetic data, both regularization strategies demon-
strated clear benefits, improving performance at intermediate time steps and reducing variability in
model outputs. This suggests a mitigation of bias towards the training data under both sparse and dense
supervision settings. In particular, the model exhibited more visually coherent results when modeling
bifurcating structures, producing more symmetrical and artifact-free representations.

However, performance on real-world data offered no significant improvement. In particular, modeling
abrupt deformations and high-frequency changes is challenging, indicating that further refinement of the
regularization methods or a complementary approach may be necessary in this case.

We also examined the generalizability of the models by optimizing latent codes to reconstruct previ-
ously unseen shape sequences. On the synthetic dataset used, both the baseline model and the models
trained with OT-based regularization achieved similar levels of performance in this setting. This suggests
that the proposed regularization strategies, while effective for improving temporal generalization, do not
have a substantial impact on generalization in the latent space. Improving performance in this regard
would likely require different approaches specifically aimed at shaping the latent representation.

Overall, our findings highlight the promise of OT-based regularization in improving the temporal
coherence and visual fidelity of 3D time-lapse INRs, particularly in controlled or moderately complex
settings. However, challenges persist, especially when dealing with highly dynamic real-world data. This
work provides a foundation for future research into principled regularization methods aimed at enhancing
spatiotemporal neural representations.
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Chapter 6

Future work

This research demonstrates that OT regularization can improve the performance of temporal INRs.
However, challenges persist when modeling datasets with high-frequency temporal variations.

One potential direction for addressing this issue is to incorporate positional encoding, as introduced
in NeRF by Mildenhall et al. [32]. In that work, input coordinates are mapped to a higher-dimensional
space using sinusoidal functions, enabling the network to better capture high-frequency details. Although
the current method already employs periodic activation functions to handle high-frequency signals, po-
sitional encoding may offer an additional advantage by allowing independent control over the frequency
content in the spatial and temporal dimensions. This could enable more flexible and expressive repre-
sentations, particularly for dynamic scenes with localized high-frequency motion.

Another promising direction is to extend the proposed regularization methods to capture temporal
relationships over longer time scales. Currently, the regularization operates locally, between consecutive
frames, which may no sufficiently guide the model in scenarios involving high-frequency or long-range
temporal dependencies. One possibility is to compute the Sinkhorn loss at multiple temporal resolu-
tions, allowing the model to capture both short-term and long-term mass transport. For the barycenter
method, barycenters could be calculated between frames separated by more than just one time step.
These adaptations could help the model better capture coherent temporal dynamics, reduce overfitting
to local fluctuations and improve robustness in more complex or rapidly changing sequences.

We also observed that the generalizability of the model, particularly with respect to its latent space,
was not significantly improved by the regularization methods introduced in this work.

One interesting strategy for addressing this limitation is to adapt the barycenter-based regularization
approach. In its current form, barycenters are computed between consecutive frames within a sequence.
We propose extending this to compute barycenters across frames from different sequences in the training
set. These cross-sequence barycenters could serve as anchors in the latent space, encouraging interpo-
lations produced by the autodecoder to remain close to meaningful intermediate representations. This
may promote a smoother and more coherent latent space structure, thereby enhancing generalization
across varying shape sequences.
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