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Abstract

The COVID-19 pandemic highlighted the challenge of maintaining elective care during
periods of health crisis. While research has focused heavily on forecasting pandemic-related
demand, less attention has been given to how hospitals can continue providing elective care
when resources are limited and staff availability is uncertain. This thesis addresses that
gap by analyzing the interplay between healthcare capacity, waitlist dynamics, and the
postponement of elective procedures in a pandemic context.

We focus on spare nursing capacity in general wards and develop a forecasting model
that accounts for both pandemic patient load and staff absence. Staff availability is modeled
as a Markov chain, assuming independent infection and recovery behavior. Elective care
waitlists are represented through a discrete queueing model to derive backlog distributions
under varying levels of resource fluctuation. This provides a clearer understanding of how
capacity constraints translate into delays in elective care.

We compare multiple elective scheduling strategies using Monte Carlo simulations based
on both synthetic data and real data from the first COVID-19 wave. To cope with fluc-
tuating staff availability, overbooking predicted capacity can improve resource utilization.
However, this comes at the cost of a higher cancellation risk, which can be mitigated by
shorter scheduling horizons.

Our insights offer decision-makers a basis for planning elective care in future pandemic
scenarios, aiming to mitigate long-term population health consequences. The forecasting
model is designed to be simple and practical. It requires only pandemic demand forecasts,
staff infection rates, and observed staff availability. Using these, hospitals can estimate
daily capacity for elective care and evaluate scheduling policies tailored to their specific
setting.

Keywords: capacity modeling, discrete queueing theory, elective care, fluctuating re-
sources, operations research in healthcare, pandemic preparedness, staff absence

ii



Acknowledgements

I would like to thank my graduation committee for taking the time to read and evaluate
my work.

This thesis will not only (hopefully) earn me a Master’s degree, but also mark the
end of my student life. Over the past years, and especially during the last three in the
Netherlands, I’ve grown into the person I am today. It was a time filled with a lot of
joy, adventure, learning (and a fair amount of tears), which I’ll look back on with great
nostalgia. I owe much of that to the support of many people. Without you, this experience
would have been completely different.

First and foremost, I want to thank my supervisor Richard, who gave me the oppor-
tunity to work on this highly relevant and interesting topic in the first place. Thank you
for all the guidance and feedback you gave me in our weekly discussions. Your critical
but pragmatic perspective were invaluable in shaping this research. I appreciate that you
made time for me every week - sometimes even after regular working hours - despite your
schedule probably being busier than the prime minister’s. I’m also thankful for the work-
place you provided, which made this otherwise solitary project feel a bit more like working
in a team.

On that note, thanks to the people of Zilverling 4006. It was great sharing most of my
workdays with you, going on lunch walks together and having nice chats. Thanks for all
the coffee your coffee cards (aka employee cards) sponsored me! Special thanks to Sander,
with whom I not only had valuable discussions about my project, but who also provided
live musical entertainment most Fridays.

I’m also grateful to have been part of the CHOIR research group and the pandemic pre-
paredness team within SOR. Your projects are genuinely inspiring, helped me understand
where my work fits in the bigger picture, and motivated me to keep going.

I’d also like to take the opportunity to express my gratitude to the UT, not only for the
quality education, but for everything they do for their students. Above all, I appreciated
the sports facilities, which gave me the chance to blow off steam after long days of thinking.
Thanks to all the instructors who made group workouts fun, and to everyone involved in
keeping the track, pool, and everything else running. Having all of this right next to my
workplace really made a difference during my studies.

Jose, Sophie, Karisma, Renske, Fabio and Steven, you’re not only the smartest and
nerdiest friend group I’ve ever had, but also the reason my time in Enschede was so
special. It wouldn’t have been the same without our international lunches, dinners, or
chaotic Secret Santa Christmas editions. Thanks go to mijo Jose for catching typos and
weird phrasing last-minute and for helping me conquer LaTeX to fix my bibliography. Gros
bisou!

Thanks also go to my other friends, whether we’ve known each other for over a decade
or just met recently, you certainly made this journey a lot more enjoyable. Thanks also to
those, who were there for me at some point, even if we’ve gone our separate ways.

iii



Ich möchte mich spezifisch bei meiner lieben Freundin Hannah bedanken. Vielen
Dank für die stundenlangen FaceTime-Calls über Gott und die Welt, sowie Notfall-Alpaka-
Telefonate, wenn der Schuh mal wirklich gedrückt hat. Donk’sche, guade Frau!

None of this would have been possible without my parents. Euer Beitrag geht weit
über die finanzielle Unterstützung hinaus, die mir dieses Auslandsstudium ermöglicht hat.
Vielen Dank, dass ihr immer an mich geglaubt habt, mir all meine Freiheiten gelassen habt
und es trotzdem geschafft habt, mir stets das Gefühl zu geben, unterstützt zu werden. Ich
kann es nicht erwarten, den Tag meiner Graduation mit euch zu verbringen.

Special thanks go to Olof, who took the biggest hit during this thesis period - dealing
with the stressed and emotional version of me. Thank you for standing by me through the
whole process. You always knew what I needed, whether it was motivation to keep going
or a distraction in the form of a bike ride or a round of UNO Flex (highly recommended!).
If there’s one person who’s almost as happy about this graduation as I am, it’s probably
you — so congratulations to both of us!

iv



Contents

Abstract ii

Acknowledgements iii

List of Abbreviations viii

List of Mathematical Notation ix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . 2
1.3 Report Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work and Problem Formulation 3
2.1 Quantifying the Medical Impact of Delayed Surgery . . . . . . . . . . . . . . 3

2.1.1 The Quality-Adjusted Life-Year (QALY) . . . . . . . . . . . . . . . . 3
2.1.2 Measuring the QALY Gain of Surgical Treatment . . . . . . . . . . . 3
2.1.3 Health Losses During the COVID-19 Pandemic . . . . . . . . . . . . 4

2.2 Capacity Needs of Elective Surgery Patients: Identifying the Bottleneck . . 7
2.3 Hospital Capacities During Pandemic . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Predicting Pandemic Demand . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Interventions to Increase Capacity . . . . . . . . . . . . . . . . . . . 8
2.3.3 Absence of Nursing Staff . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Problem Formulation and Solution Approach . . . . . . . . . . . . . . . . . 10

3 Modelling Spare Capacity 12
3.1 Definition Nursing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Nurse Absenteeism Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Health State of a Single Nurse . . . . . . . . . . . . . . . . . . . . . 15
3.4.2 Nurse Census Distribution . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.3 Predicting Available Nurses . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Forecasting Nursing Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1 Lost Nursing Time due to Absence . . . . . . . . . . . . . . . . . . . 24
3.5.2 Demand of Pandemic Patients . . . . . . . . . . . . . . . . . . . . . . 24
3.5.3 Remaining Nursing Time for Elective Care . . . . . . . . . . . . . . . 25

3.6 Policies for Admitting Elective Care . . . . . . . . . . . . . . . . . . . . . . 25
3.6.1 Time of Admission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6.2 Number of Admissions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



4 Impact of Fluctuating Resources on Backlog 27
4.1 Additional Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Mathematical Queueing Model . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Server Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.1 Poisson/1/c Queue in Heavy Traffic . . . . . . . . . . . . . . . . . . 31
4.5.2 Poisson/1/Binomial Queue in Heavy Traffic . . . . . . . . . . . . . . 37

4.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6.1 Heavy Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6.2 Moderate Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6.3 Hypercritical Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Impact of Admission Policies on Backlog and Cancellations 54
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Choice of Nursing Time Demand k . . . . . . . . . . . . . . . . . . . 55
5.1.3 Scheduling Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.4 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Results under Constant Infection Risk . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Individual Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 Backlog Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Cancellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Results under Fluctuating Infection Risk . . . . . . . . . . . . . . . . . . . . 64
5.3.1 Individual Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 Backlog Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.3 Cancellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Trade-off Between Backlog and Cancellations . . . . . . . . . . . . . . . . . 71
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Case Study: First COVID-19 Wave in ZGT Almelo 73
6.1 Medical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Estimating Nurse Absence Rates . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Pandemic Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.1 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2 Scheduling Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.3 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.1 Spare Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.2 Example Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.3 Trade-off Between Backlog and Cancellations . . . . . . . . . . . . . 82

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



7 Discussion 88
7.1 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2 Limitations of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 Practical Relevance and Implications . . . . . . . . . . . . . . . . . . . . . . 90
7.4 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . 91

8 Conclusion 93

Bibliography 94

Disclosure of AI Use 100

vii



List of Abbreviations

CI Confidence interval

CF Characteristic function

DALY Disability-adjusted life year

distr. Distribution

FIFO First-in-first-out

ICU Intensive Care Unit

i.i.d. Independent and identically distributed

LAS Late arrival system

LoS Length of Stay

NPR Nurse-to-patient ratio

NTD Nursing Time Demand

OR Operating Room

PALM Poisson Arrival Location Model

PDF Probability density function

PGF Probability generating function

QALY Quality-adjusted life year

QL Queue length

QoL Quality of Life

RIVM National Institute for Public Health and the Environment
(Rijksinstituut voor Volksgezondheid en Milieu)

SD Standard deviation

ST Sojourn time

WHO World Health Organization

viii



List of Mathematical Notation

General Mathematical Notation

N set of natural numbers, includes zero

f ′ first derivative of f

f ′′ second derivative of f

P(·) probability

E[·] expectation

V ar[·] variance

GX(z) probability generating function of X

ϕX(θ) characteristic function of X

∀ for all

X · Y dot product or matrix multiplication of matrices X and Y

Xi matrix X raised to the power of i

Xi,· i-th row of matrix X

Xi,j element in row i, column j of matrix X(
n
k

)
Binomial coefficient, "n choose k"

⌈x⌉ ceiling of x, rounds up to the next integer

i imaginary unit (also used as an index variable)

o(·) small-o notation

∆x change in x

Variables

t time index (e.g., day)

s scheduling horizon

T total time horizon

n total number of nurses

h average daily working hours per nurse

ix



k NTD of elective patients

p staff infection probability

pt staff infection probability on day t

q staff recovery probability

Nursing Capacity

X̂t health state of a nurse on day t

P̂ transition matrix of nurse health states under constant
infection probabilities (u.c.i.p.)

π̂ stationary distribution of nurse health states u.c.i.p.

π̂h stationary probability of a nurse being healthy u.c.i.p.

π̂s stationary probability of a nurse being sick u.c.i.p.

P̃ (t) transition matrix of nurse health states under fluctuating
infection probabilities (u.c.f.p.)

π̃(t) distribution of nurse health states on day t u.c.f.p.

π̃h(t) probability of a nurse being healthy on day t u.c.f.p.

π̃s(t) probability of a nurse being sick on day t u.c.f.p.

X state space of Markov chain for available nurse census

Xt number of available nurse on day t

P transition matrix for number of available nurses based on p
and q

P (t) transition matrix for number of available nurses on day t based
on pt and q

C number of available nurses/servers

Ct number of available nurses/servers on day t

Sc number of nurses getting sick based on current capacity of c available
nurses

S
(t)
c number of nurses getting sick on day t based on current capacity of

c available nurses and infection risk pt

Rc number of nurses recovering based on current capacity of c available
nurses

π stationary distribution of the number of available nurses u.c.i.p.

πi stationary probability that i nurses are available u.c.i.p.

ρt Binomial success probability in distribution of the number of available
nurses on day t

x



Forecasts and Realized Values

N
(t,t+s)
a forecast on day t for number of absent nurses on day t+ s

H
(t,t+s)
a forecast on day t for number of lost nursing hours due to absence on day

t+ s

N
(t,t+s)
p forecast on day t for number of pandemic patients on day t+ s

H
(t,t+s)
p forecast on day t for amount of pandemic patient demand in nursing

hours on day t+ s

Ĥ
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Chapter 1

Introduction

1.1 Background

Elective surgery patients suffer medical conditions that, while requiring surgery, do not
pose an immediate risk to life or limb, and can therefore be scheduled. However, during
epidemic outbreaks, limited healthcare capacity can cause disruption of this schedule to
protect critical resources or reduce transmission. During the COVID-19 pandemic, a global
expert response study estimated that 72.3% of elective surgeries were canceled globally
during a 12-week peak disruption of the pandemic [1]. In the Netherlands, retrospective
studies revealed a 29.2% decrease of non-cancer procedures during the first COVID-19 wave
[2] and a total of around 300,000 operations fewer than anticipated from 2020 to 2021 [3].
Although elective care may be non-urgent, it is not optional or unnecessary. Progression
is a key feature of many surgical diseases, meaning that delayed treatment can cause a
worse medical outcome. Performing surgery at a later point in time may also come at an
increased cost, since more complicated procedures or alternative non-operative treatment
may be required during the period of delay. Apart from the purely monetary perspective,
patients suffer from a decreased quality of life (QoL) compared to timely treatment, due to
worse outcome or simply because they are in the pre-operative state longer, while waiting
for surgery [4]. The magnitude of this effect can be highlighted by a Dutch retrospective
study that estimated 300,000 lost quality-adjusted life years (QALYs) in the population
between 2020-2021 due to delayed surgery [3]. Another study applied to a large academic
hospital in the Netherlands determined the extra costs of delayed surgical treatment of the
13 most commonly performed elective surgeries to be over 700,000€ after the first wave of
COVID-19 [5].

The emergence of another pandemic is not a question of if, but when. Given current
trends in global travel, urbanization, and increased interaction between humans and ani-
mals, outbreaks of infectious diseases are expected to become more frequent [6]. Moreover,
the absence of consistent global safety standards increases the risk of accidental releases
of dangerous pathogens, as for instance past incidents involving smallpox [7]. In addition
to global pandemics, more localized outbreaks, such as recent cases of dengue, Mpox, and
Ebola, as well as the annual burden of influenza, regularly push healthcare systems to their
limits [8, 9].

Given the failures in preparedness and response during the COVID-19 pandemic [10], it
is crucial to take action now to improve our readiness for future outbreaks. One important
aspect that should not be neglected is the impact on elective care. Decisions made during
health emergencies often have unintended consequences, including delays in surgical treat-
ment for elective patients. Minimizing these delays and the costs associated with them
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should be amongst the key goals of better preparedness planning.

1.2 Research Objectives and Contributions

This research aims to improve the care of elective patients during health emergencies by
developing models and insights that support more effective planning and resource alloca-
tion.

First, we examine the relationship between hospital capacity and the backlog of elective
procedures. To this end, we identify the key constraints limiting the accommodation
of elective patients and investigate how these resources are affected during pandemics,
drawing from existing literature.

Building on these insights, we develop a model of available capacity for elective care
by integrating existing approaches to forecasting pandemic-related demand. In particular,
we introduce a novel model to account for nurse absenteeism during pandemics, capturing
how infection dynamics impact available staffing levels and, consequently, capacity.

Using this extended model, we evaluate policies aimed at maximizing the utilization of
available resources. Our focus lies on minimizing the backlog and waiting times for elective
surgeries, while also assessing the extent to which patients need to be canceled after being
admitted for care.

The main contributions of this work are:

• A clearer understanding of the dynamics between healthcare capacity, backlog, and
postponement of elective procedures during pandemics.

• A novel capacity model that introduces nurse absenteeism dynamics during health
emergencies to forecast elective care capacity.

• An evaluation of admission policies for elective patients, assessing their impact on
spare capacity utilization, waiting times, and cancellation rates after admission.

Together, these contributions offer decision-makers a foundation for planning and pri-
oritizing elective care in future health emergencies, ultimately supporting improved popu-
lation health.

1.3 Report Structure

This report is structured as follows. Chapter 2 reviews relevant literature, identifies the
research gap, and drafts the solution approach. In Chapter 3, we present a model to de-
termine spare capacity for elective care based on a nurse absenteeism model developed
in Section 3.4 and pandemic patient demand. Admission policies for elective patients are
introduced. Chapter 4 examines the relationship between available nursing resources and
backlogs. Using a queueing theory approach, the impact of resource variability on backlog
is studied. Chapter 5 evaluates admission policies based on their adaptability to fluctu-
ating resources, measuring performance by realized workload and canceled workload. In
Chapter 6, we apply the developed framework to real infection data and capacity forecasts
from the first COVID-19 wave. We model a mid-sized teaching hospital in the Netherlands
and assess previously developed patient admission policies.

2



Chapter 2

Related Work and Problem
Formulation

This chapter discusses relevant literature. Section 2.1 explores methods used to estimate
public health loss due to delayed elective care during the COVID-19 pandemic. Section 2.2
establishes capacity needs of elective surgery patients to identify the resource bottleneck
in pandemic circumstances. The behavior of these relevant resources during a pandemic is
further researched in Section 2.3.

2.1 Quantifying the Medical Impact of Delayed Surgery

Section 2.1.1 introduces the concept of quality-adjusted life-years (QALYs) as a measure
of health outcomes. Section 2.1.2 then examines how the health impact of surgical treat-
ment can be quantified using QALYs. Finally, Section 2.1.3 reviews previous attempts to
assess the effects of delayed treatment during the COVID-19 pandemic and the associated
population health losses.

2.1.1 The Quality-Adjusted Life-Year (QALY)

To measure cost-effectiveness of treatments in healthcare, the impact on the patient’s
health is often expressed in QALYs, first introduced in [11]. It uses two factors - a utility
measure between 0 (dead) and 1 (full health) and the duration (in years) spent in this
utility state. One QALY thus represents one life year spent in perfect health, 0.5 QALYs
represent a year lived with a utility of 0.5. The utility score for specific conditions is derived
from clinical trials and studies, which examine people’s perception of their own health
while living with a certain condition [12]. The EQ-5D guidelines constitute a standard
questionnaire to determine the utility value [13].

2.1.2 Measuring the QALY Gain of Surgical Treatment

In theory, the calculation of the QALY gain as a result of surgery requires an estimate
for the life expectancy with surgery versus without surgery or with alternative treatment.
Additionally, utility weights need to be assigned to both scenarios. To calculate expected
QALYs for both scenarios, the expected future life years (based on life expectancy esti-
mates) are multiplied with the respective utility value. The difference of these two values
then accounts for the QALY gain of surgery opposed to no surgery or alternative treatment
[14].
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A visualization of this concept can be seen in Figure 2.1. The two step functions
represent the utility value over time with and without the intervention. In this graph,
an earlier death without the intervention is expected than with intervention (observe the
first step function hitting zero at an earlier point in time). The area under the respective
curve represents the QALYs associated with the two scenarios. The blue area (A) describes
the QALYs without the intervention, and the sum of the blue and yellow one (A+B) the
QALYs with the intervention. The QALY gain of the treatment is therefore the yellow area
(B), which results from the longer duration lived and higher utility during those years.

Figure 2.1: Schematic illustration of the QALY gain from an intervention.
Adapted from [15]; CC BY-SA 3.0.

In practice, however, it is hard to evaluate the exact health gain, since the control group
(no/alternative treatment) is very small or nonexistent for certain procedures. Thus, the
way of measuring the rise in QALYs varies between different procedures. Some studies
follow patients for their entire lifetime, as specified above (e.g., in a cost-utility study of
of cataract surgery in [16]). Others constrain the time period to a few years (often 5 or
less) after treatment, since a relatively immediate effect (after some recovery period) is
expected from elective surgeries. Examples of this common approach include the analysis
of hip replacement benefit in [17] or of carpal tunnel release in [18].

2.1.3 Health Losses During the COVID-19 Pandemic

The impact of delayed intervention on the QALY gain has hardly been treated in literature.
A systematic review [19] found a small number of studies that relate surgical waitlists to
lost QALYs and inaccurate calculation thereof in the literature.

In connection to the COVID-19 pandemic, however, there have been some efforts to
measure and express the health loss in the population primarily resulting from delayed
elective surgery. The authors of [5] determined the gain in QALYs of 13 commonly per-
formed procedures in literature. To calculate the impact of delayed treatment, they defined
the loss in QALYs as the difference between the utility after surgery and before surgery
during the period of delay, as can be seen in Figure 2.2. That is, if a surgery improving the
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utility by 0.1 is postponed for 6 months, the QALY loss due to postponement corresponds
to 0.05. The authors also proposed a prioritization scheme of elective patients by weighing
the QALY impact and a monetary cost factor by the surgery duration in times of scarce
resources.

Figure 2.2: Definition of lost QALYs due to delayed surgery. Taken from [5].

In a report estimating the lost QALYs from postponed surgery due to COVID-19 in
2020 and 2021 conducted by the RIVM (National Institute for Public Health and the
Environment) in the Netherlands [3, 20], QALY gains from all common elective surgeries
(defined as surgeries that could be postponed by more than a month) of different special-
ties were determined from literature. Therefore, they used studies of comparable patient
groups and procedures comparing the utility, preferably, to conservative/medical treat-
ment. After determining the difference between the anticipated (based on data from the
preceding years) and the performed surgeries of all types, this number was multiplied by
the respective QALY gain, and denominated as the lost QALYs. To account for surgeries
that were performed later in that period due to excess capacities, some of the lost QALYs
could get gained back with a penalty term accounting for the prolonged time of waiting.
Therefore, a linear increase in QALYs over time was supposed and the time spent on the
waitlist, where patients couldn’t benefit from the surgery yet times that increase were de-
ducted from the gain. They unveiled the delay of over 300,000 elective surgeries in the
Netherlands between 2020 and 2021 and, corresponding to around 320,000 lost QALYs.
An overview over their results over all specialties and the bed census in the research pe-
riod can be found in Figure 2.3. The contribution of individual treatments to total health
losses varied significantly. The largest amount of these health losses occurred in the fields
of ophthalmology and orthopedics with the most impactful surgeries in terms of QALY
losses being cataract surgery, and knee and hip replacement.

In [21], a model to estimate the impact of postponing semielective surgery (defined
as a surgery that ideally should be performed within 3 days to 3 weeks) on health to
help prioritization. The authors used a cohort state-transition model, mathematically
formulated as a Markov chain, with three states (preop, postop, and dead), which took
the following input for the two states, where the patient is alive: survival rates, QoL and
time until no effect of the surgery on survival or QoL. QoL was expressed in terms of
disability weights, leading to the output measure of disability-adjusted life-years (DALY).
Being closely related to QALY loss, one DALY corresponds to losing a full year of perfect
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Figure 2.3: Difference between anticipated and performed interventions (blue),
unrealized QALYs (orange) and occupation of hospital beds by COVID-19 patients
(green) by week in 2020 and 2021. Taken from [20].

health. Based on the information of mean age of people undergoing this type of surgery
a cohort was simulated and followed for their entire lifespan, with time intervals of one
week. In this regard, delaying the surgery by up to one year was evaluated, leading to
a DALY value per month delay for each investigated procedure. These insights support
prioritization of surgical care in times of scarce capacities, yet have to be combined with
the dynamics of capacity according to the authors.

To the best of my knowledge, there are no studies that consider a possible deterioration
in the patient’s utility while waiting for surgery, nor a different gain in QALYs if the surgery
is performed after postponement. It is to be expected that later surgery will result in poorer
patient outcomes than timely one. For instance, patients in worse initial condition (lower
Oxford Hip Score) benefit more from hip replacement surgery in terms of gain in QALYs,
but still don’t reach the utility of patients that showed better functionality before surgery
[17].
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2.2 Capacity Needs of Elective Surgery Patients: Identifying
the Bottleneck

In the following, we aim to establish a foundation for modeling available capacity for
elective care based on literature. The focus lies on identifying the bottlenecks where
pandemic and elective care intersect and compete for the same resources.

The initial decision to suspend elective surgeries during the COVID-19 pandemic pri-
marily intended to free up intensive care unit (ICU) capacities. However, Poeran et al.
[22], questioned the usefulness of this measure. They figured that only around 13% of ICU
occupancy originates from elective surgery based on data of pre-pandemic years. More-
over, patients from elective care only consumed around 6% of ventilator usage. Therefore,
while suspending elective surgeries certainly increased non-ICU bed capacity in hospitals,
the analysis indicates that this measure had a relatively limited effect on ICU resource
allocation.

In the Netherlands, the total volume of surgical procedures (elective and emergency)
dropped by approximately 14% in 2020 compared to the previous year [2]. Studies such as
[23] report underutilization of surgical staff, with many surgeons and trainees experiencing
redundancy due to the reduced surgical load.

Based on these findings, we focus our capacity analysis on non-ICU inpatient care,
more precisely, ward beds. We define capacity in terms of two main resources: beds and
nursing staff, excluding other clinical constraints. As seen during the COVID-19 pandemic,
increasing the number of physical beds in a healthcare institution is feasible and can be
done in a timely manner. Field hospitals were rapidly deployed, such as Leishenshan
hospital, which was built within under two weeks in Wuhan, China during early stages of
the pandemic and had an initial capacity of 1,600 beds [24]. European hospitals repurposed
operating rooms (ORs), expanded private sector capacity, or simply added more beds to
rooms [25, 26].

Staffing, however, was the more critical constraint. While temporary increases in staff
were achieved through redeployment and recalling retirees [26], there were clear limits to
how far this could go, especially to avoid overworking people [27]. Thus, we treat staffed
ward beds as the decisive bottleneck for modeling elective care capacity during pandemics.

Our focus on nursing resources in the ward does not fully determine whether an elective
patient can be admitted. Other capacities, that elective patients (might) need, must also
be considered. Though the probability of needing ICU care after elective surgery is low,
some buffer capacity is necessary. The absenteeism model we develop for ward nurses can
be extended to ICU nurses to estimate ICU capacity under pandemic conditions, taking
into account both staff availability and pandemic-related ICU demand. Similarly, it can
be applied to surgical staff (e.g., surgeons, anesthetists, and assistants), where pandemic
demand may involve, for instance, anesthetists being reassigned to support ICU nursing
teams. While our core model focuses on ward capacity, the approach remains flexible and
can be applied to other critical resource types.

2.3 Hospital Capacities During Pandemic

As established in Section 2.2, elective and pandemic patients compete for certain capacities
in the ward. Therefore, a reliable estimate of pandemic patient demands poses a crucial
requirement to forecast spare capacities for elective patients. Section 2.3.1 explores previous
work on predicting pandemic demand. In Section 2.3.2, we examine approaches by hospitals
to temporarily increase their capacities to meet extraordinary high demands. Since an
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important aspect of my model is the availability of staff, literature on the dynamics of
pandemic staff absence is presented in Section 2.3.3.

2.3.1 Predicting Pandemic Demand

An extensive amount of literature exists on mathematical and computational modeling of
epidemic outbreaks. The authors of [28, 29] present literature that apply these models
to forecast influenza outbreaks, either with statistical or epidemiological techniques, at
different geographical levels, and compare the measures used to do so. Reviewed literature
provides valuable information for healthcare planners about expected demand, and authors
identify the need for good practice and clear indication of the model’s applicability.

Based on hospital data, pandemic demand was forecast and used for decision-making
during the COVID-19 pandemic. In the Netherlands, the authors of [30] developed a
forecast of bed occupancy by pandemic patients in wards and ICUs. They used a Poisson
arrival model to estimate arrivals to the two departments, where the rate of arrivals is
determined by fitting a Richard’s curve to previous hospital arrival data. Lengths of Stay
(LoSs) and transfer probabilities between the departments and discharge/death rates were
determined data-driven as well. An infinite server queueing model was used to model
the demand of beds in the ward and ICU. Using a fairly similar approach, a COVID-19
taskforce at Ghent university hospital predicted bed capacities in different wards [31]. They
also assumed a Poisson arrival model, with the rate being determined via additive Poisson
modeling. Bed censuses were determined for the ward, and three different levels of ICU
(midcare, standard, and ventilated). In this multistate model, hospital data provided the
basis for transition probabilities between the wards and for discharges. Predictions were
available for up to 10 days in advance, including best and worst case bounds. The authors
reported good predictions, especially for short forecasting intervals. To support the Dutch
public health capacity organization, another mathematical model for bed occupancy used
linear programming for admissions and queueing approach for bed occupancy [32].

The forecasting approach of [30] was further developed in [33] by an altered arrival rate
prediction for the Poisson arrival model. Instead of basing the estimates solely on hospital
data, the relationship between positive cases in the population and hospital admissions
per day was exploited. By fitting the Richard’s curve directly on positive test data and
implementing a time-delay and filtration procedure, changing trends could be captured
early leading to a more accurate arrival rate prediction. Based on this, they could not
only help dedicating resources to pandemic patients within an individual hospital, but also
balance demand between hospitals within and across regions, as presented in [33, 34].

2.3.2 Interventions to Increase Capacity

To meet changing demands, hospitals can take certain interventions to temporarily scale
up their capacities to meet an unusually high demand.

In [35], authors estimate hospital capacity achieved via hospital interventions imple-
mented during the first wave of the COVID-19 pandemic in England. They focus on
capacity in terms of staff and beds for the ward and ICU and ventilators just for the ICU
and analyze the effect of multiple interventions on each of these resources. The main mo-
tivation of the authors is to evaluate conditions of pandemic demand under which it is
feasible to admit elective surgery patients. The interventions are the cancellation of elec-
tive surgeries, the use of field hospitals, and deployment of nursing students and retired
nurses. It is one of the first studies that does not only take pandemic demand into account,
but also staff absence, which was a key factor during the pandemic. While the cancellation
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of elective surgeries had the biggest impact in freeing up resources, the study also shows
that other measures could have helped to maintain ICU capacity to a level where elective
care could continue close to normal for much of the pandemic. For ward-level care, there
was even more unused capacity. In fact, even without extra interventions, patients needing
only ward care could often still be treated.

This points to an important insight: there was spare capacity, both with and without
interventions. This suggests a clear opportunity to improve how we use available resources.
As the study highlights, staffing was a key limiting factor during the pandemic, and it’s
something we should pay particular attention to when planning how to maintain care under
pressure.

2.3.3 Absence of Nursing Staff

The global shortage of nursing staff was already a problem in pre-pandemic times [36], and
with an aging population, the demand for health care staff will rise in the coming years.
With the system running at the upper limit in terms of nursing resources during regular
times, we consider staff as the key limiting factor in pandemic circumstances. Multiple
studies on staff absenteeism and willingness to work in a pandemic have been conducted.
We present an overview of findings on nurse absence and infection dynamics in literature
in the following.

In a pandemic setting, the number of absent nurses often exceeds the usual proportion
due to a variety of reasons. Firstly, the willingness to work decreases due to, among other
reasons, fear of infection (especially if there is a shortage of personal protective gear) [37].
In a survey about willingness to work in a pandemic flu situation, the willingness to work
among nurses was determined to be around 90% in [38] given that sufficient protective
measures were deployed. During COVID-19, it was also shown that the nursing workforce
decreased over the course of the pandemic. A major driver for this was the increased strain
put on healthcare workers, leading to decreasing work engagement, job satisfaction and
susceptibility to poor mental health and burnout-like conditions [39, 40]. On top of that,
a certain proportion of the nursing staff is incapable to work, with the main reasons being
that nurses get infected, have to quarantine or must care for a family member [38, 41].

Next to the lower availability, the demand for nursing also changes in a pandemic
setting. Because of additional workloads such as preventative safety procedures, more
nurses may be needed to care for the same amount of patients compared to a non-pandemic
setting. The authors of [37] therefore recommend increasing the nursing staff by 20-25%
despite keeping the number of beds constant. Conversely, the ratio of nurses per patient
often decreases either out of necessity (due to staff shortage) [37] or because planners
specifically aim for that in crisis situations to prevent future shortages [42].

The risk of infection of healthcare workers is a well discussed topic in the literature,
however, results broadly vary between studies and opinions about exposure to a pathogen
deviate. Many studies report an over-representation of healthcare workers in the COVID-
19-infected part of the population. In a study mainly concerning European and American
countries, 14% of reported cases were healthcare workers, whereas only 3 to 8% of the
population work in healthcare on average [43]. Two Dutch studies researched transmissions
among medical staff during the early phase of the pandemic within a region and determined
the proportion of infected employees at around 5% at that time, which is far higher than the
infection rate in the general population at that time [44, 45]. A study of a single hospital in
Poland reported both higher infection and quarantine rates of healthcare workers compared
to the general population [46].

Exposure to the virus tends to be categorized into exposure at work and outside work
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through regular community transmission [37]. Within work hours, staff are exposed to
infectious patients, however, are also in contact among colleagues, where risk awareness is
lower and safety measures are often neglected. The authors of [47] argue that with the aid
of suitable personal protective equipment and awareness of maintaining safety measures
with colleagues, the risk of infection at work can be mitigated. They therefore assume
that the highest risk of infection persists during their free time and at home. On the other
hand, there have also been efforts to schedule staff in a way to decrease absenteeism due to
infection, based on the assumption that transmission predominantly happens during work
shifts. For instance, an epidemiological nurse schedule with alternating 80-hour and 0-hour
work week is proposed in [48] to reduce sick leaves assuming high infection probabilities at
work with patient contact.

In the following, we list some concrete approaches that have been used to model health-
care workers’ absenteeism. In [41], the risk of a nurse getting sick on a specific day of a
shift is modeled as a geometric distribution with different parameters for three pre-defined
risk levels for a hospital. While it is often proposed to consider different probabilities of in-
fection at a work day and a holiday, the authors of [42] assume an infection process similar
to the general population and absenteeism to care for somebody at the same rate in their
planning application during pandemic flu outbreaks. Depending on the application, either
a deterministic quarantine period of 2 to 3 weeks is assumed or some distribution mimick-
ing the recommendation of the World Health Organization (WHO) to quarantine for 10
days plus if applicable 3 days after being asymptomatic. In [48], a period of immunity to
infection is assumed for 120 days after COVID-19 infection. Other modeling studies, such
as [49], take a parameter indicating the proportion of absent nurse as an input. During the
COVID-19 pandemic, the identification of this proportion was the topic of various studies,
as described in the systematic literature review [50]. However, these studies mainly deter-
mined the mean absenteeism rate of healthcare workers during a specific time period and
how certain factors (demographics, vaccination status, etc.) influence it. No generalized
measure of absenteeism was reported and numbers of the used measures (e.g., mean ab-
sence rate, proportions of being sick/ having suspected or confirmed COVID-19 infection
within a year, proportion of staff being absent for multiple weeks) broadly vary across stud-
ies. To the best of our knowledge, no study relating the absenteeism of nurses or medical
staff in general due to pandemic-related reasons directly to the infection rates in the over-
all population, exists. A British study, however, shows positive correlations between the
weekly COVID-19 community incidence and healthcare-associated infections (infections of
patients acquired in the hospital) and between self-reported COVID-19 sickness absence
of staff and healthcare-associated infections [51].

This review shows how absenteeism is driven by infection risk, psychological stain and
caregiving duties of nurses. To capture this key constraint for maintaining elective care in
pandemics, it is required to link the availability of staff to infection trends in the general
population.

2.4 Problem Formulation and Solution Approach

The COVID-19 pandemic highlighted the challenges healthcare systems face in maintaining
adequate care during periods of crisis. There is broad consensus on the need for better
preparedness in the future, and a significant amount of research has focused on forecasting
and managing the demand for pandemic-related patients to ensure appropriate treatment.
However, while there is evidence that maintaining care for elective patients is crucial to
avoid negative effects on population health, less attention has been paid on the continuation
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of elective care. Models to support the use of spare resources in pandemics, as well as an
understanding of the dynamics of these capacities, remain limited. This study therefore
addresses this gap by focusing on understanding how spare resources can be used efficiently
for elective care during health crises.

In this thesis, we consider nursing staff in the ward as the key resource bottleneck for
elective surgery patients in pandemic circumstances. This capacity is again influenced by
two main factors: the demand of care from pandemic patients and staff absence due to
unwillingness, illness or other duties. The uncertainty of these factors and the interaction
between them impact how much capacity can be used for elective procedures.

To support better use of this limited capacity, we propose a model that forecasts the
availability of spare resources for elective care based on the demand for pandemic patients
and the availability of ward nursing staff. As a first step, we aim to analyze how uncertainty
in staff availability affects elective care delivery, using queueing theory to study backlogs
and waiting times. Based on these insights, we explore methods to reduce the impact of
this uncertainty and improve planning and scheduling of elective surgeries during times of
resource strain.
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Chapter 3

Modelling Spare Capacity

We model a hospital system that admits elective patients while managing pandemic-related
demand under constrained nursing capacity. A central concept in our model is the nursing
time demand (NTD), which captures both the nursing effort and the patient’s LoS. It is
formally defined in Section 3.1. Section 3.2 presents a conceptual model of spare nursing
capacity, showing which factors are taken into account to consume resources. Section 3.3
outlines the key modeling assumptions. Section 3.4 presents a precise description of how
nursing staff gets infected and recovers and analyzes the resulting dynamics of the nurse
census. Section 3.5 introduces the forecasting model used to predict spare nursing capac-
ity. Finally, Section 3.6 defines the scheduling policies, which we evaluate in this thesis,
specifying when and how many patients are admitted under uncertain capacity.

3.1 Definition Nursing Time

We model spare capacity for elective patients based on the availability of staffed beds in
the ward. As motivated in Section 2.2, we assume that the availability of physical hospital
beds is not a limiting factor and solely the available nursing staff affects how many patients
can reside in the ward.

To account for a patient’s nurse-level care intensity, we use the nurse-to-patient ratio
(NPR), indicating how many nurses this patient needs to care for them. For instance, an
NPR of 1:4 for a specific patient group means that one nurse can care for 4 patients of this
type simultaneously.

Building on this, we introduce the concept of NTD of a patient, which is a measure that
incorporates the NPR and LoS. Expressing these characteristics as a single value simplifies
further modeling. The NTD of a patient is given by (3.1).

NTD =
1

NPR
· LoS (3.1)

To illustrate, consider an example patient with an NPR of 1:4 and a LoS of six days This
corresponds to an NTD of 36 hours. Note that another patient with other characteristics
may also require 36 nursing hours, such as a patient that has an NPR of 1:2 staying for
three days.

In the following, we express the capacity of staffed beds in terms of nursing time, which
represents the total amount of nursing time available to care for patients. Thus, capacity
can be expressed by a single numerical value, which we refer to as nursing time capacity.
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3.2 Conceptual Model

To determine spare nursing time capacity for elective patients, we consider the nursing time
consumed by pandemic patients and capacities lost due to absence of staff. A graphical
interpretation of this concept, showing how nursing capacity may evolve during a pandemic
wave is provided in Figure 3.1.

In the graph, the top dashed line represents the maximum nursing capacity, assuming
that all nurses are present and no pandemic patient is currently in the hospital. However,
some proportion of the nursing staff is not willing to work in pandemic circumstances,
as established in Section 2.3.3). Additionally, emergency patients require treatment that
cannot be scheduled or delayed, requiring some nursing resources. These two capacity
amounts are represented by the gray area. An additional part of nursing staff is absent
despite their willingness to work, due to sickness, quarantine or care duties outside the work
environment (e.g., caring for relatives). These lost capacities are shown as the red area,
labeled Absence. Finally, resources are used by pandemic patients, who require nursing
capacity as they are residing in the ward, labeled Demand of pandemic patients. This
leaves the white area as spare capacity, that may be used for elective care.

Related behavior of nurse absenteeism and demand of pandemic patients can be ex-
pected, meaning that if the pandemic demand goes up, also the absent nurse census in-
creases. The reasoning is the following. As infection rates increase in the population,
nurses also get infected with a higher probability, resulting in an increase of the amount
of absent nurses. Additionally, a larger amount of infections results in more hospital ad-
missions (with some time delay, as established in [33]). As a result, during periods of high
pandemic demand, elective care is doubly strained - both by increased pandemic patient
load and elevated nurse absenteeism.

Figure 3.1: Conceptual model of spare nursing capacity over time.

3.3 Assumptions

Elective patients arrive according to a stochastic Poisson arrival process. Each patient is
characterized by a deterministic NTD of k hours. This results in a batch Poisson arrival
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process of workload, where arrivals all require the same amount of nursing time. Upon
arrival, patients enter a single first-in-first-out (FIFO) waitlist. We assume a late arrival
system (LAS), where patients are only eligible for scheduling the day after they have
entered the system.

To determine the available capacity for elective patients, we consider absence dynamics
of nurses and pandemic demand. We assume that the patterns of acute patients are only
marginally influenced by the pandemic, thus consuming a fixed portion of the nursing
resources. Likewise, we assume that the number of nurses, which are not willing to work,
stays constant over the course of the pandemic. Thus, we define maximum nursing capacity
as the nursing time provided by a nursing workforce, which is responsible for pandemic
and elective care only.

We consider a nursing workforce of n full-time nurses, who each work 35 hours per
week. We assume a uniform distribution of work over the week, implying that each nurse
works an average of h = 35

7 = 5 hours per day. Hence, daily nursing capacity fluctuates in
batches of 5 hours per available nurse. The maximum daily nursing capacity is given by
5n.

Nurses are subject to infection and recovery during a pandemic. We model absenteeism
using independent Bernoulli processes. Each nurse has a daily probability pt of becoming
infected and a daily probability q of recovering. We assume that within a day t, the infection
probability pt stays constant, thus being described by a piecewise constant function. We
also assume that the recovery dynamics don’t change over time, i.e., q remains constant
and does not depend on t. In the following, we denote pt as p, when we assume constant
infection risks over time.

Further, we assume that an absence period starts and ends at the end of a given day,
i.e., nurses cannot be absent for a fraction of a day. In other words, if a nurse gets infected
on day t, they become absent on day t+1. Similarly, if they recover on day t, they return
to work on day t + 1. The mathematical model of the infection and recovery patterns is
further described in Section 3.4.

For the prediction of future capacities, we assume that future staff infection risks are
known, meaning we do not take a forecasting error of infection probabilities into account.
This assumption allows us to isolate the dynamic interaction between scheduling policies
and fluctuating resource availability.

Nursing demand required by pandemic patients is treated as an input to the model. We
assume that daily forecasts of pandemic bed occupancy are available, based on existing
models such as the ones described in Section 2.3.1. A fixed NPR of 1:4 is assumed for
pandemic care, allowing us to convert predicted bed occupancy into required nursing time.
Additionally, a nurse assigned to pandemic care cannot simultaneously work in a non-
pandemic ward to prevent infection.

An elective patient can only be admitted if their full NTD fits within the available
nursing capacity on a single day. Splitting care across multiple days is not allowed, leading
to a service time of one day. If a patient was scheduled for treatment but sufficient capacity
is not available on the scheduled day, the patient is canceled on short-notice and returned
to the waitlist. Canceled patients become eligible for rescheduling immediately after can-
cellation, where they have priority over other patients. Since the LoS is captured in the
NTD and this represents the total nursing effort, this assumption may lead to boundary
effects. We mitigate this by an adequate choice of k in our experiments, which is further
discussed in Section 5.1.2.

Admissions are planned once per day. If the timing policy is to admit s days in advance
of admission day t, then no further planning for day t is possible after day t− s. On day t,

14



the realized nursing capacity becomes known, and any cancellations are carried out at the
start of the day. Scheduling decisions for future days are made only after cancellations for
the current day, meaning canceled patients can be rescheduled for day t + s onward. An
illustration of this time scheme can be seen in Figure 3.2.

Figure 3.2: Time scheme illustrating patient scheduling, arrival, service, dis-
charge, and cancellation events.

3.4 Nurse Absenteeism Model

In the following, we model the health state of a single nurse in Section 3.4.1, which helps us
derive the distribution of the available nurse census in Section 3.4.2. We formulate the num-
ber of available nurses as a Markov chain, to predict future availabilities in Section 3.4.3.
Along the way, examples with specific parameter values illustrate the established theory.

3.4.1 Health State of a Single Nurse

Based on our assumption of independent infection and recovery behavior of nurses, we
model the health status of a single nurse as a Markov chain.

Constant Infection Risk

Transitions of a nurse getting sick and recovering are illustrated in Figure 3.3, where p and
q are not time-dependent. States are shown as circles, and transitions are represented as
arrows labeled with their respective probabilities.

15



Figure 3.3: Markov chain of an individual nurse’s health status with transition
probabilities.

For the state space X̂ = {healthy, sick}, the corresponding transition probability ma-
trix is

P̂ =

[
1− p p
q 1− q

]
,

where the rows and columns correspond to the states in the order {healthy, sick}. This
defines a homogeneous Markov chain {X̂t}t∈N. We now determine the stationary distribu-
tion π̂ = [π̂h, π̂s], where π̂h and π̂s denote the probability of a nurse being healthy and sick
in steady state, respectively.

A distribution π̂ is stationary for a Markov chain with transition matrix P̂ if the
distribution does not change over time. Thus, π̂P̂ = π̂, from which we get

π̂h =
q

p
π̂s.

Using the normalizing condition π̂h + π̂s = 1, we obtain

π̂ = (
q

p+ q
,

p

p+ q
), (3.2)

meaning that a nurse is healthy with probability q
p+q .

Fluctuating Infection Risk

We now consider varying infection probabilities pt. Similarly to the setting with constant
infection probabilities, nurses also get infected and recover independently from each other
here. We adapt the transition probability matrix to

P̃ (t) =

[
1− pt pt

q 1− q

]
This defines a non-homogeneous Markov chain, thus not reaching a stationary distribution.

Let π̃(t) = [π̃h(t), π̃s(t)], be the state distribution at time t, where π̃h(t) and π̃s(t)
denote the probabilities that a nurse is healthy or sick on day t, respectively. These can
be calculated recursively by

π̃(t+ 1) = π̃(t) · P̃ (t) (3.3)

with

π̃(0) = [π̃h(0), π̃s(0)]

giving the probabilities of starting in each state. Assuming we start at the beginning of
the pandemic, where a nurse is certainly healthy, π̃(0) = [1, 0].
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3.4.2 Nurse Census Distribution

We define the nursing capacity (i.e., the number of healthy nurses) at time t + 1 by the
recursion given in (3.4).

Xt+1 = Xt − SXt +RXt (3.4)

Here, Xt describes the nursing capacity at time t, and SXt and RXt are the random variables
of the number of nurses who get sick and recover based on this capacity, respectively. Since
these are Bernoulli processes, the number of infected and recovered nurses at each time
step follow a Binomial distribution.

Constant Infection Risk

For constant infection risks, we define

Sc ∼ Binomial(c, p) (3.5)
Rc ∼ Binomial(n− c, q), (3.6)

where Sc describes the number of c healthy nurses getting sick, and Rc describes the number
of n− c sick nurses recovering at a certain time.

Since in stable state, every nurse is healthy with probability q
p+q (see (3.2)), the number

of healthy nurses C in steady state is Binomial distributed according to (3.7).

C ∼ Binomial(n,
q

p+ q
) (3.7)

We now define π = [π0, π1, ..., πn] as the probability mass function of C, where

πi =

(
n

i

)(
q

p+ q

)i( p

p+ q

)n−i

indicates the probability of i present nurses in steady state. The expected nursing capacity
in steady state is therefore determined as

E[C] =
n∑

i=0

πii =
nq

p+ q
. (3.8)

Example 3.1 illustrates the steady state distribution of available nurses for an example
setting.

Example 3.1

Let us consider an example scenario, in which we have a total of n = 100 nurses
and the probabilities of getting sick and recovering are p = 0.05 and q = 0.1,
respectively. Figure 3.4 shows the steady state probability distribution, which is
Binomial(100, 0.1

0.1+0.05).

17



Figure 3.4: Steady-state distribution of healthy nurses for example scenario
(n = 100, p = 0.05, q = 0.1).

Fluctuating Infection Risk

For time-dependent infection probabilities, the number of nurses getting sick on day t is
defined as

S(t)
c ∼ Binomial(c, pt), (3.9)

and Rc follows the definition in (3.6).
The recursive definition for the constant case (3.4) is adapted accordingly to (3.10).

Xt+1 = Xt − S
(t)
Xt

+RXt (3.10)

As each nurse is healthy on day t with probability π̃h(t), as determined in (3.3), the number
of healthy nurses Ct is Binomial distributed according to (3.11).

Ct ∼ Binomial(n, π̃h(t)) (3.11)

with an expected number of

E[Ct] = n · π̃h(t)

available nurses.

Theorem 3.4.1. Let X0 ∼ Binomial(n, ρ0) denote the number of healthy nurses at time
t = 0, where each nurse has an independent probability ρ0 of being healthy. For instance,
X0 = n ∼ Binomial(n, 1) assuming all nurses are healthy at the beginning of the pandemic.
Then, for all t ∈ N, the number of healthy nurses Xt follows the Binomial distribution

Xt ∼ Binomial(n, ρt)

with ρt =
q

p+q for constant infection risks and ρt = π̃h(t), as defined in (3.3), for fluctuating
infection risks.

3.4.3 Predicting Available Nurses

We model the nursing capacity as a Markov chain with time epochs T as follows. We define
the state space X that represents the number of nurses available, with a total workforce
of n nurses.

T = {0, 1, 2, ...}
X = {0, 1, 2, ..., n}
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Constant Infection Risk

Based on the recursive definition in (3.4), the transition probability to go from one to the
next state is calculated by

P(xt+1|xt) =
xt∑
i=0

P(Sxt = i) · P(Rxt = xt − xt+1 + i) ∀xt, xt+1 ∈ X,

which results in a n× n transition probability matrix P , with xt referring to the row and
xt+1 to the column.

The probability distribution of Xt+1 given Xt = x, which we denote as
P(Xt+1 = i|Xt = x), corresponds to the xth row of P , denoted as Px,·. Note that the
first row is indexed by 0 (denoted P0,·), since it corresponds to transitioning from 0 present
nurses. Similarly, we characterize the probability distribution over multiple time steps.
Assuming we want to know the probability distribution of Xt+s given Xt = x, we need
to look at P s

x,·, where P is taken to the power of s. The probability distribution of Xt+s

given Xt = x is therefore given by (3.12).

P(Xt+s = i|Xt = x) = P s
x,i (3.12)

The previous example is extended with the theory above in Example 3.2.

Example 3.2

Considering the same probabilities as in Example 3.1, we now observe the behavior
of the system based on a given nursing capacity on day t. Assume that today 90
nurses are present, and we want to know the probability distribution of the nursing
capacity tomorrow. Formally, we compute

P(Xt+s = i|Xt = 90) = P90,i,

which is shown in Figure 3.5. The expected number of nurses for day t + 1 is 86.5
with a standard variation of 2.33.

Figure 3.5: Probability distribution of healthy nurses for tomorrow given
90 nurses today in example scenario (n = 100, p = 0.05, q = 0.1).

Analyzing the probability distribution 5-days ahead, we compute

P(Xt+s = i|Xt = 90) = P 5
90,i,
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which can be seen in Figure 3.6. The expected number of nurses for day t + 5 is
77.02 with a standard variation of 3.99.

Figure 3.6: Probability distribution of healthy nurses in five days given 90
nurses today in example scenario (n = 100, p = 0.05, q = 0.1).

Comparing the two distributions, we observe a probability mass function with less
variance for the nursing capacity tomorrow. This indicates that knowing today’s
number of present nurses provides informative insight into tomorrow’s nursing ca-
pacity. Given the observed decrease in expected nursing capacity, the current prob-
abilities suggest that more nurses are likely to become sick than to recover in the
upcoming days.
Next, we observe the convergence of the expected value of nursing capacities to the
expected value of the stationary distribution as given in (3.8). Figure 3.7 shows the
convergence from different initial capacities 100, 80, and 20.

Figure 3.7: Convergence of the expected number of healthy nurses to steady
state from starting capacities 100, 80, and 20 in example scenario (n = 100,
p = 0.05, q = 0.1).

Even for largely different starting capacities, the expected nursing capacity converges
to the stationary one in around 30 days.
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Fluctuating Infection Risk

Similarly to the case with constant infection probabilities, we define a transition probability
matrix P (t) for each day dependent on the corresponding infection risk pt in (3.13) based
on the recursive definition in (3.10).

P(xt+1|xt) =
xt∑
i=0

P(S(t)
xt

= i) · P(Rxt = xt − xt+1 + i), (3.13)

where Rc follows the definition in (3.6) and S
(t)
c the one in (3.9). This results in an n× n

transition matrix P (t), where the xt
th row and xt+1

th column corresponds to transitioning
from xt to xt+1.

The probability distribution of a future nursing capacity on day t+s based on a known
capacity on day t (Xt = x) can be computed by multiplying transition probability matrices
P (t) to P (t+s−1). Taking the xth row of the resulting matrix results in the probability
distribution of the nursing capacity on day t+ s. Formally,

P(Xt+s = i|Xt = x) = P
(t,t+s)
x,i (3.14)

with

P (t,t+s) = P (t) · P (t+1) · ... · P (t+s−1),

where X · Y stands for the dot product of the two matrices X and Y .
To illustrate this concept, consider the following Example 3.3.

Example 3.3

Let us consider an example with varying infection probabilities, which we assume
to follow a sine function, representing pandemic waves. To calculate the probability
distribution of available nurses, we model the infection risk of nurses pt = p(t) on
day t ∈ N as

p(t) = 0.1 · sin( t
5
) + 0.1 t = 1, 2, 3, . . .

such that the infection risk varies between 0 and 0.2. For 50 days, values of pt can
be seen in Figure 3.8.

Figure 3.8: Daily nurse infection risk pt used for example scenario.
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To illustrate the effect of fluctuating infection risks on the nursing capacity, we com-
puted the probability distributions for 50 days ahead, assuming the infection risks of
Figure 3.8. We assumed n = 50 total nurses, an unchanged constant recovery prob-
ability of q = 0.1, and an initial capacity of 40 nurses. The probability distribution
for every 5 days can be seen in Figure 3.9.
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(a) Day 5. (b) Day 10.

(c) Day 15. (d) Day 20.

(e) Day 25. (f) Day 30.

(g) Day 35. (h) Day 40.

(i) Day 45. (j) Day 50.

Figure 3.9: Probability distributions of the number of healthy nurses with
varying infection risks pt over time in example scenario (n = 50, q = 0.1).
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The analysis reveals that nursing capacity tends to decrease as infection risk for
nurses increases and the other way around. However, this relationship is not instan-
taneous. There is a noticeable time lag between the change in infection risk and its
impact on available nursing capacity. For example, although the infection risk begins
to rise again after day 24, the expected nursing capacity is higher on day 30 than on
day 25. Conversely, after the infection risk peaks around day 40 and decreases again,
nursing capacity continues to decline, reaching an even lower expected level by day
45. Regarding the width of the probability distributions, they stay fairly similar over
time with a slightly narrower distribution for high nursing staff availabilities. This
results from the lower variance in the underlying distributions of nurses getting sick
and recovering.

3.5 Forecasting Nursing Capacity

Elective patients must be scheduled in advance for their surgery. Therefore, it is necessary
to forecast available resources, as outlined in the following Sections 3.5.1 translates ab to
3.5.3.

3.5.1 Lost Nursing Time due to Absence

When a nurse is sick on a given day, h nursing hours are lost. In reality, nurses typically
work four days per week and are off the remaining three, meaning that a sick nurse may
result in either roughly 9 or 0 hours lost, depending on whether they were scheduled to
work. However, over the long term and across a large workforce, this variation averages
out, and it is reasonable to model the loss as h hours per absent nurse per day.

To forecast the number of absent nurses for day t + s as seen from day t, denoted
N

(t,t+s)
a , we use the framework developed in Section 3.4 and take the expectation of the

probability distribution of the nursing capacity on day t+ s. Formally,

N (t,t+s)
a = E[Xt+s|Xt = x]

=

n∑
i=1

P(Xt+s = i|Xt = x) · i

with P(Xt+s = i|Xt = x) as defined in (3.12) and (3.14) for constant and fluctuating infec-
tion probabilities, respectively.

Translating this into lost nursing hours due to absence, we get

H(t,t+s)
a = h ·N (t,t+s)

a . (3.15)

3.5.2 Demand of Pandemic Patients

Recall that we treat the prediction of pandemic bed occupancy as an input variable for
our model. Let N (t,t+s)

p denote the predicted number of occupied beds on day t+ s, based
on a forecast made on day t. To translate the number of occupied beds into nursing time
demand for the respective day, denoted H

(t,t+s)
p , we multiply by the average NPR for

pandemic patients NPRp.

H(t,t+s)
p = NPRp ·N (t,t+s)

p .
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Recall that a nurse assigned to pandemic care cannot simultaneously work in a non-
pandemic ward. Therefore, the demand of nursing hours of pandemic patients must be
rounded up to the next higher multiple of h, as shown in (3.16).

Ĥ(t,t+s)
p =

⌈
H

(t,t+s)
p

h

⌉
· h, (3.16)

where ⌈·⌉ denotes the ceiling function.

3.5.3 Remaining Nursing Time for Elective Care

The prediction for the available nursing capacity for elective care on day t + s, made on
day t, is then defined as

H(t,t+s)
e = h · n−H(t,t+s)

a − Ĥ(t,t+s)
p , (3.17)

where H
(t,t+s)
a and Ĥ

(t,t+s)
p are defined in (3.15) and (3.16), respectively. The expected

nursing times lost due to absence and demanded by the pandemic ward are subtracted
from the amount of nursing hours of the total nursing workforce h · n per day.

We write the realized number of remaining nursing hours on day t as

h(t)e = h · n− h(t)a − ĥ(t)p ,

where h
(t)
a and ĥ

(t)
p are the realized resources lost in absence or going into pandemic care,

respectively.

3.6 Policies for Admitting Elective Care

Let E(t) denote the number of elective patients scheduled for admission on day t, requiring
a total of h(E(t)) nursing hours, calculated based on the individual NPRs of the scheduled
patients. The actual remaining nursing capacity available for elective patients on day
t is denoted by h

(t)
e . Differences between the scheduled demand h(E(t)) and the actual

remaining capacity for elective patients h
(t)
e can lead to cancellations of already planned

elective surgeries. Two cases can be distinguished.

1. h(E(t)) ≤ h
(t)
e : The scheduled elective patients can be fully treated, as their total

required workload in nursing hours does not exceed the available capacity. The
difference h

(t)
e − h(E(t)) represents unused capacities.

2. h(E(t)) > h
(t)
e : The scheduled workload exceeds the available capacity, so some of the

scheduled patients must be canceled and rescheduled to a later date. The number of
cancellations corresponds to the smallest number of patients whose removal brings
the total amount of scheduled workload below or equal to h

(t)
e . This case results in

used capacity close to h
(t)
e , thus high resource utilization.

Based on the predicted available nursing time capacity, the hospital must decide how far
in advance and how many elective patients to admit. We focus on the trade-off between
efficient resource utilization and number of cancellations, and present results thereof in
Chapter 5.
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3.6.1 Time of Admission

Assume that patients arriving on day t are planned s days in advance. Thus, admission
decision is relies on the forecast H(t−s,t)

e , as defined in (3.17). A smaller s generally comes
with a more precise forecast, as the probability distribution has less variance with a shorter
forecast horizon (e.g., see Example 3.1). However, a certain lead time is needed to carry
out pre-operative examinations, and it is generally preferred by patients to be informed
about their surgery date ahead of time. Thus, there is a trade-off between the accuracy of
capacity forecasts and the practical advantage of admitting patients earlier.

3.6.2 Number of Admissions

Given the forecast H
(t−s,t)
e for day t, the hospital must decide on the number of elective

patients to admit. It may choose to schedule a patient volume that just fits into the ex-
pected available resources. Alternatively, it may decide to schedule more conservatively
by leaving a buffer between the forecast capacity and the total demand from scheduled
patients, in order to reduce the risk of cancellations. On the other hand, to increase re-
source utilization, it may opt to overbook, i.e., scheduling more patients than are expected
to be treatable. This approach accepts a higher risk of cancellations, but may lead to
more efficient use of available resources. The appropriate balance between utilization and
cancellations should be evaluated based on the hospital’s or health system’s priorities.
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Chapter 4

Impact of Fluctuating Resources on
Backlog

Fluctuating resource availability is a defining feature of health emergencies. This chapter
investigates how such variability impacts resource utilization and, consequently, the backlog
of care. We focus on the isolated effect of stochastic staff capacity, excluding the influence of
pandemic patient demand and its fluctuations. Section 4.1 presents additional assumptions
we make in this chapter for analytical tractability. We model our problem as a multi-server
queueing process, detailed in Section 4.2. Section 4.3 outlines capacity configurations
analyzed in this study, which involve different utilization levels and server availability
distributions. To analyze queue length and sojourn time distributions in settings that do
not allow for analytical analysis, we conduct numerical experiments. Section 4.4 describes
the simulation setup. Section 4.5 explores the defined queueing system in heavy traffic via
analytical methods and highlights challenges when dealing with varying server numbers.
Section 4.6 reports findings from Monte Carlo simulations regarding queue length and
sojourn time and Section 4.7 summarizes the most important findings of this chapter.

4.1 Additional Assumptions

To make the queueing system analytically tractable, we introduce a set of additional as-
sumptions, which only hold for this chapter. First, we assume that NTD arrives according
to a homogeneous Poisson process. This replaces patient-level batch arrivals of nursing
hours with the arrival of individual units of nursing workload. Similarly, we treat hours of
nursing capacity as individually distributed, that is infection and recovery behavior hap-
pens at the level of individual hours rather than full shifts of individual nurses. All other
assumptions made in Section 3.3 hold.

Admission decisions and operational constraints are not considered in this part of the
analysis. Instead, we study the pure effect of fluctuating resources. Capacity is assumed
to be used optimally. As long as the waitlist is non-empty, all available available hours of
nursing capacity are used. Consequently, service of a patient, which consists of multiple
hours of NTD, can be split across days. For example, some nursing hours may be worked
off on the current day, and the remainder on subsequent ones.
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4.2 Mathematical Queueing Model

We model the delivery of hospital care to patients as a discrete-time queueing system. Time
is divided into fixed-length time-intervals, called slots, defined as {[0, 1), [1, 2), [2, 3), . . .} ,
where each slot represents one day. We refer to the time interval [t, t+ 1) as day t.

Workload units arrive at the input of the system stochastically, and wait in a buffer
with infinite capacity. Moreover, our modeled hospital operates as a late arrival system
(also known as delayed access), where workload arriving to the waiting list on day t can
only start service on day t+ 1. This timing scheme is illustrated in Figure 4.1. Here, the
arrival happens at the end of day t− 1 just after service is completed and patients depart.
Service of the next item then starts at the beginning of the next day t.

Figure 4.1: Time scheme of the late arrival model showing patient arrivals and
departures.

Each hour of nursing capacity available on a given day is represented by a single server.
Thus, the number of servers, denoted by c directly reflects the total available nursing
capacity for that day. We assume deterministic service times of exactly one time slot (i.e.,
one day), after which workload leaves the system, eliminating the complexity of mid-service
capacity fluctuations. Available servers cannot drop during an ongoing service period by
definition, ensuring service without interruptions once it has begun.

We define the system contents by (4.1)

Qt+1 = Qt −Dt +At, (4.1)

where Qt is the system content (workload hours in the queue and in service) at time t,
and Dt and At denote the departures and arrivals on day t, respectively. Dt is constrained
to not exceed the system contents Qt. In the following, we use the terms system contents
and queue length interchangeably, describing the contents in the queue and in service.

The arrival process is modeled as follows. Workload arrives to the waitlist according to
a general uncorrelated arrival process, i.e., the number of arrivals in consecutive slots are
independent and identically distributed (i.i.d.) random variables. Each slot, the number
of arrivals At is drawn from a Poisson counting process with common rate λ, see (4.2).

At ∼ Poisson(λ) (4.2)

The queue, which consists of nursing hours of elective workload, is served according to
a FIFO principle. The service time consists of one slot, and can start and end at slot
boundaries only. This also implies that the service of a nursing hour which arrives to an
empty system cannot begin until the beginning of the subsequent slot. Consequently, the
number of departures Dt is given by the minimum of the system contents and number of
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servers, as defined in (4.3).

Dt =

{
Qt, if Qt < c

c, if Qt ≥ c
(4.3)

The described queue is the discrete-time analogue of the continuous M/1/c queue, which
we denote as Poisson/1/c.

We define the utilization ρ of a queueing system as the long-run fraction of time during
which the servers are busy processing jobs. Let λ denote the average arrival rate and µ = 1
the average service rate of a single server. For a system with a fixed number of c identical
servers, the utilization is defined as

ρ =
λ

c · µ
.

A system is considered stable if ρ < 1, meaning that on average, the system can handle
the incoming workload. If ρ ≥ 1, the queue length tends to grow unbounded over time,
indicating an unstable system.

4.3 Configurations

We consider the system under various demand and capacity circumstances, which are
represented as different queue configurations. Section 4.3.1 presents the different server
availability patterns used to model fluctuating capacity. Section 4.3.2 outlines the different
system loads we examine, representing levels of demand relative to available resources.

4.3.1 Server Distribution

We consider different patterns of server availability. First, we consider a deterministic
number of 20 servers. Then, we introduce variability by drawing the number of servers from
a Binomial distribution with an expected value of 20. Lastly, we compare to the setting, in
which server availability evolves based on Binomial infection and recovery processes based
on the nurse absenteeism model introduced in Section 3.4. We describe the latter two serve
configurations below.

Binomial Distribution

Each day, the number of available servers is determined by an i.i.d. draw from a Binomial
distribution. For comparability with the deterministic setting of 20 servers, the expected
number of available servers stays fixed at 20 across all the considered cases. We explore
results with maximum possible numbers of 22, 25, 28, and 100 servers, which constitute
the support n of the Binomial distribution. The success probabilities r, referring to the
likelihood that an individual server is available on a given day, are chosen such that the
expected number of servers

E[c] = n · r = 20.

We consider four different server distributions

c ∼ Binomial(n, r)

with parameter values shown in Table 4.1.
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n r

22 10/11
25 4/5
28 5/7
100 1/5

Table 4.1: Parameters for Binomial distributed nursing capacity.

Binomial Infection and Recovery Evolution

Here, server availability evolves as a process of Binomial infection and recovery, as intro-
duced in Section 3.4. The maximum capacity consists of n total servers, each of which drop
out (get sick) on a given day with probability p and recover with probability q. Again, we
consider values of n ∈ {22, 25, 28, 100} with an expected number and a starting capacity
of 20 available servers. Setting q = 0.2, we determine p such that the expectation of the
available servers satisfies

q

p+ q
· n = 20.

The values of p, q, and the corresponding steady state success probability q
p+q are summa-

rized in Table 4.2.

n q
p+q p q

22 10/11 1/50 1/5
25 4/5 1/20 1/5
28 5/7 2/25 1/5
100 1/5 4/5 1/5

Table 4.2: Parameters for nursing capacity following Binomial infection and re-
covery behavior.

This differs from i.i.d. Binomial variables described previously. Since the availability
of nurses on a given day depends on the one of the day before, the number of available
servers varies less from day to day. In other words, the availability of servers is temporally
autocorrelated.

4.3.2 Utilization

The variability in the number of available servers can affect backlog dynamics differently
depending on system utilization. To explore this, we consider several traffic scenarios by
adjusting the Poisson arrival rate λ accordingly.

Heavy Traffic (ρ = 0.995)

Health systems are typically designed to operate in heavy traffic, where utilization levels
approach 100% without exceeding it. Resources are scarce and tightly allocated, yet the
system remains stable. This leads to efficient resource usage, with most capacity being
utilized.

30



Moderate Traffic (ρ = 0.8)

To understand how server variability impacts systems under less strain, we also examine
a moderate traffic scenario. Here, the arrival rate is adjusted to achieve a utilization of
ρ = 0.8. In steady state, we expect shorter queue lengths than in the heavy traffic case.

Hypercritical Traffic (ρ = 1, ρ = 1.2)

During health emergencies, demand may exceed available capacity for certain periods.
We analyze system behavior under overload conditions, where arrivals overshoot service
capacity. These scenarios are simulated for utilization levels of ρ = 1.0 and ρ = 1.2. Since
the queue is unstable, it does not converge to a limiting distribution and instead grows
unbounded over time.

4.4 Experimental Setup

For each combination of the server and utilization settings described above, the queueing
system is analyzed. We perform 100 simulations of 1,000,000 time steps, where we record
system contents and sojourn times. The first 10% of the simulation period are regarded as
a start-up phase and not used for analyses. The rest is aggregated to report distributions
and corresponding 95%-confidence intervals (CIs).

We fit an exponential curve to empirical results by taking the mean queue length as
the rate parameter. We validate our simulation by comparing empirical results for c = 20
to the corresponding distribution we derive analytically in Section 4.5.

Experiments were run on a computer with an AMD Ryzen 5 5500U processor with 6
cores and 16 GB RAM, running Windows 11. Analyses were performed in Python version
3.8.8 using the web-based interface Jupyter Notebooks.

4.5 Analytical Results

This section explores the queueing system via analytical methods. In Section 4.5.1, we
exploit the properties of probability generating functions (PGFs) to derive the system con-
tent PGF for the Poisson/1/c and Poisson/1/1 queue following the approach used in [52].
We relate the former to the latter system in heavy traffic and derive the limiting distri-
bution, which matches known results for continuous-time queues. Section 4.5.2 examines
the challenges of extending this approach to the Poisson/1/Binomial queue, where the
number of servers varies according to a Binomial distribution. We show why the analogy
to continuous-time queues with varying i.i.d. service times breaks down in this case.

4.5.1 Poisson/1/c Queue in Heavy Traffic

Following Gao et al. [52], we define the PGF of arrivals GA(z) = E[zA], where At ∼
Poisson(λ), in (4.4).

GA(z) =

∞∑
i=0

λie−λ

i!
zi = e−λ(1−z) (4.4)

Since the number of departures are deterministic given the system contents and the number
of servers c, we work with the direct definition of Dt in (4.3) instead of defining the PGF
as Gao et al. did.
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The PGF of the system contents Qt is defined based on its recursive definition (see (4.1))
as

GQt+1(z) = E[zQt+1 ]

= E[zQt−Dt+At ]

= E[zAtzQt−Dt ]

= GA(z)E[zQt−Dt ]. (4.5)

Further, we split up the sum of the expectation dependent on whether or not Qt is less
than the number of servers c. For the case of Qt ≥ c, Qt and Dt are independent variables,
for Qt < c, they are equivalent.

E[zQt−Dt ] =

∞∑
i=0

P(Qt = i)E[zQt−Dt |Qt = i]

=

c−1∑
i=0

P(Qt = i)E[zQt−Dt |Qt = i] +

∞∑
i=c

P(Qt = i)E[zQt−Dt |Qt = i]

=
c−1∑
i=0

P(Qt = i)E[zi−i|Qt = i] +
∞∑
i=c

P(Qt = i)E[zi−c|Qt = i]

=
c−1∑
i=0

P(Qt = i) +
∞∑
i=c

P(Qt = i)zi−c

Considering the second sum

∞∑
i=c

P(Qt = i)zi−c =
∞∑
i=0

P(Qt = i)zi−c −
c−1∑
i=0

P(Qt = i)zi−c

= z−c
∞∑
i=c

P(Qt = i)zi −
c−1∑
i=0

P(Qt = i)zi−c

= GQt(z)z
−c −

c−1∑
i=0

P(Qt = i)zi−c.

Inserting into (4.5) yields

GQt+1(z) = GA(z)E[zQt−Dt ]

= GA(z)

{[
c−1∑
i=0

P(Qt = i)

]
+GQt(z)z

−c −

[
c−1∑
i=0

P(Qt = i)zi−c

]}

= GA(z)

{
GQt(z)z

−c +

c−1∑
i=0

P(Qt = i)zi
[
z−i − z−c

]}
.

Assuming the steady state exists, then the PGF of the system content converges to its
equilibrium version as t → ∞. Thus, the PGF of the system contents in steady state
GQ(z) is given by

GQ(z) = GA(z)

{
GQ(z)z

−c +
c−1∑
i=0

Q(i)zi
[
z−i − z−c

]}
,
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where Q(i) is the equilibrium probability of having i customers in the system. Rearranging
the terms leads to

GQ(z)
[
1−GA(z)z

−c
]
= GA(z)

{
c−1∑
i=0

Q(i)zi
[
z−i − z−c

]}
and

GQ(z) =
GA(z)

∑c−1
i=0 Q(i)zi

[
z−i − z−c

]
1−GA(z)z−c

=
GA(z)

∑c−1
i=0 Q(i)

[
zc − zi

]
zc −GA(z)

(4.6)

=
e−λ(1−z)

∑c−1
i=0 Q(i)

[
zc − zi

]
zc − e−λ(1−z)

. (4.7)

Note that there are still c unknown constants to be determined, which are the proba-
bilities Q(i) of a system content of i for i = 0, ..., c− 1. While this is possible by analyzing
GQ(z) inside the unit disk of the complex z-plane and using the normalizing condition, we
constrain our setting to a heavy traffic setting, where the constants are not required for
analysis.

As the system load approaches capacity (ρ → 1), all servers are almost always occupied,
making the cases of Q(i) for i < c are negligible. This means that the system behaves as
if it processes jobs at a constant rate. We therefore translate the multi-server queue to
a single-server queue, where the server operates at a faster speed. The service times are
adjusted so that the same number of jobs per time interval are completed.

In the following, we derive results for the Poisson/1/1 queue with Poisson arrival
rate λ → 1 resulting in system contents Q and sojourn times W. By Little’s Law [53],
Q = λW = W .

Remark 4.5.1. Consider a Poisson/1/c queue that we relate to the Poisson/1/1 queue
in heavy traffic, with an arrival rate λ → 1. The arrival rate of the multi-server queue is
then λ̃ = cλ → c, and service times in the single-server representation are 1

c . Since the
utilization is the same, the queue length Q̃ remains similar to Q. Due to this faster service,
sojourn times are c-times less, resulting in W̃ = W

c . This goes in line with Little’s Law,
as Q̃ = λ̃W̃ = cλw

c = λW = Q.

Poisson/1/1 Queue

In the single server setting, Dt simplifies to

Dt =

{
0, if Qt = 0

1, otherwise.

Assuming λ < 1, such that ρ < 1 and the stationary distribution exists, and taking the
limit t → ∞, we insert into (4.6), and get

GQ(z) =
GA(z)

∑0
i=0Q(i)[z1 − zi]

z1 −GA(z)

=
GA(z)Q(0)(z − 1)

z −GA(z)

=
e−λ(1−z)Q(0)(z − 1)

z − e−λ(1−z)
(4.8)
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We now only need to determine one unknown constant Q(0). Since the utilization ρ = λ
is defined as the fraction of time the server is busy processing jobs, Q(0) = 1 − λ. As
a sanity check we derive it analytically as well. By the properties of PGFs, we know
limz→1GQ(z) = 1, and together with l’Hôpital’s rule we get

1 = lim
z→1

GQ(z)

= lim
z→1

e−λ(1−z)Q(0)(z − 1)

z − e−λ(1−z)

=
limz→1

d
dz e

−λ(1−z)Q(0)(z − 1)

limz→1
d
dz z − e−λ(1−z)

=
Q(0) limz→1 e

−λ(1−z)(λz − λ+ 1)

limz→1 1− λe−λ(1−z)

=
Q(0)

1− λ
,

which gives the desired result

Q(0) = 1− λ.

Inserting into (4.8), the stationary distribution is given by the PGF

GQ(z) =
e−λ(1−z)Q(0)(z − 1)

z − e−λ(1−z)
(4.9)

=
e−λ(1−z)(1− λ)(z − 1)

z − e−λ(1−z)
. (4.10)

Heavy Traffic Limit

Provided λ < 1, we have the equilibrium queue length probabilities giving by the generat-
ing function (4.10). We follow the approach used in [54], which leverages the properties of
characteristic functions (CFs) and derives the heavy traffic limit for the MD/GD/1 model,
where in each time slot either one or zero customers arrive and service times are i.i.d.
random variables. Therefore, we bring the PGF into the form (4.11), which was used by
Subba Rao [54].

GQ(z) =
h(z)(1− λ)(z − 1)

z − h(z)

=
(1− λ)(1− z)h(z)

h(z)− z
(4.11)

with

h(z) = e−λ(1−z) = GA(z)

We now wish to obtain the distribution of Q in heavy traffic. Since that means considering
the case (1− λ) → 0, we derive the limiting distribution of (1− λ)Q.

Following Subba Rao, let ε = 1 − λ and let ϕQ(θ) = E[eiθQ] be the CF of the queue
length, where i denotes the imaginary unit. We then have

ϕQ(θ) = GQ(e
iθ)

=
(1− λ)(1− eiθ)h(eiθ)

h(eiθ)− eiθ
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We define Q̂ = εQ, leading to the CF

ϕQ̂(θ) = E[eiθQ̂]

= E[eiθεQ]
= ϕQ(εθ)

=
ε(1− eiεθ)h(eiεθ)

h(eiεθ)− eiεθ
(4.12)

For ε → 0, we have the following Taylor expansion of h(eiεθ), keeping all terms up to the
second order.

h(eiεθ) = h(1) + h′(1)(eiεθ − 1) +
h′′(1)

2
(eiεθ − 1)2 + o(ε2)

= 1 + λ(eiεθ − 1) +
λ2

2
(eiεθ − 1)2 + o(ε2)

= 1 + λ(iεθ − ε2θ2

2
) +

λ2

2
(iεθ − ε2θ2

2
)2 + o(ε2)

= 1 + λ(iεθ − ε2θ2

2
) +

λ2

2
(−ε2θ2) + o(ε2)

= 1 + λiεθ − ε2θ2

2
(λ2 + λ) + o(ε2)

= 1 + (1− ε)iεθ − ε2θ2

2
((1− ε)2 + (1− ε)) + o(ε2)

Inserting into the CF (4.12) gives

ϕQ̂(θ) =
ε(1− eiεθ)[1 + (1− ε)iεθ − ε2θ2

2 ((1− ε)2 + (1− ε))]

1 + (1− ε)iεθ − ε2θ2

2 ((1− ε)2 + (1− ε))− eiεθ
+ o(ε2)

Now consider the nominator and denominator separately to determine the dominant terms.

Nominator:

ε(1− eiεθ)[1 + (1− ε)iεθ − ε2θ2

2
((1− ε)2 + (1− ε))]

= ε(−iεθ +
ε2θ2

2
+ o(ε2))[1 + (1− ε)iεθ − ε2θ2

2
((1− ε)2 + (1− ε))]

= −iε2θ + o(ε2)

Denominator:

1 + (1− ε)iεθ − ε2θ2

2
((1− ε)2 + (1− ε))− eiεθ

= 1 + (1− ε)iεθ − ε2θ2

2
((1− ε)2 + (1− ε))− (1 + iεθ − ε2θ2

2
+ o(ε2)) (4.13)

= iεθ((1− ε)− 1)− ε2θ2

2
((1− ε)2 + (1− ε)− 1) + o(ε2)

= −iε2θ − ε2θ2

2
+ o(ε2)
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Here, (4.13) follows from applying a Taylor expansion on eiεθ. The limit of the CF for
ε → 0 is therefore given as

lim
ε→0

ϕQ̂(θ) = lim
ε→0

−iε2θ

−iε2θ − ε2θ2

2

=
2

2− iθ
.

The Lévy’s convergence theorem [55] states that if a series of CF converges to some
limit, the probability density function (PDF) converges to the PDF corresponding to the
limiting CF. Thus, we need to apply an inverse Fourier transform to get the queue length
distribution of εQ in heavy traffic.

We recognize the CF of an exponentially distributed variable X ∼ Exp(α)

ϕX(θ) =
α

α− iθ
.

Thus,

lim
ε→0

Q̂ ∼ Exp(2) (4.14)

and

lim
ε→0

P(εQ > x) = e−2x.

Due to the deterministic service time of one time slot, the sojourn time Ŵ = εW for the
single-server setting follows the same distribution.

lim
ε→0

Ŵ ∼ Exp(2)

lim
ε→0

P(εW > x) = e−2x

As stated in Remark 4.5.1, in a translation from this single-server queue to a sped-up
single-server queue representing a multi-server queue with c servers, sojourn times Ŵc must
scaled down by factor c, resulting in

lim
ε→0

1

c
Ŵc ∼ Exp(2),

which equals

lim
ε→0

Ŵc ∼ Exp(2c). (4.15)

Queue lengths Q̂c for the multi-server case follow the same distribution as the single-server
case, given in(4.14).

Figure 4.2 illustrates the derived distributions and highlights the difference in sojourn
times between the single-server and multi-server setting.
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(a) QL distr. for c constant. (b) ST distr. for c = 1 and c = 20.

Figure 4.2: Heavy traffic limiting distributions for single- and multi-server (c =
20) queues with a constant number of servers. QL - queue length, ST - sojourn
time.

These results correspond to the heavy traffic limits for the continuous equivalent in
[56]. They determined the heavy traffic limits for the M/G/1 queue to have the following
distributions.

lim
ρ→1

Q̂ ∼ Exp(
2b2

σ2 + b2
) (4.16)

lim
ρ→1

Ŵ ∼ Exp(
2b

σ2 + b2
) (4.17)

Here, the variable b describes the expected service time, and σ2 the variance of the service
times. For our deterministic setting (b = 1/c, σ2 = 0), the results correspond to ours.

The analogy between discrete-time and continuous-time queueing systems has been
observed in prior research. As shown by Meisling [57], results for continuous-time systems
can be derived as a limiting case of their discrete-time counterparts. By letting the length
of time intervals approach zero (∆t → 0), Meisling showed that the arrival and service time
distributions converge to continuous distributions with the same mean rates. While in his
work he considered only one or no arrival at a given time mark, arguing that this limit
leads to a Poisson distribution in continuous time, we believe his argumentation still holds
in our setting, where the number of arrivals at each time step follows a Poisson counting
process. This is because the sum of independent Poisson random variables is itself Poisson
distributed.

4.5.2 Poisson/1/Binomial Queue in Heavy Traffic

Based on the relation of the Poisson/1/c queue to the continuous M/D/1 as a special case
of the M/G/1 queue with service times 1

c , we explore whether the same relationship exists
for the Poisson/1/Binomial queue.

We relate our discrete-time case to (4.16) and (4.17), by defining service times 1
C

for C following a Binomial distribution. The mean and variance of the service time are
then computed as E[ 1C ] and V ar[ 1C ]. Due to the variance term in the denominator of
the exponential rate of the continuous-time results, we expect longer queue lengths and
sojourn times for higher variability of servers.

These expressions are not straightforward to compute for two reasons. Note that E[ 1C ] ̸=
1

E[C] and V ar[ 1C ] ̸=
1

V ar[C] . Due to the Binomial distribution having a non-zero probability
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of C = 0, these terms are not defined unless we condition on C > 0. Even then, the
first and second moment of the reciprocals of C, which are needed to derive E[ 1C ] and
V ar[ 1C ] are cumbersome to compute. Since in our considered distributions, the probability
P[C = 0] is negligibly small, we chose to compute these values numerically.

We translated a random draw of 1 million i.i.d. server capacities c ∈ C to service times
1
c . The value 0 did not occur in the sample. We then calculated the mean and variance
of these values. The procedure was conducted in Python version 3.8.8. Table 4.3 presents
resulting values and the corresponding queue length and sojourn time exponential rate β
and ω derived from (4.16) and (4.17), respectively.

Server Distribution b σ2 · 10−5 β ω

Bin(22, 1011) 0.0502 1.28 1.9899 39.6393
Bin(25, 45) 0.0505 2.91 1.9774 39.1572
Bin(28, 57) 0.0508 4.24 1.9676 38.7337
Bin(100, 15) 0.0522 13.50 1.9056 36.5055

Table 4.3: Numerical results for mean and variance of service time, and resulting
queue length and sojourn time exponential rates β and ω.

Comparing simulation results from the Poisson/1/Binomial queue to the adjusted
continuous-time results, we observe significant differences in the heavy traffic limiting dis-
tribution. Figure 4.3 compares empirical results and an exponential fit to them (green line)
to the analytical continuous results (red dotted line).
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(a) QL distr., c ∼ Bin(22, 10
11 ) (b) ST distr., c ∼ Bin(22, 10

11 )

(c) QL distr., c ∼ Bin(25, 4
5 ) (d) ST distr., c ∼ Bin(25, 4

5 )

(e) QL distr., c ∼ Bin(28, 5
7 ) (f) ST distr., c ∼ Bin(28, 5

7 )

(g) QL distr., c ∼ Bin(100, 1
5 ) (h) ST distr., c ∼ Bin(100, 1

5 )

Figure 4.3: Heavy traffic limiting distributions of a multi-server queue with the
number of servers C ∼ Binomial. Comparison of empirical results to scaled
continuous-time queueing results. QL - queue length, ST - sojourn time, distr.
- distribution.
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We observe that our empirical results deviate from the queue length distribution of
the scaled M/G/1 queue. Both results indicate longer queue lengths and sojourn times
than in the constant 20-server case. However, the results of the scaled continuous queue
underestimate the empirical increase in both queue length and sojourn time. In other
words, the translation to fluctuating service times underestimates the effect of variability
in the number of servers. This is due to the fact that, when doing the translation from
server numbers to service times, we do not consider the resulting temporal autocorrelation
of service times. The assumption of i.i.d. service times in (4.16) and (4.17) is therefore not
fulfilled, leading to differing results.

We illustrate the translation and why i.i.d. servers do not translate to i.i.d. service
times for an example queue. Consider a queueing model like described in Section 4.2 over
three time steps with server numbers of 20, 10, and 30 on day t, t+1, and t+2, respectively.
Figure 4.4 shows a timeline of service completions, resulting from translating the system
into a continuous-time single-server queue. Service completions are indicated by the ticks.
Additionally, there is a service completion at the end of each day. Since we assume a non-
empty queue, the number of service completions matches the number of available servers.
So, when looking at one day in isolation, the translation behaves just as it did in the setting
with a constant amount of servers (Section 4.5.1), where continuous-time and discrete-time
results are equivalent in heavy traffic. However, considering multiple time steps, service
times clearly violate the i.i.d.-assumption.

Figure 4.4: Timeline of service completions in translation from discrete-time
multi-server to continuous-time single-server queue.

Expressions (4.16) and (4.17) with parameter values as given in Table 4.3, however,
give results for an M/G/1 queue with i.i.d. service times. Figure 4.5 illustrates exemplary
service completions for the example above.

Figure 4.5: Timeline of service completions in continuous-time single-server queue
with i.i.d. service times.

Note that the mean and variance of service times of these two cases are the same. The
queue length and sojourn time distribution in heavy traffic, though, is not. We believe
that the temporal autocorrelation of service times, resulting in extended periods of high
resource availability increases the likelihood of the queue emptying, which leads to lost
resources.

The behavior observed for Poisson/1/Binomial queues can be compared to queues in
random environments. There, parameters of the queue (e.g., service time) are determined
by the state of the queue, which typically follows a Markov chain. Discrete-time queues of
this kind are researched in [58], where large discrepancies to standard queueing models are
found. Note that in our case transitions of service times happen at a fixed time interval of
one day.

40



In summary, translating a multi-server queue with a varying number of servers to a
sped up single-server queue results in temporal autocorrelation of service times. Therefore,
(4.16) and (4.17) do not apply, as they assume i.i.d service times.

4.6 Numerical Results

This section reports findings from Monte Carlo simulations regarding queue length and
sojourn time. Results are structured according to their traffic scenario. Sections 4.6.1,
4.6.2 and 4.6.3 report results in heavy, moderate and hypercritical traffic, respectively.
Within these sections, results are structured as follows. First, we look at a constant
number of servers, before investigating a Binomial distribution and an evolution according
to Binomial infection and recovery behavior.

4.6.1 Heavy Traffic

This section presents results on the heavy traffic limiting distribution. Before reporting
numerical results for a varying number of servers, the distributions for a fixed server num-
ber, which we derived analytically, are plotted in Figure 4.6. All figures in this section
report queue lengths and sojourn times scaled by the factor 1− ρ = 0.005, such that they
compare to the analytical results.

Constant Number of Servers

As derived in Section 4.5.1, the queue length and sojourn time for a Poisson/1/c queue
with a fixed number of servers follow distribution given in (4.14) and (4.15). We validate
our simulation by comparing empirical results of the 20-server queue to the analytical ones
in Figure 4.6. The mean queue length is 96.75 (95%-CI: [86.18; 108.23]) with a standard
deviation (SD) of 98.43 (95%-CI: [82.95; 113.61]).

(a) QL distr. for c = 20. (b) ST distr. for c = 20.

Figure 4.6: Heavy traffic limiting distributions for multi-server (c = 20) queues
with a constant number of servers. QL - queue length, ST - sojourn time, distr. -
distribution.

The figures show a good fit, successfully validating our simulation procedure. However,
we can observe fewer very short sojourn times than indicated in the analytical derivation.
This likely results from the LAS discipline, where new arrivals have delayed access to
service, which enforces a minimum sojourn time of two time slots, given service times of
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one. The small deviation in the queue length distribution may be explained by the fairly
wide CIs of simulations, indicating high queue length variability, as shown in Figure 4.7.

Figure 4.7: Confidence intervals of heavy traffic limiting distributions for multi-
server (c = 20) queues with a constant number of servers.

Binomial Distributed Servers

Table 4.4 reports the mean and SD of queue length, including 95% CIs.

Server Distribution Mean QL SD QL

Bin(22, 1011) 106.28 [ 91.87; 121.71] 107.07 [ 89.95; 128.97]
Bin(25, 45) 117.12 [104.66; 137.04] 118.36 [ 97.83; 144.68]
Bin(28, 58) 124.61 [107.98; 144.22] 128.27 [102.64; 167.66]
Bin(100, 15) 174.14 [151.71; 209.27] 173.03 [142.66; 215.43]

Table 4.4: Mean and standard deviation of queue length with Binomial distributed
servers in heavy traffic. QL - queue length, SD - standard deviation.

We observer both greater means and SDs for a larger number of total servers. The
following Figures 4.8 and 4.9 show queue lengths and sojourn times scaled with the factor
1− ρ to ensure comparability to the analytical results. The first presents the queue length
distribution and corresponding CIs, while the latter compares distribution of the different
Binomial server settings to the distribution with constant 20 servers in terms of both queue
length and sojourn time. Table 4.5 reports rates of the exponential fits to empirical queue
length data, which are shown as green lines in Figure 4.9.
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(a) c ∼ Bin(22, 10
11 ) (b) c ∼ Bin(25, 4

5 )

(c) c ∼ Bin(28, 5
7 ) (d) c ∼ Bin(100, 1

5 )

Figure 4.8: Confidence intervals of heavy traffic limiting distributions for multi-
server queues with the number of servers C ∼ Binomial.

Server Distribution Exponential Rate

Bin(22, 1011) 1.88 [1.64; 2.17]
Bin(25, 45) 1.71 [1.46; 1.91]
Bin(28, 58) 1.61 [1.39; 1.85]
Bin(100, 15) 1.14 [0.96; 1.32]

Table 4.5: Rates of exponential fit to empirical queue length for Binomial dis-
tributed servers.
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(a) QL distr., c ∼ Bin(22, 10
11 ) (b) ST distr., c ∼ Bin(22, 10

11 )

(c) QL distr., c ∼ Bin(25, 4
5 ) (d) ST distr., c ∼ Bin(25, 4

5 )

(e) QL distr., c ∼ Bin(28, 5
7 ) (f) ST distr., c ∼ Bin(28, 5

7 )

(g) QL distr., c ∼ Bin(100, 1
5 ) (h) ST distr., c ∼ Bin(100, 1

5 )

Figure 4.9: Heavy traffic limiting distributions of a multi-server queue with the
number of servers C ∼ Binomial. Comparison of empirical results to results for
a constant server number c = 20. QL - queue length, ST - sojourn time, distr. -
distribution.
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As can be observed in the plots as well as the exponential rates, stochasticity in the
number of servers leads to longer queues and sojourn times. The more variance we observe
in the number of servers, the more substantial the increase is (e.g., 28 servers with success
probability 5

7 compared to 22 servers with 10
11). This behavior also occurs in continuous-

time M/G/1 queues with i.i.d. service times, as suggested by the variance term in the
denominator of (4.16) and (4.17).

Servers Following Binomial Infection and Recovery Evolution

Table 4.6 reports the mean and SD of queue length, including 95% CIs.

Server Distribution Mean QL SD QL

n = 22, Sc ∼ Bin(c, 0.02) 167.81 [144.87; 202.63] 174.81 [145.29; 233.52]
n = 25, Sc ∼ Bin(c, 0.05) 230.76 [191.72; 285.75] 237.51 [185.32; 334.37]
n = 28, Sc ∼ Bin(c, 0.08) 265.85 [224.44; 317.94] 267.43 [211.17; 334.47]
n = 100, Sc ∼ Bin(c, 0.8) 175.76 [152.60; 207.21] 178.13 [142.30; 235.22]

Table 4.6: Mean and standard deviation of queue length with servers following
Binomial infection and recovery behavior in heavy traffic. QL - queue length, SD -
standard deviation.

Up to a total server number of n = 28, queue lengths and SDs thereof increase. How-
ever, results for n = 100 are very similar to n = 22, breaking this pattern.

Again, the following Figures 4.10 and 4.11 present scaled results. The first presents
the mean distribution and corresponding CIs. The latter compares distributions with
servers following different Binomial infection and recovery evolutions to the Binomial server
distribution and constant 20 servers. Table 4.7 reports rates of exponential fits to empirical
queue length data.

Server Distribution Exponential Rate

n = 22, Sc ∼ Bin(c, 0.02) 1.19 [0.99; 1.38]
n = 25, Sc ∼ Bin(c, 0.05) 0.87 [0.70; 1.04]
n = 28, Sc ∼ Bin(c, 0.08) 0.75 [0.63; 0.89]
n = 100, Sc ∼ Bin(c, 0.8) 1.14 [0.97; 1.31]

Table 4.7: Rates of exponential fit to empirical queue length for servers following
Binomial infection and recovery behavior.
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(a) n = 22, Sc ∼ Bin(c, 0.02) (b) n = 25, Sc ∼ Bin(c, 0.05)

(c) n = 28, Sc ∼ Bin(c, 0.08) (d) n = 100, Sc ∼ Bin(c, 0.8)

Figure 4.10: Confidence intervals of heavy traffic limiting distributions for multi-
server queues with the number of servers following Binomial infection and recovery
behavior.

With the number of servers following this infection and recovery process, queues and
sojourn times increase compared to the i.i.d. Binomial draw. The queue empties more
often due to longer lasting periods of high server availability, leading to more lost resources.
This also explains the spike in the histograms of the queue length at zero. However, in
the extreme case, when n = 100, the difference between the i.i.d. Binomial draw and the
infection and recovery behavior is very small. We suspect that due to the high variance
in the Binomial distributions of nursing staff getting infected and recovering, the server
availabilities on subsequent days vary more than in cases with smaller n. Since this reduces
the temporal autocorrelation of available servers, the evolution of infection and recovery is
closer to an independent draw from the Binomial distribution.
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(a) QL distr., n = 22, p = 0.02 (b) ST distr., n = 22, p = 0.02

(c) QL distr., n = 25, p = 0.05 (d) ST distr., n = 25, p = 0.05

(e) QL distr., n = 28, p = 0.08 (f) ST distr., n = 28, p = 0.08

(g) QL distr., n = 100, p = 0.8 (h) ST distr., n = 100, p = 0.8

Figure 4.11: Heavy traffic limiting distributions of a multi-server queue with the
number of servers following Binomial infection and recovery behavior. Comparison
of empirical results to results for C ∼ Binomial and constant server number c = 20.
QL - queue length, ST - sojourn time, distr. - distribution.
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4.6.2 Moderate Traffic

For all three types of server configurations, we report means and SDs of queue lengths
before illustrating distributions in Figures 4.12, 4.13 and 4.14.

Compared to the heavy traffic setting, the steady state queue length distribution does
not follow a geometric distribution. As expected, due to the lower utilization, the queue
length remains very short and has far less variance than in heavy traffic.

Constant Number of Servers

For constant 20 servers, the mean queue length is 0.57 (95%-CI: [0.57; 0.58]) with an SD
of 1.64 (95%-CI: [1.62; 1.65]).

Figure 4.12: Confidence intervals of the moderate traffic limiting queue length
distribution for multi-server queues (c = 20) with a constant number of servers.

Binomial Distributed Servers

Arithmetic means and SDs of queue lengths can be found in Table 4.8.

Server Distribution Mean QL SD QL

Bin(22, 1011) 0.68 [0.68; 0.69] 1.85 [1.84; 1.87]
Bin(25, 45) 0.82 [0.81; 0.82] 2.10 [2.08; 2.11]
Bin(28, 58) 0.93 [0.92; 0.93] 2.29 [2.27; 2.31]
Bin(100, 15) 1.60 [1.59; 1.61] 3.39 [3.36; 3.42]

Table 4.8: Mean and standard deviation of queue length with Binomial distributed
servers in moderate traffic. QL - queue length, SD - standard deviation.

Similarly to the heavy traffic setting, variability in the number of servers leads to an
increased queue length and SDs thereof with a more intense effect for higher variability.
As can be seen in Figure 4.13 it does not follow an exponential distribution, unlike the
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heavy traffic results. Besides, the CIs are much narrower, indicating less variability in the
distribution compared to the critical heavy traffic setting.

(a) c ∼ Bin(22, 10
11 ) (b) c ∼ Bin(25, 4

5 )

(c) c ∼ Bin(28, 5
7 ) (d) c ∼ Bin(100, 1

5 )

Figure 4.13: Confidence intervals of the moderate traffic limiting queue length
distribution for multi-server queues with the number of servers C ∼ Binomial.

Servers Following Binomial Infection and Recovery Evolution

Table 4.9 reports means and SDs of queue lenghts.

Server Distribution Mean QL SD QL

n = 22, Sc ∼ Bin(c, 0.02) 0.82 [0.81; 0.83] 2.28 [2.24; 2.32]
n = 25, Sc ∼ Bin(c, 0.05) 1.15 [1.14; 1.17] 3.11 [3.06; 3.16]
n = 28, Sc ∼ Bin(c, 0.08) 1.41 [1.39; 1.43] 3.67 [3.60; 3.75]
n = 100, Sc ∼ Bin(c, 0.8) 1.60 [1.59; 1.62] 3.39 [3.36; 3.42]

Table 4.9: Mean and standard deviation of queue length with servers following
Binomial infection and recovery behavior in moderate traffic. QL - queue length,
SD - standard deviation.

Again, as already observed under heavy traffic, this autocorrelation of server availabili-
ties leads to longer queues opposed to an i.i.d Binomial draw of the number of servers. On
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top, just as in the heavy traffic regime, we observe very similar distributions for the i.i.d.
Binomial draw and the infection and recovery evolution for a total amount of 100 servers
in Figure 4.13d and 4.14d, respectively.

(a) n = 22, Sc ∼ Bin(c, 0.02) (b) n = 25, Sc ∼ Bin(c, 0.05)

(c) n = 28, Sc ∼ Bin(c, 0.08) (d) n = 100, Sc ∼ Bin(c, 0.8)

Figure 4.14: Confidence intervals of the moderate traffic limiting queue length
distribution for multi-server queues with the number of servers following Binomial
infection and recovery behavior.

4.6.3 Hypercritical Traffic

When demand surpasses capacity, queues grow without bound instead of reaching a stable
state. We first look at a utilization of 100%, and then of 120%.

100% Utilization

Figure 4.15a shows the queue growth for a constant number of 20 servers. For Binomial
availability of servers, queues grow slightly faster, as can be observed in Figure 4.15b. Even
though CIs are largely overlapping, we can observe a slight trend of more variability in the
number of servers leading to a more intense queue length growth. For Binomial infection
and recovery behavior (Figure 4.15c), the queue length grows even faster, with the case of
100 servers being very close to the individual Binomial draw, once again.

Although we observe constant queue growth on average, we attribute the differences
between server distributions to emptying queues within single simulation runs. These
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are, just as in the heavy traffic case, more likely with higher variability and temporal
autocorrelation of server numbers.

(a) Constant number of servers.

(b) Binomial distribution of servers. (c) Servers according to Binomial infec-
tion and recovery behavior.

Figure 4.15: Queue length evolution with hypercritical utilization ρ = 1. Com-
parison between server numbers c = 20, c ∼ Binomial, and c following Binomial
infection and recovery behavior.

120% Utilization

In a highly overloaded setting with 120% utilization, there are no differences in the evolu-
tion of the queue length for different server characteristics, as can be seen in Figure 4.16.
The queue never empties, meaning that all available servers are always fully occupied.
Therefore, also the queues with server variability behave like the constant 20 server queue
in the long-term, since the expected number of available servers corresponds to 20.
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(a) Constant number of servers.

(b) Binomial distribution of servers. (c) Servers according to Binomial infec-
tion and recovery behavior.

Figure 4.16: Queue length evolution with hypercritical utilization ρ = 1.2. Com-
parison between server numbers c = 20, c ∼ Binomial, and c following Binomial
infection and recovery behavior.

4.7 Summary

This chapter investigated the impact of variability in nursing resources on the backlog of
care. We developed a queueing model and analytically derived the heavy traffic limiting
queue length distribution for a constant number of servers. In numerical experiments, we
compared to stochastic server scenarios representing the characteristics of varying resources
during health emergencies.

We derived the heavy traffic limiting distribution for the Poisson/1/c queue repre-
senting a ward with a constant number of resources. We related it to a single-server
queue and argued why the obtained results correspond to an accordingly scaled continu-
ous single-server queueing system. For the configuration with varying server availabilities,
we identified a difference between the discrete multi-server system and scaled continuous
single-server queue.

Numerical experiments showed longer queues and sojourn times for the number of
servers following a Binomial distribution compared to the constant case in heavy traffic.
Additionally, the higher the variance in the number of servers, the bigger this effect. In
the setting of server availability evolving according to Binomial infection and recovery
behavior, temporal autocorrelation leads to even longer queue lengths due to the higher
likelihood of the queue going idle.
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We found similar patterns in numerical analyses with lighter traffic, that is an arrival
rate corresponding to an utilization of 0.8 in the constant server case. In heavily over-
loaded settings, however, variability of servers does not impact queue length, as long as
the expectation of the number of servers stays unchanged. This is due to the queue never
emptying.

The main takeaway is that variability and especially temporal autocorrelation leads to
longer steady state queue lengths. So even if the long-time expectation of resources did
not change, the characteristics of fluctuating resources during a pandemic leads to a longer
queue build up.
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Chapter 5

Impact of Admission Policies on
Backlog and Cancellations

Policies that determine when and how many patients are admitted for elective surgery
influence how efficiently resources can be used. Especially in pandemic circumstances,
where resources are highly uncertain and varying, this is critical. In such settings, schedul-
ing policies can play a decisive role in keeping backlogs manageable or, alternatively, in
causing the system to become unstable and overwhelmed.

This chapter investigates the effect of different scheduling strategies in terms of timing
and volume of patients. We conduct numerical analyses with different arrival intensities
for the scheduling strategies to examine the stability of the system. The evolution of the
backlog and cancellations of patients constitute a trade-off, thus we present results for both
metrics.

Modeling assumptions for this chapter are the ones outlined in Section 3.3. Section 5.1
motivates and presents parameter choices for numerical experiments. We present results
on constant staff infection probabilities in Section 5.2, followed by fluctuating probabilities
in Section 5.3. Section 5.4 compactly compares scheduled, realized and canceled workload
between all considered scheduling policies. Section 5.5 summarized the most important
findings of this chapter.

5.1 Experimental Setup

This section details the key components of our simulation framework. We begin by speci-
fying the parameter values in Section 5.1.1. Next, Section 5.1.2 discusses the modeling of
NTD and associated boundary effects. Section 5.1.3 outlines the patient scheduling poli-
cies, including timing and volume strategies for scheduling. Finally, Section 5.1.4 presents
the computational environment.

5.1.1 Parameter Values

We consider a time horizon of 50 days. The total amount of nursing staff is n = 25, and the
long-term expected number of present nurses is 20, corresponding to 100 and 125 nursing
hours, respectively. Nursing staff absence follows the model introduced in Section 3.4, and
we consider two scenarios, one with constant infection probabilities and the other with
fluctuating ones. In the constant case, each nurse has a fixed daily probability of becoming
unavailable, p = 0.05. In the dynamic case, the infection probability varies with time,
modeled as (5.1) for t ∈ N.
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p(t) = 0.045 · sin( t
5
) + 0.05 (5.1)

As illustrated in Figure 5.1, this yields values between 0.01 and 0.09, with a mean of
0.05 in the long-term. This allows for comparison to the the case of constant infection
probabilities.

Figure 5.1: Daily nurse infection risks pt used in numerical simulations.

The recovery rate is q = 0.02, resulting in fairly short periods of absence. Since we
consider absence periods not only due to illness, but also due to care duties and assume
that nurses do not have to sit out a long quarantine period, we consider them plausible in
reality.

5.1.2 Choice of Nursing Time Demand k

An important modeling aspect is the NTD, denoted by k, which must be met on the
admission day of a patient. That is, a patient can only be admitted if their NTD fully
fits into the available nursing capacity on that day. This leads to boundary effects, where
available capacity remains unused simply because it cannot accommodate any full patient
admission due to our modeling choice.

In reality, even though the daily NTD (not multiplied by the patient’s LoS) must be
accommodated, partial leftover capacity may still be wasted. For example, suppose a nurse
is responsible for three patients with an NPR of 1:4. Then a quarter of their capacity may
go unused if no additional patient fits the residual time, due to capacity constraints of
other shifts or incompatible demands.

While such inefficiencies reflect real-world challenges, choosing a large k could signif-
icantly overestimate the impact of this boundary effect. For instance, if k = 24 (e.g.,
corresponding to an NPR 1:4 and LoS of 4 days), the model would often leave capacity
unused simply because no other patient fits. Therefore, we set k = 3 for our numerical
analyses to mitigate the overestimation of lost resources.

5.1.3 Scheduling Policies

We explore various scheduling policies with respect to both the timing of scheduling and
the number of patients scheduled. We explore all combinations of the considered policy
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choices for different arrival rates of patients. These arrival rates correspond to 93, 96
and 99 mean nursing hours per day, all allowing for a stable system, if resources are used
efficiently.

Timing of Scheduling

Scheduling s days in advance uses the number of nurses present on day t − s and the
infection probabilities of days t − s, . . . , t − 2, t − 1 to find the probability distribution of
nursing availability on day t. We consider scheduling one, two and three days before admis-
sion, and refer to these policies as 1-day-ahead, 2-day-ahead and 3-day-ahead scheduling,
respectively.

Scheduling Volume

The probability distribution of available nurses leads to an expected value of nursing capac-
ity for elective care on day t. We explore scheduling according to that expected number,
and a conservative and overbooking strategy. In the conservative strategy, the goal is to
minimize cancellations. Patients are only scheduled if their admission would still be feasible
even if one nurse fewer than expected is present on the day. Conversely, the overbooking
strategy accepts a higher risk of cancellations in an effort to use available resources more
efficiently. Here, the number of patients scheduled corresponds to the assumption that
one nurse more than expected will be available. An additional constraint ensures that the
scheduled demand never exceeds the maximum workforce capacity of n = 25.

We will further refer to these strategies as expected-value scheduling, conservative schedul-
ing and overbooking, respectively.

5.1.4 Computational Details

Simulations were coded in Python version 3.10.12 and performed on a server at the Uni-
versity of Twente provided via the JupyterLab environment. The CPU server has 64 cores,
128 threads and 1024 GB memory. For each combination of variables (infection probability,
arrival rate, timing of scheduling, and scheduling volume), we simulated 50 independent
trajectories of 50 days each. For each day, the expected and realized nursing capacity, and
the scheduled, canceled and realized nursing time volume was recorded. Simulation results
were aggregated to compute daily averages and 95% CIs for these key metrics.

5.2 Results under Constant Infection Risk

This section presents results under a constant staff infection risk. Section 5.2.1 analyzes
single simulation runs to gain insight into the dynamics between expected and realized
capacities, and corresponding scheduled and realized workload. To clearly show the timing
and structure of key dynamics, we present results from a single simulation run rather
than aggregated outcomes, which can mask important patterns. Multiple runs showed
consistent behavior, so one representative trajectory is sufficient to illustrate the effects
of interest without requiring CIs. Section 5.2.2 presents aggregated numerical results on
backlog evolution over the whole simulation period. Lastly, we analyze cancellations in
Section 5.2.3, again averaged over the trajectories per day for the whole simulation period.
As we assume non-empty queues in this analysis, the arrival rate of patients does not
influence the cancellation behavior nor the dynamics we analyze in the single trajectory.

56



One result for every scheduling policy thus represents all arrival intensities in these two
sections.

5.2.1 Individual Trajectories

Figures 5.2, 5.3 and 5.4 present randomly chosen trajectories under three volume strategies:
conservative scheduling (A), expected-value scheduling (B) and overbooking (C), applied
with timing policies of planning one, two and three days in advance, respectively. In each
plot, the expected and actual nursing capacities in hours are illustrated by the dashed
and solid blue lines, respectively. The workloads that the policy scheduled are represented
by red dots. The workloads, which could then actually be realized on the respective day
are shown as green dots. Note that realized workload might not coincide with realized
capacity, since demand can only be served in blocks of NTD corresponding to full patients.
On days, where the green dot does not cover the red one, patients are canceled at short
notice and returned to the waitlist.

(a) Conservative scheduling. (b) Expected-value scheduling.

(c) Overbooking.

Figure 5.2: Example trajectories showing forecast vs. realized capacity and sched-
uled vs. realized workload under different patient volume strategies. 1-day-ahead
scheduling under constant infection risks.
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(a) Conservative scheduling. (b) Expected-value scheduling.

(c) Overbooking.

Figure 5.3: Example trajectories showing forecast vs. realized capacity and sched-
uled vs. realized workload under different patient volume strategies. 2-day-ahead
scheduling under constant infection risks.
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(a) Conservative scheduling. (b) Expected-value scheduling.

(c) Overbooking.

Figure 5.4: Example trajectories showing forecast vs. realized capacity and sched-
uled vs. realized workload under different patient volume strategies. 3-day-ahead
scheduling under constant infection risks.

Since the forecast capacity also takes into account the currently available nurses, we
observe a time-shift between the behavior of the actual and expected resources. So, for
instance, if the actual capacity goes up like on day 2 in Figure 5.2, the expectation, hence
also the amount of scheduled patients, goes up only on day 3. This delay corresponds to
the scheduling horizon used in the respective policy.

Regarding the volume strategies, scheduling more patients brings realized demand
closer to actual capacity, enhancing resource utilization. However, overbooking consistently
leads to excess scheduled workload and hence results in high cancellation numbers. This
highlights a clear trade-off between maximizing capacity utilization and avoiding patient
cancellations due to uncertainty.

5.2.2 Backlog Evolution

Figures 5.5, 5.6 and 5.7 present numerical results on backlog evolution for different arrival
rates of 93, 96 and 99 nursing hours on average, respectively. Subfigures (A), (B) and (C)
correspond to the scheduling horizons of one, two and three days, respectively, and compare
the impact of patient volume strategies. For each scheduling policy, the mean backlog
trajectory is represented as a line and the associated 95% CI indicated by a surrounding
shaded area.
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Arrival Rate 93

(a) 1-day-in-advance. (b) 2-days-in-advance.

(c) 3-days-in-advance.

Figure 5.5: Backlog evolution under constant infection risks with arrival rate 93.
Mean and 95% CI for different timing and patient volume scheduling strategies.

Under conditions of low strain on the healthcare system, all investigated strategies are
capable of maintaining system stability or even reducing the backlog. For conservative
scheduling, the timing policy appears to have little to no effect, with backlog levels re-
maining relatively constant across all planning horizons. In contrast, both expected-value
scheduling and overbooking lead to a reduction in backlog. However, their efficiency in re-
ducing backlog slightly decreases as the scheduling horizon increases. That is, the further
in advance patients are scheduled, the less effective these strategies appear to be.

60



Arrival Rate 96

(a) 1-day-in-advance. (b) 2-days-in-advance.

(c) 3-days-in-advance.

Figure 5.6: Backlog evolution under constant infection risks with arrival rate 96.
Mean and 95% CI for different timing and patient volume scheduling strategies.

As arrival rates increase, the choice of volume strategy becomes decisive in determining
whether the system remains stable or experiences backlog growth. Conservative scheduling
leads to steadily increasing backlogs, whereas overbooking slightly reduces them. expected-
value scheduling results in a backlog trajectory that hovers near the stability threshold.
With a short scheduling horizon of one day in advance, backlogs are most likely to remain
stable. However, as the scheduling horizon extends, the likelihood of maintaining stability
decreases, and a slight growth over time is to be expected.
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Arrival Rate 99

(a) 1-day-in-advance. (b) 2-days-in-advance.

(c) 3-days-in-advance.

Figure 5.7: Backlog evolution under constant infection risks with arrival rate 99.
Mean and 95% CI for different timing and patient volume scheduling strategies.

When the arrival rate approaches the operational upper limit, nearly all investigated strate-
gies fail to prevent backlog growth. The only configuration likely to maintain system stabil-
ity is overbooking with a one-day scheduling horizon. Conservative scheduling consistently
results in rapid backlog accumulation, with the waitlist increasing from 500 to between
800 and 900 nursing hours within the 50-day simulation period, regardless of the timing
policy. Expected-value scheduling leads to a moderate backlog increase, which is somewhat
sensitive to the scheduling horizon. The further in advance patients are planned, the faster
the backlog tends to grow. For scheduling horizons longer than one day, even overbooking
fails to stabilize the system. In such cases, more aggressive overbooking would likely be
required to further reduce underutilization of available resources.

In summary, under constant staff infection probabilities, the arrival rate of patients has a
strong influence on system stability. At 93 nursing hours arriving on average, the back-
log remains stable across all scenarios. In contrast, with 99 hours, the system almost
never manages to keep the backlog from increasing. Across most settings, the backlog
trajectories under different volume strategies diverge significantly, as reflected in largely
non-overlapping CIs. This suggests a strong effect of the chosen volume strategy. Differ-
ences between the timing policies (one, two or three days in advance) are relatively small
and do not reach statistical significance.

62



5.2.3 Cancellations

Under the conservative scheduling patient volume strategy, the average daily canceled
workload amounts to 0.8, 1.4, and 1.7 nursing hours when scheduling one, two, and three
days in advance, respectively. When increasing the scheduled volume, these values rise to
2.4, 3.2, and 3.7 nursing hours for expected-value scheduling, and to 5.0, 6.0, and 6.4 for
overbooking.

Figure 5.8 visualized cancellations of all combination of scheduling timing and patient
volume policies.

(a) 1-day-in-advance. (b) 2-days-in-advance.

(c) 3-days-in-advance.

Figure 5.8: Cancellations under constant infection risks. Mean and 95% CI for
different timing and patient volume scheduling strategies.

No temporal trend can be observed. With respect to timing policies, cancellations tend
to increase slightly as scheduling is done further in advance. However, these differences are
not statistically significant, as CIs overlap. We notice, though, that the cancellation tra-
jectories become more volatile with longer planning horizons, indicating occasional larger
mismatches between expected and actual capacity. The most notable differences result
from the patient volume strategy. As already seen in the single simulation trajectories in
Section 5.2.1, scheduling a larger patient volume leads to more cancellations. While under
conservative scheduling, cancellations hardly exceed 2 nursing hours per day, this value
increases to over 6 hours for overbooking quite often.
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5.3 Results under Fluctuating Infection Risk

This section presents results under a fluctuating staff infection risk following (5.1). Sec-
tion 5.3.2 analyzes single simulation runs to gain insight into the dynamics between ex-
pected and realized capacities, and corresponding scheduled and realized workload. Again,
we chose to display individual trajectories, to clearly show the timing and structure of key
dynamics, and checked for consistent behavior in multiple runs. Section 5.3.2 presents ag-
gregated numerical results on backlog evolution over the whole simulation period. Lastly,
we analyze cancellations in Section 5.3.3. The arrival rate does not influence the cancella-
tion behavior nor the dynamics analyzed in the single trajectory. Therefore, one plot per
scheduling policy represents all arrival intensities in the respective sections.

5.3.1 Individual Trajectories

Figures 5.9, 5.10, and 5.11 illustrate randomly selected trajectories under conservative
scheduling (A), expected-value scheduling (B), and overbooking (C), each for timing policies
of one, two, and three days in advance, respectively.

(a) Conservative scheduling. (b) Expected-value scheduling.

(c) Overbooking.

Figure 5.9: Example trajectories showing forecast vs. realized capacity and sched-
uled vs. realized workload under different patient volume strategies. 1-day-ahead
scheduling under fluctuating infection risks.
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(a) Conservative scheduling. (b) Expected-value scheduling.

(c) Overbooking.

Figure 5.10: Example trajectories showing forecast vs. realized capacity and
scheduled vs. realized workload under different patient volume strategies. 2-day-
ahead scheduling under fluctuating infection risks.
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(a) Conservative scheduling. (b) Expected-value scheduling.

(c) Overbooking.

Figure 5.11: Example trajectories showing forecast vs. realized capacity and
scheduled vs. realized workload under different patient volume strategies. 3-day-
ahead scheduling under fluctuating infection risks.

The evolution of capacity over time reflects the influence of fluctuating staff infection
probabilities. As discussed in Example 3.4.3, where we analyzed probability distributions
of staff availability based fluctuating infection probabilities following a similar sine wave
pattern, a time lag becomes apparent. In all trajectories, the maximum capacity is reached
around day 30, even though infection rates hit their minimum around day 24, see Figure 5.1.

Similar to the scenario with constant infection probabilities, scheduling larger patient
volumes leads to more efficient use of resources but also increases the likelihood of can-
cellations. Again, a time lag emerges between actual and expected capacity, determined
by how long in advance patients are scheduled. For example, when a surge in available
capacity occurs, such as on day 13 in Figure 5.9, this is reflected in the expected capacity
(and scheduling decisions) the day after, as a scheduling horizon of one day was used.

We observe the nature of fluctuating probabilities in future capacity expectations. Un-
like the constant case, equal realized capacities no longer imply equal future expectations.
This is evident in Figure 5.11, days 16 to 18, where realized capacities remain stable.
Nevertheless, expected capacities for days 19 to 21 vary, as they incorporate the trend of
decreasing infection probabilities.

5.3.2 Backlog Evolution

Figures 5.12, 5.13 and 5.14 illustrate backlog evolutions for scheduling one (A), two (B)
and three (C) days ahead under arrival rates corresponding to an average number of 93,
96 and 99 nursing hours, respectively.
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Note that we do not simulate for a multiple time of the cycle length of infection prob-
abilities, which correspond to the phase length of (5.1). To draw conclusions about the
trend of the backlog in the long-term, we should therefore compare the backlog at two
points in time, which are one phase apart. Based on a a phase length of 10π ≈ 31 days,
the trend can be observed by comparing day 19 to day 49.

Arrival Rate 93

(a) 1-day-in-advance. (b) 2-days-in-advance.

(c) 3-days-in-advance.

Figure 5.12: Backlog evolution under fluctuating infection risks with arrival rate
93. Mean and 95% CI for different timing and patient volume scheduling strategies.

With an arrival rate corresponding to 93 nursing hours on average, there is little strain on
the system. The system can definitely be kept stable and backlog decreases for the over-
booking and expected-value scheduling strategy under all timing policies. For conservative
scheduling of patient volume, backlog probably can be kept stable on average with some
uncertainty if taking the worst case estimate of the CIs.

Regarding the width of the CIs, we notice that CIs become narrower as patients are
scheduling horizons increase. The same can be observed under higher arrival rates below.
The reason for this behavior is not immediately clear and requires further investigation.
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Arrival Rate 96

(a) 1-day-in-advance. (b) 2-days-in-advance.

(c) 3-days-in-advance.

Figure 5.13: Backlog evolution under fluctuating infection risks with arrival rate
96. Mean and 95% CI for different timing and patient volume scheduling strategies.

Using a conservative scheduling strategy, backlogs do not return to their initial levels
following the first wave of high infection probabilities, resulting in an upward trend of the
length of waitlist. In contrast, overbooking produces a downward trend, as it successfully
reduces the backlog after one phase. For expected-value scheduling, the stability of the
backlog is highly likely for one-day-ahead scheduling. For the other two timing policies,
there is some uncertainty about stability considering the worst case of the CIs.
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Arrival Rate 99

(a) 1-day-in-advance. (b) 2-days-in-advance.

(c) 3-days-in-advance.

Figure 5.14: Backlog evolution under fluctuating infection risks with arrival rate
99. Mean and 95% CI for different timing and patient volume scheduling strategies.

Under conditions of high system strain, at least the overbooking strategy is necessary to
prevent rapid backlog growth. Even then, scheduling with planning horizons of only one
or two days ahead appear to be the only approach likely to maintain system stability. All
other policies result in rising backlogs, since buildup during times of little resources cannot
be worked of during phases of low nurse infection rates. The lower the patient volume
scheduled and the larger the scheduling time horizon, the faster the length of the waitlist
increases.

Summarizing, under fluctuating staff infection probabilities, backlog accumulates during
periods of high infection rates and (partially) recovers during times of high staff availabil-
ity. Again, arrival intensity and patient volume strategy are the main drivers of backlog
dynamics, while the timing of scheduling has a comparatively minor effect.

5.3.3 Cancellations

Under conservative scheduling, the average canceled workload is 0.7, 1.8, and 2.3 nursing
hours for scheduling one, two, and three days ahead, respectively. When patient volume
increases, cancellations rise to 2.5, 3.6, and 4.1 hours for expected-value scheduling, and
further to 5.2, 6.1, and 7.2 hours for overbooking.

Figure 5.15 shows cancellations and corresponding 95%-CIs for 1-, 2- and 3-day-ahead
scheduling comparing the three considered patient volume strategies.

69



(a) 1-day-in-advance. (b) 2-days-in-advance.

(c) 3-days-in-advance.

Figure 5.15: Cancellations under fluctuating infection risks. Mean and 95% CI
for different timing and patient volume scheduling strategies.

Figure 5.15a shows that when scheduling only one day ahead, cancellations hardly re-
flect changes in infection probability. However, planning longer in advance reveals clear
patterns of high and low cancellations over time. While timing has little effect when infec-
tion probabilities are constant, it creates large fluctuations in cancellations when infection
probabilities vary, and these fluctuations grow with an increasing planning horizon. For ex-
ample, cancellations for 3-days-ahead overbooking fluctuate between 2 and 14 nursing hours
over the simulation period. In contrast, the same strategy produces a steady amount of
around 7 hours of cancellations under constant infection probabilities, see Figure 5.8.

The longer scheduled in advance, the higher the cancellation numbers during peak
times and the lower during low phases. The maximum is reached shortly after day 30
and the minimum shortly after day 20. In the infection risk illustrated in Figure 5.1,
these points in time correspond to the minimum infection risk and a rising infection risk,
respectively. In other words, when infection probabilities are at their lowest and nurse
availability continues to rise, the least cancellations happen. On the other hand, shortly
after the point of the maximum nursing resources when availability starts to drop again,
a lot of cancellations occur. Looking at the graphs of Section 5.3.2, this is the time where
backlog is recovering and hits its minimum of a phase, before rising again.
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5.4 Trade-off Between Backlog and Cancellations

Scheduling higher volumes of elective patients reportedly can improve utilization of avail-
able resources. However, it comes at a cost — the cost of increased short-notice cancella-
tions of elective patients. To quantify this trade-off across different scheduling policies and
under constant and varying staff infection risks, we computed descriptive statistics based
on numerical simulations. Table 5.1 reports the average daily scheduled, realized and
canceled elective workload in nursing hours, as well as the proportion of cancellations rela-
tive to the scheduled workload. Results for constant infection probabilities are aggregated
over the full simulation period. For fluctuating probabilities, averages are computed over
one infection phase length, corresponding to approximately 31 days. Arithmetic means of
nursing hours are presented with corresponding 95%-CIs in square brackets.

Scheduling Policy Scheduled Realized Canceled CxRt

Constant Infection Probabilities
1-day conservative 92.4 [ 90.2; 94.5] 91.6 [89.3; 93.8] 0.8 [0.2; 1.4] 0.009
1-day expected 99.0 [ 97.0; 101.1] 96.6 [94.3; 98.9] 2.4 [1.4; 3.5] 0.024
1-day overbooking 104.0 [101.9; 106.1] 99.0 [96.4; 101.6] 5.0 [3.6; 6.4] 0.048
2-day conservative 93.1 [ 90.9; 95.3] 91.7 [89.4; 94.0] 1.4 [0.4; 2.3] 0.015
2-day expected 98.7 [ 96.5; 100.8] 95.5 [93.1; 97.9] 3.2 [1.8; 4.6] 0.032
2-day overbooking 103.0 [100.9; 105.2] 97.0 [94.5; 99.5] 6.0 [4.2; 7.8] 0.058
3-day conservative 93.5 [ 91.5; 95.7] 91.8 [89.8; 93.9] 1.7 [0.6; 2.8] 0.018
3-day expected 98.8 [ 96.6; 101.0] 95.1 [92.7; 97.6] 3.7 [2.1; 5.3] 0.037
3-day overbooking 103.0 [100.9; 105.2] 96.6 [94.1; 99.2] 6.4 [4.3; 8.4] 0.062

Fluctuating Infection Probabilities
1-day conservative 94.6 [ 92.6; 96.5] 93.8 [91.8; 95.9] 0.7 [0.1; 1.3] 0.007
1-day expected 98.8 [ 96.7; 100.9] 96.3 [93.9; 98.7] 2.5 [1.4; 3.6] 0.025
1-day overbooking 104.8 [102.8; 106.8] 99.7 [97.1; 102.2] 5.2 [3.7; 6.6] 0.050
2-day conservative 95.1 [ 93.8; 96.5] 93.3 [91.6; 95.0] 1.8 [0.8; 2.9] 0.019
2-day expected 100.0 [ 98.5; 101.5] 96.4 [94.4; 98.4] 3.6 [2.1; 5.1] 0.036
2-day overbooking 104.6 [103.2; 106.0] 98.5 [96.3; 100.8] 6.1 [4.1; 8.0] 0.058
3-day conservative 95.1 [ 94.0; 96.2] 92.7 [91.1; 94.4] 2.3 [1.2; 3.8] 0.024
3-day expected 100.2 [ 99.1; 101.3] 96.1 [94.3; 97.9] 4.1 [2.5; 5.7] 0.041
3-day overbooking 104.7 [103.6; 105.8] 97.5 [95.3; 99.6] 7.2 [5.1; 9.3] 0.069

Table 5.1: Daily scheduled, realized and canceled elective workload and corre-
sponding cancellation rate. Comparison between different timing and patient vol-
ume scheduling policies for constant and fluctuating staff infection risks. CxRt -
Cancellation Rate.

Under constant staff infection probabilities, conservative scheduling results in quite
similar realized workloads across all timing policies. However, as the scheduling horizon
increases, the scheduled workload, and thus cancellations, slightly rise to maintain equal
realized amounts. In other words, even though the actual realized workload remains stable,
scheduling further ahead leads to more expected resources being booked. The other strate-
gies, which involve scheduling a higher patient volume, schedule roughly the same total
workload regardless of the planning horizon. Yet, scheduling longer in advance leads to
slightly more cancellations in nursing hours, reducing realized elective care. For example,
in overbooking, an average of 5, 6, and 6.4 nursing hours are canceled daily when scheduling
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one, two, or three days ahead, respectively. These cancellations correspond to 4.8%, 5.8%,
and 6.2% of the scheduled workload.

Under fluctuating staff infection probabilities, we observe similar patterns, but the
planning horizon has a stronger effect on realized elective care. Within the same patient
volume strategy, the scheduled workload either remains stable or increases slightly with
longer horizons. However, the realized workload tends to drop, leading to more cancella-
tions. This gap between what is scheduled and what is delivered becomes larger the longer
in advance scheduling is done.

Comparing constant and fluctuating infection risks, we find slightly higher scheduled
and realized workloads under fluctuating conditions, but also observe more cancellations.
This suggests that nursing availability is overestimated more frequently, leading to higher
scheduled volumes and higher cancellation rates. However, the overestimation that happens
has a larger magnitude than the increased cancellations, also leading to more realized
workload under fluctuating than under constant infection probabilities. This may be caused
by the overestimation of capacity that typically happens after periods of low infection rates
just when the amount of resources starts to drop again. The individual trajectories in
Section 5.3.1 highlighted this pattern.

5.5 Summary

This chapter examined how different scheduling strategies for elective patients affect back-
log and cancellations. We analyzed various combinations of scheduling timing and patient
volume policies under both constant and fluctuating staff infection probabilities.

We observed a time lag between expected and actual resource availability, tied to
the scheduling horizon. Scheduling a higher patient volume improves resource utilization
but also raises the risk of cancellations. Under fluctuating staff infection probabilities,
resources are typically underestimated when availability starts rising, and overestimated
when availability begins to drop after periods of low and high staff availability, respectively.

When studying backlog stability under varying demand levels, patient volume strategy
proved more influential than timing. In high-demand scenarios, even slightly overbooking
expected capacity, such as assuming one more nurse is available, can be the difference
between keeping the backlog stable or not. In contrast, different timing policies have
relatively minor impact on realized workload.

While the scheduling horizon has limited effect on realized workload, both the schedul-
ing horizon and patient volume influence the cancellation patterns. Longer horizons lead
to more cancellations and more volatility in cancellation rates. For constant infection
probabilities, cancellations are stable over time. For fluctuating probabilities, the infection
trend is reflected in the amount of canceled workload, especially when scheduling is high
in volume and far in advance.

Longer planning horizons increase both scheduled and canceled workload but tend to
reduce realized workload, especially under highly fluctuating staff availability, which is
a key characteristic of health emergencies. From the perspective of backlog control and
minimizing cancellations, shorter planning horizons are generally preferable. However, the
choice of patient volume strategy should reflect the trade-off between maximizing realized
care and limiting cancellations. System strain can guide this choice. For example, during
critical periods when backlog control is essential, accepting more cancellations may be
justified to push through as much elective care as possible. In more stable periods, it may
be better to reduce scheduled patient volume to avoid excessive cancellations.
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Chapter 6

Case Study: First COVID-19 Wave
in ZGT Almelo

This chapter applies the developed framework to real infection data and pandemic bed
census of a mid-sized teaching hospital in the Netherlands. We compare four different
scheduling policies introduced and analyzed in the previous Chapter 5.

We explore the interplay between pandemic demand and nurse absence and how it
affects the amount of elective workload that can be realized. In that regard, we investigate
the daily difference of backlog, i.e., the addition or removal of workload to/from the waitlist.
Additionally, we explore the amount of canceled workload over the course of the study
period.

Section 6.1 gives medical background on the pandemic and hospital considered. In
Section 6.2, we describe the data sources for predicted and actual pandemic demand as
well as nurse absence and how we pre-processed these. Section 6.3 described parameter
settings for simulations, scheduling policies considered and gives computational details.
Section 6.4 presents results and Section 6.5 summarizes the most important findings.

6.1 Medical Background

We conduct a case study using data from ZGT (Ziekenhuis Groep Twente, Dutch for "Hos-
pital Group Twente"), which is a topklienisch ziekenhuis (Dutch for "top-clinical hospital")
located in the east of the Netherlands. ZGT provides care to around 390,000 residents.
Top-clinical hospitals offer specialized care and medical training, but are not affiliated with
a university. We focus on the pandemic ward of ZGT Almelo, which was active during all
waves of the COVID-19 pandemic.

We examine the first COVID-19 wave in the time frame from 06-04-2020 to 14-06-2020,
which covers 10 weeks. The progression of the pandemic during this study period, based
on bed census data from the pandemic ward, can be seen in Figure 6.1.

Assumptions are as described in Section 3.3. We use the model to forecast nursing
capacity for elective care, which was introduced in Section 3.5. Note that this model
assumes that nurses scheduled in the pandemic ward cannot treat elective patients on the
same day.
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Figure 6.1: Pandemic bed census during the first COVID-19 wave in the ward of
ZGT Almelo.

6.2 Data

The case study is based on a mix of real data, including pandemic forecasts and realiza-
tions, and informed approximations where necessary. Regional daily reported cases give an
estimate of the infection risk for nurses and the chance they are needed for care responsibil-
ities outside the hospital, for example within their families. The ward size in terms of the
number of nurses and the corresponding NPR for pandemic care is an informed guess. For
the remaining parameters, we made practical assumptions. We model one type of elective
patient with a constant nursing time demand and Poisson arrival rate.

6.2.1 Estimating Nurse Absence Rates

We lack direct data on nurse absences or infection rates during the first wave of the COVID-
19 pandemic, and we do not know whether or how hospitals forecast these in real time.
Therefore, we approximate the infection risk for nurses using publicly available data on
daily confirmed COVID-19 cases at the regional level.

The RIVM provides detailed datasets on the COVID-19 pandemic via its open data
platform. We use the dataset COVID-19 aantallen gemeente per dag1, which reports the
number of newly confirmed positive cases per municipality per publication date. Record-
ings begin on 27-02-2020, corresponding to the first reported case in the Netherlands.
We consider the reports of the municipalities supplied by ZGT Almelo (Almelo, Hengelo,
Dinkelland, Rijssen-Holten, Twenterand, Tubbergen, Borne, Hof van Twente, Hellendoorn
and Wierden [59]) to derive an infection indicator for the region. Figure 6.2 illustrates the
number of cases by publication date.

1Available at https://data.rivm.nl/covid-19/COVID-19_aantallen_gemeente_per_dag.csv. Ac-
cessed 11-04-2025.
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Figure 6.2: Positive COVID-19 cases by publication date in the region supplied
by ZGT Almelo.

To derive an infection risk, we first divide the number of reported cases by the popu-
lation of the region (390,000) and create a smoother trend by applying a specific form of a
rolling average. Since the data is based on the publishing date, there are weekly patterns
(e.g., hardly any published cases on Mondays due to very limited testing on weekends) and
there is a time lag between infection, testing and publication. Thus, we take the average
over the following week to estimate the current infection rate. That is, to determine the
infection risk on day t, we average the population-based infection ratio over days [t, t+6].

Due to limited testing capacities during the first wave, testing was mainly reserved for
individuals in high-risk groups and symptomatic healthcare workers caring for vulnerable
populations. As a result, the true number of infections likely substantially exceeded the
reported values. So, while not giving an accurate estimate in terms of absolute numbers,
we assume it reflects relative changes in infection dynamics over time, as no major changes
to the national testing strategy were implemented during our study period [60].

Therefore, we scale this infection risk by a constant factor. This factor is chosen based
on early published data on healthcare worker infection rates. A study conducted across
nine hospitals in the south of the Netherlands found infection rates ranging from 0% and
9.5% per hospital between March 6 and March 8, 2020 [45]. Based on this, we assume
a maximum absenteeism rate of 18%, compromising 9% due to infections and 9% due
to private care duties or quarantine. We then scale the calculated infection ratios by a
factor of 500 to match this value. Within the beginning of the recordings and our study
period, the lowest expected nurse census occurs on the days from 04-04-2020 to 10-04-2020.
Figure 6.3 shows the resulting evolution of the infection risk.

This scaled infection rate is used for both forecasting future nurse availability and
drawing the realized number from the corresponding distribution, which serves as the
ground truth in our simulation. In other words, a probable forecasting error in infection
risk is not considered.
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Figure 6.3: Staff infection rates derived from reported case data, after smoothing
and scaling.

6.2.2 Pandemic Demand

We use pandemic ward bed census forecasts one and three days ahead, provided by the
authors of [33], along with the corresponding realized bed census. ZGT Almelo used
these numbers to prepare for expected pandemic demand, particularly in deciding when
to open or expand COVID-19 wards. The forecasts represent the expected future bed
occupancy, generated via simulation using a Poisson Arrival Location Model (PALM).
The PALM extends the concept of a Poisson arrival process by introducing a location
component. Patients arrive according to a Poisson process, after which they are assigned
to a location (ICU or ward) according to a predefined probability distribution. Transfers
between locations, as well as departures from the system (due to discharge or death), are
also determined by stochastic processes.

Figure 6.4 presents the realized pandemic bed census alongside forecasts with a fore-
casting horizon of one and three days.

Figure 6.4: Forecast (1-day-ahead and 3-day-ahead) and realized pandemic bed
census in the ward of ZGT Almelo.

Following the notation introduced in Section 3.5, the forecast data corresponds to
N

(t,t+s)
p , where s denotes the forecast horizon in days. By multiplying this forecast patient

count by the pandemic NPR and applying a ceiling division to account for full nursing
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shifts, we obtain the expected pandemic workload Ĥ
(t,t+s)
p . The actual realized workload

is calculated analogously from the realized bed census and denoted ĥ
(t)
p .

Data pre-processing of pandemic demand was performed in R version 4.5.0 on a com-
puter with an AMD Ryzen 5 5500U processor with 6 cores and 16 GB RAM, running
Windows 11.

6.3 Experimental Setup

This section presents modeling choices for numerical simulations. We report choices of
parameters in Section 6.3.1 and scheduling policies to be investigated in Section 6.3.2.
Section 6.3.3 provides computational details.

6.3.1 Parameter Values

During the first COVID-19 wave in the Netherlands, hospital ICUs came under an immense
pressure within a few days, demanding to increase capacities. While resources in the ward
(non-critical care) were reported to be strained, pandemic demand did not exceed available
capacities, mostly due to suspension of elective care [61]. Based on this information, we
estimate the total number of nurses as 40 full-time equivalents, resulting in a maximum
nursing capacity of 200 hours per day. The maximum pandemic occupation during the
study period takes up around 75% of the nursing resources, which we consider a plausible
number.

To initialize the dynamic nursing capacity from which forecasts are made s days before
the simulation start date (30-03-2020), we first determine the initial available capacity.
This is done by applying the approximated nurse infection rates from the beginning of the
recordings up to the start of the study period. The ground truth capacity s days prior to
30-03-2020 is then set to this derived value, which corresponds to 35 of 40 nurses.

We set the pandemic nurse-to-patient ratio NPRp = 1
4 , meaning that one nurse si-

multaneously cares for four pandemic patients. In terms of nursing effort, one pandemic
patient thus requires 6 hours of nursing time for every day they occupy a ward bed. Elec-
tive patients arrive following a Poisson arrival process, with a fixed NTD of 6 hours per
patient, which incorporates NPR and LoS. The arrival rate is set to 28 patients per day,
which corresponds to 84% of the total available capacity assuming no nursing absences or
pandemic demand. In other words, a mean of 168 nursing hours join the waitlist daily.
The 84%-value reflects a realistic and operationally stable level under normal conditions,
accounting for typical absenteeism, conservative planning buffers, and boundary effects.
While close to the operational limit, this rate is considered manageable in practice.

6.3.2 Scheduling Policies

We compare four different selected scheduling policies in terms of timing and patient vol-
ume. The first two apply 3-day-ahead forecasts using expected-value scheduling and over-
booking, respectively. The others use a more reactive 1-day-ahead scheduling policy, again
with an expected-value scheduling and overbooking approach, where the letter aims to make
maximal use of any remaining capacity.

We assume that throughout the simulation period, there is always enough backlog
to schedule according to the expected available resources. Translated to the queueing
framework, this means the queue never empties, resulting in no lost resources due to
empty waitlists.
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6.3.3 Computational Details

Simulations are coded in Python version 3.10.12 and performed on a server at the University
of Twente provided via the JupyterLab environment. The CPU server has 64 cores, 128
threads and 1024 GB memory.

For each policy, we simulate 25 trajectories over the study period. We are limited to this
number due to computational reasons. For each day, we record the forecast and realized
nursing capacities, forecast and realized pandemic workload, scheduled elective workload,
elective backlog additions, and canceled elective workload. To illustrate the relationship
between forecast error and scheduling outcomes, we also show a single simulation trajectory
displaying forecast and realized values.

All results are averaged across the simulations, and 95% CIs are computed. Note that
the only randomness across simulations comes from the nurse capacity forecasts and real-
izations, since the pandemic data are provided by the hospital. Additionally, we compute
a benchmark result, assuming no forecasting error and no boundary effects occur, which
serves as a theoretical upper bound on achievable performance.

6.4 Results

In the following, we present and interpret results of the case study. Section 6.4.1 gives
metrics on available resources for elective care and provides an upper bound on how much
nursing workload can be realized. Section 6.4.2 illustrates a single trajectory for each
policy, showing the dynamics between forecast and actual resources, realized workload,
and canceled workload. Finally, simulation results of 25 trajectories for each policy are
presented in Section 6.4.3. We report realized and canceled elective workload and its effect
on the backlog evolution, showcasing the trade-off between backlog and cancellations.

6.4.1 Spare Resources

To evaluate realized workload under different scheduling policies, we first determine the
mean spare resources across simulations that can be used for elective care. We also compute
an upper bound on the realized elective workload, assuming perfect accuracy of pandemic
and nurse absence forecasts.

Figure 6.5 shows pandemic demand and a sample simulation of nursing capacity mea-
sured in nursing hours. The maximum nursing capacity is indicated by a black dotted line
at 200 nursing hours. Gray areas represent lost resources due to pandemic demand and
nurse absenteeism. The white area between these two indicates capacity available for elec-
tive care. Note that even with perfect foresight of future spare resources, 100% utilization
of these resources is not always possible. This is because workload can only be served in
chunks of NTD = 6 nursing hours, which have to completely fit into the available resources
on the respective day. We refer to this phenomenon as boundary effects.
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Figure 6.5: Spare resources for elective care between pandemic demand (orange)
and example trajectory of nursing resources (blue) per day.

We calculated the following values based on all performed simulations, i.e., a total of
100 trajectories for four different scheduling policies. Note that we can just aggregate these
results for this purpose, since these upper bounds only depend on the pandemic demand,
which is deterministic, and the nursing availability, which is not influenced by scheduling.

Across the study period, there were 9,050 (95%-CI: [8,981; 9,118]) hours of nursing
capacity available for elective care. Considering boundary effects, scheduling under perfect
knowledge of future resources would result in realized elective workload of 8,861 (95%-CI:
[8,793; 8,928]) nursing hours. This number serves as an upper bound of possible realized
workload and helps us to assess how well a certain scheduling policy performs.

6.4.2 Example Trajectories

The following Figures 6.6, 6.7, 6.8 and 6.9 show forecast and realized resources, and
corresponding realized and canceled elective patient workload for 3-day-ahead expected-
value scheduling, 3-day-ahead overbooking, 1-day-ahead expected-value scheduling and 1-
day-ahead overbooking, respectively. To highlight the timing and structure of key dynam-
ics, we present results from individual simulation runs instead of aggregated summaries,
which can obscure patterns. We examined multiple trajectories and observed similar be-
havior across all of them. Given this consistency, we concluded that one representative run
adequately illustrates the behavior of interest, and CIs were not necessary for this purpose.

The plots should be interpreted as follows. Maximum possible nursing resources per
day amount to 200 hours, indicated by the black dotted line. Some of these resources are
lost due to nurse absenteeism, which is represented by the gray area defined by the realized
nursing capacity (blue line). An additional amount of resources is needed for pandemic
care, illustrated by the gray area in the bottom defined by the realized pandemic demand
(orange line). When scheduling patients in advance, though, these values are not known
yet, and scheduling decision must be made based on forecasts. These are represented by the
dashed lines in the respective color of the resource. The combination of scheduled workload
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and actual available capacities determine how much workload is realized on a given day,
shown as the green area. If scheduled workload exceeded the resources available, e.g.,
because pandemic demand got underestimated, patients are canceled, represented by the
red area.

Figure 6.6: Forecast and realized resources, and corresponding realized and can-
celed elective patient workload per day. Example trajectory under 3-day-ahead
expected-value scheduling.

Figure 6.7: Forecast and realized resources, and corresponding realized and can-
celed elective patient workload per day. Example trajectory under 3-day-ahead
overbooking.
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Figure 6.8: Forecast and realized resources, and corresponding realized and can-
celed elective patient workload per day. Example trajectory under 1-day-ahead
expected-value scheduling.

Figure 6.9: Forecast and realized resources, and corresponding realized and can-
celed elective patient workload per day. Example trajectory under 1-day-ahead
overbooking.

We observe an interaction between pandemic demand and nursing capacity. When
pandemic demand was high, nursing capacity tended to be low. This intensified pressure
on resources during infection surges of the pandemic.

Comparing 3-day-ahead and 1-day-ahead scheduling, the longer horizon systematically
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underestimated pandemic demand. This led to a an overestimation of available resources.
In contrast, the 1-day forecast predicted pandemic demand more accurately with a slight
one-day time lag in reacting to changes of actual pandemic demand. Forecasting errors
in nursing capacity occurred in both cases but are minor, both because we assumed no
prediction error in infection rates and because fluctuations in nursing availability were
smaller compared to pandemic demand.

The persistent overestimation of resources in the 3-day-ahead scheduling led to a high
number of cancellations. These occurred exactly on days when forecast pandemic demand
(dashed orange lines) fell far below realized demand (solid orange lines), and they align
with visible spikes in cancellations (red bars). This pattern is dominant for both scheduling
practice in 3-day-ahead scheduling, but also appears, to a lesser extent, in 1-day-ahead
scheduling. The same relationship exists between overestimating nursing capacity and
cancellations, though the effect is minor in this case study due to only slight prediction
errors in nursing capacity.

Regarding realized workload, cancellations led to full utilization of the remaining avail-
able capacity. Conversely, underestimating available resources resulted in wasted capaci-
ties, which are visible as the white parts above the green area of realized workload. For
instance, this occurred in the days leading up to 18-05 in 3-day-ahead scheduling, see
Figure 6.6 and 6.7, where less pandemic demand arises than forecast.

Finally, we compare expected-value scheduling and overbooking within the respective
timing policies. Across both scheduling horizons, overbooking caused more cancellations.
On days, where even expected-value scheduling resulted in canceled workload, overbooking
led to more cancellations, which did not improve utilization. On the other hand, over-
booking seems to have utilized spare resources a bit more effectively, as we notice less lost
capacities (white areas) in Figure 6.7 and 6.9 compared to their expected-value scheduling
counterparts in Figure 6.6 and 6.8, respectively.

6.4.3 Trade-off Between Backlog and Cancellations

The following Figures 6.10, 6.11, 6.12 and 6.13 show the evolution of backlog changes and
cancellations over time for the four investigated scheduling policies. In each figure, the
first plot shows the daily change of backlog, i.e., the net addition or removal of workload
to/from the waitlist, in nursing hours. The dotted line at 0 therefore indicates no change,
meaning that fluctuations around this line imply a stable backlog. Cancellations in the
lower graph are also expressed in nursing hours. Lines represent means across simulation
runs, with shaded areas indicating 95%-CIs.
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Figure 6.10: Change of backlog and canceled patient workload under 3-day-ahead
expected-value scheduling.

Figure 6.11: Change of backlog and canceled patient workload under 3-day-ahead
overbooking.
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Figure 6.12: Change of backlog and canceled patient workload under 1-Day Ahead
expected-value scheduling.

Figure 6.13: Change of backlog and canceled patient workload under 1-Day Ahead
overbooking.
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We observe a clear relationship between pandemic-related demand and backlog addi-
tion. During the early stages of the first COVID-19 wave, when many pandemic patients
required care and infection rates among nurses were high, between 100 and 150 nursing
hours were added to the backlog per day. As both the pandemic bed occupancy and the
number of infected nurses decreased, the backlog additions also declined. Only around
18-05, when the infection risk among nurses dropped below 0.5% (see Figure 6.3) and pan-
demic care demand fell below 25 nursing hours (see Figure 6.5), a stable backlog could be
maintained. Toward the end of the study period, when the pandemic had little remaining
impact on available resources, the backlog was even partially reduced. This general pattern
holds across all scheduling policies.

Differences in backlog development between the scheduling policies are minor and do
not allow for conclusions regarding superior resource utilization based on merely the graphs.
However, as expected from previous observations in Section 6.4.2, overbooking tended to
result in slightly lower backlog additions than expected-value scheduling within the same
forecasting horizon.

Cancellation numbers show very narrow CIs across simulations, indicating that the
primary drivers of cancellations were pandemic-related demand and its predictions, both
of which were modeled deterministically. As already stated before, this was likely due to
the higher amount of lost resources due to pandemic demand than nursing absence, and
our modeling choice to not introduce a forecasting error to infection probabilities of nursing
staff.

The days with the highest cancellation rates coincide with underestimations of pan-
demic demand, which caused an overestimation of spare resources. These instances are
identifiable in Figures 6.6 and 6.8 by orange dashed lines (forecast pandemic demand) ly-
ing below the solid lines (realized demand) for 3-day-ahead and 1-day-ahead scheduling,
respectively. Due to larger prediction errors, cancellations were more frequent and severe
under 3-day-ahead scheduling. Within each scheduling horizon, overbooking occasionally
led to higher spikes in cancellations than expected-value scheduling, and introduced addi-
tional cancellations on days when the more conservative policy would not have scheduled
excessive workload.

In Figure 6.13, despite overbooking, it seems like less cancellations occurred than in
Figure 6.10, where expected-value scheduling was used. This highlights the impact of un-
derestimation of pandemic demand when scheduling three days in advance. Even with
more conservative patient volume strategies, 3-day-ahead scheduling resulted in implicit
overbooking. Quantitatively, over the full study period, the 3-day-ahead policy predicted
3,402 nursing hours of pandemic-related workload, compared to 3,000 hours under the 1-
day-ahead policy. This difference directly translated to higher booked elective workload
under the longer forecast horizon.

To evaluate overall performance of policies, Table 6.1 reports the total realized workload,
backlog addition and canceled workload of the policies across the study period. Results
are shown as average nursing hours over all simulation runs, with 95%-CIs given in square
brackets.
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Scheduling Policy Realized Workload Backlog Addition Canceled Workload

3-day expected-value 8,431 [8,332; 8,529] 3,261 [3,145; 3,377] 750 [733; 767]
3-day overbooking 8,765 [8,696; 8,834] 2,991 [2,864; 3,118] 1,011 [979; 1,042]
1-Day expected-value 8,483 [8,396; 8,570] 3,337 [3,207; 3,467] 324 [312; 337]
1-Day overbooking 8,592 [8,504; 8,681] 3,167 [3,041; 3,293] 539 [523; 555]

Table 6.1: Total backlog addition and canceled workload in nursing hours under
different scheduling policies.

Comparing actual workload to the benchmark result of possibly realizing 8,861 nurs-
ing hours (see Section 6.4.1), all policies realized over 95% of the maximum possible
elective care workload. 3-day-ahead overbooking significantly performed best, reaching
a total of 8,765 nursing hours, corresponding to almost 99% of the upper bound. It
also resulted in the lowest addition to the backlog. 1-day-ahead overbooking achieved the
second-highest realized workload, followed by 1-day-ahead expected-value scheduling and
3-day-ahead expected-value scheduling. We expected the same ranking (reversed order) for
backlog addition, however, notice an inconsistency between the two expected-value strate-
gies. Despite realizing more nursing hours of elective care, 1-day-ahead scheduling resulted
in a higher backlog addition. Since simulations were not based on common random num-
bers, we attribute this to variability in the Poisson-distributed arrival of elective workload
and the limited number of simulation runs. Hence, we consider realized workload a more
reliable and meaningful performance measure in the remainder of this chapter.

Regarding cancellations, overbooking led to significantly more cancellations than expected-
value scheduling within the same timing policy. Scheduling patients three days in advance
resulted in more cancellations than scheduling one day ahead. As already suggested in
Section 6.4.2, 1-day-ahead overbooking, actually led to less canceled workload than 3-day-
ahead expected-value scheduling. While previous results in Chapter 5 also suggested higher
cancellations when scheduling further in advance, we believe that this particularly large dif-
ference observed here is also a result of systematic underestimation in the 3-day pandemic
demand forecast.

Similarly, we would usually expect better performance in terms of realized workload
with short-term scheduling. The case study, however, showed the opposite. Once again, we
attribute this to the overestimation of resources in 3-day-ahead scheduling, which mimicked
the effect of overbooking.

Assessing the trade-off between realized workload and cancellations, we observe a ten-
dency of an inverse relationship. The lowest realized workload corresponds to the highest
canceled workload (3-day-ahead overbooking). For stakeholders aiming to minimize can-
cellations, 1-day-ahead scheduling is preferable. Overall 1-day-ahead overbooking appears
to achieve the best balance between the two objectives of minimizing backlog growth and
cancellations. This policy results in the second best values in both categories.

6.5 Summary

This chapter analyzed how pandemic demand and nurse absenteeism affected nursing re-
sources for elective care during the first wave of COVID-19. It modeled a hospital based
on pandemic data from ZGT Almelo and infection numbers in the region. We performed
numerical experiments to evaluate the performance of different scheduling policies in terms
of realized workload, which determine backlog evolution, and short-notice cancellations.
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The case study reveals a relationship between prediction and scheduling accuracy, work-
load realization, and cancellations. Longer-term (3-day-ahead) scheduling consistently
overestimated available resources due to underestimating pandemic demand, causing higher
cancellation rates. Overbooking strategies increased realized workload but also led to more
cancellations compared to expected-value scheduling.

Surprisingly, the 3-day-ahead overbooking policy achieved the highest realized work-
load and lowest backlog growth, essentially benefiting from overestimating capacity, which
acted like implicit overbooking. However, this came at the cost of more cancellations. In
contrast, 1-day-ahead scheduling is more accurate, resulting in significantly fewer cancel-
lations but somewhat lower workload realization. The best trade-off was achieved under
1-day-ahead overbooking, balancing backlog growth and cancellations and performing well
in both categories.

87



Chapter 7

Discussion

This chapter discusses the study. Section 7.1 highlights key findings and interprets them
in the given context. Section 7.2 outlines limitations related to model assumptions and
the scope of the results. Section 7.3 explains how our findings can support both pandemic
preparedness and decision-making during ongoing crises. Finally, Section 7.4 provides
recommendations for future research.

7.1 Discussion of Results

Under the model developed in Chapter 3, which assumes independent infection behavior,
staff availability follows a Binomial distribution across both constant and fluctuating infec-
tion rates. When predicting future nursing capacities, realized numbers of available nurses
are considered, resulting in a distribution of future staff availability that is no longer Bi-
nomial distributed. Instead, it is characterized by less variance, meaning that the current
capacity adds valuable information when predicting near-future capacity.

Lower productivity during pandemics is not solely due to reduced capacity from staff
absence or increased pandemic demand. As shown in Chapter 4, a queueing system demon-
strated that even if total nursing capacity over some period is equal, the temporal distri-
bution of these resources significantly affects how much workload can be realized. The
more variance and the higher the temporal autocorrelation of capacities, the less efficient
those resources can be used for utilization below 1. Since wasted resources in these results
are attributed to idle queue periods, one could argue that elective care waitlists are never
empty, and thus such idle time is unrealistic. However, in practice, hospitals allocate re-
sources to specific specialties and subspecialties. For instance, in the Netherlands, such
tactical planning is typically done on a quarterly basis. When looking at the waitlists for
these more narrowly defined patient groups, they are far more likely to run empty.

Theoretically, we expected that a discrete-time queueing system with a varying number
of servers could be approximated by a correspondingly scaled single-server system. This
assumption did not hold. While we successfully derived the heavy-traffic limit of a multi-
server system using a translation to single-server queues, the same approach failed under
variable server capacity drawn i.i.d. from a Binomial distribution. Empirical results showed
that this translated system underestimates queue lengths. In fact, the translation results in
a continuous queue with temporally correlated service times, for which standard queueing
theory results, which assume i.i.d. service times, do not hold.

Chapter 5 characterized the trade-off between minimizing backlog and minimizing can-
cellations. To maximize resource utilization, the system needs to be overbooked even if
short scheduling horizons are used. This is the best way to prevent backlog growth, but it
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also leads to higher cancellation rates. While short-notice cancellations likely only cause
negligible costs in hospitals (e.g., due to already performed preoperative examination),
they are problematic for patients. Elective surgeries are often long-awaited and require
logistic preparation and coordination (e.g., with caregivers). Canceling shortly before the
planned procedure signals unreliability, and can strain confidence in the healthcare system.
Patients who experience repeated disruptions may become less likely to seek care or follow
through with treatment.

To mitigate overly high cancellation rates, shorter scheduling horizons proved them-
selves as an effective strategy, and also slightly further improve utilization. They allow
hospitals to adapt better to sudden changes in the pandemic through more accurate pre-
dictions of resources and infection dynamics. However, too spontaneous planning is unfa-
vorable for both patients and staff. Patients need time to prepare (e.g., arrange transport
and care, take leave) and staff generally prefers stable and predictable work schedules.

The case study in Chapter 6 confirms the hypothesis that staff absence intensifies pres-
sure on resources during infection surges of the pandemic. Most of the earlier findings were
reflected in the case study, with one notable exception: scheduling three days in advance
led to more realized workload than scheduling one day before. This unexpected result was
due to consistent underestimation of pandemic resources under the longer forecasting hori-
zon. As a result, the system implicitly overbooked capacity, increasing throughput at the
cost of exceptionally high cancellation rates. This highlights how forecast errors of capac-
ities heavily impact scheduling effectiveness, sometimes more than the chosen scheduling
method itself. Thus, accurate pandemic demand predictions and a solid understanding of
nurse infection patterns are the foundation for effective scheduling using these policies.

7.2 Limitations of the Study

One limitation of this study is the lack of validation for the nurse absenteeism model.
Due to missing data on staff presence, we could not verify whether our assumptions cor-
rectly reflect the link between infection rates in the general population and nursing staff
absences. The literature offers no consensus, and competing theories exist about when
healthcare workers are most susceptible to infection. We assumed independent infection of
nurses according to a Bernoulli process. However, reports during the COVID-19 pandemic
indicated clusters of infected staff [62], implying dependent infection behavior of nurses.
The extent to which such clusters impacted capacity and contributed to overall absence
remains unclear.

Another limitation is how we handled forecasting of nursing resources. We used the
infection probability input to determine both forecast and actual nursing capacity, in-
troducing no forecasting error when calculating the probability distribution of available
nursing staff. In reality, future infection probabilities must be predicted. As it is typical to
make larger errors for longer forecasting horizons, we may assume less accurate prediction
of nursing capacity in reality than observed in this study. However, as seen in Chapter 6,
prediction errors do not automatically result in worse resource utilization. Assuming that
prediction errors result in both over- and underestimation of nursing capacity in the long-
term, the implicit overbooking cannot outweigh underestimation of available resources,
which is connected to wasted capacities. This is due to the fact that the effect of over-
booking is capped by actual available resources, while the range of possible resource waste
due to underestimation is a lot larger. Therefore, we may expect more backlog growth in
practice than we saw in our model.

For analytical tractability, we made several simplifications. The most significant is
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likely the omission of elective patients’ LoSs. We compressed their total nursing demand
into a single scalar value. As already commented on in Section 5.1.2, this made our model
prone to boundary effects. Specifically, requiring the full NTD to fit into the resources of
a single day makes it more likely that a patient cannot be scheduled, even if their daily
nursing demand would have fit when spread over multiple days. We mitigated this by
choosing a low total nursing workload in our experiments, which led to boundary effects
we considered plausible in real-world scenarios.

This same simplification implies that scheduling or canceling patients only affects ca-
pacity on a single day. In reality, elective patients often stay multiple days. Scheduling
a patient on day t also consumes capacity on days t + 1, t + 2, etc., depending on the
(stochastic) LoS. Similarly, canceling a patient frees up capacity on multiple days. In our
model, the only consequence of a cancellation was the short-notice disruption. In practice,
it can also lead to lost future capacity. For example, if patients are scheduled three days
in advance and a cancellation occurs on day t, a patient with a 3-day LoS might leave
some available capacities on days t + 1 and t + 2 unused, because no replacement can be
scheduled on such short notice. This waste might be reduced by prioritizing cancellations
of short-LoS patients.

We assumed a single patient type with a deterministic LoS and modeled one unified
waitlist. In reality, hospitals divide capacity across multiple specialties, each with its own
waitlist and patient characteristics. Even within a specialty, LoS varies and is influenced by
medical complexity, recovery speed, and patient-specific factors. While this simplification
likely doesn’t affect our main findings on scheduling policy performance, it does limit the
model’s applicability. The capacity forecasting component can estimate spare capacity
under pandemic pressure and staff absence, but does not account for downstream capacity
usage from elective patients already admitted and recovering after surgery.

Finally, nursing capacity in the ward alone does not justify admitting a patient. Most
elective cases require surgery, which also demands OR availability and surgical staff (e.g.,
anesthetist, surgeon, assistants). While it may be rare, there is still a chance that a patient
requires specialized treatment in the ICU after their procedure. Therefore, capacity in all
these units (ward, OR, and ICU) must be considered when scheduling elective care.

7.3 Practical Relevance and Implications

We present a flexible and broadly applicable capacity forecasting model that can be de-
ployed with minimal data requirements. To apply the forecasting model in any hospital,
the following data inputs are sufficient:

• Daily forecasts of pandemic patient load

• Daily forecasts of staff infection rates

• Realized staff availability (current or past value)

The scheduling policy insights derived from this study are intended to support pan-
demic preparedness. One major shortcoming during the COVID-19 crisis was the lack of
clear guidelines for elective care admissions. To avoid repeating this, policymakers should
proactively define scheduling protocols for future pandemics. Based on our findings on
planning horizon and patient volume, different scheduling rules can be tailored to different
pandemic phases or severity levels. If hospitals want to test specific policies using their
own situation, the model only needs the data mentioned above and observed values for
pandemic demand and staff absence.
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Choosing between policies not only involves the presented trade-off between backlog and
cancellation minimization, but also requires consideration of what is practically possible in
a given hospital. The nature of the pandemic itself must also factor into these decisions.
For instance, if the evolution of a pandemic is relatively accurately predictable for longer
horizons, no spontaneous scheduling policy may be needed. Conversely, in a more volatile
situation with rapidly changing trends, greater flexibility in scheduling might be essential
to keep backlogs under control.

Although our study centered on nursing capacity in general wards, the model structure
extends to other hospital areas. Thinking of the capacity requirements in different hospital
areas based on which elective care can be admitted, as stated in Section 7.2, our model can
also be used. ICU spare capacity can be forecast similarly, considering pandemic demand
of resources (e.g., ventilators, nurses) and similar infection behavior of specialized ICU
nurses. A comparable approach applies to surgical departments, where staff availability
likely follows similar infection dynamics. If there is no pandemic-related demand, this
component can simply be omitted. However, as seen during the COVID-19 pandemic,
some ORs were repurposed as ICUs, which would then represent the pandemic demand of
OR capacity.

7.4 Recommendations for Future Work

A follow-up study should aim for a better understanding staff absence dynamics during a
pandemic. Due to the lack of public datasets, we couldn’t validate our model. However,
accurate staff availability forecasts are essential for predicting spare capacity, which is a
requirement for reliable scheduling of elective care. With access to real data, the model
could be extended to include more realistic infection patterns among nurses, such as incor-
porating time lags between general population infection rates and hospital staff absences,
or correlations with pandemic patient load.

While we analyzed policies that schedule or cancel patients at a fixed point in time, more
dynamic approaches should be explored. For example, hospitals could schedule patients in
advance but leave room to add additional patients later if capacity turns out higher than
expected. This would allow longer planning horizons for most patients while still reacting
to short-term changes. Some elective procedures likely require less preparation time and
could be added at short notice if extra capacity becomes available. Similarly, if forecasts
strongly suggest a drop in available capacity, cancellations could be made earlier than on
the day of surgery, giving patients and staff more time to adjust. This kind of dynamic
decision-making could improve both resource use and cancellations.

To turn this model into a proper decision-making tool for elective care admissions, it
should include OR and ICU capacity, as mentioned in Section 7.3. This could be done
by creating separate models for each area and using the most limiting resource to make
admission decisions. Before implementing such an approach, it should first be developed
and tested using historical data, validated against real outcomes, and then simulated under
various pandemic scenarios.

Another important area that was beyond the scope of this study is prioritization within
elective care. Instead of relying on a basic FIFO approach, admissions should factor in both
the expected LoS and the impact of delaying treatment for each patient. Some patients
are more affected by postponement than others. QALY-based models, which were used
during the COVID-19 pandemic to estimate population-level health loss (see Section 2.1.3),
provide a solid starting point. These models can be extended to reflect how delay length
translates into individual QALY loss. This would allow hospitals to prioritize patients

91



based not only on how much capacity they’re expected to require, but also on how badly a
delay would harm their health. In doing so, resources could be used more effectively while
minimizing overall health loss during a crisis.
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Chapter 8

Conclusion

This thesis explored how pandemic-related capacity constraints affect the continuation of
elective care. We were, to the best of our knowledge, the first to model staff absenteeism
linked to the course of a pandemic and combine it with pandemic patient demand.

On the theoretical side, we successfully related a multi-server discrete-time queueing
network to a single-server system in heavy traffic and derived the limiting distribution.
Results correspond to the distribution of continuous-time queues. We identified challenges
when applying the same approach to systems with time-varying server availability, which
would better reflect real-world resource fluctuations during a pandemic. Numerical results,
however, showed how varying staff availability significantly reduces the effective capacity
for elective care.

We tested various elective care scheduling policies in simulated pandemic scenarios,
and characterized a trade-off between minimizing the backlog and minimizing the number
of canceled patients. There is no single optimal admission strategy, but decisions must
be adapted to the specific situation at hand. This includes target throughput, acceptable
cancellation levels, pandemic volatility, and operational planning feasibility. We identified
the need for accurate forecasts for pandemic demand to allow for scheduling effectiveness.
This highlights the importance to further improve existing pandemic demand prediction
approaches and extend and validate our proposed nurse absenteeism model. While we
highlighted key dynamics of patient volume and scheduling horizon of a simplified policy
regime, future research should look into more dynamic planning approaches, which can
potentially improve the discussed trade-off.

Our nurse absenteeism model and capacity forecasting approach are data-efficient and
easily adaptable for hospital use. They allow planners to estimate spare capacity based
on two key inputs: infection-driven staff absence and pandemic demand. To provide a
complete decision framework for admitting elective care, model extensions are needed. This
includes integrating capacity dynamics from other critical areas such as the OR and ICU.
Our model’s modular design generally allows for representing these capacities, since they
have a pandemic demand component and a staff availability component. To be practically
applicable, the interactions between these areas still need to be explicitly modeled and
validated.

In summary, the model provides a better understanding of how healthcare capacity and
elective care backlogs interact during pandemics. It delivers a forecasting tool and policy
evaluation framework that helps identify how to best use limited capacity. These insights
give decision-makers and capacity planners a solid foundation for preparing for the next
health emergency, to make more effective choices under pressure and minimize population
health loss.
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