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Large Language Models (LLMs) have demonstrated remarkable capabilities
in many real-world applications. Recent models also show high performance
in solving simple calculations. However, LLMs are often criticized for pro-
ducing hallucinations when solving problems that require accurate symbolic
reasoning, such as algebra tasks. Some researchers have explored approaches
that use large knowledge bases or fine-tuning to solve mathematical prob-
lems. Others have explored using structured knowledge to generate one-shot
answers to general knowledge questions. Still, there is little research on us-
ing small, flexible, structured knowledge to improve LLMs’ mathematical
reasoning. This research proposes a lightweight, domain-specific knowledge
graph (KG)-based prompting method to enhance LLM accuracy in solving
high school algebra problems. A manually constructed KG containing key
algebraic concepts and procedures is injected into the prompts to provide
a structured context. Using 40 algebra problems and two LLMs (GPT-4o
and GPT-4.1-mini), the study demonstrates that KG-based prompts improve
average factual accuracy from 61.5% to 73.75% with statistically significant
gains, particularly in expression simplification tasks. These results suggest
that small, targeted KGs may serve as an effective, low-cost alternative to im-
prove reasoning accuracy in LLMs without requiring retraining or external
tools.

Additional Key Words and Phrases: Large Language Models, Knowledge
Graphs, Prompt Engineering, Algebra, Mathematical Reasoning

1 INTRODUCTION
Large Language Models (LLMs), such as GPT-4 [15], have shown
significant performance in a wide range of real-world applications.
Experiments demonstrate that GPT-4 is capable of performing a di-
verse set of tasks, including mathematics, coding, vision, and logical
reasoning. GPT-4 has also been observed to show human-like perfor-
mance in areas such as programming and problem solving [3]. LLMs
are also being applied in sensitive domains such as healthcare. GPT-
4 can answer complex medical questions, such as those of medical
licensing exams. Performance is even better than that of medical stu-
dents in many standardized tasks. In particular, on multiple-choice
clinical questions, the model shows high precision [14]. In addition,
its efficiency, scalability, transfer learning, and cross-domain utility
can present potential for future applications [2]. LLMs have also
demonstrated capabilities in mathematical problem-solving, particu-
larly in simple algebra. Recent studies show that ChatGPT performs
well on simple calculations. Despite their impressive fluency and
reasoning abilities, LLMs are criticized for their limitations in han-
dling factual accuracy and their tendency to generate hallucinations,
especially when they handle complicated algebra problems, which
require multi-step symbolic reasoning. While models can mimic
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mathematical reasoning, they often make logical or calculation er-
rors without external tools [9].
Reducing these errors is important, particularly for educational

applications that need high accuracy and logical consistency. Chat-
GPT’s ability is behind that of trained educators in accuracy and
consistency in identifying some common student errors. Because
models frequently lack context-specific understanding, they are not
completely reliable in the educational application [1].

Currently, there is limited literature on the method that improves
the performance of LLMs specifically in processing accurate sym-
bolic reasoning. In real-life applications, there are a few existing ex-
amples of lightweight, computationally efficient methods, although
they remain underexplored. This research investigates how domain-
specific knowledge graph (KG)-based prompts can help LLMs’ rea-
soning. The primary goal of this research is to examine whether
KGs incorporated prompts can significantly improve LLMs’ factual
accuracy in solving algebra problems compared to standard output.
To achieve the goal, the following research questions (RQs) will

be addressed:
(1) RQ1: To what extent does incorporating domain-specific KG-

based prompts improve the factual accuracy of LLM outputs
in solving algebra problems compared to standard prompting?

(2) RQ2: How does the impact of KG-based prompting on factual
accuracy differ between GPT-4.1-mini and GPT-4o in solving
algebra problems?

(3) RQ3: What types of algebra problems benefit most from KG-
augmented prompts by reducing hallucinations and logical
errors?

The structure of this paper is as follows: Section 2 provides an
overview of the related academic literature, shows LLMs’ capabili-
ties, existing solutions to extend their abilities in the mathematical
area, and identifies gaps between existing solutions and demands.
Section 3 represents the definition of keywords and the specified
area of algebra used in this research to set the domain manipulated.
Section 4 outlines the methodology that will be used to address
the research questions, including the way of using KGs in prompts
and how to evaluate their outputs. Section 5 explains the experi-
ment setup and the results from these experiments by automation
software and a statistical review of the results. Section 6 provides
a discussion of the findings, their implications. The final section
(Section 7) concludes the paper by summarizing the contributions,
explaining limitations of the current approach, and providing direc-
tions for future work.

2 RELATED WORK
Numerous studies have examined the capabilities and limitations
of LLMs, particularly their tendency to generate inaccurate or in-
consistent outputs. To address these challenges, researchers have
developed various strategies to enhance model reliability, including
improved prompting methods for mathematical reasoning. Among
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these, techniques that incorporate structured knowledge, such as
KG, have shown notable success in reducing reasoning errors. These
prior efforts provide a foundation for this research, which builds on
structured prompting to explore the integration of domain-specific
KG for solving algebra problems.

2.1 Capabilities and Limitations of LLMs
LLMs such as GPT-3.5, GPT-4, and Google’s PaLM 2 have shown
strong abilities in various domains, including natural language un-
derstanding, programming, medical, and mathematical reasoning
[3, 14]. GPT-4, the latest model of GPT, demonstrates stronger rea-
soning, coding, and language abilities than the previous models
[15].
Particularly, recent research has highlighted their ability to per-

form symbolic tasks such as arithmetic, algebra, and calculus with
varying degrees of accuracy. Despite these successes, their ability
falls short on tasks requiring precise symbolic manipulation or strict
logical consistency. Especially, in the GPT-4 case, their performance
declines on complex tasks that require deep reasoning or creative
problem-solving. ChatGPT also makes hallucinations, skips steps,
and uses invalid logic. This performance gap is attributed to their
lack of explicit domain knowledge and reliance on patterns learned
from data rather than a deep understanding of mathematical princi-
ples [4, 9].
Although LLMs can mimic reasoning through prompt engineer-

ing, the output is not guaranteed to align with formal logic or math-
ematical rules [9]. These issues highlight the need for mechanisms
that can incorporate structured, domain-relevant knowledge into
the prompting process of LLMs.

2.2 Prompting Techniques for Mathematical Reasoning
Researchers have explored various strategies to moderate the ten-
dency to hallucinate through techniques. Chain-of-thought (CoT)
prompting guides the model in explicitly generating intermediate
steps to get a final answer. This technique simulates how the human
brain works by breaking down the main question into small tasks.
It demonstrates large gains in performance for math by reducing
hallucinations, but it still has limitations in producing correct inter-
mediate steps since it works without external contextual knowledge
[10, 19].

Self-consistency sampling is a method that improves CoT prompt-
ing by introducing multiple reasoning paths to solve the problem
and selecting the most consistent answer. Results show significantly
higher accuracy on tasks like grade-school math and logical reason-
ing. However, it requires a high computational cost by producing
multiple paths for each query. The method also does not guarantee
a logically correct answer because majority voting is selected as the
answer [18].
Another research, verification-based models, are built by gener-

ating multiple candidate solutions and evaluating them based on
correctness or logical consistency. Using a separate verifier model
to assess the correctness of multiple candidate answers, the model
shows a significant reduction in hallucination or incorrect responses.
While this method is effective in comparison with fine-tuning, the

strategy is computationally intensive and may not scale efficiently
without optimization [4].

These strategies aim to improve intermediate reasoning and show
success in enhancing mathematical problem-solving abilities. How-
ever, they still face limitations in contextual understanding, specific
domain knowledge, and computational costs.

2.3 Knowledge Graphs and Structured Contexts
Providing structured knowledge, models can process mathematical
reasoning, reducing hallucinations and logical errors. One promis-
ing direction involves using KGs to enable more structured rea-
soning. For example, KnowGPT shows that integrating structured
domain knowledge from KGs can enhance their performance on
fact-intensive tasks. The method that directly integrates domain-
specific KGs into LLM prompting is lightweight and effective in
improving reasoning consistency. However, the large graph can be
computationally expensive [21].
Similarly, Think-on-Graph represents the idea that introducing

external KGs in LLM reasoning can lead to more interpretable and
logical outputs. While this method improves interpretability and
traceability of logic, it requires well-structured, explainable logic,
which is not ideal for a low-resource environment [23].

Additionally, MindMap explores graph-of-thought structures de-
rived from KGs to structure LLM reasoning. While the method made
progress in improving transparency and logical flow in complex
problem-solving, it heavily relies on well-formed KGs that need
careful preparations [20].

In the recent work, GraphRAG provides a hybrid strategy of KG-
based and Retrieval-augmented generation (RAG) framework that
supports an iterative method to retrieve knowledge from the graph.
It can support deeper, multi-step reasoning. Therefore, it outper-
forms previous graph-integrated methods. However, the framework
brings high complexity and slow inference [12].
Specifically for mathematics, Math-KG introduces a large-scale

mathematical KG integration to improve learning outcomes. The
method to construct pipelines with mathematical knowledge bases
for artificial intelligence (AI) works well [22]. Likewise, fine-tuning
LLMs with a specific dataset can enhance the reliability of single-
shot answers [11].

However, fine-tuning and the large-scale KGs are resource-heavy
and less flexible for domain-specific tasks like algebra. Other prompt
engineering methods are also computationally expensive due to
using a large KG. Therefore, there is a growing interest in light-
weight KG-based prompting methods, which offer a scalable and
cost-effective alternative to fine-tuning or model retraining. The
most related benchmark to this research is KnowGPT, which directly
injects KGs into prompts, but not specified in the mathematics, par-
ticularly algebra problems.

2.4 Research Gap
Regarding insights from the above sub-sections, several methods
demonstrate benefits for improving LLM performance in the math-
ematical area. However, they also present several limitations.
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First, while CoT, SC, and verification-based strategies improve
reasoning to some extent, they lack explicit domain knowledge,
often failing on problems requiring formal symbolic manipulation.

Second, large-scale KGs are not always feasible in practice, partic-
ularly for specific educational domains or deployment environments
with limited resources. Few studies have examined the potential
of small-scale, domain-specific KGs specified to high school-level
algebra, which represents a practical and accessible application area.
In addition, the methods for incorporating KGs into prompts

vary widely. For example, KnowGPT directly injects KG into the
model input prompt; Think-on-Graph and Mind-map queries on
graph-shaped knowledge; and GraphRAG integrates iterative KG-
guided retrieval into an RAG framework. However, compared to
direct injection of KG into prompt, graph-structured reasoning and
RAG methods often require additional infrastructure, retraining, or
retrieval components.

To address these gaps, this research proposes a lightweight alter-
native made of a small and algebra-specific KG-based prompting.
It aims to enhance LLM performance without retraining and con-
structing a large knowledge base, which can achieve a scalable way
to improve factual accuracy in algebra problem solving.

3 BACKGROUND
This section describes the fundamental concepts that define the
scope of this research, including the algebraic domain, the role of
KGs, and the application of prompt engineering.

3.1 Focus Areas in Algebra
This research focuses on fundamental algebra topics typically taught
at the high school level, particularly those that require multi-step
symbolic reasoning. Two representative problem types are selected:
factoring trinomials and simplifying expressions. Factoring tasks
involve decomposing quadratic expressions into binomial products,
such as transforming 𝑥2 + 5𝑥 + 6 into (𝑥 + 2) (𝑥 + 3). Simplifying
expressions refers to reducing polynomials or rational expressions
to their simplest forms. These problem types are well-suited for
this research because they require symbolic manipulation, a process
where reasoning errors frequently occur when intermediate steps
are skipped or misapplied.

3.2 Knowledge Graph
A knowledge graph (KG) represents information in a structured for-
mat using nodes (concepts) and edges (relations). For this research,
a small-scale, domain-specific KG is constructed (see Appendix).
The triple structure of KGs enables lightweight and flexible use for
a variety of use cases [7].

3.3 Prompt Engineering
Prompt engineering refers to the practice of designing the inputs
to LLMs that improve their responses. In this research, KG triples
are injected into the prompt to provide the model with relevant
algebraic concepts and reasoning steps [5].

4 METHODOLOGIES
This section outlines the experimental design used to evaluate
whether KG-based prompts improve the factual accuracy of LLMs
when solving algebra problems. The methodology includes five key
components: KG construction, prompt design, problem selection,
model configuration, and evaluation strategies. Twomodels, GPT-4o
and GPT-4.1-mini, are used to solve problems under two prompt
conditions: standard and KG-based. Model outputs are evaluated
for factual correctness using symbolic computation tools, and the
results are analyzed using a statistical method to show significance.

4.1 KG Construction
A small and specific knowledge graph is constructed to represent
core algebra concepts relevant to factoring and simplifying expres-
sions. The KG is structured as triples (subject-predicate-object) and
derived from an educational platform, OpenStax [17].

One of the subdomains, factoring trinomials, has its focused sub-
graph consisting of approximately 30 nodes. The other subdomain,
simplifying expressions, has an extended graph from factoring rules
because the factoring rule is also used for simplifying expressions;
therefore, the total size of nodes is 60, which includes the factor-
ing subgraph. Concepts such as “Factoring Trinomial includes step
Finding factor pair (p,q) such that 𝑝 + 𝑞 = 𝑏” are formalized into
triples. Additionally, worked examples of algebraic transformations
are included as nodes to guide LLM reasoning.

4.2 Prompt Design
Two types of prompts are used in this study: a standard prompt
and a KG-based prompt. In both cases, a list of problems follows
an instruction that explicitly asks the model to solve the problems
through symbolic reasoning, without using computational tools.
The standard prompt begins with the directive:

For problems, factor each of the following by manual
calculations without using code or programming tools
like SymPy.

This phrasing is intended to discourage the model from using code-
based solutions and instead encourage step-by-step factorization
procedures, similar to how a student would approach such tasks
manually. This setup ensures a fair evaluation of the model’s sym-
bolic reasoning abilities under each prompting condition. A list of
algebra problems immediately follows this instruction. Similarly,
the prompts for simplifying expressions begin with the instruction:

For the following exercises, simplify the expression by
manual calculations without using code or programming
tools like SymPy.

This instruction ensures that the model performs explicit simpli-
fication steps, rather than relying on computational shortcuts. It
enables a clearer evaluation of whether KG-based prompts enhance
the model’s reasoning ability in symbolic algebra.

In the KG-based prompt, each input begins with the phrase:

Based on the knowledge below,

This phrase is followed by a list of structured triples derived from the
knowledge graph. After presenting the KG, the same instructional

3



TScIT 43, July 4, 2025, Enschede, The Netherlands Shun Nishijima

Fig. 1. Methodological Overview

phrase and corresponding problem set are provided as in the stan-
dard format. This method is applied consistently across both prob-
lem types, factoring and simplifying, by injecting domain-relevant
subgraphs. The goal of this approach is to provide lightweight, sym-
bolic reasoning support that mimics worked examples, without
requiring model retraining or external retrieval mechanisms.

4.3 Problem Set Design
The algebra problems used in this study were sourced from two open
educational platforms: OpenStax [17] and Paul’s Online Math Notes
[6]. OpenStax is a comprehensive, college-level textbook that covers
foundational topics in algebra and trigonometry. It is commonly
used in high school and undergraduate mathematics courses. Paul’s
Online Math Notes is a free online resource that offers tutorials
in algebra. The final dataset includes 40 problems, 20 for factoring
and 20 for simplifying rational expressions. All selected problems
require multi-step reasoning, making them suited to evaluating
whether giving knowledge can help LLMs provide correct answers.
A detailed list of the problems used is in the Appendix.

4.4 Model Configuration
The experiment involves two language models: GPT-4o, which rep-
resents the most recent and advanced version in the GPT series, and
GPT-4.1-mini, a smaller and cost-effective variant [16]. Both models
are queried in instant chat mode with memory disabled to ensure
that no information carries over between trials. Each model is asked

to solve all 40 problems under both the standard and KG-based
prompting. To ensure the stability and reliability of the results, the
full experiment is repeated across five independent trials per model.

4.5 Evaluation Strategy
Each model’s output is evaluated based on factual correctness. This
evaluation is automated using SymPy, a Python-based symbolic
mathematics library that parses and compares expressions. Un-
like numerical libraries that approximate values, SymPy performs
symbolic reasoning to determine whether two expressions are al-
gebraically equivalent [13]. From the result of correctness, the cor-
rectness rate is computed for each prompt condition and model
combination.
McNemar’s test is applied to determine whether the observed

differences between the standard and KG-based prompts are sta-
tistically significant [8]. This test is used to analyze paired binary
data. This method is particularly suited for evaluating outcomes
under two different conditions applied to the same set of items. In
this research, it is used to assess whether the number of correct and
incorrect responses differs significantly between the two prompt
types for each language model.

The test specifically compares discordant outcomes, when amodel
answered a problem correctly under one prompt type but not the
other, using a 2× 2 contingency table. The test statistic is calculated
as:
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𝜒2 =
(𝑏 − 𝑐)2
𝑏 + 𝑐

where 𝑏 is the number of instances where the model was correct
with the standard prompt and incorrect with the KG-based prompt,
and 𝑐 is the number of instances where the model was incorrect
with the standard prompt and correct with the KG-based prompt. A
resulting 𝑝-value less than 0.05 is considered statistically significant.

5 EXPERIMENTS AND RESULTS
This section presents the results of experiments conducted to evalu-
ate the impact of KG-based prompts on the performance of LLMs in
solving algebra problems. The analysis compares the correctness
rates of two models, GPT-4o and GPT-4.1-mini, under two prompts,
standard and KG-based. Factual correctness is evaluated using auto-
mated tools and statistical testing to determine the significance of
observed differences.

5.1 Experiment Procedure
The overall experimental workflow consists of four main compo-
nents: KG Construction, Prompt Construction, Model Querying,
and Result Evaluation. The KG Construction phase was completed
manually by extracting algebraic rules and examples from educa-
tional resources such as OpenStax. These were constructed into
triples that encoded conceptual and procedural knowledge in alge-
bra. During the Prompt Construction phase, standard and KG-based
prompts were manually created. While the KG-based prompt added
a relevant subset of triples from the KG before the problem state-
ment, the standard prompt included the algebra problem following
a simple instruction. The Model Querying was also performed man-
ually using the ChatGPT web interface. Each type of problem was
entered into ChatGPT under both prompting conditions, using GPT-
4o and GPT-4.1-mini. Memory function was disabled to prevent
interference between sessions. The process was repeated over five
trials to account for variability; therefore, 800 results were recorded
(20 problems × 2 types × 2 prompts × 2 models × 5 trials). The
Result Evaluation phase was automated using the Python library
SymPy to check factual correctness. Answers were evaluated for
mathematical equivalence to the correct answer. The evaluation re-
sults were aggregated to compute correctness rates. To test whether
differences in performance between two prompts are statistically
significant, McNemar’s test was applied using the Python library
(see Appendix).

5.2 Results
Table 1 summarizes the accuracy rates of models across different
problem types under both prompting conditions. The improvement
score between the prompts is calculated. Interpretation of signifi-
cance from the p-value can also be seen in the table. The results show
that injecting domain-specific KGs into prompts leads to higher fac-
tual accuracy in solving algebra problems.

The use of KG-based prompts resulted in a statistically significant
improvement of 12.25% in the overall accuracy of GPT-4 (All) models,
increasing from 61.50% to 73.75% (𝑝 < 0.01). GPT-4o showed the
largest benefit with a 21.50% increase with statistical significance
(𝑝 < 0.01), while GPT-4.1-mini, although it already has a high

baseline accuracy, only showed a minor improvement of 3.00%,
which is not statistically significant (𝑝 = 0.327).

In terms of problem categories, simplifying expressions gained the
most improvement from KG-augmented prompts, with an improve-
ment score of 21.00% (𝑝 < 0.001). In contrast, factoring problems saw
only a 4.50% increase, which does not reach statistical significance
(𝑝 = 0.324).

These findings support the hypothesis that lightweight, domain-
specific KGs can meaningfully enhance LLM reasoning in mathe-
matical problem-solving, particularly for problems requiring deeper
conceptual processing.

6 DISCUSSION
This section reflects on the experimental results presented in Sec-
tion 5 and discusses their interpretations in the context of the RQs
introduced earlier. The goal of this section is to interpret the quan-
titative results, evaluate the effectiveness of KG-based prompting,
and critically analyze its practical value. By examining how the re-
sults answer the RQs, this section provides insights into the broader
significance of the research.

6.1 Main Findings
This study provides clear evidence that directly injecting domain-
specific, lightweight KGs into prompts can significantly improve the
factual accuracy of LLMs in algebra problem-solving. In all evaluated
aspects, across models and problem types, KG-based prompting per-
formed better than the standard prompt. Overall accuracy increased
from 61.5% to 73.75%, a 12.25% improvement, when KG-integrated
prompts were used. This improvement is also statistically confirmed
by a statistical test. This supports the hypothesis behind RQ1 that
structured domain-specific knowledge enhances LLM reasoning,
particularly in problems that require careful multi-step manipula-
tion.
For RQ2, results also revealed that the benefit of KG prompt-

ing varies between models. GPT-4o, which had a lower baseline
performance, showed a large gain of 21.5%, suggesting that less
capable models benefit more from external structured knowledge.
In contrast, GPT-4.1-mini, which already performed well under the
standard prompt, showed only a 3% improvement, and the difference
was not statistically significant.

Interestingly, although GPT-4o is the more advanced model, it
showed a lower baseline accuracy (42%) than GPT-4.1-mini (81%) in
this task. One possible reason for GPT-4o’s lower baseline may be
its sensitivity to instruction phrasing or an overreliance on learned
language patterns in the absence of contextual structure. Further
controlled studies would be needed to understand model behavior
in symbolic domains. However, GPT-4o demonstrated a much larger
improvement when KG-based prompts were introduced, jumping
to 63.5%. This suggests that GPT-4o may be more responsive to
structured input or more sensitive to contextual information.
The effect was huge in simplifying expressions, where accuracy

increased from 47.5% to 68.5%, a statistically significant 21% im-
provement, suggesting that KG injection in prompts is especially
effective in tasks that involve multi-step symbolic reasoning or ab-
stract transformations. On the other hand, in factoring problems,
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Model Problem Type Standard KG-based Improvement p-value Significance
GPT-4 (All) All 61.50% 73.75% 12.25% 2.81E-06 Significant
GPT-4o All 42.00% 63.50% 21.50% 2.30E-06 Significant
GPT-4.1-mini All 81.00% 84.00% 3.00% 0.3267996 Not Significant
GPT-4 (All) Simplifying 47.50% 68.50% 21.00% 6.63E-07 Significant
GPT-4 (All) Factoring 75.50% 79.00% 4.50% 0.3239398 Not Significant

Table 1. Comparison of Standard vs. KG-based performance across models and problem types

the gain was only 4.5% and not statistically significant, although
the baseline of the accuracy was relatively high (75.5%). This con-
trast addresses RQ3, that KG prompts are more helpful for problems
with conceptual complexity rather than those based on repetitive
structures.

6.2 Critical Reflection
A critical reflection reveals several limitations underlying these
results. Despite the gains, the absolute accuracy of the models, es-
pecially GPT-4o, remains relatively low for the tasks that need high
accuracy or educational use. For example, 63.5% accuracy with KG-
based prompts may produce too many errors in a real-world high
school classroom. This indicates that while KGs help reduce halluci-
nations, they do not fully resolve the reasoning gaps in LLMs.
Moreover, although small-scale KG is lightweight and flexible,

the method depends on manual construction that may not scale
easily across broader math domains or more advanced topics. In
this case, the KG was built from a few definitions, procedural steps
for resolution, and example usage of these steps, but this approach
may not generalize to other domains. The results demonstrate ef-
fectiveness under controlled conditions, but how well the approach
generalizes remains uncertain.

Additionally, while CoT or verification-based models enforce step-
by-step logic, the KG-incorporated method passively injects struc-
tured context. As such, it likely improves internal representations,
but does not ensure interpretability or formally correct reasoning.
Compared to CoT prompting, which improves model accuracy on
benchmarks like GSM8K (from 17.7% to 57.1%, +39.4%), the KG-
based method achieved a notable +21.5% improvement for GPT-4o
in algebra tasks. Although the prior study for the CoT method uses
different models and different mathematical sample questions, the
KG incorporated method showed comparable results without requir-
ing an intermediate step. A combination of both may yield further
gains [19].
In sum, KG-based prompting provides a flexible, low-resource

alternative for improving LLM accuracy on symbolic math problems.
It is most effective for problems requiring multi-step reasoning and
beneficial for models with weaker reasoning capabilities. However,
it is not a standalone solution, and further hybrid methods are likely
needed to reach reliable levels of performance.

7 CONCLUSION
This research introduced the use of lightweight, domain-specific
KGs to improve the factual accuracy of LLMs in solving algebra
problems. By injecting small-scale KGs into prompts, the research

aimed to reduce hallucinations and symbolic reasoning errors with-
out using computational tools or fine-tuning. Experiments showed
that KG-based prompting significantly improved model accuracy,
particularly simplifying expressions, where symbolic errors aremost
common. GPT-4o is the model that benefited most from KG-based
prompts. It suggests that structured context may enhance reasoning
in advanced models. In contrast, GPT-4.1-mini showed only a mod-
est improvement, likely due to its already high baseline performance.
This study’s KG-based prompting achieved accuracy improvements
comparable to well-known strategies like CoT prompting without
requiring multi-step output. These findings support the concept
that structured prompts using domain knowledge may help reduce
logical errors and hallucinations in LLMs, especially for tasks that
involve multi-step symbolic reasoning.

7.1 Limitations
Although the findings suggest the potential of the KG-based method,
several limitations affect the generalizability and strength of the
findings. First, the study used only 40 problems (20 problems per
type). The size of the samples affects the statistical confidence. This
scope is further limited to two specific types, such as factoring
and simplifying. This narrow scope may not fully represent the
robustness in mathematical education that includes diverse and
broader problems.
Second, the manual construction of KG introduces a subjective

bias and limits scalability. This manual curation is not practical
for larger or complex domains. The way of injecting structured
knowledge into prompts is not always possible when larger inputs
or many more outputs are expected.

Third, the evaluation solely focused on final answer correctness,
as verified by symbolic equivalence in SymPy. This approach does
not assess logical completeness or interpretability. In addition, there
is no human baseline for students to try to solve by themselves,
allowing them to compare LLM’s capability and human capability.

7.2 Future Work
Future research should expand problem sets, such as equations,
inequations, and functions, whichwould be useful for wider research
in the mathematical area. These domains may reveal additional
benefits or limitations of the KG-based method and suggest the
availability of this method to wider or higher levels of mathematical
solving. Applying to the domain outside of the mathematical domain
is also considerable; the ideal domain requires logical reasoning
steps, such as solving legal problems.
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To extend interpretability, the hybridmethodwith existing prompt
engineering solutions may reveal extra performance in logical cor-
rectness. For example, using the KG injection method with the CoT
method, step-by-step instructions can be observed. The verification
method can be applied to achieve higher correctness by majority
voting among candidates may help filter out logically inconsistent
responses.

Moreover, automation techniques for constructing small, domain-
specific KGs may improve the method’s generalizability. By intro-
ducing concrete logical conditions to the resource of structured
knowledge, automatic retrieval of domain-specific KGs from each
subdomain may be possible. Additionally, integrating KG-based
prompts with LLM APIs could scale the experimentation process
and support more diverse and extensive problem sets.
RAG or graph-embedded system may be the right direction for

reaching high accuracy by an iterative process to think on the graph
or search in documents. In mathematical terms, concepts and pro-
cedural solution steps can be applied to multiple types of problems;
therefore, searching in larger connected sub-graphs may support
model accuracy more.
Finally, targeting the educational applications of the KG-based

method, compared to human students’ outputs, may prove the
method’s availability in real-world applications.
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A APPENDIX

A.1 Knowledge Graphs
A.1.1 KG for Factoring Polynomials.

A.1.2 KG for Simplifying Expressions.

A.2 Prompts
A.2.1 Standard Prompt (Factoring). For problems, factor each of the
following by manual calculations without using code or programming
tools like SymPy.

• 𝑦2 + 16𝑦 + 60
• 6𝑡2 − 19𝑡 − 7
• 12𝑡2 + 𝑡 − 13
• 16𝑥2 − 100
• 12𝑥2 + 31𝑥 + 7
• 6𝑧2 − 35𝑧 + 36
• 6𝑢8 − 3𝑢6 − 3𝑢4
• 𝑥2 + 1 − 6𝑥−2
• 𝑥4 − 49

𝑥2

• 9𝑑2 − 73𝑑 + 8
• 90𝑣2 − 181𝑣 + 90
• 2𝑥 (𝑥2 + 1)3 − 16(𝑥2 + 1)5
• 18𝑥 − 2𝑥3 + 9 − 𝑥2

• 21 −𝑤 − 2𝑤2

• 4𝑥6 + 𝑥3 − 5
• 2𝑏2 − 25𝑏 − 247
• 𝑤2 (1 +𝑤2) (8𝑤 − 1)10 + 9𝑤 (1 +𝑤2)4 (8𝑤 − 1)7
• 𝑡4 + 15𝑡3 + 14𝑡2
• 5𝑥 (3𝑥 + 2)−2/4 + (12𝑥 + 8)3/2
• 𝑧2 (4𝑧 − 𝑧3) + 7(𝑧3 − 4𝑧)

A.2.2 KG-Integrated Prompt (Simplifying). Based on the knowledge
below,

• Simplifying Rational Expressions - includes step - Factoring
numerator
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Fig. 2. KG visualized

Subject Relation Object

Trinomial is a form of 𝑎𝑥2 + 𝑏𝑥 + 𝑐
GCF is Greatest Common Factor
FOIL is Standard method of multiplying two binomials
Factoring Trinomial includes step Multiplying 𝑎 and 𝑐
Factoring Trinomial includes step Listing all factors of 𝑎 · 𝑐
Factoring Trinomial includes step Finding factor pair (𝑝, 𝑞) such that 𝑝 + 𝑞 = 𝑏

Factoring Trinomial includes step Rewriting 𝑏𝑥 as 𝑝𝑥 + 𝑞𝑥
Factoring Trinomial includes step Rewriting original expression as 𝑎𝑥2 + 𝑝𝑥 + 𝑞𝑥 + 𝑐
Factoring Trinomial includes step Grouping and factoring GCF from each group
Factoring Trinomial includes step Factoring out common binomial factor
Factoring Trinomial verified by FOIL

Table 2. KG Triples for Factoring Trinomials

• Simplifying Rational Expressions - includes step - Factoring
denominator

• Simplifying Rational Expressions - includes step - Canceling
common factors

For the following exercises, simplify the expression by manual cal-
culations without using code or programming tools like SymPy.

• 2𝑎2 − 𝑎 − 3
2𝑎2 − 6𝑎 − 8

· 5𝑎2 − 19𝑎 − 4
10𝑎2 − 13𝑎 − 3

• 𝑚2 + 5𝑚 + 6
2𝑚2 − 5𝑚 − 3

÷ 2𝑚2 + 3𝑚 − 9
4𝑚2 − 4𝑚 − 3

• 4𝑑2 − 7𝑑 − 2
6𝑑2 − 17𝑑 + 10

÷ 8𝑑2 + 6𝑑 + 1
6𝑑2 + 7𝑑 − 10

• 6𝑥2 + 5𝑥 − 4
3𝑥2 + 19𝑥 + 20
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Subject Relation Object

Trinomial is one type of Polynomial
Rational Expression is The quotient of two Polynomial Expressions
Simplifying Rational Expressions includes step Factoring the numerator
Simplifying Rational Expressions includes step Factoring the denominator
Simplifying Rational Expressions includes step Canceling any common factors
Multiplying Rational Expressions includes step Factoring the numerator
Multiplying Rational Expressions includes step Factoring the denominator
Multiplying Rational Expressions includes step Multiplying the numerators
Multiplying Rational Expressions includes step Multiplying the denominators
Multiplying Rational Expressions includes step Simplifying Rational Expressions
Dividing Rational Expressions includes step Rewriting as multiplication with the reciprocal
Dividing Rational Expressions includes step Multiplying Rational Expressions
Dividing Rational Expressions includes step Simplifying Rational Expressions

Table 3. KG Triples for Simplifying Expressions

• 3𝑐2 + 25𝑐 − 18
3𝑐2 − 23𝑐 + 14

• 2𝑑2 + 9𝑑 − 35
𝑑2 + 10𝑑 + 21

· 3𝑑2 + 2𝑑 − 21
3𝑑2 + 14𝑑 − 49

• 10ℎ2 − 9ℎ − 9
2ℎ2 − 19ℎ + 24

· ℎ2 − 16ℎ + 64
5ℎ2 − 37ℎ − 24

• 6𝑏2 + 13𝑏 + 6
4𝑏2 − 9

· 6𝑏
2 + 31𝑏 − 30

18𝑏2 − 3𝑏 − 10

• 6𝑥2 − 5𝑥 − 50
15𝑥2 − 44𝑥 − 20

· 20𝑥
2 − 7𝑥 − 6

2𝑥2 + 9𝑥 + 10

• 2𝑛2 − 𝑛 − 15
6𝑛2 + 13𝑛 − 5

· 12𝑛
2 − 13𝑛 + 3

4𝑛2 − 15𝑛 + 9

• 36𝑥2 − 25
6𝑥2 + 65𝑥 + 50

· 3𝑥2 + 32𝑥 + 20
18𝑥2 + 27𝑥 + 10

• 3𝑦2 − 7𝑦 − 6
2𝑦2 − 3𝑦 − 9

÷ 𝑦2 + 𝑦 − 2
2𝑦2 + 𝑦 − 3

• 𝑞2 − 9
𝑞2 + 6𝑞 + 9

÷ 𝑞2 − 2𝑞 − 3
𝑞2 + 2𝑞 − 3

• 18𝑑2 + 77𝑑 − 18
27𝑑2 − 15𝑑 + 2

÷ 3𝑑2 + 29𝑑 − 44
9𝑑2 − 15𝑑 + 4

• 16𝑥2 + 18𝑥 − 55
32𝑥2 − 36𝑥 − 11

÷ 2𝑥2 + 17𝑥 + 30
4𝑥2 + 25𝑥 + 6

• 144𝑏2 − 25
72𝑏2 − 6𝑏 − 10

÷ 18𝑏2 − 21𝑏 + 5
36𝑏2 − 18𝑏 − 10

• 16𝑎2 − 24𝑎 + 9
4𝑎2 + 17𝑎 − 15

÷ 16𝑎2 − 9
4𝑎2 + 11𝑎 + 6

• 9𝑥2 + 3𝑥 − 20
3𝑥2 − 7𝑥 + 4

÷ 6𝑥2 + 4𝑥 − 10
𝑥2 − 2𝑥 + 1

• 𝑥2 + 𝑥 − 6
𝑥2 − 2𝑥 − 3

· 2𝑥
2 − 3𝑥 − 9

𝑥2 − 𝑥 − 2
÷ 10𝑥2 + 27𝑥 + 18

𝑥2 + 2𝑥 + 1

• 𝑥2 + 7𝑥 + 12
𝑥2 + 𝑥 − 6

÷ 3𝑥2 + 19𝑥 + 28
8𝑥2 − 4𝑥 − 24

÷ 2𝑥2 + 𝑥 − 3
3𝑥2 + 4𝑥 − 7

B MCNEMAR’S TEST CODE

C MODEL ACCURACY RESULTS

D AI NOTICE
During the preparation of this work, the author used Grammarly
for spelling and grammar correction and ChatGPT for fact-checking
simplified explanations. All content was reviewed and verified by
the author, who takes full responsibility for its accuracy.
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from statsmodels.stats.contingency_tables import mcnemar

table = [[246, 295], [154, 105]]
result = mcnemar(table, exact=False)
print(f'Statistic: {result.statistic}, p-value: {result.pvalue}')

Fig. 3. Code used for McNemar’s statistical test

Model Prompt Correct Incorrect Accuracy

GPT-4o Standard 84 116 42.00%
GPT-4o KG-based 127 73 63.50%
GPT-4.1-mini Standard 162 38 81.00%
GPT-4.1-mini KG-based 168 32 84.00%
Table 4. Accuracy Comparison Between Prompt Types and Models
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