
Autonomous Connection to Guest Wi-Fi with an Embedded Device:
Opportunities, Challenges and Limitations
FATIH CEMIL DEMIR, University of Twente, The Netherlands

As Internet of Things (IoT) devices become increasingly common in pub-
lic environments, ensuring their seamless and secure access to network
connectivity is essential. Public and guest Wi-Fi networks, while widely
available, often use captive portals, browser-based login pages designed for
human users, which present a major obstacle for embedded devices lacking
graphical interfaces. This research addresses the unexplored challenge of
enabling autonomous connection to such networks for resource-constrained
embedded systems, specifically using the ESP32 platform. By investigating
how these devices can independently detect, negotiate and authenticate
through various captive portal workflows, this study explores the techni-
cal feasibility, resource implications, performance trade-offs, and security
risks of automated guest Wi-Fi onboarding. The results aim to inform the
development of robust and self-sufficient IoT systems capable of operating
securely in dynamic public network environments.

Additional Key Words and Phrases: Autonomous Connection,Guest Wi-
Fi,Embedded Systems

1 INTRODUCTION
The Internet of Things (IoT) is rapidly expanding into our public
spaces, with embedded devices powering everything from environ-
mental monitoring systems to smart city infrastructure. For these
devices to be effective, they require constant and reliable internet
connectivity to transmit sensor data, receive updates, or interact
with cloud services. Public and guest Wi-Fi networks present an
ideal solution, offering ubiquitous and often free internet access
without relying on cellular data plans [24]. This availability opens
the door for truly "plug-and-play" IoT devices that can be deployed
anywhere with minimal setup.
However, this seemingly simple solution was not designed for

autonomous machines. Access to most public Wi-Fi is governed by
captive portals—web pages that intercept a user’s connection and
require manual interaction, such as accepting terms of service or
entering credentials, before granting full internet access [29]. This
human-centric mechanism creates a fundamental barrier for head-
less embedded devices, which typically lack the graphical interfaces,
web browsers, and direct input methods needed to navigate these
portals [24].
The challenge of automating this connection is compounded by

two other critical factors: security and resource constraints. Public
Wi-Fi hotspots are notoriously insecure, exposing connected de-
vices to data interception and cyberattacks [24]. While human users
may not always grasp the severity of these risks, an autonomous
device cannot afford to ignore them [18]. Furthermore, the IoT de-
vices themselves are inherently resource-constrained, possessing

TScIT 43, July 4, 2025, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

limited processing power, memory (RAM), and storage. Therefore,
any potential solution must not only be intelligent enough to handle
diverse portal workflows but also be lightweight and secure, creating
a difficult trade-off between functionality, safety, and efficiency.
This paper provides a systematic survey and feasibility analysis

to navigate this complex landscape. To ground the analysis, we
use the widely adopted ESP32 microcontroller as a representative
model for a resource-constrained IoT device, theoretically assessing
the feasibility of various onboarding schemes against its known
capabilities [17]. By deconstructing and evaluating the different
methods for autonomous connection, this work aims to build a
clear framework of the opportunities, challenges, and fundamental
limitations involved.

1.1 Related Work
To effectively address these combined challenges of autonomous
interaction, resource efficiency, and security, it is essential to first
survey the existing landscape of research. Significant work has ex-
plored various facets of this problem domain, including the security
of publicWi-Fi, the mechanics of captive portals, and the capabilities
of embedded devices. However, as the following analysis will show,
these areas have often been investigated in isolation. Studies have
extensively documented the security vulnerabilities inherent in pub-
lic Wi-Fi networks [24] and analyzed user awareness and behavior
concerning these risks [18]. The mechanics and security weaknesses
of captive portals, including their detection and potential bypass
techniques, have also been investigated [23, 29]. Researchers have
proposed alternative or enhanced authentication methods, such as
integrating FIDO2/WebAuthn (Fast IDentity Online/Web Authen-
tication) or employing EAP (Extensible Authentication Protocol)
protocols, sometimes in conjunction with captive portals, to im-
prove security. Furthermore, embedded devices like the ESP32 have
been utilized in related security research, for instance, to simulate
network threats or study user responses [18].

1.2 ResearchQuestion and Sub-ResearchQuestions
Despite this body of work, a critical gap exists regarding the conver-
gence of these issues specifically for resource-constrained embedded
devices. While individual aspects like captive portal interaction or
security protocols are understood, there is a lack of investigation
into the practical feasibility of enabling an embedded device, such
as an ESP32, to autonomously and securely handle the diversity of
real-world guest Wi-Fi onboarding processes, particularly those in-
volving captive portals, without any human interaction. Specifically,
current scientific works do not adequately address the combined
challenges of:

• Developing robust autonomous detection and interaction
logic for varied captive portal implementations.

1



TScIT 43, July 4, 2025, Enschede, The Netherlands Fatih Cemil Demir

• Quantifying the resource implications (flash memory, RAM
usage) of implementing such logic on constrained embedded
hardware.

• Evaluating the performance characteristics, particularly con-
nection latency, introduced by the autonomous process.

• Understanding the potential security compromises or trade-
offs necessary to achieve autonomous connection within de-
vice limitations.

• Assessing the overall reliability and success rate across differ-
ent types of guest networks.

Research Question (RQ).

To what extent can an embedded device autonomously
detect and complete the onboarding flows used by con-
temporary guest-Wi-Fi networks, and how do resource
usage (flash/RAM), connection latency, and security
compromises jointly determine the feasibility of each
flow?

The study decomposes this overarching question into three tightly
coupled subresearch questions (sRQs):

sRQ1: Architectural landscape
Which guest-Wi-Fi onboarding schemes are most preva-
lent, and what sequence of network and application-layer
messages does an embedded client have to perform for each
scheme?

sRQ2: Resource and performance cost
For each identified onboarding scheme, what are the an-
ticipated implementation complexity, resource re-
quirements (in terms of processing and memory),
and performance characteristics (in terms of con-
nection latency) for a resource-constrained embedded
device?

sRQ3: Security trade-offs
What security compromises are necessary to automate
each onboarding flow on an embedded devices, and how do
these compromises affect the residual risk compared with
manual, user-mediated onboarding?

Therefore, the proposed solution investigated in this research is to
explore and determine the feasibility of achieving fully autonomous
guest Wi-Fi connection, including captive portal negotiation, for
resource-constrained embedded devices. This involves designing,
implementing, and evaluating mechanisms that allow a device like
the ESP32 to independently connect to various guest networks it
encounters.
The primary contribution of this research will be to provide a

comprehensive understanding of the practicalities involved in this
autonomous connection process. The findings will illuminate the
technical hurdles, quantify the resource costs (memory, storage),
measure the performance impact (connection time), and analyze the
security considerations and potential trade-offs. This knowledge is
essential for developers and engineers aiming to design and deploy
robust, reliable, and secure embedded IoT devices capable of operat-
ing autonomously in environments reliant on public or guest Wi-Fi
infrastructure. Ultimately, this work will inform the feasibility and
design choices for future autonomous embedded systems requiring
network access in diverse public settings.

Together, SRQ 1 determines the recognition challenge, SRQ 2 quanti-
fies the implementation cost, and SRQ 3 contextualizes these costs in
terms of security impact. Addressing all three enables a grounded
answer to the stated Research Question.

1.3 Paper Structure
The remainder of this paper is structured to systematically address
the research questions. Section 2 presents the core of the literature
survey that was made, establishing a taxonomy of the different
guest Wi-Fi onboarding architectures an autonomous device might
encounter; this directly addresses sRQ1. Section 4 presents and dis-
cusses findings, synthesizing the analysis of the theoretical survey.
It is organized to provide direct answers to sRQ1, sRQ2, and sRQ3
by interpreting the data summarized in the Appendices, followed by
a broader discussion of the resulting challenges and opportunities.
Finally, Section 5 concludes the paper by summarizing this paper’s
key contributions and offering a final perspective on the feasibility
of autonomous guest Wi-Fi connection for embedded devices.

2 TYPE OF GUEST NETWORKS
To understand the challenges of autonomous connection, it is first
necessary to establish a clear taxonomy of the different network
architectures an embedded device might encounter. This section
addresses sRQ1 by categorizing and analyzing the most common
guest Wi-Fi onboarding schemes, from modern standardized proto-
cols to ad-hoc captive portal systems. The analysis is derived from a
review of academic literature, industry standards (RFCs), and vendor
documentation. Each of the following subsections details a specific
architecture, its typical protocol flow, and the inherent complexities
it presents for a headless embedded device like the ESP32.

2.1 Open Access & Wi-Fi Enhanced Open (OWE)
Most public hotspots still broadcast an un-encrypted open SSID
(Service Set Identifier) because it works on every client and needs
no user interaction; Cisco counted around 628 million such hotspots
by 2023, dwarfing all other Wi-Fi models [6]. RFC 8110 introduces
Opportunistic Wireless Encryption (OWE), adopted by WPA3 “En-
hanced Open,” so venues can run a second BSSID (Basic Service Set
Identifier) that silently encrypts traffic for modern devices while
legacy stations remain on the plain-open BSSID [11].

For a small IoT station such as an ESP32 the connection flow stays
almost the same as a classic open SSID. The only additions, when the
chip supports OWE, are: the station attaches its own Diffie-Hellman
public key to the Association Request, parses the AP’s public key
(or recognizes a cached Pairwise Master Key (PMK)), verifies that
key, runs the Elliptic-curve Diffie-Hellman (ECDH) exchange, feeds
the shared secret into HKDF (HMAC-based Key Derivation Func-
tion) to derive a new Pairwise Master Key, and then completes
the normal Wi-Fi Protected Access (WPA) 4-way handshake to in-
stall the session keys. RFC 8110 specifies that these cryptographic
steps require parsing an extra element and running ECDH/HKDF.
While these steps require extra processing, these procedures are
standards and does not require software implementation on client
side. Also enabling this feature on ESP32 will allow the embedded
device to connect to the OWE supported guest network[11, 28].

2



Autonomous Connection to Guest Wi-Fi with an Embedded Device: Opportunities, Challenges and Limitations TScIT 43, July 4, 2025, Enschede, The Netherlands

Open / OWE Click-ThroughPortal VoucherPortal MAC Caching SMS / E-mailOTP Social-Login(OAuth) Passpoint/Hotspot 2.0

Guest Networks

Fig. 1. Guest-network types.

From a feasibility standpoint, this scheme offers a significant secu-
rity improvement over legacy open networks (sRQ3) at the cost of a
measurable, albeit small, increase in firmware size and connection
latency due to the cryptographic overhead (sRQ2).

2.2 Click-Through Captive Portals
Themajority of cafés and airports expose guests to a one-tap “Accept
& Continue” splash page. [1] The technical template for these portals
is laid out in RFC 8952 Captive Portal Architecture, which says a
hotspot should signal captivity via provisioning protocols (Dynamic
Host Configuration Protocol (DHCP) or IPv6 Router Advertisements
(RA)) and present a web user-portal instead of forging DNS/HTTP
traffic. The URI of that portal is conveyed with DHCP/RA Option
114, defined in RFC 8910, so modern operating systems can pop up
the consent page automatically [14, 15, 22]. Connection procedure
and its complexity can be generalized by the following sequence:

(1) Associate to open SSID.
(2) DHCP/RA provisioning: the ACK/RA includes Option 114

carrying the Captive-Portal-API URI.
(3) Portal discovery: the client performs an HTTP GET to that

URI (or any site); the enforcement device blocks general traffic
and returns an HTTP 302 redirect to the splash page, exactly
as the workflow in Section 4.1 of RFC 8952 describes. [15]

(4) User action: through the portal page user confirms the condi-
tions and send a post form.

(5) Enforcement update: the portal i.e. API server instructs the
enforcement device to whitelist the client’s MAC/IP, after
which the browser reloads the original URL and full internet
access is granted (step 5 of RFC 8952’s initial-connection
workflow). [15]

Captive portal systems may appear to be straightforward “click-
through” web pages, but their implementations vary widely and
often involve complex web interactions. Supporting a broad range
of captive portals in automated or embedded devices (such as IoT
modules or travel routers) is non-trivial due to diverse scripting
requirements and protocol tricks. Remaining part of this subsection,
summarizes key factors contributing to this complexity, and how
they impact automation, resource use, and security.
Diverse Implementations
Modern captive portals lack a single standardized implementation.

Vendors historically implemented portals as ad hoc network hacks
– intercepting traffic and redirecting users to login pages. In fact, re-
searchers describe today’s captive portals as “an ad hoc, Web-based
man-in-the-middle (MitM) hack” that often confuses client devices
and users [19]. The IETF, in RFC 8952, similarly notes that existing
captive portal solutions take various non-standard approaches, like

forging DNS or HTTP responses and even attempting HTTPS inter-
ception [15]. This means each portal can behave differently: some
inject custom HTTP redirects, others rewrite DNS, etc., making it
hard for a generic client to handle all cases. The IETF explicitly ac-
knowledges “the existence of a huge variety of pre-existing portals”
and the need for a new standardized architecture rather than trying
to support every proprietary method [15].
This variability extends to how users are notified or redirected.

Traditional methods basically trick devices into opening a browser.
Many operating systems now perform “canary” connectivity checks
(e.g. a known HTTP URL) and if they get an unexpected result, they
launch a captive portal mini-browser [15]. These mini-browsers
themselves are simplified and sometimes outdated web clients,
which creates another layer of inconsistency. A recent security
analysis of captive portal mini-browsers found that different de-
vices’ mini-browsers lack modern security measures and behave
inconsistently. In some cases, devices forego a mini-browser and just
use the default browser. All of this underscores that captive portals
are a patchwork of different techniques, not a uniform mechanism
[29].

JavaScript, Tokens, and Dynamic Web Flows
Although a captive portal login page might look like a static form

or a simple “Accept terms” button, under the hood it often relies
on active web content (JavaScript, meta refreshes, dynamic tokens,
etc.). Hidden form fields and CSRF tokens are common – many
captive portals generate a one-time token that must be included
in the acceptance POST request for security. For example, Cisco’s
Identity Services Engine (ISE) guest portals include a CSRF token in
the login requests, and will reject submissions without it (a standard
protection against cross-site request forgery) [7]. This means an
automated client must fetch the portal page and parse out such
tokens before posting.
In addition, JavaScript logic is frequently required to complete

the login process. One example is MikroTik’s RouterOS Hotspot: its
captive portal login can use an HTTP-CHAP mechanism where the
password must be hashed in the browser via a provided script. The
standard pages include a md5.js file – “JavaScript for MD5 password
hashing” – that the login form calls to compute a response [20].
An automated client would need to replicate this hashing (or fully
execute the JavaScript) to log in successfully when CHAP is enabled.

Meta-refresh HTML tags are yet another technique: some portals
deliver a page that automatically refreshes to a given URL. Aruba’s
documentation notes that a captive portal “landing page contains the
meta-refresh tag to reload the page using real browser applications”
[3]. This is actually a clever workaround to move the session from
a mini-browser to the user’s full browser – after initial sign-on,

3



TScIT 43, July 4, 2025, Enschede, The Netherlands Fatih Cemil Demir

the meta-refresh triggers the device to open the real browser to
a specified page. Automated systems would need to detect and
followmeta-refresh tags, or else the login flowmight never complete.
In general, a client might encounter JavaScript-driven forms (e.g.
a form that auto-submits via script), timers or polling loops that
check if a user is still online, or AJAX/XHR calls that report login
status to the portal. For instance, some captive portals use periodic
XHR polling to update usage time or to detect when the user has
accepted terms on a secondary page before granting full access. An
automation solution must either implement a mini web browser
or specifically code for all these possibilities – greatly increasing
complexity.
Impact on Automation and Embedded Systems
The diversity of scripts and web content means headless or em-

bedded devices struggle with captive portals. In many IoT scenarios,
there is no user interface to click through a portal. The IETF’s ar-
chitecture acknowledges this, noting that while its new API can
let devices detect captivity, it “does not describe a mechanism for
[UI-less] devices to negotiate for unrestricted network access” [15].
In practice, most IoT devices simply cannot connect to networks
behind captive portals without user help. Solutions like Wi-Fi travel
routers or enterprise IoT gateways try to bridge this gap, but they
effectively have to include a web browser component or predefined
scripts. This is resource-intensive and error-prone.

For embedded systems, supporting a wide variety of captive por-
tals means increased resource usage. Memory and CPU constraints
can make it infeasible to run a full browser engine. Yet, without one,
the device might not handle modern login pages that load multi-
ple scripts, images, or third-party content. Even parsing HTML to
find form fields or meta-refresh tags can add code complexity and
processing overhead on a microcontroller. Each new portal quirk
(a hidden input here, a dynamic parameter there, a non-standard
form submission) potentially needs a custom handler. Maintaining a
library of workarounds for every vendor’s portal is a heavy burden
for firmware (sRQ2). This complexity in code can also introduce
security vulnerabilities (e.g., if the parser mishandles an unexpected
input) (sRQ3). Essentially, to automate portal login, an embedded
device almost needs to impersonate a web browser – a task far
beyond a simple Wi-Fi client.

2.3 Voucher / Username–Password Portals
Voucher- or credential-based portals build on the click-through
model described above but add a credentials step.[15, 18]. This ap-
proach is widely deployed in open Wi-Fi “hotspots” to onboard
new users and enforce acceptable-use policies. Unlike secure 802.1X
enterprise Wi-Fi, these networks start unencrypted and rely on an
application-layer (HTTP) login, which is an ad-hoc solution but has
become very popular for public access hotspots [19]
The captive portal authentication workflow in a voucher/login

scenario generally proceeds as follows. Steps 1–2 match Section 2.1;
here we begin with Step 3.

(3) User Login (Voucher/Credentials): The captive portal web
page is displayed, usually asking the user to either enter a
voucher code or username/password, or to accept terms of
service [15, 18]. The user fills in the required credentials on

this portal form and submits it. (Voucher-based systems use
one-time codes given to guests, while login-based systems val-
idate against an account database – but the portal mechanism
for input is similar in both cases.)

(4) Back-End Authentication: Upon submission, the portal back-
end (sometimes called a UAM – Universal Access Method
handler) forwards the credentials to an authentication server
on the network (commonly via Remote Authentication Dial-
In User Service (RADIUS) in the AAA (Authentication, Au-
thorization, and Accounting) backend) for verification. For
example, the UAM component contacts a RADIUS server with
the username/password or voucher code to authenticate the
user, often using a centralized subscriber database or RADIUS
AAA service [19].

(5) Access Granted: After successful authentication, the network
marks the user as authenticated and lifts the captive restric-
tions [19]. The user’s device is then allowed to send and
receive traffic to the Internet freely. In practice, the portal
may redirect the user to their originally requested page or
show a welcome/confirmation page at this stage [18]. The
client can now use the network normally until the session
ends or times out (at which point the portal might require
re-authentication) [15].

The same headless-device limitation described in Section 2.1 applies
here, with the added burden of securely provisioning credentials
[15]. This added burden stems from having to pre-load vouchers
or passwords into the device (or deliver them over a protected side
channel) and keep them in tamper-resistant storage so that attackers
on the same Wi-Fi cannot steal or replay them.

2.4 MAC-Authentication Bypass / Caching
Public guest hotspots often “remember” devices that have already
passed their captive portal by storing the device’s MAC address and
automatically authorizing the same address on subsequent connec-
tions. A large-scale measurement study of 67 North-American cafés,
libraries and transit hubs found that nearly two-thirds of venues
used exactly this MAC-caching technique to waive the splash page
for repeat visitors during a 24-hour grace period [1]. When a new
client appears, the gateway forces the captive-portal login; once the
user accepts the terms or enters credentials, the gateway adds the
client’s MAC to its allow-list. Any later association from that MAC
is granted service immediately until the cache entry expires. For
devices with no browser—ticket kiosks, streaming sticks, embedded
sensors—this mechanism can be a practical way to regain Internet
access without human help.

Some public deployments extend the ideawithMAC-Authentication
Bypass (MAB), a RADIUS workflow originally formalized for 802.1X
networks [25]. If a client fails EAP authentication, the access point
submits a RADIUS Access-Request that uses the client’s MAC ad-
dress as the username (via the Calling-Station-Id attribute). The RA-
DIUS server checks the MAC against its guest database; an Access-
Accept can include tunnel attributes that place the device directly
into a “guest” Virtual LAN (VLAN), while an Access-Reject keeps
the client quarantined. This approach requires no changes on the

4



Autonomous Connection to Guest Wi-Fi with an Embedded Device: Opportunities, Challenges and Limitations TScIT 43, July 4, 2025, Enschede, The Netherlands

device side and lets operators apply role-based VLANs or ACLs
(Access Control List), exactly as they would for 802.1X users.[4].

The protocol sequence for an embedded client such as an ESP32
is therefore simple:

(1) Associate to the open SSID and run DHCP.
(2) Gateway queries its MAC cache (or RADIUS).
(3) KnownMAC→ immediate access; unknownMAC→ captive-

portal redirect.
(4) After a successful web login, the gateway inserts the MAC

into the cache and returns the client to normal traffic flow.
Because the ESP32 only executes the standard Wi-Fi handshake

and DHCP exchange, no browser or TLS (Transport Layer Security)
code is required. The trade-off is security: MAC addresses are visible
over the air and trivially spoofed. Attack experiments have shown
that a rogue device can impersonate an authorized MAC and hi-
jack the session in seconds [27]. In addition, modern phones rotate
their MAC for privacy; the IETF MADINAS working-group draft
warns that such randomization “breaks stateful services that rely
on a stable MAC and forces re-authentication” [12]. Large-venue
studies likewise report operational headaches when thousands of
rotating MACs overflow controller caches [30]. Consequently, MAC
caching andMAB are best viewed as convenience features: they ease
guest onboarding and enable headless IoT clients, but they must be
combined with short cache lifetimes, network segmentation or addi-
tional monitoring to offset spoofing and privacy risks. This scheme
is therefore ideal from a resource and performance cost perspective
(sRQ2) as it requires no additional logic on the embedded client,
but it represents the most significant security compromise (sRQ3),
making the device’s identity trivially vulnerable to impersonation.

2.5 SMS / E-mail One-Time-Passcode Portals
Many modern public Wi-Fi hotspots now require users to enter a
phone number or email address and then input a one-time code sent
to that contact, instead of simply clicking “Accept & Continue” on
a splash page. Enterprise Wi-Fi systems like Cisco ISE and Aruba
ClearPass include built-in support for this workflow – for example,
Cisco’s guest portal can be configured to deliver login credentials
via SMS or email [8].

Despite the added SMS/Email step, the underlying network ex-
change begins like any captive portal. The access point signals
captivity using DHCP or Router Advertisement Option 114 to pro-
vide the captive portal’s URL (as defined in RFC 8910) [14], enabling
client devices to automatically open the login page [15]. The user’s
first HTTP(S) POST to that portal transmits their phone number
or email to register. According to industry leader Cisco’s documen-
tation, the actual sending of the one-time passcode (via an SMS
gateway or email server) happens out-of-band – off the local Wi-Fi
link – and the client’s only in-band interactions are: (1) the initial
registration request, (2) a second HTTP(S) POST to submit the re-
ceived OTP code, and (3) the network controller’s authorization
update. Specifically, after the correct OTP is entered, the portal’s
backend issues a RADIUS Change-of-Authorization (CoA) or simi-
lar API call to the Wi-Fi gateway, instructing it to lift the captive
restrictions for that client [8]. This means the client does not need
any new 802.1X/EAP handshake; all the complexity stays in the

web/API layer. Once the CoA is processed and the client’s MAC
or IP is whitelisted, the user gains normal internet access [8] (in
accordance with the standard captive portal workflow in RFC 8952)
[15].
For headless IoT devices (like sensors or microcontrollers with-

out UIs), an OTP-based captive portal is essentially a brick wall.
Such a device has no phone number or email to receive a code,
nor a user interface to read and input the OTP. Current standards
explicitly acknowledge this limitation: devices without any user
interface cannot independently complete web captive portal logins
for full network access [15]. In theory, a workaround would require
an external trusted service to receive the SMS/email on behalf of
the device and feed the code into the portal – which would entail
adding a TLS-enabled client, maintaining a backend session, and
storing credentials/tokens on the device. Implementing all that is far
beyond the typical firmware footprint of constrained IoT hardware
like ESP32. Moreover, from a security standpoint, integrating an
SMS/email OTP mechanism into an IoT device would expand its
attack surface. Research has shown that one-time passwords sent
via SMS are vulnerable to social engineering and malware intercep-
tion: users can be phished into divulging OTP codes in look-alike
prompts [16], andmalicious apps or attackers on a phone can illicitly
read OTP messages to hijack the authentication channel. In short,
embedding an OTP portal workflow into a tiny device not only
poses a resource and implementation challenge but also introduces
well-documented OTP security weaknesses [16] that could put the
device and network at risk.

2.6 Social-Login (OAuth) Portals
OAuth-based captive portals leverage third-party identity providers
for this login step. In public Wi-Fi hotspots and guest networks, the
splash page often offers “social login” options (e.g. Facebook). In
this model, the Wi-Fi service delegates authentication to an exter-
nal OAuth 2.0 provider. The user selects a social network or SSO
provider on the portal, which initiates an OAuth flow; this allows
the user to sign in with an existing account and share basic profile
information, while the captive portal itself never sees the password
(it only receives an OAuth token or profile data upon completion) [7].
Such OAuth-based captive portals are commonly used in venues like
cafés, airports, and enterprise guest WLANs to simplify login and
tie network access to a real identity or social account for analytics.
When the user opts for social login, the captive portal initiates

an OAuth 2.0 Authorization Code grant sequence with the chosen
provider [10]. The portal’s web server directs the user’s browser to
the OAuth authorization endpoint of the provider (via an HTTP 302
Redirect to a HTTPS URL carrying the portal’s client ID, requested
scopes, redirect URI, etc.) [7, 10].
The user is then presented with the provider’s login page and

prompted to authenticate and grant consent for the Wi-Fi service to
obtain their basic profile (identity) information [7]. Upon successful
authentication and approval, the authorization server (e.g. Google
or Facebook) redirects the user-agent back to the captive portal’s
callback URI with an authorization code in the URL query string [10].
The captive portal (now acting as the OAuth client) exchanges this
code for an access token by making a back-channel HTTPS POST

5



TScIT 43, July 4, 2025, Enschede, The Netherlands Fatih Cemil Demir

to the provider’s token endpoint, including its client credentials as
required [10]. Once the token is issued (and optionally an ID token
or refresh token), the portal can query the provider’s API for the
user’s identity details or decode the token if it’s a self-contained ID
token. Finally, the portal logs the user in and notifies the network
gateway to lift the access restrictions for that device [7]. This entire
process involves multiple HTTP redirects and interactions between
the browser and various domains. For example, a Facebook login
sequence will contact facebook.com and several related domains for
OAuth dialogs and static content (e.g. fbcdn.net, akamaihd.net for
scripts/images), all of which must be accessible through the captive
portal. These dependencies on external web resources and secure
token exchanges mean the protocol flow is entirely browser-driven
and encrypted, appearing as a series of TLSweb fetches and redirects
in a packet trace (with OAuth tokens and credentials conveyed over
HTTPS as per OAuth 2.0 security requirements) [10].

A fundamental limitation of OAuth-based captive portals is that
they assume a human user with a full web browser. Devices without
a user interface or browser (e.g. IoT sensors, printers, or other head-
less gadgets) cannot perform the interactive OAuth handshake and
thus cannot get online via these captive portals [15]. The multi-step
flow – involving HTML forms, JavaScript-driven redirects, and user
consent dialogs – is fundamentally unsolvable for an unattended
device that cannot display pages or input credentials. In fact, even
on phones or laptops, the mini browser used for Wi-Fi sign-on (such
as the iOS or Android captive network assistant) may be treated as
an insecure or unsupported user-agent by OAuth providers. For ex-
ample, Google does not allow OAuth login prompts to run inside em-
bedded web-views for security reasons, and it blocks them with an
error. This means a Google-based Wi-Fi login will fail in the captive
portal’s built-in browser, forcing users to launch a normal browser
to complete the process [9]. In summary, the OAuth social-login
approach for captive portals is interactive and browser-dependent
by design. It cannot be navigated by headless or automated clients,
which lack the capability to execute the required web content and
user interactions, a shortcoming acknowledged by both industry
documentation and standards bodies

2.7 Passpoint / Hotspot 2.0
Wi-Fi Passpoint (also known as Hotspot 2.0) is a certification by
the Wi-Fi Alliance that enables automatic, secure Wi-Fi access in
public networks [2]. Introduced in the early 2010s (built on the
IEEE 802.11u standard), Passpoint allows mobile devices to seam-
lessly discover and join Wi-Fi hotspots (e.g. in airports, hotels, city
networks) without the user manually selecting SSIDs or handling
web captive portals [21]. The network advertises its identity and
services to devices, and if a device has a matching credential (such
as a mobile carrier or roaming agreement), it can auto-connect with
enterprise-grade security. This creates a cellular-like experience for
Wi-Fi: once provisioned, users roam onto partner Wi-Fi networks
automatically and securely [2].
Typical authentication flow could be described as follows:
Discovery & ANQP: Access points broadcast Passpoint/Hotspot

2.0 capabilities in beacon frames (per 802.11u), indicating network
type, internet availability, and supported service providers [5]. A

Passpoint-capable device detects these signals and uses the Access
Network Query Protocol (ANQP) to query the hotspot for detailed
information (e.g. venue info, provider list, authentication methods)
before associating [5].

Credential Matching: The device’s Passpoint profile (installed
beforehand) is examined to find if it has a subscription or credential
for any of the advertised providers [2]. For example, a device might
recognize a roaming consortium OI or realm belonging to its mobile
carrier or another identity provider. If a match is found, the device
selects that network for connection.

Secure 802.1X Authentication: The device then automatically
initiates an 802.1X authentication (WPA2-Enterprise orWPA3-Enterprise)
using an appropriate EAP method (such as EAP-TLS, EAP-SIM/AKA
for SIM-based IDs, or TTLS/PEAP) to authenticate with the net-
work’s backend [13]. The hotspot’s AAA server (or a proxy) vali-
dates the credentials (often via RADIUS to the user’s home operator
or identity provider). Upon successful EAP authentication, a secure
encryption key is established (4-way handshake), and the device
gains internet access with no captive portal needed. The entire
process is transparent to the user and can persist across roaming
events, so users stay connected securely as they move between
Passpoint-enabled hotspots.

While Passpoint greatly simplifies user access, its implementation
on embedded or headless IoT devices presents significant challenges,
primarily concerning automation and standards compliance. These
devices typically have limited UI or input, making it hard to install
the necessary Passpoint profiles or interact with onboarding por-
tals. They also must implement the full 802.11u/Passpoint protocol
(ANQP queries, etc.) and support 802.1X EAP authentication, which
may exceed the capabilities or memory of lightweight Wi-Fi stacks.
As a result, many IoT devices currently stick to traditional Wi-Fi
connection methods due to these implementation complexities and
resource requirements. Automation and standards compliance are
key concerns – credentials would need to be provisioned in the
device at manufacturing or via a secure out-of-band mechanism to
enable truly hands-free access. The industry is beginning to address
this gap: for instance, the Wireless Broadband Alliance has been
working to extend Passpoint to IoT use cases to “support dynamic
IoT roaming and streamline authentication and interoperability”
[26]. This includes exploring cloud-based credential management
and new provisioning frameworks to allow IoT devices to securely
leverage Passpoint with minimal user intervention.

3 RESULTS & DISCUSSIONS

3.1 Answer to sRQ1
The first sub-research question (sRQ1) sought to identify preva-
lent guest-Wi-Fi onboarding schemes and their required protocol
flows. The detailed investigation in Section 2, summarized in Table
1, reveals a highly fragmented and non-standardized landscape.
The architectures can be broadly classified into two categories:
standardized, machine-friendly protocols (OWE, Passpoint) and
human-centric, ad-hoc portal systems. While the former provide
a clear and automatable connection path, the latter, which con-
stitute a significant portion of public networks, rely on diverse
and unpredictable mechanisms involving HTTP redirection and

6



Autonomous Connection to Guest Wi-Fi with an Embedded Device: Opportunities, Challenges and Limitations TScIT 43, July 4, 2025, Enschede, The Netherlands

Table 1. Analysis of onboarding flows and key protocols for an autonomous device.

Guest Network Type Autonomous Onboarding Flow Key Mechanisms / Protocols

Wi-Fi Enhanced Open (OWE) 1. Associate with DH key.
2. Perform ECDH exchange.
3. Complete WPA handshake.

OWE (RFC 8110), ECDH, HKDF.

Click-Through Captive Portal 1. Connect; get HTTP redirect.
2. Fetch & parse splash page.
3. Find & submit "accept" form.

DHCP, HTTP Redirect, HTML/JS Parsing.

Voucher / Username-Password
Portal

1. Connect; get HTTP redirect.
2. Fetch & parse login page.
3. Submit pre-provisioned creds.

HTTP Redirect, HTML Parsing, Credential Man-
agement.

MAC-Auth Bypass / Caching 1. Associate to SSID.
2. Get IP via DHCP.
(No further client steps).

Client MAC address as identifier; network-side
logic.

SMS / E-mail OTP Portal Infeasible for headless device. Requires external service to receive &
forward OTP.

Out-of-band communication, multiple HTTP
POSTs.

Social-Login (OAuth) Portal Infeasible for headless device. Requires interactive, multi-domain
browser flow.

OAuth 2.0, JavaScript, secure user interaction.

Passpoint / Hotspot 2.0 1. Discover via 802.11u beacon.
2. Query network info (ANQP).
3. Match pre-installed profile.
4. Authenticate via 802.1X/EAP.

802.11u, ANQP, WPA2/3-Enterprise, EAP, RA-
DIUS.

HTML/JavaScript interaction. Furthermore, the analysis identifies
schemes like SMS/OTP and OAuth-based portals as fundamentally
infeasible for a headless device to navigate autonomously due to
their reliance on out-of-band channels or complex, interactive web
flows. This diversity represents the primary recognition challenge
for any autonomous client.

3.2 Answer to sRQ2
The second sub-research question (sRQ2) focused on the resource
and performance costs associated with automating each scheme on
an ESP32. The qualitative assessment presented in Table 2 quanti-
fies these costs. A direct correlation exists between the complexity
of the onboarding flow and its impact on the embedded device.
Schemes like MAC-Auth Bypass are ideal from a resource perspec-
tive, imposing minimal overhead on flash, RAM, or CPU. In contrast,

any method requiring captive portal negotiation introduces large
overhead due to the need for HTTP client libraries, TLS stacks, and
HTML parsers, which consume significant flash memory and run-
time RAM. This complexity also translates to higher connection
latency, as multiple network round-trips are required to fetch and
submit portal forms. The most resource-intensive but automatable
scheme is Passpoint, which requires a full 802.1X/EAP supplicant.

3.3 Answer to sRQ3
The investigation into sRQ3 addressed the security compromises
necessary for automation. The findings, summarized in Table 3,
highlight a critical inverse relationship between the ease of automa-
tion and the level of security provided. The simplest method to
implement, MAC-Auth Bypass, is also the most insecure, as it is

Table 2. Qualitative cost assessment for implementing autonomous flows on an ESP32.

Guest Network Type Implementation Complexity 1 Resource Impact (RAM/CPU)2 Performance Impact (Latency)3

Wi-Fi Enhanced Open (OWE) Low Low Low
Click-Through Captive Portal High Moderate High
Voucher / Username-Password High Moderate-High High
MAC-Auth Bypass / Caching Minimal Minimal Low
SMS / E-mail OTP Portal Infeasible Infeasible Infeasible
Social-Login (OAuth) Portal Infeasible Infeasible Infeasible
Passpoint / Hotspot 2.0 High High Moderate

1 Code / firmware effort required to support the flow.
2 Additional runtime RAM / CPU consumed by onboarding logic.
3 Extra time added to establish usable internet connectivity.

7



TScIT 43, July 4, 2025, Enschede, The Netherlands Fatih Cemil Demir

trivially vulnerable to MAC address spoofing and session hijack-
ing. Automating voucher or password-based portals introduces the
severe risk of insecure on-device credential storage, making the
device a high-value target. Blindly automating click-through portals
may also lead to the acceptance of malicious terms of service. Con-
versely, the most secure methods, OWE and Passpoint, offer robust,
encrypted communication from the outset but demand higher im-
plementation complexity and a secure method for initial credential
provisioning. This demonstrates that the choice of an automation
strategy is fundamentally a risk management decision, where con-
venience is often achieved at the expense of security.

3.4 Challenges
The findings reveal several fundamental challenges that impede the
deployment of network-agile autonomous IoT devices. The findings
reveal a primary obstacle: the architectural fragmentation of guest
networks. The lack of standardization, particularly in captive por-
tals, makes creating a universal ’solver’ for an autonomous device
nearly impossible. This is compounded by the headless device im-
passe, where modern authentication methods like OAuth and OTP
are explicitly designed for human interaction and are thus inacces-
sible to embedded systems. This leads to a critical security-versus-
automation dilemma, where the most easily automated connection
methods (e.g., MAC-based authentication) are the most insecure.
Finally, all these issues are worsened by resource constraints of em-
bedded hardware, which makes implementing complex web-parsing
and cryptographic stacks a significant technical burden.

3.5 Opportunities
Despite these challenges, the analysis also points to clear opportuni-
ties for progress. The most impactful long-term opportunity lies in
the wider industry adoption of IoT-friendly standards like Passpoint
and OWE, which solve the problem at the network level. Meanwhile,
an opportunity still exists to develop lightweight, heuristic-based
portal solvers for embedded systems that can handle the most com-
mon click-through scenarios without the overhead of a full browser
engine. Furthermore, developers can implement a tiered connection
strategy in device firmware, prioritizing secure and simple networks
(OWE, Passpoint) before falling back to less secure or more complex

methods. A final, powerful opportunity is the use of hybrid solu-
tions, where an auxiliary device (e.g., a smartphone) performs the
initial complex authentication and securely passes session tokens
or status to the embedded device via a side-channel like Bluetooth.

4 CONCLUSIONS
This research investigated the feasibility of enabling a resource-
constrained embedded device, the ESP32, to autonomously con-
nect to contemporary guest Wi-Fi networks. The study established
a taxonomy of onboarding architectures, revealing a fragmented
landscape dominated by human-centric captive portals that are
inherently difficult for headless devices to navigate. A critical trade-
off was identified: methods that are simple to automate, such as
MAC-Auth Bypass, are highly insecure, while secure, standardized
methods like Passpoint and OWE present a higher implementation
burden. The conclusion is that while autonomous connection is
technically feasible for certain network types, the current guest
Wi-Fi ecosystem presents substantial practical barriers to robust
and secure operation. True network autonomy for IoT devices in
public spaces will depend less on developing complex client-side
workarounds and more on the wider industry adoption of machine-
friendly standards. The primary contribution of this work is a clear
framework for understanding these technical and security trade-
offs, providing developers with a grounded assessment of the costs,
risks, and practical limitations of deploying autonomous IoT devices
in diverse network environments.

5 AI DISCLOSURE
Portions of the paper’s language were refined with the assistance
of OpenAI ChatGPT (model 4o). The tool was used solely for im-
proving readability and correcting grammar; all ideas, analysis, and
conclusions are the author’s own.

REFERENCES
[1] Suzan Ali Ahmad Ali. 2020. A Large-Scale Evaluation of Privacy Practices of Public

WiFi Captive Portals. Master’s thesis. Concordia University. https://spectrum.
library.concordia.ca/id/eprint/987023/

[2] APAC Task Group. 2024. WBA OPENROAMING™ INTRODUCTION GUIDE.
https://wballiance.com/wp-content/uploads/2024/10/WBA-OpenRoaming-
Guide-APAC-TG_v1.0.0-FINALPublic.pdf#:~:text=For%20over%20a%20decade%
2C%20Passpoint%C2%AE,cumbersome%20process%20of%20onboarding%20the

Table 3. Analysis of security risks introduced by automation and overall IoT feasibility.

Guest Network Type Primary Automation Security Risk Data-in-Transit Security Overall IoT Feasibility 1

Wi-Fi Enhanced Open (OWE) Minimal; a security improvement. OWE Encrypted High

Click-Through Captive Portal Blindly accepting ToS; parser vulnerabilities. Open/Unencrypted Medium

Voucher / Username-Password Insecure on-device credential storage. Open/Unencrypted Low

MAC-Auth Bypass / Caching MAC address spoofing and session hijacking. Open/Unencrypted Medium-Low

SMS / E-mail OTP Portal Dependency on vulnerable out-of-band channel (SMS). Open/Unencrypted Not Feasible

Social-Login (OAuth) Portal N/A (automation is infeasible). Open/Unencrypted Not Feasible

Passpoint / Hotspot 2.0 Secure provisioning of initial device profile/credential. High (WPA2/3-Ent.) Medium
1 Overall feasibility balances implementation cost against security benefits for autonomous IoT.

8

https://spectrum.library.concordia.ca/id/eprint/987023/
https://spectrum.library.concordia.ca/id/eprint/987023/
https://wballiance.com/wp-content/uploads/2024/10/WBA-OpenRoaming-Guide-APAC-TG_v1.0.0-FINALPublic.pdf#:~:text=For%20over%20a%20decade%2C%20Passpoint%C2%AE,cumbersome%20process%20of%20onboarding%20the
https://wballiance.com/wp-content/uploads/2024/10/WBA-OpenRoaming-Guide-APAC-TG_v1.0.0-FINALPublic.pdf#:~:text=For%20over%20a%20decade%2C%20Passpoint%C2%AE,cumbersome%20process%20of%20onboarding%20the
https://wballiance.com/wp-content/uploads/2024/10/WBA-OpenRoaming-Guide-APAC-TG_v1.0.0-FINALPublic.pdf#:~:text=For%20over%20a%20decade%2C%20Passpoint%C2%AE,cumbersome%20process%20of%20onboarding%20the


Autonomous Connection to Guest Wi-Fi with an Embedded Device: Opportunities, Challenges and Limitations TScIT 43, July 4, 2025, Enschede, The Netherlands

[3] Aruba. 2021. ArubaOS 6.4.4.x Guide. https://support.hpe.com/hpesc/public/
docDisplay?docId=a00107917en_us

[4] Cisco. 2011. MAC Authentication Bypass Deployment Guide. https:
//www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Security/TrustSec_1-
99/MAB/MAB_Dep_Guide.html

[5] Cisco. 2016. Cisco Catalyst 9800 Series Wireless Controller Software Configu-
ration Guide, Cisco IOS XE Gibraltar 16.12.x - Hotspot 2.0 [Cisco Catalyst 9800
Series Wireless Controllers]. https://www.cisco.com/c/en/us/td/docs/wireless/
controller/9800/16-12/config-guide/b_wl_16_12_cg/hotspot2.html

[6] Cisco. 2020. Cisco Annual Internet Report - Cisco Annual Internet Report
(2018–2023) White Paper. https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.html

[7] Cisco. 2025. Cisco Identity Services Engine Administrator Guide,
Release 3.4 - Guest and Secure WiFi [Cisco Identity Services En-
gine 3.4]. https://www.cisco.com/c/en/us/td/docs/security/ise/3-
4/admin_guide/b_ise_admin_3_4/b_ISE_admin_guest.html

[8] Michal Garcarz and Nicolas Darchis. 2015. ISE Version 1.3 Self Registered Guest
Portal Configuration Example. https://www.cisco.com/c/en/us/support/docs/
security/identity-services-engine/118742-configure-ise-00.html

[9] Google Inc. 2016. Modernizing OAuth interactions in Native Apps
for Better Usability and Security- Google Developers Blog. https:
//developers.googleblog.com/en/modernizing-oauth-interactions-in-native-
apps-for-better-usability-and-security/

[10] Dick Hardt. 2012. The OAuth 2.0 Authorization Framework. Request for Comments
RFC 6749. Internet Engineering Task Force. https://doi.org/10.17487/RFC6749
Num Pages: 76.

[11] DanHarkins andWarren Kumari. 2017. OpportunisticWireless Encryption. Request
for Comments RFC 8110. Internet Engineering Task Force. https://doi.org/10.
17487/RFC8110 Num Pages: 12.

[12] Jerome Henry and Yiu Lee. 2024. Randomized and Changing MAC Address: Context,
Network Impacts, and Use Cases. Internet Draft draft-ietf-madinas-use-cases-
19. Internet Engineering Task Force. https://datatracker.ietf.org/doc/draft-ietf-
madinas-use-cases Num Pages: 21.

[13] Naureen Hoque, Hanif Rahbari, and Cullen Rezendes. 2022. Systematically Ana-
lyzing Vulnerabilities in the Connection Establishment Phase of Wi-Fi Systems.
In 2022 IEEE Conference on Communications and Network Security (CNS). IEEE,
Austin, TX, USA, 64–72. https://doi.org/10.1109/CNS56114.2022.9947252

[14] Warren Kumari and Erik Kline. 2020. Captive-Portal Identification in DHCP and
Router Advertisements (RAs). Request for Comments RFC 8910. Internet Engineer-
ing Task Force. https://doi.org/10.17487/RFC8910 Num Pages: 11.

[15] Kyle Larose, David Dolson, and Heng Liu. 2020. Captive Portal Architecture.
Request for Comments RFC 8952. Internet Engineering Task Force. https://doi.
org/10.17487/RFC8952 Num Pages: 19.

[16] Zeyu Lei, Yuhong Nan, Yanick Fratantonio, and Antonio Bianchi. 2021. On
the Insecurity of SMS One-Time Password Messages against Local Attackers
in Modern Mobile Devices. In Proceedings 2021 Network and Distributed System
Security Symposium. Internet Society, Virtual, 19. https://doi.org/10.14722/ndss.
2021.24212

[17] Alexander Maier, Andrew Sharp, and Yuriy Vagapov. 2017. Comparative analysis
and practical implementation of the ESP32 microcontroller module for the internet
of things. In 2017 Internet Technologies and Applications (ITA). IEEE, 143–148.
https://doi.org/10.1109/ITECHA.2017.8101926

[18] Hyago Santana Mariano and Daniel Chaves Café. 2024. Measuring Public Wi-Fi
Security Awareness via Captive Portal Connections Using a Microcontroller. In
2024 Workshop on Communication Networks and Power Systems (WCNPS). 1–6.
https://doi.org/10.1109/WCNPS65035.2024.10814259 ISSN: 2768-0045.

[19] Nuno Marques, André Zúquete, and João Paulo Barraca. 2020. Integration of
the Captive Portal paradigm with the 802.1X architecture. Wireless Personal
Communications 113, 4 (Aug. 2020), 1891–1915. https://doi.org/10.1007/s11277-
020-07298-y arXiv:1908.09927 [cs].

[20] MikroTik. 2021. Manual:Customizing Hotspot - MikroTik Wiki. https://wiki.
mikrotik.com/Manual:Customizing_Hotspot

[21] Aruba Networks. 2012. Wi-Fi Certified Passpoint Architecture for Public ... -
Aruba Networks. https://www.yumpu.com/en/document/view/6883907/wi-fi-
certified-passpoint-architecture-for-public-aruba-networks

[22] Tommy Pauly and Darshak Thakore. 2020. Captive Portal API. Request for
Comments RFC 8908. Internet Engineering Task Force. https://doi.org/10.17487/
RFC8908 Num Pages: 11.

[23] Martiño Rivera-Dourado. 2022. Captive Portal Network Authentication Based on
WebAuthn Security Keys. Master’s thesis. Universidade da Coruña, A Coruña.
https://ruc.udc.es/dspace/handle/2183/31921 Accepted: 2022-10-31T14:36:03Z.

[24] Muhammad Sangeen, Naveed Anwar Bhatti, Kashif Kifayat, Abeer Abdullah
Alsadhan, and Haoda Wang. 2023. Blind-trust: Raising awareness of the dangers
of using unsecured public Wi-Fi networks. Computer Communications 209 (Sept.
2023), 359–367. https://doi.org/10.1016/j.comcom.2023.07.011

[25] Anew H. Smith, Glen Zorn, John Roese, Bernard D. Aboba, and Paul Congdon.
2003. IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage
Guidelines. Request for Comments RFC 3580. Internet Engineering Task Force.
https://doi.org/10.17487/RFC3580 Num Pages: 30.

[26] Bryan Smith. 2018. Wi-Fi 6 (802.11ax) and Next Generation Hotspot boost indus-
try confidence in Wi-Fi. https://wballiance.com/wi-fi-6-and-next-generation-
hotspot-boost-industry-confidence-in-wi-fi/

[27] B A Sujathakumari and Husna Sabhat. 2018. A Theoretical Survey on MAC
Address Blacklisting. International Journal of Engineering Research 6, 15 (2018), 4.

[28] Espressif Systems. 2025. Wi-Fi Security - ESP32 - — ESP-IDF Programming Guide
v5.4.1 documentation. https://docs.espressif.com/projects/esp-idf/en/stable/
esp32/api-guides/wifi-security.html

[29] Ping-Lun Wang, Kai-Hsiang Chou, Shou-Ching Hsiao, Ann Tene Low, Tiffany
Hyun-Jin Kim, and Hsu-Chun Hsiao. 2023. Capturing Antique Browsers in Mod-
ern Devices: A Security Analysis of Captive Portal Mini-Browsers. In Applied
Cryptography and Network Security: 21st International Conference, ACNS 2023, Ky-
oto, Japan, June 19–22, 2023, Proceedings, Part I. Springer-Verlag, Berlin, Heidelberg,
260–283. https://doi.org/10.1007/978-3-031-33488-7_10

[30] Yoshiaki Watanabe, Makoto Otani, Hirofumi Eto, Kenzi Watanabe, and Shin-ichi
Tadaki. 2013. A MAC address based authentication system applicable to campus-
scale network. In 2013 15th Asia-Pacific Network Operations and Management
Symposium (APNOMS). 1–3. https://ieeexplore.ieee.org/document/6665242

9

https://support.hpe.com/hpesc/public/docDisplay?docId=a00107917en_us
https://support.hpe.com/hpesc/public/docDisplay?docId=a00107917en_us
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Security/TrustSec_1-99/MAB/MAB_Dep_Guide.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Security/TrustSec_1-99/MAB/MAB_Dep_Guide.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Security/TrustSec_1-99/MAB/MAB_Dep_Guide.html
https://www.cisco.com/c/en/us/td/docs/wireless/controller/9800/16-12/config-guide/b_wl_16_12_cg/hotspot2.html
https://www.cisco.com/c/en/us/td/docs/wireless/controller/9800/16-12/config-guide/b_wl_16_12_cg/hotspot2.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/td/docs/security/ise/3-4/admin_guide/b_ise_admin_3_4/b_ISE_admin_guest.html
https://www.cisco.com/c/en/us/td/docs/security/ise/3-4/admin_guide/b_ise_admin_3_4/b_ISE_admin_guest.html
https://www.cisco.com/c/en/us/support/docs/security/identity-services-engine/118742-configure-ise-00.html
https://www.cisco.com/c/en/us/support/docs/security/identity-services-engine/118742-configure-ise-00.html
https://developers.googleblog.com/en/modernizing-oauth-interactions-in-native-apps-for-better-usability-and-security/
https://developers.googleblog.com/en/modernizing-oauth-interactions-in-native-apps-for-better-usability-and-security/
https://developers.googleblog.com/en/modernizing-oauth-interactions-in-native-apps-for-better-usability-and-security/
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC8110
https://doi.org/10.17487/RFC8110
https://datatracker.ietf.org/doc/draft-ietf-madinas-use-cases
https://datatracker.ietf.org/doc/draft-ietf-madinas-use-cases
https://doi.org/10.1109/CNS56114.2022.9947252
https://doi.org/10.17487/RFC8910
https://doi.org/10.17487/RFC8952
https://doi.org/10.17487/RFC8952
https://doi.org/10.14722/ndss.2021.24212
https://doi.org/10.14722/ndss.2021.24212
https://doi.org/10.1109/ITECHA.2017.8101926
https://doi.org/10.1109/WCNPS65035.2024.10814259
https://doi.org/10.1007/s11277-020-07298-y
https://doi.org/10.1007/s11277-020-07298-y
https://wiki.mikrotik.com/Manual:Customizing_Hotspot
https://wiki.mikrotik.com/Manual:Customizing_Hotspot
https://www.yumpu.com/en/document/view/6883907/wi-fi-certified-passpoint-architecture-for-public-aruba-networks
https://www.yumpu.com/en/document/view/6883907/wi-fi-certified-passpoint-architecture-for-public-aruba-networks
https://doi.org/10.17487/RFC8908
https://doi.org/10.17487/RFC8908
https://ruc.udc.es/dspace/handle/2183/31921
https://doi.org/10.1016/j.comcom.2023.07.011
https://doi.org/10.17487/RFC3580
https://wballiance.com/wi-fi-6-and-next-generation-hotspot-boost-industry-confidence-in-wi-fi/
https://wballiance.com/wi-fi-6-and-next-generation-hotspot-boost-industry-confidence-in-wi-fi/
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/wifi-security.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/wifi-security.html
https://doi.org/10.1007/978-3-031-33488-7_10
https://ieeexplore.ieee.org/document/6665242

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Research Question and Sub-Research Questions
	1.3 Paper Structure

	2 Type of guest networks
	2.1 Open Access & Wi-Fi Enhanced Open (OWE)
	2.2 Click-Through Captive Portals
	2.3 Voucher / Username–Password Portals
	2.4 MAC-Authentication Bypass / Caching
	2.5 SMS / E-mail One-Time-Passcode Portals
	2.6 Social-Login (OAuth) Portals
	2.7 Passpoint / Hotspot 2.0

	3 Results & Discussions
	3.1 Answer to sRQ1
	3.2 Answer to sRQ2
	3.3 Answer to sRQ3
	3.4 Challenges
	3.5 Opportunities

	4 Conclusions
	5 AI Disclosure
	References

