FlexiTEX: BTEX Collaboration Without Giving Up Personal Project

Structure

WOUTER TEN BRINKE, University of Twente, The Netherlands

IEX gives users a lot of freedom in how they structure their projects, but
this becomes a problem when working with others. Popular collaboration
tools assume that all users follow the same project structure, which does
not reflect how people actually prefer to organize their work. This thesis
introduces FlexiTgX, a system that allows each user to keep their own project
structure while still collaborating on the same content. The system works by
flattening a KIEX project, parsing it into an abstract tree that captures the
logical structure. It then applies transformation rules to rebuild the project
structure based on a configuration file. The transformation is designed to be
reversible, idempotent and preserve the ability to compile the document. A
proof of concept shows how this approach can be used in a collaborative
setup where each user works in a personal branch and changes are synced
through a shared internal version. An evaluation on real-world projects
shows that the system preserves content in most cases, although some
limitations remain due to parser behavior. Overall, FlexiTgX makes it possible
to collaborate on KIEX projects without forcing everyone to adopt the same
structure.

Additional Key Words and Phrases: LaTeX, document transformation, col-
laborative editing, abstract syntax tree, configuration-based layout

1 MOTIVATION

While BIEX’s flexibility is a strength for individual users, it does
not enforce any standards for file layout, naming conventions, or
project organization. This can become a problem in collaborative
environments where individual file management structures and doc-
ument styles cannot be merged and lead to inefficient workflows
and miscommunication. Currently, there is no adopted framework
for structuring projects. As a result, each user organizes content
differently, making it harder to share or reuse KIEX when collabo-
rating.

1.1 Research Questions

This research project investigates how IIEX project structures can
be managed locally according to individual user preferences, while
still maintaining a consistent shared structure to support collab-
oration. The research focuses first on understanding the variety
of existing project structuring styles and then on exploring how
principles from software engineering could help in designing and
developing a transformation tool. The goal of this work is to make
BIEX collaboration easier without requiring users to give up their
personal file structures. To guide the project, the following research
questions were formulated:
e RQ1: How can the logical structure of a KTgX project be rep-
resented in a way that is independent of its physical structure,
while preserving all document content?

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

TScIT 43, July 4, 2025, Enschede, The Netherlands

© 2025 Copyright held by the owner/author(s).

o RQ2: How can user-defined KIEX project structures be ex-
pressed through a configuration format?

e RQ3: How can transformations between personal BIgX struc-
ture be performed reliably using the shared abstract repre-
sentation?

2 BACKGROUND

BIEX is a widely used typesetting system, particularly popular in
academic and scientific communities. It was originally developed
by Lamport [9] as a set of macros on top of Donald Knuth’s TgX
system [8]. KIEX allows authors to create professional-looking doc-
uments with relatively little effort. It provides fine-grained control
over document structure and appearance, making it especially well-
suited for content that includes mathematical notation, bibliogra-
phies, cross-references and complex figures [7].

Because of these strengths, KTgX has become the preferred tool in
academic fields such as mathematics, physics and computer science.
A 2009 questionnaire by Brischoux and Legagneux [4] asked editors
of scientific journals about typesetting practices. The results showed
that 97% of mathematics papers, 89% of statistics papers, 74% of
physics papers and 46% of computer science papers were typeset
using BIEX. In contrast, Microsoft Word remained the dominant
tool in most other disciplines. So while Word is still the most widely
used editor overall, KX has established itself in more technically
oriented fields.

To support collaboration on BIEX documents, various editing
tools and workflows have emerged. Overleaf is a popular cloud-
based editor that allows multiple users to edit the same project in real
time [15], similar to how Google Docs enables shared editing of word
processing documents [20]. These platforms make collaboration
easier, especially for beginners, by removing the need to set up a
local environment.

Other tools like Live Share for VSCode [11] offer real-time editing
across machines without relying on the cloud. These are commonly
used for code collaboration and can also support ETgX, but they
assume that all collaborators work with the same underlying file
and project structure.

Git-based workflows offer a more flexible alternative by allow-
ing users to work on their own branches and merge changes over
time. This model gives collaborators control over their individual
environments and supports version control, but it lacks real-time
feedback and does not account for structural differences between
users’ project.

Despite their differences, all of these approaches share a common
limitation: they require collaborators to work within a single, shared
project structure. Whether editing happens in real time or through
version control, the underlying assumption is that all users organize
their documents in the same way. This limits flexibility and makes it
harder to support personalized project structure within collaborative
workflows.

TScIT 43, July 4, 2025, Enschede, The Netherlands

To understand later sections of this research, it is useful to intro-
duce several fundamental concepts from compiler construction.

Parsing is the process of analyzing a source text according to a
formal grammar to determine its syntactic structure, organizing
the input into a hierarchy of elements such as expressions and
variables [1]. In this project, parsing makes it possible to create
a hierarchical view of a KIgX file by distinguishing elements like
sections, environments and commands. An abstract syntax tree
(AST) is built from the parse tree to model the logical structure
of the input as a nested hierarchy, simplifying the representation
by omitting unnecessary details [1]. Code generation traverses the
AST to produce output in a pre-defined target format using the
information captured in the tree [1]. In this project, code generation
allows reconstructing IIEX source files from the AST.

3 DEFINING LATEX FILE ORGANIZATION

As mentioned before, KIEX gives authors significant flexibility in
how they structure documents and projects. While this flexibility is
powerful, it makes it difficult to standardize document file organi-
zation. Templates provide some guidance, but in practice, authors
define custom commands, organize content differently and adopt
varied file layouts.

A tool that aims to transform these projects must first abstract
away from the physical structure and instead focus on the doc-
ument’s logical structure. This requires a general model that can
represent any document, regardless of how it is written or organized.
But to design such a model, it is first necessary to understand how
users typically structure their documents in practice.

To get a better idea of this, 30 real-world KIEX projects were
manually analyzed. This number was chosen to cover a wide variety
of document types and structures while keeping the manual inspec-
tion feasible within the time available for this research. The selected
projects included short student summaries, academic articles and
full master’s theses. Only English, Dutch and German documents
were considered, to allow for manual inspection and projects had
to compile successfully without major modifications. The goal of
this analysis was to capture the diversity of styles, project sizes
and structural conventions used in practice and from that extract a
basic abstraction that includes all relevant information from these
projects.

To identify what makes up the structure of a KTgX document,
each project was read and compared at both the code and content
level. The focus was not on formatting or styling details, but on
how content was grouped, which commands contributed to the
document’s hierarchy and how information was logically arranged.
This included looking at how authors split content across files, how
they used environments and which macros they defined or relied
on. The rest of this section is about the findings from that analysis.

3.1 Observing file organization patterns

The analysis revealed that the logical structure of a document often
guides how authors organize their files. During the examination
of the projects two recurring strategies for splitting content into
separate files appeared.

Wouter ten Brinke

In the first strategy, documents that became too long or too wide
to edit comfortably in a single file were divided by moving large
sections such as complete chapters or appendices into their own
files. What counted as too long or wide varied between users. Some
split files after just a few pages or a section with many figures, while
others kept larger files but splitted them eventually.

In the second strategy, the file organization more directly mir-
rored the logical hierarchy of the document. Authors placed each
chapter in its own file and sometimes split content further at the
level of individual sections or figures. It was also common to group
related section files inside a folder named after the chapter, creat-
ing a directory structure that matched the logical structure of the
document. This method resulted in a physical project structure that
closely reflected the document’s internal hierarchy.

Many authors used systematic naming schemes for their files and
folders. Common practices included directory names like chapters/
or sections/ and file names indicating content order, such as 1-
introduction. tex. These conventions supported the chosen orga-
nization and made larger projects easier to navigate and maintain.

3.2 Modeling document hierarchy

It stood out that the logical structure of a KIgX document can be
modelled as a tree. The observations in the previous subsection
showed that authors often organize their files in a way that mirrors
the document’s hierarchy, grouping related sections under folders
named after their parent chapters. This pattern reflects a nested
structure where each element, such as a chapter or section, can
contain other elements. Since these relationships form a natural
hierarchy, representing the document as a tree makes it possible to
capture both the order and the parent-child connections between
parts of the text. This tree model ignores how content is split across
files and instead shows the document’s logical structure, providing a
consistent way to analyze and process projects with different project
structures.

After examining all the projects, five types of elements were
identified that consistently contributed to the document’s logical
organization, with any custom-defined commands also fitting into
one of these categories.

e Hierarchical macros: Commands such as \chapter and
\section define the document’s structural hierarchy. These
built-in macros follow a predefined order [14]. Users can also
define custom structural macros, in such cases their relative
order must be specified manually to establish the intended
hierarchy.

o Environments: Defined using a \begin{} and \end{} pair,
environments act as containers that group content. In the
structural tree, all content within an environment is treated
as a child of that environment.

e Regular macros: Commands like \title or \usepackage
serve functional purposes rather than contributing to the
document’s structure. These are a children to the nearest
structural parent node, which may be a hierarchical macro
or an environment.

FlexiTeX: BTEX Collaboration Without Giving Up Personal Project Structure

Environment
[Hierarchical Macro
[Regular Macro

Text %---

(chapter) {=Introduction !

b e -

Comment
Parameters

text section /'-P: {}=Background :
text itemize text figure 1 []=ht

e

text

includegraphics

TSclT 43, July 4, 2025, Enschede, The Netherlands

document

. \ R ,

.~
chapter /->: {)=Methods ,

G N !
H> {}=Other information 1 comment %Mﬁ] % {}=Approach !

{=fig : text text

! [=width=1om
1 {=figpng !

Fig. 1. Tree representation based on the WIEX project defined in fig. 2 (generated by FlexiTgX).

e Comments: Comments are essential for collaborative editing,
as they may contain author notes or context. Although they
do not affect the compiled output, they are preserved in the
model by attaching them to the nearest structural parent to
maintain correct document order during in-order traversal.

e Text: Any plain content not part of a command or environ-
ment. Text is attached to the nearest structural parent and
represents the main body of the document.

Commands like \input and \include are excluded from this
model. They are only used to split content across files and do not
affect the logical structure of the document. Instead the content
of the underlying files is placed at the location of the \input and
\include commands.

An example of how a tree structure can represent the logical
organization of a project is shown in fig. 1, which illustrates the
abstract structure of a small KX project. The tree is based on the
minimal KTEX document shown in fig. 2. In the tree, hierarchical
macros such as chapters and sections are in blue, environments are
shown in green and regular macros are red. The parameters of the
commands and environments are included so that each node can be
traced back precisely to the corresponding command in the source
document.

4 RELATED WORK

Several tools exist that convert KTgX documents into other formats.
Pandoc [10] supports many input and output formats and can turn
KX into HTML, Markdown, or DOCX. LaTeXML [12], which is
used by arXiv, focuses on preserving semantic structure when ren-
dering documents as HTML [12]. plasTeX [6] parses and interprets
macros to produce detailed transformations into formats like HTML.
pylatexenc [16] provides utilities for parsing KIgX code and convert-
ing it to Unicode. Although these tools effectively extract structured
information, they are designed for converting documents into other
formats rather than reorganizing or reformatting KTgX while stay-
ing in the same format. They also do not preserve all commands
or macros, since many are unnecessary when targeting non-BEIEX
outputs.

1\ { }

2 \chapter{Introduction}

3 Some text.

1 \section{Background}

5 Some text.

6\ { 3

7 \item First

8 \item Second

9 \end{ 3

10 Some text.

11 \section{Other information}
12\ { }Cht]

13 \centering

14 \includegraphics[width=1cm]{fig.png}
15 \caption{Caption,}

16 \label{fig}

17 \end{ }

18 Referencing~\ref{fig}.
19 \chapter{Methods}

21 \section{Approach}
22 Some text.

23 \end{ }

Fig. 2. Example of a small BTEX document.

Existing works discuss how to design domain-specific languages
(DSLs), with a focus on making them expressive and aligned with
user needs. The DYOL toolkit introduced by Zaytsev [21] encour-
ages deliberate language design based on user intent and provides
ideas for creating languages that match how people actually use
them. Building on these principles, the xBib language by Visser [19]
applies concepts from DYOL to target BibTgX documents specifically.
Since BibTEX is often used alongside KIEX, xBib shows how a spe-
cialized DSL can simplify transformations in a familiar domain. In
contrast, Bravenboer et al. [3] describe Stratego/XT as an example
of a general-purpose framework for program transformation, which
uses rewrite rules and strategies as its core abstraction. While both
xBib and Stratego/XT demonstrate how DSLs can express complex
transformations, neither focuses on transformations of complete
KIEX projects, which are central to the problem addressed in this
research.

TScIT 43, July 4, 2025, Enschede, The Netherlands

5 SYSTEM DESIGN

The core idea behind the system is to ignore how a KIEX project is
physically structured and instead work with its logical structure. As
explained in section 3.2, this structure can be represented as a tree,
where each node corresponds to an environment, macro, comment,
or text block. By applying transformation rules to this abstract view
of the document, different project structures can be generated based
on personal or collaborative preferences.

5.1 Design Properties

To support correct transformation and collaborative possibilities,
the system is designed with three main properties in mind.

First, the transformation must be reversible, as this is important
for collaboration. If each user can transform the shared structure
into their personal structure and also convert it back to the shared
version, then it becomes possible to switch between personal struc-
tures by passing through the shared structure. Without reversibility,
it cannot be reliably guaranteed that transformations between dif-
ferent structures will always be possible or consistent.

Second, the transformation must be idempotent. When a rule
is applied, such as splitting a chapter into its own file, applying
the same rule again should have no effect. This confirms that the
rule has already been applied and that the structure is in the ex-
pected state. If a rule continues to make changes each time it is
applied, it suggests that the structure never fully stabilizes and the
transformation cannot be trusted to produce consistent results.

Lastly, the system must preserve compilability. If the input project
compiles successfully, the transformed version should also compile
and produce the same result. Since most users care about the final
PDF or output file, any transformation that changes that would be
a problem. The goal is to change structure, not meaning.

5.2 System Architecture

The system uses a phase-based architecture inspired by the phases
a compiler passes through [1]. Like a compiler, it transforms the
input into an intermediate representation, applies transformations
and generates output. By giving each phase a clear and limited
responsibility, this design keeps the system modular and makes
it easier to adapt or extend. The complete pipeline, including all
phases, is illustrated in fig. 3 and the following sections explain each
phase in detail.

5.2.1 Pipeline Phases.

1. Input Flattening. The process begins by flattening the input
project, resolving commands like \input{} and \include{} so that
all content is combined into a single continuous stream. Because
the system builds its own model of the document’s logical structure,
it does not depend on the original project structure.

2. Tokenization. After flattening, the document is parsed into a
list of tokens that represent BIEX elements such as commands, envi-
ronments, comments and text blocks. The order of this list matches
the original order of the content in the source files. Environments
are already grouped as nested structures, since their content lies
between \begin and \end pairs.

Wouter ten Brinke

Input project

[Input flattening H Tokenization

Build abstract
representation

User configuration -------------

[Code generation HRule-based splitting

v

[Transformed project]

Fig. 3. Overview of the transformation pipeline (yellow) phases.

The parser preserves tokens that follow command, such as spaces
and newlines. For example, an \item macro often has a space before
the item text and a \maketitle command is usually followed by a
newline. Retaining this information ensures that the original text of
the project can be reconstructed exactly after transformation.

3. Abstract Representation Construction. The system converts the
token list into a tree structure that represents the document’s logical
hierarchy by adding every item from the token list to the tree accord-
ing to the construction algorithm. Construction starts from a root
node to ensure the document forms a valid tree. Environments are
inserted together with their already grouped children, preserving
their nested structure. Structural macros are placed at the correct
level by comparing their structural depth with existing nodes, while
regular macros are simply attached to the current parent. Text and
comments are added to the most recent structural parent. This or-
ganization ensures the logical relationships in the document are
maintained. The construction logic is shown in algorithm 1, with
the placement of structural macros handled by the FINDPARENT
function detailed in algorithm 2. Because all elements are nested in
their surrounding environments, traversing the tree in pre-order
can reconstruct the project’s original structure.

4. Rule-Based Spliting. Once the abstract representation is con-
structed, transformation rules determine how the tree should be
split into separate files following the findings in section 3.1. Each
rule targets a specific macro or environment type, may include a
condition for when it should be applied and contains a template for
naming the output file. Rules are applied in post order, processing
child nodes before their parents, which is necessary when a rule
depends on properties of a subtree such as its length. For example,
if a rule splits a node based on its length, the length must include
the content of its children but if a child has already been split, its
content no longer contributes to the parent’s length. This ensures
that rules evaluate each node based on the final state of its subtree.
When a node matches a rule it is detached from its parent and turned
into a separate tree named after the filename specified in the rule. A
command like \input or \include is then inserted at the original
location pointing to the new file.

FlexiTeX: BTEX Collaboration Without Giving Up Personal Project Structure

Algorithm 1 Abstract representation construction

function BuiLpAST(token_list)
root < Root()
current < root
for node in token_list do
if IsEnvironment(node) then
env « Environment(node.name, node.args)
children « BuildAST(node.content)
for child in children do
AddChild(env, child)
end for
AddChild(current, env)
else if IsMacro(node) then
macro « Macro(node.name, node.args)
if IsStructural(node.name) then
parent « FindParent(current)
AddChild(parent, macro)
current «— macro
else
AddChild(current, macro)
end if
else if IsText(node) then
text < Text(node.text)
AddChild(current, text)
else if sComment(node) then
comment < Comment(node.comment)
AddChild(current, comment)
end if
end for
return root
end function

Algorithm 2 Finding structural parents

function FINDPARENT(node)
level « GetLevel(node)
while NotRoot(node) do
if IsMacro(node) and IsStructural(node) then
if GetLevel(node) < level then
return node
end if
else if IsEnvironment(node) then
return node
end if
node « GetParent(node)
end while
return node
end function

5. Code Generation. The output consists of a list of trees, each
representing the contents of a file. Each tree is converted back into
BIEX code through a post-order traversal: the code for each node

is generated after recursively generating the output of its children.

The abstract representation contains the necessary information to
reconstruct macros, their arguments and the spacing around them
as they originally appeared. For environments, the correct opening
and closing syntax is added and their content is assembled from
their nested elements. Since each tree corresponds to a complete
file, the text collected at the root node forms the full content of that

TSclT 43, July 4, 2025, Enschede, The Netherlands

file. The final result has the desired structure while preserving the
original content.

5.3 Collaborative Design

The system can be used for collaboration in two ways, depending
on whether only FlexiTEX is used or whether it is combined with a
tool like git diff.

In the first case, with only FlexiTgX, collaboration works in a
turn-based manner where users take turns modifying the project.
The design follows a hub-and-spoke model with a shared version of
the document at the center, which always reflects the most recent
state. When a user begins editing, they lock this central version and
transform it into their personal structure using their own configu-
ration. They then make their changes in that personalized structure.
Once finished, the user transforms their version back into the shared
structure and updates the central copy, releasing the lock. Any user
can then repeat the process. This ensures that only one person edits
the shared state at a time, avoiding conflicts and preserving con-
sistency. Because transformations are reversible, users can work in
their own preferred structure without needing to agree on a single
common structure.

In the second case, if the system is combined with a tool like git
diff, it supports mergeable collaboration. In this workflow each user
pulls the latest changes from the remote branch, transforms the
project using their own configuration, makes their edits, pulls again
to update with new remote changes, merges any conflicts locally,
transforms their updated version back into the shared structure
and then pushes the result to the main branch. This allows multiple
users to work in parallel while resolving merge conflicts in their
own personalized structure.

6 IMPLEMENTATION

The system described in the section 5 was implemented as a proof
of concept command-line tool written in Python. The full source
code is available as open source [17] and consists of roughly one
thousand lines of code. The implementation is structured into four
modules and the transformation pipeline lives in the main file.

6.1 Configuration Format

The tool uses a configuration file to define how a EIgX project
should be split into separate files. The configuration is expressed in
YAML for easy editing and human readability. Each rule describes
a structural element by its name, type (macro or environment),
optional conditions and a file naming pattern. Placeholders inside
angle brackets like <length> always refer to the current node, while
square brackets like [chapter] can refer to either the current node
or a parent node depending on the type match. If there is no match,
the system searches upwards to the nearest parent of the specified
type. An example of the format is fig. 4, this configuration defines
how the system splits the document based on section length. If a
section has more than five lines, it is split using the first rule. Shorter
sections are matched to the second rule. Chapters are then split us-
ing the third and last rule. File names can include placeholders such
as [chapter], which represents the chapter index, or [name: sec-
tion], which uses the name of the section. If a placeholder does not

TScIT 43, July 4, 2025, Enschede, The Netherlands

1 structure:

2 - name: "section'

3 type: "macro"

4 condition: "<length> > 5"

5 file_name: "chapters/ch[chapter]-[name:chapter]/

sec[section]/[name:section]. tex"

7 - name: "section'
8 type: "macro"
9 file_name: "chapters/ch[chapter]-[name:chapter]/

sec[section]. tex"

11 - name: "chapter”

12 type: "macro"

13 file_name: "chapters/ch[chapter]-[name:chapter].
tex"

14

15 input:

16 folder: "input"

17 main_file: "main.tex"

18

19 output:

20 folder: "output"

21 main_file: "thesis.tex"

22 figure_folder: "figs"

Fig. 4. FlexiTgX configuration example

match the current node’s type, it is resolved by searching upwards
to the nearest parent of the corresponding type. Rules are applied
using a fall-through approach similar to a switch case statement:
the system checks each rule in order and stops at the first matching
rule for a node. If no rule matches, the node remains unsplit.

6.2 Usage and Internals

The command-line tool transforms a KTEX project according to the
configuration file. It accepts several flags to customize its behavior.
One of these flags generates a diagram of the abstract document
tree, as shown in fig. 1. Additional options are described in the
repository’s README. After installing the module according to the
repository instructions, users can run the flexitex command in
the terminal. When executed, the tool searches for the configuration
file in the current working directory and applies the transformation
as specified.

Internally, the system builds on pylatexenc [16] for tokenization
and uses an implementation ofalgorithm 1 to build the abstract tree.
Some adjustments were necessary because pylatexenc categorizes
certain elements in more detail than required. For example, ver-
batim blocks are treated as distinct environment types and must
be mapped back to the general environment category during tree
construction. These distinctions do not change the overall logic but
require handling a few additional cases.

6.3 Collaboration

Collaboration features following the first mode described in sec-
tion 5.3 are demonstrated in a GitHub repository [18]. In this setup
each collaborator works in a personal branch using their own config-
uration style. These branches stay in sync through a shared internal
branch, which contains the project in a flattened structure. This

Wouter ten Brinke

setup allows anyone to write using their own configuration while
still working on the same content. In principle, any number of peo-
ple can collaborate in this way, though not all at once. The system
supports turn-based collaboration at scale, as long as pushes are
made one at a time.

When a collaborator commits and pushes changes to their branch,
a GitHub Actions workflow runs FlexiTgX with the internal con-
figuration file to convert the content into the internal format and
updates the internal branch. Another workflow then reprocesses the
internal content with each collaborator’s configuration and pushes
the outputs back to the respective branches. Since FlexiTgX is idem-
potent, this leads to two outcomes on the author’s branch. If the
branch is already correctly structured, no changes are made and
no commit is produced, which prevents infinite commit loops. If
there are changes, a new commit is created, but when this version
is transformed back into the internal structure, the content remains
unchanged so the cycle ends naturally without triggering repeated
updates.

6.4 Open Issues

One issue of the implementation is figure handling. Figures are
only moved during the code generation phase. However, because
the system flattens the project during preprocessing, it loses the
original context of where each relative path pointed. As a result,
many EIEX projects using relative paths in \includegraphics com-
mands end up with broken references after transformation, since
the new folder structure changes the meaning of those paths. The
system also does not handle cases where the image file extension is
omitted (for example, using \includegraphics{figure1} instead
of {figurel.png}), which prevents locating and copying the file
correctly. While figure files are handled specially, all other files in
the input project, including style files and bibliography data, are
simply copied to the output directory without modification.

Another issue is related to pylatexenc, which has a limited data-
base of known macros and environments. Unknown commands are
treated as plain text, disabling splitting for those commands. If the
parser recognizes parameters inside unknown commands, it may
still parse them as separate structured elements, which can create
a tree that no longer matches the original document. Additionally,
if pylatexenc recognizes a command but does not know it accepts
parameters, it silently discards those parameters. These issues often
occur with custom macros, especially when they have the same
name as a known macro but different behavior.

7 EVALUATION

To evaluate FlexiTgX, a representative dataset of real-world projects
was collected. A Python script downloaded repositories from GitHub
using search queries that exclude typical sample projects by filtering
out repositories containing keywords (eg. example, sample and tem-
plate). This avoids polished or minimal examples and focuses the
selection on actual user-written documents. To ensure the reposito-
ries are substantial enough for testing, only projects between 500KB
and 25MB in size were included. The lower limit excludes nearly
empty repositories, while the upper limit helps manage disk usage
during repeated transformations. While this filtering is necessary

FlexiTeX: BTEX Collaboration Without Giving Up Personal Project Structure

to make the evaluation practical, it may bias the dataset toward
structurally simpler or better-formed projects.

Due to restrictions of the GitHub API, each search query returns
at most 1000 repositories. From this set, 479 unique repositories
met the initial conditions. Of these, 121 were discarded because
they use relative figure paths involving the graphicspath macro,
which cannot be resolved by the system(section 6.4). Another 34
were excluded because they either fail to compile or use image paths
without file extensions (section 6.4). After filtering, 324 repositories
remain and form the final test set. For each of these, the main file
was identified by searching for a document containing the \docu-
mentclass command. This file later serves as the entry point for
the transformation process.

Since the most important task of FlexiTgX is to preserve the con-
tent of the document, the tool is evaluated based on its ability to
maintain that content across transformations. This is done by ap-
plying a chain of n transformation steps and then comparing the
similarity between the original input and the final output. Each step
uses a different configuration and the output of one becomes the
input for the next. fig. 5 illustrates this process. The test runs on
every repository with five different transformation chain lengths: 1,
3,5, 10 and 20 steps. These lengths were chosen to represent a range
from minimal to extensive use of the tool, allowing evaluation of
both short transformation sequences and longer chains to stress-test
the system’s stability.

. forn=1to n=1[1,3,520]
Input project T(n)

Flatten¢
[Transformed project }

[Flattened project

* Flatten
[Similarity score]4—{ Flattened output]

Fig. 5. Evaluation setup: the input project is flattened, transformed n times
using transformation (T'(n)) and flattened again. The similarity is then
computed based on the flattened input and output.

A similarity score is then computed using Python’s Sequence-
Matcher from the difflib module. The two files are loaded as
plain text and passed to the matcher, which identifies matching
blocks and measures how much of the content aligns. The .ratio()
method returns a value between 0 and 1, with 1 meaning the files
are identical. This score provides a simple way to determine the
accuracy of the transformation process. In addition to the similarity
score, the test also checks whether the final output contains the
\begin{document} macro. This serves as a basic check to confirm
that the transformed result still includes the document body and
did not fail entirely due to a command in the preamble.

The results suggest that the transformation process tends to either
succeed fully or fail entirely, with little middle ground. As shown
in fig. 6, most projects either achieve very high similarity or drop
to the lower end of the scale. In total, 39.2% of outputs achieved a
similarity score of at least 95%, while 66.7% scored above 80%. Only
1.2% resulted is a perfect match, this is mainly because figures always

TSclT 43, July 4, 2025, Enschede, The Netherlands

get moved to the figure folder which then results in a different input
parameter for the includegraphics command, so when a project
contains any figures it cannot be a perfect match. The lower-scoring
outputs often fail to include the document body, which points to
issues in the preamble. This pattern suggests that certain commands
are not handled correctly and break the transformation completely,
leading to an unusable result. When those issues are absent, the
content is typically preserved quite correctly.

Distribution of Similarity Scores

[Output contains only preamble
80 - Output contains document content
2
© 60
13
a
“
Is}
3 40
[S
=3
=
20
i
‘ { |,
0 T L : ~ = ! |
0 20 40 60 80 100

Similarity Score (%)

Fig. 6. Histogram of similarity scores for 20-step transformation chain.

To understand whether document length influences these out-
comes, fig. 7 plots the similarity scores from the longest chain (20
configurations) against the number of lines in the original input file.
There is a slight downward trend, but the number of data points
in the higher line ranges is limited, so it’s difficult to draw strong
conclusions. In practice, most KTgX documents don’t accumulate
thousands of lines in a single file since paragraphs are often only
one or two lines long. Overall, failures are more closely tied to struc-
tural or formatting difficulties that are often in the preamble and
not directly to the raw size of the input.

Similarity Score vs Input Line Count

1.0 A
o
0844}
o
<
So6{ &
> R Output contains document content
E So. [Output contains only preamble
£ 0.4
wv ° o (0]
0.2 k,% o o)
o oo
(0 .
004 th%)dgm(h R o Loo
T T T T T T T
0 2000 4000 6000 8000 10000 12000

Input Line Count

Fig. 7. Similarity score vs input file line count for 20-step transformation
chains.

Finally, fig. 8 tracks how the median similarity score changes
with the number of transformations. The score remains high across

TScIT 43, July 4, 2025, Enschede, The Netherlands

all chain lengths, dropping only slightly as the number of steps
increases. This gradual decline indicates that even repeated restruc-
turing does not significantly degrade the final output. However, the
observed drop is primarily due to cases where an error in the first
transformation causes a command to be omitted or misrepresented,
leading to incorrect code that then propagates through subsequent
transformations. This can result in the gradual intensification of the
problem, eventually causing entire code blocks to be removed or
treated as plain text.

Median Similarity Score after n Transformations

@

£ 0.9250

@

> 0.9225 Ao.géus

5 0.92005

F 0.9200 o 0:91080

£ 0.91845

n o

£ 0.9175 1 0:91650

k= o

el

2 0.9150 — T T T T
1 3 5 10 20

Number of Transformations

Fig. 8. Median similarity score per transformation chain length. Slight
decline with longer chains suggests minor cumulative effects.

These results show that FlexiTgX performs well in many cases,
especially when documents use common macros and follow typ-
ical structural conventions. However, the evaluation also reveals
a significant limitation: the system does not consistently preserve
enough of the original content to be relied on in real-world work-
flows. Projects that fail tend to do so completely, often producing
broken output or omitting the document body altogether. These fail-
ures are usually caused by parser limitations, such as unrecognized
or misclassified macros in the preamble.

As a result, the system can currently only be considered as proof
of concept. While the underlying approach is promising, further
improvements to the parsing logice are necessary before it can
reliably support collaboration at scale. The core architecture appears
robust, but its success depends on extending the system’s ability to
accurately handle the diversity of real-world KIgX usage.

8 CONCLUSION

This research project set out to make BIEX collaboration easier
without forcing users to give up their personal project structure.
Instead of requiring a common structure it explored how structural
information could be separated from physical organization so that
each user could work in their own way while still contributing to a
shared result.

Research Question 1 asked how the logical structure of a KIgX
project could be represented independently of its project structure
The answer lies in modelling the document as a tree that captures
the hierarchy of macros environments comments and text blocks.
This abstract structure reflects how content is organized logically
and does not depend on how the project is split into files. It makes
it possible to treat every project in a uniform way regardless of
structure or naming conventions.

Then, Research Question 2 considered how user-defined project
structures could be expressed through configuration. This was ad-
dressed by designing a rule format that targets specific structural

Wouter ten Brinke

elements and describes when and how to split them into files. File
names can include placeholders that reflect the position of each
element in the tree. Conditions can also be attached to rules so that
splitting decisions can depend on content length or width.

Finally, Research Question 3 focused on how reliable transfor-
mations could be performed between project structures using the
shared abstract structure. The system solves this through a multi-
stage pipeline that parses the input project builds the abstract repre-
sentation applies the configured rules and reconstructs the output
files. By ensuring that the transformation is reversible and idempo-
tent and that compilability is preserved the system supports back-
and-forth conversion between user styles without loss of content.

Together these answers show that collaborative editing on BIEX
projects can be made more flexible by separating structure from
physical organization. The implementation demonstrates that this
approach works in practice for many real-world projects although
it also reveals technical limitations that need to be addressed. Still
the result is a system that allows each user to work in their own
style while contributing to the same shared content.

9 FUTURE WORK

As shown in the evaluation the current system does not handle all
documents reliably. Most failures can be traced back to limitations
in the parser which struggles with unknown or user-defined macros.
Future work could explore more dynamic parsing strategies that use
structural heuristics to guess missing commands or recover from
unknown syntax. Another direction is to replace the current parser
with a parser that better understands BIEX structure and can track
user-defined macros during processing. These improvements would
help the system handle a broader range of documents and make the
transformation more reliable.

Another promising direction builds on the abstract representa-
tion already used in the system. Since the system constructs an
abstract syntax tree (AST), it could be extended with a differencing
step that compares structural versions of the document. This would
enable more robust parallel editing by detecting whether users have
modified the same part of the tree or worked in separate subtrees.
When conflicts do occur, the system could provide more informa-
tive merge output by highlighting changes within the document
structure rather than only at the line level.

Similar ideas have been explored in the context of source code.
GumTree, introduced by Falleri et al. [5], computes differences be-
tween ASTs instead of lines of text, enabling precise change de-
tection. RefactoringMiner builds on this approach by extracting
detailed information about structural changes in Git histories, de-
tecting edits and classifying them based on the type of refactoring
performed [2]. Another tool, RefDetect, demonstrates techniques
for detecting refactorings in multiple programming languages [13],
which could inspire similar strategies for structural differencing in
KIEX. Incorporating these ideas into FlexiTgX would make it possible
to support parallel editing more effectively, reduce merge conflicts
and provide users with meaningful structural insights into how their
documents change over time.

FlexiTeX: BTEX Collaboration Without Giving Up Personal Project Structure

REFERENCES

[1]

[2]

[3]

[4]

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., USA.

Pouria Alikhanifard and Nikolaos Tsantalis. 2025. A Novel Refactoring and
Semantic Aware Abstract Syntax Tree Differencing Tool and a Benchmark for
Evaluating the Accuracy of Diff Tools. ACM Transactions on Software Engineering
and Methodology 34, 2 (Jan. 2025), 1-63. https://doi.org/10.1145/3696002
Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. 2008.
Stratego/XT 0.17. A Language and Toolset for Program Transformation. Science of
Computer Programming 72, 1 (June 2008), 52-70. https://doi.org/10.1016/j.scico.
2007.11.003

Francois Brischoux and Pierre Legagneux. 2009. Don’t Format Manuscripts. The
Scientist 23,7 (2009), 24. https://www.the-scientist.com/dont-format-manuscripts-
44040

[5] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-

[6]
[7]

[8]

tin Monperrus. 2014. Fine-Grained and Accurate Source Code Differencing.
In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering (Automated Software Engineering), Ivica Crnkovic, Mar-
sha Chechik, and Paul Griinbacher (Eds.). ACM, New York, NY, USA, 313-324.
https://doi.org/10.1145/2642937.2642982

Kevin Smith. 2007. PlasTeX. PlasTeX. https://github.com/plastex/plastex
Markus Knauff and Jelica Nejasmic. 2014. An Efficiency Comparison of Document
Preparation Systems Used in Academic Research and Development. PLOS ONE 9,
12 (Dec. 2014), 1-12. https://doi.org/10.1371/journal.pone.0115069

Donald E. Knuth and Duane Bibby. 1986. The Computers & Typesetting, Vol. A: The
Texbook. Addison-Wesley Longman Publishing Co., Inc., USA.

[9]
(10]

[11

[12

[13]

=
=t

oy
)

)
=

TSclT 43, July 4, 2025, Enschede, The Netherlands

Leslie Lamport. 2024. My Writings. https://research.microsoft.com/en-us/um/
people/lamport/pubs/pubs.pdf

John MacFarlane, Albert Krewinkel, and Jesse Rosenthal. 2006. Pandoc. Pandoc.
https://github.com/jgm/pandoc

Microsoft. 2018. Microsoft/Live-Share. Microsoft. https://github.com/microsoft/
live-share

Bruce R. Miller and Deyan Ginev. 2004. LaTeXML. National Institute of Standards
and Technology. https://math.nist.gov/~BMiller/LaTeXML/

Iman Hemati Moghadam, Mel O Cinnéide, Faezeh Zarepour, and Mohamad Aref
Jahanmir. 2021. RefDetect: A Multi-Language Refactoring Detection Tool Based
on String Alignment. IEEE Access 9 (2021), 86698-86727. https://doi.org/10.1109/
ACCESS.2021.3086689

Overleaf. 2019. Sections and Chapters. https://www.overleaf.com/learn/latex/
Sections_and_chapters

Overleaf. 2025. Can Multiple Authors Edit the Same File at the Same
Time? https://www.overleaf.com/learn/how-to/Can_multiple_authors_edit_the_
same_file_at_the_same_time%3f
Philippe Faist. 2015. Pylatexenc.
pylatexenc

Wouter ten Brinke. 2025. FlexiTeX. https://github.com/wtb04/FlexiTeX

Wouter ten Brinke. 2025. FlexiTeX Example. https://github.com/wtb04/FlexiTeX-
Example

Pepijn Visser. 2023. xBib : The Language Design and Implementation of a Trans-
formation Language. https://essay.utwente.nl/94379/

Google Workspace. 2025. Collaborate With Real-Time Editing. https://workspace.
google.com/resources/real-time-editing/

Vadim Zaytsev. 2017. Language Design with Intent. In 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and Systems
(MODELS). IEEE, 45-52. https://doi.org/10.1109/MODELS.2017.16

pylatexenc. https://github.com/phfaist/

https://doi.org/10.1145/3696002
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1016/j.scico.2007.11.003
https://www.the-scientist.com/dont-format-manuscripts-44040
https://www.the-scientist.com/dont-format-manuscripts-44040
https://doi.org/10.1145/2642937.2642982
https://github.com/plastex/plastex
https://doi.org/10.1371/journal.pone.0115069
https://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.pdf
https://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.pdf
https://github.com/jgm/pandoc
https://github.com/microsoft/live-share
https://github.com/microsoft/live-share
https://math.nist.gov/~BMiller/LaTeXML/
https://doi.org/10.1109/ACCESS.2021.3086689
https://doi.org/10.1109/ACCESS.2021.3086689
https://www.overleaf.com/learn/latex/Sections_and_chapters
https://www.overleaf.com/learn/latex/Sections_and_chapters
https://www.overleaf.com/learn/how-to/Can_multiple_authors_edit_the_same_file_at_the_same_time%3f
https://www.overleaf.com/learn/how-to/Can_multiple_authors_edit_the_same_file_at_the_same_time%3f
https://github.com/phfaist/pylatexenc
https://github.com/phfaist/pylatexenc
https://github.com/wtb04/FlexiTeX
https://github.com/wtb04/FlexiTeX-Example
https://github.com/wtb04/FlexiTeX-Example
https://essay.utwente.nl/94379/
https://workspace.google.com/resources/real-time-editing/
https://workspace.google.com/resources/real-time-editing/
https://doi.org/10.1109/MODELS.2017.16

	Abstract
	1 Motivation
	1.1 Research Questions

	2 Background
	3 Defining LaTeX file organization
	3.1 Observing file organization patterns
	3.2 Modeling document hierarchy

	4 Related Work
	5 System Design
	5.1 Design Properties
	5.2 System Architecture
	5.3 Collaborative Design

	6 Implementation
	6.1 Configuration Format
	6.2 Usage and Internals
	6.3 Collaboration
	6.4 Open Issues

	7 Evaluation
	8 Conclusion
	9 Future Work
	References

