
Optimizing Test Case Generation and Bug Fixing Efficiency Through
Hyperparameter Tuning of Local Large Language Models
RUBEN VAN DER LINDE, University of Twente, The Netherlands

Large Language Models (LLMs) have become incredibly popular, but using
them costs a lot of energy. Hyperparameter tuning is a promising way to
reduce this energy consumption. This study investigates the effect that hy-
perparameter tuning has on local large language models while performing
test case generation and bug fixing tasks in Java. To accomplish this, 12 mod-
els from four different families were evaluated and compared across multiple
configurations. The focus was on commonly tuned parameters—temperature,
top-p, and max tokens—and their impact on accuracy and energy consump-
tion. Additionally, the influence of including a method description in the
prompt for bug fixing was examined. The results show that temperature
has the most noticeable effect on performance, while top-p and max tokens
have limited influence, as long as the token limit is high enough to avoid
incomplete outputs. Lower bit-width models showed comparable perfor-
mance across both tasks, and their energy efficiency remained very similar.
Furthermore, including the method description led to a significant increase
in accuracy and even a small reduction in energy usage. These findings
provide a better understanding of how local LLMs behave under different
hyperparameter settings and prompt designs.

Additional Key Words and Phrases: Large Language Models, Model Bit-
Width, Energy Efficiency, Hyperparameter Tuning, Temperature, Token
Limit, Top Probability, Test Case Generation, Bug Fixing,MethodDescription,
Java.

1 INTRODUCTION
Large Language Models (LLMs) have become incredibly popular.
New, improved models are launched frequently. These models have
to be trained, which already costs a lot of energy[14]. But using
these models in daily activities, such as a Google search, also adds
up. According to [5], if Google were to fully integrate AI into its
search services, its energy use could match that of an entire country
comparable to Ireland. This energy consumption sparks the discus-
sion on whether it can be reduced.

To address this problem, it is possible to investigate whether
changing the configuration of LLMs can reduce energy usage while
maintaining desired performance. For example, [2] studied differ-
ences in energy consumption across various models and model bit-
widths, highlighting that architecture choice significantly impacts
efficiency. Other studies, such as [7] and [17], have explored how to
balance model performance with energy efficiency and underscore
how important this balance is. Similarly, [8] and [19] demonstrated
that hyperparameter tuning can substantially influence the energy
efficiency of code generation models. [3] has also shown that hyper-
parameter tuning can affect model performance, though that study
did not examine energy usage. [1] investigated how the fine-tuning

TScIT 43, July 4, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

of LLMs, further training them on their dataset, can enhance both
performance and efficiency for test case generation tasks.

There remains a critical gap in the literature: while some existing
research has explored performance–efficiency trade-offs in LLMs
and shown the impact of hyperparameter tuning and fine-tuning
for code generation, there are no studies on the energy optimization
of test case generation and bug fixing using hyperparameter tuning.
Yet, these tasks are equally critical in software development. A sur-
vey [4] that asked software developers how much of their time they
spend on test generation and bug fixing showed that this is 15.8%
and 25.32%, respectively, highlighting the time that can be won by
automating these tasks using LLMs. Also, there are limited studies
on the creation of Java code; all of the studies mentioned above
focus on Python. It is unknown whether these findings, for Python
code generation, can be transferred to other languages like Java. To
investigate this, Java was chosen as the programming language for
this research.

The goal of this research is to identify the result of the hyperpa-
rameter tuning for Java test case generation and bug fixing of local
code generation models. To achieve this goal, the following research
questions are formulated:

RQ1 What is the influence of hyperparameter tuning on the
energy consumption and accuracy of locally executable
LLMs during test case generation?

RQ2 What is the influence of hyperparameter tuning on the
energy consumption and accuracy of locally executable
LLMs during bug fixing?

RQ3 What is the influence of including the method description
together with the buggy code inside the prompt on the
energy consumption and accuracy of locally executable
LLMs during bug fixing?

RQ3 was motivated by early experimental observations during
prompt development, where including themethod description along-
side buggy code noticeably improved the performance of the models.
This aligns with findings from [18], which showed that providing
additional contextual information, such as method descriptions, can
significantly enhance model output quality. Given this, RQ3 aims
to evaluate how this affects both accuracy and energy usage in bug
fixing tasks.

2 METHODOLOGY
This section will go into detail on the resources and methods that
will be used to answer the research questions.

TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben van der Linde

2.1 Model Selection
Four different models will be evaluated, each with three bit-widths:
FP16, Q8, and Q4 (see Table 1). These models have been chosen
based on their high ranking on the BigCode Leaderboard on Hug-
ging Face [9] and also on their relatively low number of parameters
since this is a limiting factor based on accessible hardware. One
way to reduce a model’s memory footprint and computational cost
is by using quantization, the process of converting high-precision
floating-point parameters into lower-precision formats (e.g., 16-bit,
8-bit, or 4-bit). This allows models to retain much of their predictive
power while using fewer resources. The bit-width of a model refers
to the number of bits used to represent each parameter—16 in FP16,
8 in Q8, and 4 in Q4 [6]. Low-bit quantization can significantly re-
duce energy consumption during inference by lowering memory
bandwidth and computational load, enabling more efficient deploy-
ment of LLMs on resource-constrained devices [2, 6]. This is already
a good step in the direction of reducing the energy usage of a local
LLM. Therefore, this research will also examine the difference in
performance of these bit-width models.

Table 1. Models

Model Name Parameters Bit-widths

DeepSeek Coder V2 15.7B FP16, Q8, Q4
QwenCoder2.5 7B FP16, Q8, Q4
CodeLlama 7B FP16, Q8, Q4
CodeGemma 7B FP16, Q8, Q4

2.2 Hyperparameters
The following parameters, temperature, top probability, and max
tokens, were chosen because they are among the most commonly
changed parameters by users. Additionally, all three can influence
the model’s output size, which is the primary focus of this research.

2.2.1 Temperature. The temperature is a value between 0 and 2
[13, 15]. This value indicates the randomness of the outcome. A
higher temperature will make the generated text more random and
distinct, while a lower temperature will generate something more
predictable/deterministic.

2.2.2 Top Probability. The top probability (top_p) is a value be-
tween 0 and 1 that defines a cumulative probability threshold for
the selection of tokens. At generation time, the model considers
only the most probable tokens whose cumulative probability mass
exceeds top_p, then samples from that subset. Lower top_p val-
ues make the output more focused and deterministic, while higher
values allow for more varied and creative responses [19].

2.2.3 Token Limit. The token limit sets the maximum allowed to-
kens, or words, that the model is allowed to generate per prompt.
The model will stop generating once it reaches this limit, even
though it might not have finished its answer. his does not mean the
model will always use the full token limit. For example, when the
max tokens is set to 400, the model may only output 250 tokens.
This can occur if the model encounters a stop token, which acts as
a signal for it to conclude its response.

2.3 Testing Environment
During these tests, the GPU energy consumption will be measured
to assess how each parameter affects efficiency. The hardware used
for this evaluation is a CPU/GPU node with an NVIDIA A10 GPU
(see Table 2).

The environment uses a containerized Jupyter setup on Ubuntu
22.04.3 LTS. Java runs via OpenJDK 17.0.10 (Eclipse Temurin), using
the 64-Bit Server VM in mixed mode. The default JVM uses the
G1 Garbage Collector (G1GC), with InitialHeapSize=2147483648
and MaxHeapSize=32178700288. Parallel and Serial collectors are
disabled.

2.4 Running an LLM
All of the selected models are open source, so they can be down-
loaded using Ollama [11], a widely used tool for managing and
running LLMs locally. Ollama is also very useful for running differ-
ent bit-widths of a model.

Table 2. Hardware setup

Hardware

CPU: 56 Cores / 128 Threads each – Max. 2.0 GHz
Memory: 256 GB
GPU: NVIDIA A10 – VRAM: 24 GB – TDP: 150W

3 EXPERIMENTAL PROCEDURE

3.1 Evaluation
To evaluate the performance of the models on both tasks, the Hu-
manEvalPack benchmark was used. This dataset contains 164 Java
coding problems, each with a predefined method and corresponding
test case. For the bug fixing task, model outputs were assessed by
checking whether the corrected method passed the official test case.
For test case generation, the inverse was done: the generated test
case was executed against the canonical (correct) solution. Each
outcome-pass, fail, or compilation error—was recorded. The accu-
racy of a configuration was defined as the success rate: the number
of passed cases divided by the total number of test cases.

3.2 Prompt Design
The prompt that is sent to the model is a very important part of the
experiment. One of the goals of the prompt was for the response
not to include any unnecessary words, which would be a waste
of tokens, time, and energy. The prompt also had to give enough
direction for the generated Java code to compile. For both tasks, the
prompt contained the request not to include any natural language
in any form. For test case generation, the method for which test
cases needed to be generated was given, together with an outline
of what the test case generation class should look like. For bug
fixing, the buggy method was given together with a description and
failure symptoms of the bug. Additionally, for the bug fixing tests
with a method description, a method description was provided in

Optimizing Test Case Generation and Bug Fixing Efficiency Through Hyperparameter Tuning of Local Large Language Models TScIT 43, July 4, 2025, Enschede, The Netherlands

the prompt. Full prompts used in the experiments can be found in
Appendix A.

3.3 Hyperparameter Tuning
Different hyperparameter values were tested to observe their effect
on model behavior. Therefore, it was first necessary to determine in
which steps these valueswould be changed. It is not recommended to
change both the temperature and the top_p at the same time [12, 13],
as they both affect the randomness of the model. The max tokens
could be changed together with either the temperature or the top_p,
but this would require a lot more computations. So, because of the
time and resource constraints of this research, the hyperparameters
were changed separately. Also, because of these constraints, the
number of configurations tested had to be reduced.

For the ranges, the temperature is a value between 0 and 2. Previ-
ous study [16] has shown that a temperature between 0.0 and 1.0
did not result in any major changes in results. [16] also says that
too high a temperature can lead to hallucinations of a model, which
means that it starts to make things up that are factually incorrect.
This may benefit tasks that require more creativity. Based on these
considerations, a range that focuses on lower temperatures, with a
few higher values included for comparison, was selected. Specifi-
cally, we use the following values for temperature: [0.0, 0.1, 0.2, 0.4,
0.8, 1.6, 2].
The top p is a value between 0 and 1. To minimize the number

of values, but still keep a set with which a pattern can hopefully
be seen, the following were chosen: [0, 0.1, 0.2, 0.4, 0.8, 1]. The
default values will be set to 0.1 and 0.95 for temperature and top_p,
respectively.

Finally, for the max tokens, it is a bit harder to decide which steps
to choose since it is possible to set this infinitely high. Another thing
that makes this a difficult range to choose is that two completely
different outputs are generated, test cases and fixed code, which
have different sizes. But to allow for a fair comparison between
these distinct outputs, the same max token values were chosen for
both tasks. The HumanEvalPack has 164 examples, with an average
of 41 tokens, a minimum of 4 tokens, and a maximum of 142 for
the canonical solutions(i.e., the output generated with bug fixing).
The tests of the HumanEvalPack (i.e., the output generated with
test case generation) have an average of 69 tokens, a minimum
of 36 tokens, and a maximum of 426. During initial tests, it was
discovered that setting the max tokens too low resulted in a lot of
compilation errors, since the LLM was not yet done generating the
code. Therefore, the max tokens as a default value was set to 450,
so no test could potentially fail because it ran out of tokens. The
values to test were chosen to still check whether a lower max token
value would influence the energy consumption, and if a higher value
would result in better accuracy. The following values were used for
the max tokens: [250, 350, 500, 750].

3.4 Energy Measurement
Due to the lack of administrator access in the used environment, it
is not possible to measure the CPU power. Therefore, only the GPU
power will be measured during the experiment. For this, NVIDIA’s

NVIDIA Management Library (NVML) [10] was used through the
pynvml Python wrapper. A measurement rate of 10 Hz was chosen.

During the experiment, the amount of data loaded onto the GPU
was measured. A threshold was determined based on the size of
the model, the estimated overhead for activations, attention mech-
anisms, and KV cache, plus an additional safety margin buffer
(1000MB). Upon reaching this threshold, the experiment would
be terminated, ensuring that energy measurements remained unaf-
fected by other programs running on the GPU.

The idle power consumption of the NVIDIA A10 GPU has been
measured by executing the ’nvidia-smi’ command at a sampling
frequency of 100 Hz over a total duration of 600 seconds. This
procedure was repeated ten times, yielding ten independent sets of
6000 power draw samples each. To ensure the integrity of the idle
power measurements, the system was monitored to confirm that
no other processes were using the GPU during the data collection
period. These results show that in the idle state, the A10 uses 16.11
W on average with a standard deviation of 0.6132 W. The idle power
draw of 16.11 W was not used in the rest of the research; however,
it can serve as a reference for modeling or estimating background
energy consumption in similar GPU workloads.

Fig. 1. Comparison of the three bit-widths by combining the results of all
models and configurations

4 RESULTS
In this paper, only the bug fixing results without the method descrip-
tion are compared directly to the test case generation results (RQ1
vs RQ2). The variant with method description (RQ3) is evaluated
separately due to its significantly different prompt structure and
performance.

When evaluating overall model performance, Deepseek coder,
despite having 15.7B parameters, often shows lower accuracy rates

TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben van der Linde

than models like Qwen and Codegemma, which have 7B parameters
each.

Three different bit-widths of each model were evaluated and are
compared in Figure 1. For bug fixing, the FP16 bit-width shows a
higher maximum energy usage and a lower median. In contrast,
lower bit-width models (Q8 and Q4) demonstrate a slightly higher
median energy consumption while maintaining comparable accu-
racy.

For test case generation, differences in performance across model
bit-widths are minimal. Although the Q4 model shows more con-
sistent results in terms of accuracy. And the upper quartile of the
FP16 model shows lower energy consumption.

4.1 RQ1 Analysis: Test Case Generation
Figure 4 shows that accuracy decreases as temperature increases. In
addition, it can be seen that the models perform best at temperatures
of 0.1 and 0.4.
Moving on to the top_p parameter, the impact of varying its

values is relatively limited. A slight increase in accuracy is observed
around 0.8 and 1.0, but the impact is not substantial.
Regarding the max tokens setting, while some fluctuation is ob-

served, the overall effect of max tokens changes is slight. For the
CodeLlama and Deepseek models, the accuracy is at its lowest at a
maximum of 250 tokens.

In terms of energy consumption, changes in these configurations
do not significantly affect energy consumption.
Finally, Figure 2 shows the trade-off between energy usage and

accuracy for test case generation. The large Pareto frontier suggests
that many good configurations balance accuracy and energy effi-
ciency. The qwen2.5-coder:7b model (blue points), especially in Q8
bit-width, performs best overall, with accuracy close to 0.5. While
deepseek-coder-v2:latest (red points) has the lowest energy con-
sumption among the models tested, it does perform worse than
Codegemma and Qwen. Some of its configurations obtain accu-
racy in the 0.30–0.35 range, but use much less energy with values
between 12 and 13 Wh.

4.2 RQ2 Analysis: Bug Fixing
Turning to bug fixing, Figure 5 also shows a progressive decrease in
accuracy as temperature increases. The accuracy peaks at 0.1, 0.2,
and 0.4, which is similar to the test case generation results.
Comparable to test case generation, the influence of different

top_p values remains marginal overall. The best top_p value lies
somewhere between 0.8 and 1.0.

As for the max tokens setting, adjusting the max tokens does not
result in very conclusive results. The lowest accuracy across models
is observed at 250 max tokens.
When it comes to energy usage, the overall impact of changing

these parameters is not substantial. Nevertheless, a small increase
can be identified for some models at a temperature of 2.0.
Lastly, Figure 3 shows that the Pareto frontier for bug fixing is

quite short. This means it’s harder to find accurate and energy-
efficient configurations. In most cases, improving one comes at the
cost of the other. It also suggests that the models may already be
close to their performance limits for this task, given the current

setup.

All results of the task case generation and bug fixing experiments
can be found in Appendix B.

Fig. 2. Test case generation accuracy vs energy consumption for all hy-
perparameter configurations across all models and bit-widths. Each point
represents a specific combination of temperature, top-p, and max tokens
values.

Fig. 3. Bug fixing accuracy vs energy consumption for all hyperparameter
configurations across all models and bit-widths. Each point represents a
specific combination of temperature, top-p, and max tokens values.

Optimizing Test Case Generation and Bug Fixing Efficiency Through Hyperparameter Tuning of Local Large Language Models TScIT 43, July 4, 2025, Enschede, The Netherlands

Fig. 4. Test case generation performance across all hyperparameter values:
temperature, top_p, and max tokens. Lines show performance across all
models and bit-widths for each parameter value.

Fig. 5. Bug fixing performance across all hyperparameter values: tempera-
ture, top_p, and max tokens. Lines show performance across all models and
bit-widths for each parameter value.

TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben van der Linde

4.3 RQ3 Analysis: Method description inclusion
As shown in Table 3, the inclusion of the method description signif-
icantly improved performance across all metrics. The results show
that the accuracy increases dramatically by 47.71% relative improve-
ment (from 44.51% to 65.74% absolute accuracy) across all configura-
tions. The improvement varied by model, with Qwen2.5-Coder 7B
showing the largest gain (+53.1%), followed by DeepSeek-Coder v2
(+50.1%), while CodeGemma 7B and CodeLlama 7B both achieved
approximately +42% improvements. To evaluate how well a model
balances performance and energy use, we define an efficiency met-
ric that captures the trade-off between task accuracy and energy
consumption. Specifically, the metric combines the accuracy with
the logarithmically normalized inverse of energy usage, thereby
rewarding configurations that solve more problems while consum-
ing less power. A model is considered optimal when it maximizes
this efficiency metric. Under this definition, the Qwen2.5-Coder
model achieves optimal efficiency when using FP16 quantization
with temperature 0.1, top_p 0.95, and max tokens of 500, 750, 350, or
250, ranked in descending order of performance. DeepSeek-Coder
v2 performs best with either FP16 or quantized models (Q4, Q8) at
temperature settings between 0.1-0.4 and top_p 0.95. CodeGemma
shows the highest efficiency with Q4 quantization, temperature 0.1,
and lower top_p values (0.2-0.4). CodeLlama’s optimal configura-
tion uses FP16 quantization with temperature 0.0-0.1 and top_p 0.95,
though with notably lower accuracy than other models. The com-
plete ranking of the top five configurations for each model family,
including detailed parameter settings and performance metrics, is
presented in Appendix C.

Interestingly, the energy consumption for the tests with method
descriptions included was 2.37% lower on average (15.27 Wh vs
15.64 Wh). Unlike for bug fixing without a method description, the
results with a method description, shown in Figure 6, have a way
larger Pareto frontier, indicating that more optimal configurations
are possible when the method description is included.

5 DISCUSSION

5.1 Hyperparameter Effects
Across both tasks, temperature emerged as the most impactful hy-
perparameter, with higher values consistently lowering accuracy.
In contrast, top-p and max tokens had relatively minor effects. This
suggests that randomness in generation plays a larger role in perfor-
mance than output length or sampling cutoff, at least in the context
of Java code generation. These findings are in line with earlier work
that also identified temperature as the dominant factor influencing
accuracy and energy behavior in code generation models [4, 8].
Additionally, previous studies found that lower temperatures, espe-
cially around 0.1, tend to produce better results, which influenced
the default settings in this study. While the high accuracy at 0.1
aligns with these expectations, the relatively strong performance at
0.4 was less anticipated, suggesting that a small amount of random-
ness may help in certain scenarios. For the CodeLlama models, the
accuracy slightly decreases at a max of 250 tokens. The lowest accu-
racy for the max tokens configuration was observed at 250. This is

Fig. 6. Bug fixing with method description accuracy vs energy consumption
for all hyperparameter configurations across all models and bit-widths.
Each point represents a specific combination of temperature, top-p, and
max tokens values.

Metric Without method
descriptions

With method de-
scriptions

+/- %

Overall Performance
Accuracy (%) 44.51 65.74 +47.71%
Energy Consumption
(Wh)

15.64 15.27 -2.37%

Inference Time (s) 491.48 463.71 -5.65%
Compilation Failure Rate
(%)

5.34 3.84 -28.09%

Efficiency 0.119675 0.178440 +49.10%

Model-wise Accuracy (%)
CodeGemma 7B 47.3 67.3 +42.3%
CodeLlama 7B 29.7 42.4 +42.8%
DeepSeek-Coder v2 47.4 71.2 +50.1%
Qwen2.5-Coder 7B 53.6 82.0 +53.1%

Model-wise Energy Consumption (Wh)
CodeGemma 7B 16.27 14.84 -8.8%
CodeLlama 7B 17.75 17.74 -0.1%
DeepSeek-Coder v2 13.29 11.15 -16.1%
Qwen2.5-Coder 7B 15.25 17.34 +13.7%

Table 3. Comparative Analysis: Bug Fixing Performance With vs Without
Method Descriptions. The values in the table are averages of all configura-
tions.

attributable to a rise in compilation failures. The model lacked suffi-
cient tokens to output the full method, and as a result, the generated
code failed to compile. Detailed pass/fail statistics for each configu-
ration, also for bug fixing, are available in Appendix D. Besides the
compilation errors, the max tokens value has minimal impact on
energy use or accuracy. As indicated by the figures, energy usage
remains relatively constant across configurations. This suggests that
the choice of model seems to make a much larger difference in the
energy consumption than the hyperparameters themselves.

When comparing the two tasks, test case generation and bug
fixing, distinct differences in trade-offs emerge. Test case generation

Optimizing Test Case Generation and Bug Fixing Efficiency Through Hyperparameter Tuning of Local Large Language Models TScIT 43, July 4, 2025, Enschede, The Netherlands

showed a broader Pareto frontier, indicating that many configura-
tions achieved a favorable balance between energy consumption
and accuracy. In contrast, bug fixing showed fewer such optimal
trade-offs, making it more difficult to improve one metric without
negatively affecting the other. Additionally, energy consumption
during test case generation was more consistent across models,
whereas bug fixing revealed clearer patterns in accuracy across
different configurations.

5.2 Effect of Java as Target Language
As all referenced studies focused on the generation of Python code,
the effect that the use of Java has may explain why some energy or
accuracy trends observed in this study differ from previous work.
Java’s more verbose syntax and stricter type requirements might
also lead to longer generated outputs, possibly influencing both
compilation success and energy consumption.

5.3 Model Performance and Size
DeepSeek Coder, despite being the largest model in the experiment
(15.7B parameters), consistently showed lower accuracy than some
of the smaller 7B models. Interestingly, it also consumed less en-
ergy on average, making it one of the most energy-efficient models
overall. This raises questions about how we define efficiency: while
DeepSeek uses less energy, a significant portion of its computation
results in unsuccessful outputs, suggesting inefficiency in terms of
task performance. Nonetheless, this observation supports previous
findings [2], indicating that larger models do not always outperform
smaller ones in terms of accuracy. However, the result diverges from
prior work on energy consumption. [2] reported that increasing
parameter count typically increases energy usage—a trend not seen
here. DeepSeek appears to be optimized for inference efficiency,
possibly at the cost of output quality, making it a good option when
low energy usage is important. Overall, this suggests that model
size is not a reliable predictor of either performance or energy con-
sumption.
Previous findings by [2, 8] suggest that low-bit-width models

can achieve similar accuracy with reduced energy consumption.
However, in this study, while Q8 and Q4 models did show compara-
ble accuracy to FP16 in the bug fixing task, the expected reduction
in energy consumption was not observed. Instead, energy usage
remained very similar across bit-widths for both bug fixing and test
case generation. This deviation from earlier work indicates that the
energy-saving potential of quantization may depend heavily on the
task type, model architecture, or experimental conditions.

5.4 Prompt Composition: Method Description Impact
Including the method description inside the prompt significantly
affects the accuracy of bug fixing, as was also concluded by previous
research [18], and slightly decreases the energy consumption of the
models, creating a win-win scenario of better accuracy with reduced
energy usage. However, it raises the question of whether the model
fixed the buggy code with the help of the method description or
simply generated a new, correct method based on the method de-
scription alone. Since the models can produce correct methods from
the method description itself, this distinction is difficult to verify

and will need further research.

Beyond the overall benefit of including method descriptions, the
top-performing configurations (Appendix C) show that optimal set-
tings vary by model. For example, while Qwen2.5-Coder performed
best with FP16, others like DeepSeek and CodeGemma achieved
high efficiency with quantized versions. This highlights that model-
specific tuning remains important, even when prompt enhance-
ments yield improvements.

5.5 Model Limitations
Even though the LLMs were asked only to return the code and no
other explanation, the models did not always follow this. As a result,
unnecessary tokens were sometimes outputted. This could have
affected the results, since outputting these tokens is wasted energy.

Because a fair comparison between the models was desired, the
prompts were not specifically fine-tuned for each model. This may
have resulted in suboptimal performance for some models.

5.6 Experimental Environment Limitations
The GPU used for the tests needed to remain idle, but the shared
environment allowed others to access it even while it was in use. As
a result, the tests had to be restarted multiple times and were not all
executed in a single run, which could have affected the reliability of
the results.
Moreover, due to time constraints and limited idle access to the

GPU, the number of tested configurations had to be reduced, and
some irregular jumps in parameter values were necessary. Also,
normally, each configuration would be run at least three times to
account for measurement variability. If that had been possible, it
would have made the results more reliable by reducing the impact
of outliers.

Additionally, it was not possible to monitor CPU usage during
the experiments. Although the LLMs were executed on the GPU,
background activity on the CPU, caused by other users, could have
affected the energy measurements, introducing noise in the results.
If CPU usage had been trackable, a similar safeguard could have
been applied, terminating the experiment when external activity
was detected, just as was done for the GPU.

5.7 Measurement Limitations
For test case generation, to ensure that the tests compiled without
errors, the decision was made to include the method and inside it
three comments stating "Test case that evaluates to boolean (true if
correct)." These comments were added to give the model some direc-
tion and to prevent it from generating too many test cases, which
could cause it to run out of tokens before completing the method,
resulting in a compile error. However, by guiding the models to
only generate three assertions, the max tokens parameter might not
have been fully tested. Since the model was not free to generate
many more tokens when the configuration of the max tokens was
changed, the results in Figure 4 confirm this. This lower freedom

TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben van der Linde

also led to more compact energy consumption across the different
configurations, which can be seen when comparing Figures 2 and 3.

Additionally, the models were asked in the prompt to return the
full Java method. It would have been better to only ask for the
assertions, which would have saved tokens and reduced energy
usage.

6 CONCLUSION
This research highlights several key findings regarding hyperparam-
eter tuning in local LLMs for Java-based test case generation and bug
fixing. While the study primarily focused on hyperparameter tuning,
it was also observed that incorporating the method description dur-
ing bug fixing led to the most substantial performance improvement,
significantly increasing accuracy while slightly reducing energy con-
sumption. This suggests that prompt content can have a greater
effect than hyperparameter values alone.
Furthermore, temperature was identified as the most influential

hyperparameter across both tasks; lower temperatures (around 0.1)
consistently yielded higher accuracy. In contrast, top-p and max
tokens had only minor effects. Nevertheless, ensuring that the max
tokens value is high enough remains crucial to avoid premature
output termination and compilation errors.
Interestingly, while larger models like DeepSeek Coder did not

deliver the best accuracy, they consumed the least energy, indicat-
ing that size does not directly correlate with performance. Simi-
larly, lower-bit-width models (Q8 and Q4) demonstrated compara-
ble performance to FP16 models. However, the expected reduction
in energy consumption was not observed, especially in test case
generation, indicating that the benefits of quantization may vary
depending on the task.
In general, test case generation allowed for more flexible trade-

offs between energy and accuracy, while bug fixing proved more
sensitive to configuration changes and showed clearer performance
patterns across models.
In short, bug fixing benefits most from including the method

description, while for test case generation, tuning the temperature
gives the best results. These findings can help make the use of local
LLMs both more effective and more energy efficient.

6.1 Future Work
A key direction for future research is understanding why energy
usage remained relatively constant across different bit-widths in
this setup, despite prior studies showing clearer energy gains from
quantization. Investigating this discrepancy could help determine
whether the task type, model architecture, or measurement method
played a role.

Another promising area is the exploration of hyperparameter set-
tings, particularly the temperature value around 0.4, which showed
unexpectedly strong performance. Similarly, the optimal top_p value
likely lies somewhere between 0.8 and 1.0, but could not be deter-
mined precisely. While this study lacked the resources to investigate
this region in detail, further experiments could help pinpoint more
precise optimal values.

It would also be worthwhile to assess whether the observed effects
of hyperparameter tuning and energy consumption hold for larger

language models with more parameters. Scaling up could reveal
new trends or confirm the patterns seen in smaller models.
Additionally, given that the models were used to generate Java

code, a less commonly studied target language, the impact of Java’s
syntax and structure on both performance and energy usage remains
unclear. Targeted studies focusing on Java code generation could
clarify how language characteristics influence results.
As discussed earlier, it remains uncertain whether the models

relied more on the method description or the buggy code when
generating their output. Future work could investigate what parts
of the input prompt LLMs use to make decisions. Building on this,
researchers could also study how different prompt structures or
phrasings affect model performance and energy use.
Finally, since including the method description significantly im-

proved accuracy in the bug fixing task, it would be interesting to
test whether similar gains can be achieved in test case generation
by incorporating this element.

REFERENCES
[1] Saranya Alagarsamy, Chakkrit Tantithamthavorn, Wannita Takerngsaksiri,

ChetanArora, andAldeida Aleti. 2025. Enhancing Large LanguageModels for Text-
to-Testcase Generation. arXiv:2402.11910 [cs.SE] https://arxiv.org/abs/2402.11910

[2] Negar Alizadeh, Boris Belchev, Nishant Saurabh, Patricia Kelbert, and Fernando
Castor. 2024. Language Models in Software Development Tasks: An Experimental
Analysis of Energy and Accuracy. arXiv preprint arXiv:2412.00329 (2024). https:
//arxiv.org/abs/2412.00329v2

[3] Chetan Arora, Ahnaf Ibn Sayeed, Sherlock Licorish, Fanyu Wang, and Christoph
Treude. 2024. Optimizing Large Language Model Hyperparameters for Code
Generation. arXiv:2408.10577 [cs.SE] https://arxiv.org/abs/2408.10577

[4] Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices and
Problems. In 2014 IEEE 25th International Symposium on Software Reliability Engi-
neering. 201–211. https://doi.org/10.1109/ISSRE.2014.11

[5] Alex de Vries. 2023. The Growing Energy Footprint of Artificial Intelligence. Joule
7, 10 (2023), 2191–2194. https://doi.org/10.1016/j.joule.2023.09.004

[6] Ruihao Gong, Yifu Ding, Zining Wang, Chengtao Lv, Xingyu Zheng, Jinyang
Du, Haotong Qin, Jinyang Guo, Michele Magno, and Xianglong Liu. 2024. A
Survey of Low-bit Large Language Models: Basics, Systems, and Algorithms.
arXiv:2409.16694 [cs.AI] https://arxiv.org/abs/2409.16694

[7] Soka Hisaharo, Yuki Nishimura, and Aoi Takahashi. 2024. Optimizing LLM
Inference Clusters for Enhanced Performance and Energy Efficiency. TechRxiv.
https://doi.org/10.36227/techrxiv.172348951.12175366/v1 Cite as: Soka Hisaharo,
Yuki Nishimura, Aoi Takahashi. TechRxiv. August 12, 2024..

[8] Quirijn Hoenink. 2025. Optimizing Code Generation Models Efficiency Through
Hyperparameter Tuning. http://essay.utwente.nl/105077/

[9] Hugging Face. 2025. BigCode Models Leaderboard. https://huggingface.co/spaces/
bigcode/bigcode-models-leaderboard. Accessed: 2025-05-01.

[10] NVIDIA Corporation. 2025. NVIDIA Management Library (NVML). https:
//developer.nvidia.com/management-library-nvml Accessed: 2025-05-19.

[11] Ollama. 2025. Ollama Library. https://ollama.com/library. Accessed: 2025-05-01.
[12] OpenAI. 2025. OpenAI API Reference - Temperature. https://platform.openai.

com/docs/api-reference/responses/create#responses-create-temperature Ac-
cessed: 2025-05-08.

[13] Shuyin Ouyang, Jie M. Zhang, Mark Harman, andMengWang. 2024. An Empirical
Study of the Non-determinism of ChatGPT in Code Generation. arXiv preprint
arXiv:2308.02828 (2024). Version 2, October 2024.

[14] Rajvardhan Patil and Venkat Gudivada. 2024. A Review of Current Trends, Tech-
niques, and Challenges in Large Language Models (LLMs). Applied Sciences 14, 5
(2024). https://doi.org/10.3390/app14052074

[15] Max Peeperkorn, Tom Kouwenhoven, Dan Brown, and Anna Jordanous.
2024. Is Temperature the Creativity Parameter of Large Language Models?
arXiv:2405.00492 [cs.CL] https://arxiv.org/abs/2405.00492

[16] Matthew Renze. 2024. The Effect of Sampling Temperature on Problem Solv-
ing in Large Language Models. In Findings of the Association for Computational
Linguistics: EMNLP 2024, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(Eds.). Association for Computational Linguistics, Miami, Florida, USA, 7346–7356.
https://doi.org/10.18653/v1/2024.findings-emnlp.432

[17] Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Inigo Goiri, and Josep Torrellas.
2024. Towards Greener LLMs: Bringing Energy-Efficiency to the Forefront of
LLM Inference. arXiv:2403.20306 [cs.AI] https://arxiv.org/abs/2403.20306

https://arxiv.org/abs/2402.11910
https://arxiv.org/abs/2402.11910
https://arxiv.org/abs/2412.00329v2
https://arxiv.org/abs/2412.00329v2
https://arxiv.org/abs/2408.10577
https://arxiv.org/abs/2408.10577
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1016/j.joule.2023.09.004
https://arxiv.org/abs/2409.16694
https://arxiv.org/abs/2409.16694
https://doi.org/10.36227/techrxiv.172348951.12175366/v1
http://essay.utwente.nl/105077/
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://developer.nvidia.com/management-library-nvml
https://developer.nvidia.com/management-library-nvml
https://ollama.com/library
https://platform.openai.com/docs/api-reference/responses/create#responses-create-temperature
https://platform.openai.com/docs/api-reference/responses/create#responses-create-temperature
https://doi.org/10.3390/app14052074
https://arxiv.org/abs/2405.00492
https://arxiv.org/abs/2405.00492
https://doi.org/10.18653/v1/2024.findings-emnlp.432
https://arxiv.org/abs/2403.20306
https://arxiv.org/abs/2403.20306

Optimizing Test Case Generation and Bug Fixing Efficiency Through Hyperparameter Tuning of Local Large Language Models TScIT 43, July 4, 2025, Enschede, The Netherlands

[18] Xiaolong Tian. 2024. Evaluating the Repair Ability of LLMUnder Different Prompt
Settings. In 2024 IEEE International Conference on Software Services Engineering
(SSE). 313–322. https://doi.org/10.1109/SSE62657.2024.00053

[19] Chi Wang, Xueqing Liu, and Ahmed Hassan Awadallah. 2023. Cost-Effective
Hyperparameter Optimization for Large LanguageModel Generation Inference. In
Proceedings of the Second International Conference on Automated Machine Learning
(Proceedings of Machine Learning Research, Vol. 224), Aleksandra Faust, Roman
Garnett, Colin White, Frank Hutter, and Jacob R. Gardner (Eds.). PMLR, 21/1–17.
https://proceedings.mlr.press/v224/wang23b.html

https://doi.org/10.1109/SSE62657.2024.00053
https://proceedings.mlr.press/v224/wang23b.html

TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben van der Linde

APPENDICES
During the preparation of this work, I used Cursor to help me set up the experiment and create the graphs with the results of the experiment.
I also used ChatGPT to help refine the flow of the text, particularly by suggesting appropriate linking words. After using these tools/services,
I thoroughly reviewed and edited the content as needed, taking full responsibility for the final outcome.

A APPENDIX: PROMPT TEMPLATES
Example prompts from the first HumanEvalPack test used as input to the models.

1. Test Case Generation Prompt

You are an AI that must output **only** valid Java code.

Generate a `Main.java ` file that tests this method:

import java.util .*;

public class Solution {

public boolean hasCloseElements(List <Double > numbers , double threshold) {

for (int i = 0; i < numbers.size (); i++) {

for (int j = i + 1; j < numbers.size (); j++) {

double distance = Math.abs(numbers.get(i) - numbers.get(j));

if (distance < threshold) return true;

}

}

return false;

}

}

Follow this exact format and DO NOT include ANY explanations , comments , or text:

public class Main {

public static void main(String [] args) {

Solution s = new Solution ();

List <Boolean > correct = Arrays.asList(

// Test case that evaluates to boolean (true if correct)

// Test case that evaluates to boolean (true if correct)

// Test case that evaluates to boolean (true if correct)

);

if (correct.contains(false)) {

throw new AssertionError ();

}

}

}

Listing 1. Test Case Generation Prompt

2. Bug Fixing Prompt

You are an AI that outputs **only** corrected Java methods exactly as specified.

Fix the bug in the following Java method and return **only the fixed method ** exactly as it should appear

inside a class --- no main method , no import statements , no explanations , and no extra wrapping.

Buggy Java method:

public boolean hasCloseElements(List <Double > numbers , double threshold) {

for (int i = 0; i < numbers.size (); i++) {

for (int j = i + 1; j < numbers.size (); j++) {

double distance = numbers.get(i) - numbers.get(j);

if (distance < threshold) return true;

Optimizing Test Case Generation and Bug Fixing Efficiency Through Hyperparameter Tuning of Local Large Language Models TScIT 43, July 4, 2025, Enschede, The Netherlands

}

}

return false;

}

Bug description: missing logic

Failure symptoms: incorrect output

Listing 2. Bug Fixing Prompt

3. Bug Fixing with method description Prompt

You are an AI that outputs **only** corrected Java methods exactly as specified.

Fix the bug in the following Java method and return **only the fixed method ** exactly as it should appear

inside a class --- no main method , no import statements , no explanations , and no extra wrapping.

Buggy Java method:

public boolean hasCloseElements(List <Double > numbers , double threshold) {

for (int i = 0; i < numbers.size (); i++) {

for (int j = i + 1; j < numbers.size (); j++) {

double distance = numbers.get(i) - numbers.get(j);

if (distance < threshold) return true;

}

}

return false;

}

Bug description: missing logic

Failure symptoms: incorrect output

And here is the docstring of the method:

Check if in given list of numbers , are any two numbers closer to each other than given threshold.

>>> hasCloseElements(Arrays.asList (1.0, 2.0, 3.0), 0.5)

false

>>> hasCloseElements(Arrays.asList (1.0, 2.8, 3.0, 4.0, 5.0, 2.0), 0.3)

true

Listing 3. Bug Fixing with method description Prompt

TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben van der Linde

B APPENDIX: ALL RESULTS

Fig. 7. Test case generation: Temperature results for all models and
bit-widths across temperature values [0.0, 0.1, 0.2, 0.4, 0.8, 1.6, 2.0]. Each
subplot shows accuracy and energy consumption for a specific model-
bit-width combination.

Fig. 8. Test case generation: Top_p results for all models and bit-widths
across top-p values [0.0, 0.1, 0.2, 0.4, 0.8, 1.0]. Each subplot shows accu-
racy and energy consumption for a specific model-bit-width combina-
tion.

Optimizing Test Case Generation and Bug Fixing Efficiency Through Hyperparameter Tuning of Local Large Language Models TScIT 43, July 4, 2025, Enschede, The Netherlands

Fig. 9. Test case generation: Max tokens results for all models and
bit-widths across max tokens values [250, 350, 500, 750]. Each subplot
shows accuracy and energy consumption for a specific model-bit-width
combination.

Fig. 10. Bug fixing: Temperature results for all models and bit-widths
across temperature values [0.0, 0.1, 0.2, 0.4, 0.8, 1.6, 2.0]. Each subplot
shows accuracy and energy consumption for a specific model-bit-width
combination.

TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben van der Linde

Fig. 11. Bug fixing: Top_p results for all models and bit-widths across
top-p values [0.0, 0.1, 0.2, 0.4, 0.8, 1.0]. Each subplot shows accuracy and
energy consumption for a specific model-bit-width combination.

Fig. 12. Bug fixing: Max tokens results for all models and bit-widths
across max tokens values [250, 350, 500, 750]. Each subplot shows accu-
racy and energy consumption for a specific model-bit-width combina-
tion.

Optimizing Test Case Generation and Bug Fixing Efficiency Through Hyperparameter Tuning of Local Large Language Models TScIT 43, July 4, 2025, Enschede, The Netherlands

C APPENDIX: TOP 5 CONFIGURATIONS PER MODEL FAMILY FOR BUG FIXING WITH METHOD DESCRIPTION

Model Rank Bit-Width Temp. Top-p Max Tok. Accuracy (%) Energy (Wh) Time (s) Efficiency
qwen2.5-coder:7b 1 fp16 0.1 0.95 500 83.5 12.944 387.2 0.2346
qwen2.5-coder:7b 2 fp16 0.1 0.95 750 82.9 12.908 386.6 0.2331
qwen2.5-coder:7b 3 fp16 0.1 0.95 350 82.3 12.980 389.5 0.2310
qwen2.5-coder:7b 4 fp16 0.1 0.95 250 81.7 12.777 382.4 0.2303
qwen2.5-coder:7b 5 fp16 0.1 1.0 450 82.9 14.955 452.3 0.2238
deepseek-coder-v2:latest 1 fp16 0.2 0.95 450 73.2 11.004 343.1 0.2153
deepseek-coder-v2:latest 2 q4_0 0.4 0.95 450 73.0 11.166 346.8 0.2139
deepseek-coder-v2:latest 3 q8_0 0.1 0.95 750 72.6 11.040 341.8 0.2133
deepseek-coder-v2:latest 4 fp16 0.1 0.95 750 72.6 11.140 350.2 0.2128
deepseek-coder-v2:latest 5 fp16 0.4 0.95 450 72.6 11.167 350.0 0.2126
codellama:7b 1 fp16 0.1 0.95 450 48.8 17.253 522.5 0.1268
codellama:7b 2 fp16 0.0 0.95 450 46.3 16.861 513.2 0.1212
codellama:7b 3 q8_0 0.0 0.95 450 46.3 16.872 517.3 0.1211
codellama:7b 4 q4_0 0.0 0.95 450 46.3 16.893 518.0 0.1211
codellama:7b 5 q8_0 0.1 0.1 450 46.3 16.915 515.2 0.1211
codegemma:7b 1 q4_0 0.1 0.2 450 68.9 14.348 413.4 0.1881
codegemma:7b 2 q4_0 0.1 0.4 450 68.9 14.369 412.7 0.1880
codegemma:7b 3 fp16 0.8 0.95 450 69.5 14.926 434.4 0.1877
codegemma:7b 4 q4_0 0.1 0.95 350 68.9 14.473 419.8 0.1876
codegemma:7b 5 q4_0 0.1 0.0 450 68.9 14.489 418.5 0.1876

Table 4. Top 5 configurations per model family for bug fixing with the method description included in the prompt

D APPENDIX: PASS, FAIL, COMPILE FAIL GRAPHS

Fig. 13. Test case generation: Max tokens variation showing pass/fail/-
compile fail rates across all models and bit-widths for max tokens values
[250, 350, 500, 750].

Fig. 14. Test case generation: Temperature variation showing pass/-
fail/compile fail rates across all models and bit-widths for temperature
values [0.0, 0.1, 0.2, 0.4, 0.8, 1.6, 2.0].

TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben van der Linde

Fig. 15. Test case generation: Top-p variation showing pass/fail/compile
fail rates across all models and bit-widths for top-p values [0.0, 0.1, 0.2,
0.4, 0.8, 1.0].

Fig. 16. Bug fixing: Max tokens variation showing pass/fail/compile fail
rates across all models and bit-widths for max tokens values [250, 350,
500, 750].

Fig. 17. Bug fixing: Temperature variation showing pass/fail/compile
fail rates across all models and bit-widths for temperature values [0.0,
0.1, 0.2, 0.4, 0.8, 1.6, 2.0].

Fig. 18. Bug fixing: Top-p variation showing pass/fail/compile fail rates
across all models and bit-widths for top-p values [0.0, 0.1, 0.2, 0.4, 0.8,
1.0].

	Abstract
	1 Introduction
	2 Methodology
	2.1 Model Selection
	2.2 Hyperparameters
	2.3 Testing Environment
	2.4 Running an LLM

	3 Experimental Procedure
	3.1 Evaluation
	3.2 Prompt Design
	3.3 Hyperparameter Tuning
	3.4 Energy Measurement

	4 Results
	4.1 RQ1 Analysis: Test Case Generation
	4.2 RQ2 Analysis: Bug Fixing
	4.3 RQ3 Analysis: Method description inclusion

	5 Discussion
	5.1 Hyperparameter Effects
	5.2 Effect of Java as Target Language
	5.3 Model Performance and Size
	5.4 Prompt Composition: Method Description Impact
	5.5 Model Limitations
	5.6 Experimental Environment Limitations
	5.7 Measurement Limitations

	6 Conclusion
	6.1 Future Work

	References
	A Appendix: Prompt Templates
	B Appendix: All Results
	C Appendix: Top 5 configurations per model family for bug fixing with method description
	D Appendix: Pass, Fail, Compile Fail Graphs

