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The rapid increase of unmanned aerial vehicles (UAVs) in delivery, inspection
and emergency-response tasks is pushing air traffic density beyond human
supervision capabilities. Ensuring that swarms of autonomous drones remain
safe, especially in urban airspace, using collision-avoidance strategies that
are decentralized, data-efficient and robust to partial observability.

This research investigates how well decentralized Deep Reinforcement
Learning (DRL) policies enable multiple drones to reach assigned goals with-
out collisions when each drone perceives only local, sensor-like information.
A customGymnasium environment was built to simulate 2-D shared airspace
with adjustable traffic density and obstacles number. Proximal Policy Op-
timization (PPO) served as the baseline algorithm for training the policies
which will be responsible for the drone’s movement towards the goal and
collision avoidance. Trained policies were evaluated on (i) collision-free
episode rate, (ii) goal-completion rate, (iii) training sample efficiency, (iv)
average steps for episode completion. An optional experimental branch
will extend basic state vectors with simulated Light Detection and Ranging
(LiDAR)-style observations to quantify the impact of richer perception on
learning speed and final performance.

CCS Concepts: • Computing methodologies → Multi-agent reinforce-
ment learning.

Additional Key Words and Phrases: Drone Collision Avoidance, Decentral-
ized Reinforcement Learning, Proximal Policy Optimization, Gymnasium,
UAV’s Collision Avoidance using RL

1 INTRODUCTION
In recent decades, unmanned aerial vehicles (UAVs) have risen in
popularity across diverse spheres, including agriculture, logistics,
surveillance, military intelligence, and disaster emergency help [4–
6, 8, 11–13]. Implementing a stable and reliable collision avoidance
system may optimize various domains but requires critical accuracy
in urban and populated areas as the number of drones in the same
air space increases [4–6, 8, 9, 13]. Despite potential financial losses
in drone delivery collision situations, having an efficient, safe, and
immutable collision avoidance system can be a life-changing factor
during rescue operations within inaccessible locations, such as hill-
sides with dense forests or unstable buildings after the earthquake.
The most problematic part is collision avoidance with static and dy-
namic obstacles, especially in dynamic multi-agent scenarios where
drones operate independently and have limited sensing capabilities
[2, 4, 5, 9, 10].

Standard solutions, which involve centralized algorithms that rely
on a comprehensive view of the environment, can face limitations
such as potential delays in decision-making or high computational
requirements, especially in large-scale multi-UAV systems[7, 10].
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Additionally, such collision avoidance may be infeasible or used
only in limited space [2] since these methods require much en-
vironmental data. Therefore, the disadvantages of these methods
urged researches in decentralized approaches, where each UAV
takes action based on its decision-making system that considers
local information about its own state and of its immediate neigh-
bors [6, 7, 10, 12]. However, developing robust decentralized policies
is challenging, especially under realistic conditions where drones
operate with imperfect sensing and partial observability[3, 10, 12].
Reinforcement learning (RL) and Deep Reinforcement Learn-

ing (DRL) have been presented as a potentially best solution that
teaches autonomous agents to act appropriately in programmati-
cally complex tasks, such as navigation and collision avoidance[1–
5, 8, 11, 12, 14].

This research aims to investigate the effectiveness of decentralized
reinforcement learning policies for multi-drone collision avoidance
within a simulated environment developed using the Gymnasium
RL framework. Each drone will operate as an independent agent,
perceiving its surroundings via a limited observation space. Ad-
ditionally, the paper will estimate how the usage of sensor-like
retrieval mechanisms impact on the policy performance using the
LIDAR-style distance measurements and object classifications.

2 PROBLEM STATEMENT
In the last few years, large language models (LLMs) AI agents
have significantly changed the educational process, information
exchange, and human-computer interaction. Similarly, the deploy-
ment of UAVs across a wide variety of fields, such as package de-
livery, surveillance, environmental monitoring, and fire prevention
systems, potentially creates another revolutionary technological
shift[3, 6, 10].
The next revolutionary step could be connected to autonomous

aerial navigation, which will lead to drone usage for commercial or
distribution purposes. Increasing density in the airspace, particu-
larly as operations move into urban and populated areas, creates
a need for a safe and reliable system that will circumvent other
obstacles[5, 6, 10]. Traditional approaches to collision avoidance
can be computationally complex and may face scalability issues in
large multi-drone systems[10].
These limitations motivate research decentralized approaches,

where each drone makes decisions using local information[3, 6].
However, full-scale massive functioning in real-world environments
means drones often experience partial observability[3, 6], which
makes designing effective decentralized collision avoidance policies
challenging[12]. Using RL and DRL approaches, autonomous agents
can be trained to deal with dynamic and uncertain environments[8,
9, 11, 14]. Due to financial and safety measures, developing and
testing such autonomous systems frequently requires simulated
environments[1, 10, 13].

TScIT 43, July 4, 2025, Enschede, The Netherlands.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 • Volodymyr Lysenko

Although the following topics have already been discussed in
some research papers, these papers do not focus on the efficiency of
PPO in decentralized approaches. The existing papers do not reveal
promising or validated results. Factors like efficiency can be crucial
when talking about mass production deployment or designing a
system for a variety of environments.

2.1 ResearchQuestion
Main Research Question: How effective are decentralized RL

policies trained by PPO using for multi-drone collision avoidance
under partial observability conditions?

Extension Research Question: How does the use of simulated
sensor perception, for instance LIDAR-based observations, affect the
effectiveness of decentralized multi-agent reinforcement learning
policies for drone collision avoidance in simulated environments?

3 RELATED STUDIES

3.1 Observation Models and Partial Observability
Environment observation is one of the core parts of autonomous
drone navigation. Various studies outline the importance of local
and partial observations to enable decentralized operations. Drones
are often equipped with LiDAR or other sensors to collect positions
about other drones within their sensing range[6, 12].
Standard sensor types and feature extraction include:
Range Sensors: It is often crucial to explore the distance to

nearby objects to overcome them safely. Commonly, these aims are
fulfilled with LiDAR and ultrasonic sensors, which allow drones to
detect obstacles and the closest distance to them precisely.
Visual Inputs: RGB-D cameras are often used to capture the

colour and depth images simultaneously[8–10, 14]. This helps in the
detection of surrounding objects as well as the distances to them.
Scalar Data: Angle to goal, elevation angle, geo fence (virtual

barrier), and preferred velocity features are often combined with
visual or range data to achieve the state representation for the learn-
ing agent[12, 14]. The concept of a "mixed state" combining image
and scalar data is also explored to enhance learning efficiency[14].

Agent-Level States:Many decentralized approaches that provide
stable collision avoidance often extract observable states of other
agents before performing a collision avoidance decision, for instance,
velocities positions and other metrics of other drones rather than
raw sensor data[7, 12].

3.2 Reinforcement Learning Algorithms
Deep Reinforcement Learning (DRL) has gained promising results
for multi-UAV collision avoidance due to its ability to learn complex
behaviours in dynamic, unfamiliar environments through trial and
error, eliminating manual data labelling and hard-coded rules[4, 5,
11]. Key RL algorithms in the literature can be grouped into two
categories:
1. Policy Gradient Methods

Proximal Policy Optimization (PPO): A widely used policy
gradient method, often used for deep RL when the policy network is
very large. Algorithm is widely known for its stability,and suitability
for continuous state and action spaces, which successfully fits the

research objectives. The main advantage of PPO is prevention of
huge policy changes which positively affects to training stability.
Deep Deterministic Policy Gradient (DDPG): An off-policy

actor-critic algorithm designed for continuous control problems.
Soft Actor-Critic (SAC): Another off-policy actor-critic algo-

rithm that has demonstrated strong performance and sample effi-
ciency, particularly in 3D environments with dynamic obstacles.
Trust-Region Policy Optimization (TRPO) and ACKTR:

Other popular policy gradient methods used for continuous control.
2. Q-Learning

Another standard algorithm for DRL drone training is Q-Learning,
and its variations. Q-learning is commonly used to create stable
and efficient path-finding/route-planning systems. The well-known
variations are:

• Q-Learning
• Deep Q-Network (DQN)
• Double DQN (DDQN) and Dueling DQN

3.3 PPO
In general, PPO operates on an actor-critic architecture, utilizing two
Convolutional Neural Network (CNN)models,specifically the Actor,
which determines the policy, and the Critic, which evaluates the
state-value function[4]. This research uses PPO with multilayer
perceptron (MLP) policies based on fully connected networks, which
are more appropriate for structured vector-based observations. As
an on-policy learning approach, PPO updates its decision-making
policy based on a small batch of experience collected directly from
interactions with the environment[4]. After the policy has been
upgraded, these observation are dumped and batches are refilled
with new observation data for new updates[4]. A comparative study
assessing PPO against Deep Q-Networks (DQN) and Soft Actor-
Critic (SAC) for obstacle detection and avoidance in UAVs found
that PPO performed poorly, particularly in large 3D environments
with dynamic actors[4]. This research also aims to explore and
validate this negative characteristics of PPO.

4 METHODOLOGY AND APPROACH
This section outlines the methodological approach adopted to de-
velop, train, and evaluate DRL policies, specifically focusing on the
PPO algorithm and LiDAR-style observation for multi-agent drone
collision avoidance in a simulated environment. The methodol-
ogy encapsulates environment design, agent observation modeling,
training pipeline configuration, reward shaping, hyperparameters
tuning, and evaluation procedures.
Initially, the main approach was focused on building a custom

2-D environment with varying number of agents and obstacles,
where agents can be trained together by PPO algorithm. Further, it
was planned that the best policies will be evaluated based on 1000
random episodes, providing the data for the chosen figures of merit.
Throughout the experimental training process, it was observed

that policies trained without rich data perception, such as partial
observation with mainly proximity-only features, struggled to con-
verge to robust and generalizable behavior. Drones often failed to
reach their goals or demonstrated poor obstacle avoidance. Thus, the
simulated LiDAR-based observations were implemented to achieve
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more stable and efficient results. Combining proximity and LiDAR-
based observations illustrated better results in safely overtaking
nearby obstacles and agents, enabling more informed decisions in a
partially observable setting.

The decentralized control approach was chosen to mimic realistic
deployment scenarios where inter-agent communication is limited
or costly. The decentralized system will allow different companies to
deploy their drones without configuring the shared traffic protocols,
which saves funds and effort and causes companies to rely on their
stability. Each drone acts independently based on its local sensory
input.
In order to test the performance and stability of policies trained

by PPO, the custom 2D Gymnasium-compliant environment was
built. The environment simulates a square arena with variable num-
bers of drones and static obstacles. The simulation environment
supports multiple variations of observation spaces, configurable
traffic density, variable spawn area, and physical constraints that
simulate real-world UAV dynamics.

Because Stable-Baselines3’s PPO was created for one agent in
the environment, the initial Gymnasium environment was wrapped
in custom PettingZoo ParallelEnv. ParallelEnv separated each
agent’s observations, rewards and other information in several di-
rectories, by which solved the compatibility issue. Additionally, the
final training pipeline contains several SuperSuit wrappers that
interchange ParallelEnv’s format for compatibility and efficiency.

Lastly, the vectorized parallel environmentswith agents are trained
across a staged curriculum using the Stable-Baselines3’s PPO
implementation. The reward function was carefully shaped to incen-
tivize goal-directed movement, penalize collisions and inefficient
paths, and encourage smooth trajectories.

4.1 Simulated Environment
The environmentwas implemented using the Gymnasium framework
and extended with PettingZoo and Supersuit to support Stable-
Baseline3multi-agent vectorized training. A continuous 2D layout
was selected to balance realism and computational efficiency, provid-
ing scalable experimenting with real-world-like physical interaction
within the given time limit.

4.1.1 World Model. The simulated world is 100m × 100m, recall-
ing a realistic operational scale for small drone tasks in urban or
industrial scenarios, such as package delivery or rescue operations.
Time is discretized at 10 Hz to provide smooth motion dynamics.

All unit calculations and distances are expressed in the metric
system. Physics updates follow a fixed time-step integration scheme.
Specifically, every action an agent takes at a specific time step is
multiplied by a constant factor of 0.1, which helps to simulate real-
world physics.

For instance, if the agent was moving with velocity (5,0) and at a
specific step, the agent takes action (-2,0) to perform an urgent brake,
then the agent will end up having a velocity of −2.0×0.1 = −0.2+5.0
resulting in (4.8, 0) after that step. Such step application efficiently
simulates real-world physics momentum and urges the model to
learn long-term steady braking.

4.1.2 Agent Dynamics. Agents are modeled as circular discs with
a static radius of 0.5 m. Integration is performed using a basic for-
ward Euler method, which offers sufficient stability given the 10 Hz
update rate and controlled dynamics.

4.1.3 Obstacles and Goals. Static obstacles are included to simu-
late environmental imperfection that can be met in the real world
daily. Each episode initializes with a configurable number of circular
obstacles with randomized positions and radiuses sampled between
1.0m and 3.5m. This variability forces agents to learn robust and
dynamic avoidance strategies. Each agent is assigned a unique goal
location, either symmetrically mirrored from its initial spawn point
or randomly generated with a minimum distance of 15 meters from
the agent’s spawn point.

4.1.4 Observation Space. As it is depicted in the table, Each
agent operates under partial observability and receives a limited
observation vector to mimic decentralized, sensor-driven control.
The base observation can be seperated in 3 sections:

• Kinematics: agent’s velocity (2 floats), vector and angle to
the goal (3 floats)

• Environment awareness: vectors and distances to the near-
est obstacle, agent, and arena border (11 floats)

• Optional perception enhancement: a LiDAR-style input of
24 rays evenly spaced 360° around the agent, each returning
obstacle distance up to 20m (24 floats)

Earlier iterationswithout LiDAR observations failed to produce re-
liable behaviors in complex scenarios. Including LiDAR dramatically
improved training stability and final policy performance, confirming
its necessity in complex environments where spatial reasoning is
critical.

Fig. 1. Average collisions per step during the training with LiDAR and
without. The X-axis represents training time steps, whereas Y-axis describes
the number of collisions per step based on the rollout avarage. Number of
collisions per rollout can be rougly calculated by mutiplying graph’s value
by 𝑁 _𝐸𝑛𝑣𝑠 × 𝑁 _𝑆𝑡𝑒𝑝𝑠 .

Figure 1 depicts two curves of identical training setups where
the orange line represents the training setup with LiDAR percep-
tion and blue without. The metrics showed on graph are the aver-
age collisions per step, which are calculated by 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑠𝑡𝑒𝑝𝑠 ÷
𝑡𝑜𝑡𝑎𝑙_𝑟𝑜𝑙𝑙𝑜𝑢𝑡_𝑠𝑡𝑒𝑝𝑠 . This way the graph’s average metrics can be
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roughly converted back too explore the difference in number col-
lision steps between these two setups. The blue curve which cor-
responds to No-LiDAR observation stays on values from 4e-3 to
5.5e-3. These values can be multiplied by the number of steps per
rollout, specifically 512 steps in 16 environments, which results in
5×10−3×512(𝑠𝑡𝑒𝑝𝑠) ×16(𝑒𝑛𝑣𝑠) = 40.96 collisions happened during
that rollout. Alternatively, the Lidar observation scales down the
number of collisions to 16.3(calculated by same operations), which
makes usage of LiDAR strongly positive. The LiDAR observation
stably outperformed other training setups without it, especially in
high-density scenarios. Logically, the lowest difference in compar-
ing LiDAR vs No-LiDAR setups happened during training 1 agent
in environment. Overall, as density of the airspace becomes larger,
the LiDAR presented more advantages, therefore it was chosen to
stick with evaluating LiDAR-including models.

4.1.5 Observation Normalization. Additionally, after several
training round iterations it was found that training could be opti-
mized and achieve better results while using normalized observa-
tion. Therefore, observation features are normalized and clipped to
[-1.0,+1.0] or [0.0,+1.0]. For instance, distances are normalized to
values [0.0,+1.0] by division of distance by arena size, whilst veloc-
ity is, logically, clipped to [-1.0,+1.0] by division on max velocity
allowed.

4.1.6 Environment Specifications. Table 7 in Appendix B rep-
resents a detailed overview of the built simulator’s specifications.

4.2 Implementation
During this research, the project with the simulated environment
was built using Python and GymnasiumAPI for trainingmulti-agent
drone collision avoidance and extended with multi-agent support
via PettingZoo and vectorized training utilities from Supersuit. This
section outlines the core components of the implementation.

4.2.1 Gymnasium Custom Environment. The Gymnasium API
provides a platform for creating simulation environments compat-
ible with most RL libraries. The base class DroneWorldEnv of the
custom environment follows the standard gym.Env interface and
defines the drone dynamics, obstacle generation, observation model,
reward structure, episode termination logic, rendering features,
etc. Every custom environment built using Gymnasium must sub-
class gym.Env and implement the core methods: __init__(), re-
set(), and step(action). Optionally, methods such as render(),
close(), and seed() can be implemented to support visualization,
cleanup, and reproducibility. The implemented solution uses the
Gymnasium v1.0+, which supports both human and off-screen ren-
dering modes using Pygame. Whilst the human rendering mode im-
plementation is primarily used when debugging or discovering the
agent’s behaviour, the non-human "rgb_array" rendering mode is
convenient for automatically generating videos of specific episodes
The environment implements all core methods required by the Gym-
nasium API, specifically the methods and their purposes are:
__init__(): Sets up the environment configuration, such as the

number of drones, obstacle count, maximum steps, action/observation
space definitions, rendering options, and dynamics parameters such
as velocity, acceleration and spawn area limits. The action space

is defined as a Box(2,) representing 2-D accelerations, while the
observation space is a flat vector of 16 to 40 floats, depending on
whether LiDAR is enabled.

reset(): Initializes all episode components, including drone and
obstacle positions, drone radiuses, velocities, and per-agent goals.
For convenience, the method allows resetting the environment with
a specific seed. Goals are spawned after drones and are mirrored in
relation to the drone’s spawn point or randomly sampled to sustain
a minimum 15-meter distance from the agent’s spawn point. The
obstacles are randomly positioned with some margin around the
drone’s spawn point, goal, arena walls and other obstacles.

step(actions): Applies the 2-D acceleration vectors to the ve-
locity vector via the internal method _apply_physics(), while
following proper speed limits, detecting collisions with walls, ob-
stacles or other drones, and calculates individual rewards through
_compute_reward(). Each agent receives an updated observation,
scalar reward, done flag, and additional info in line with the Gym-
nasium API format.

render(mode): Provides real-time visualization via Pygame, show-
ing drones, goals, obstacles, velocities, rewards, and optional LiDAR
beams. It supports both interactive ("human") and frame-buffered
("rgb_array") rendering.

close(): Shuts down the Pygame display.
The Figure 2 demonstrates the rendered environment with 6

drones and 8 obstacles. The drones are represented as colorful discs,
whilst the obstacles are gray circles of different sizes. In the be-
ginning, each agent is assigned a color which is used to visually
differentiate drones and their goals. Each agent is equipped with
tiny white line which scales depending on the speed and illustrates
where the agent is currently heading. As depicted, on top of ev-
ery agent there is a number which represents the reward for the
specific agent in current step. The blue and red lines around the
agent show LiDAR observations in real time. These blue beams
become red when the object or other drone is detected in that beam.
For debugging and observing purposes the simulator was equipped
with status bar representing the state and velocity of each drone.
Additionally, the number in the top left corner prints the current
time stamp and displays seed of the episode.

4.2.2 PettingZoo Adapter. To enable multi-agent reinforcement
learning (MARL) using the Stable-Baselines3-compatible training
stack, the base environment was wrapped using the PettingZoo
library in ParallelEnv mode. The adapter class, named _DronePZ,
acts as a lightweight interface between the vectorized Gymnasium
environment and the PettingZoo ecosystem, enabling seamless
multi-agent interactions and batched agent updates.

The adapter conforms to the ParallelEnv interface, which allows
simultaneous agent decisions and avoids the step-by-step alterna-
tion used in PettingZoo’s AECEnv. This parallel mode is particularly
suitable for environments where all agents operate synchronously,
as in centralized training with decentralized execution (CTDE).
Design and Structure: The DronePZ class holds the custom

DroneWorldEnv that was built on base of Gymnasium gym.Env as its
internal world model and interprets the existing Gymnasium drone
environment data in PettingZoo-compliant style. The detailed de-
scription of methods can be found in Appendix A.
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Fig. 2. Rendered screenshot of simulated environment with LiDAR observa-
tions.

Agent Management and Spaces: The adapter manages a static
list of possible agents via self.possible_agents, with individ-
ual entries like "drone_0" through "drone_n". Active agents are
tracked using self.agents, which is updated on every step() call
to remove drones that have finished their episodes. Observation
and action spaces are gained from the inner DroneWorldEnv world
class.
Reward and Episode Metadata: At each step, if the environ-

ment reaches a terminal state (e.g., all drones are done or a time
limit is exceeded), the adapter propagates cumulative metrics such
as collision_count, goals_reached, and wall_hits to every sur-
viving agent’s info dictionary. This allows evaluation and training
scripts to measure performance of certain episodes based on the
important metrics.
Auxiliary Controls: In simple training scenarios, for instance

2-3 drones without obstacles, the whole arena space of 100m may
be too big. Trajectories of the moving agents may not intersect,
which urges to learn only go to the goal strategy throughout this
episodes. To solve this issue and optimize the training, an additional
method change_spawn_area() was implemented. This method al-
lows dynamic modification of the environment’s spawn area during
training. This feature enables adjusting the density of the aerial
traffic when training small number of agents.

4.2.3 Supersuit Training Wrappers. In order to use Stable-
Baseline3 vectorized RL algorithms on the developed environ-
ments in stable and efficient training settings, a series of wrappers
from the Supersuit library were applied. These wrappers apply nec-
essary environment transformations, which help improve training
throughput and ensure compatibility with Stable-Baselines3’s
VecEnv-based training interface.

In short, wrappers are responsible for providing stable input for
training, separation on N environments for better throughput, dis-
playing the statistics and normalization of the raw data. Table 1
represents the specific order of wrappers that are applied to DronePZ

environment before training. The detailed description of the wrap-
pers’ functionalities and purposes can be found in Appendix A.

Table 1. List of environment wrappers

# Wrapper Name

1 black_death_v3()
2 pettingzoo_env_to_vec_env_v1()
3 concat_vec_envs_v1()
4 VecMonitor()
5 VecNormalize()

This wrapper pipeline ensures:
• Compatibility between PettingZoo environments and Stable-
Baselines3

• Correct handling of terminated agents without breaking vec-
tor shapes

• Parallel training over multiple environment copies to increase
sample efficiency

• Stable learning through standardized observation inputs

4.3 Training Curriculum

Initial experiments demonstrated that direct training of agents in
high-density scenarios with many drones and obstacles often led to
poor policy results or required more training time steps. Separate
PPO models were trained per phase, each with a fixed number of
agents. Every phase is dedicated to training the "N" number of
drones. However, all the stages of the specific phase are trained in
one run, such that more complex training stages inherit the policy
behavior from simple ones. Rather than giving the PPO complex
scenarios with high drone-obstacle density, the staged curriculum
allows the policy to learn fundamental skills such as directional
control and goal alignment by starting with simpler episodes[7, 10,
12]. These abilities were gradually refined as new challenges were
introduced in later stages.
Table 8 in Appendix B represents approximated stage timestep

values under which the training has achieved performant results
within time-efficient training. Depending on the needs, some stages
were shortened or widened to achieve better training and evaluation
results.

4.4 Hyperparameters Tuning
Training decentralized drone navigation policies with PPO requires
carefully selected hyperparameters to ensure convergence, stability,
and generalization. The tuning process took a long time via iterative
experiments during early testing stages, where learning dynam-
ics were more stable and observable. Each final hyperparameter
was evaluated based on its impact on training metrics and overall
performance.

Table 2 shows the rough estimate of the best-fitting PPO hyperpa-
rameters found during this research. The depicted hyper parameters
illustrate the most performant configuration for training 4 drones.
Detailed description of the reasoning beyond key hyperparameters
can be found in Appendix A.
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Table 2. Best-fitting PPO hyperparameters

Hyperparameter Value

Batch size 2048
# Environment steps per update 512
# Parallel environments 16
Discount factor 𝛾 0.99
Policy net architecture [512, 256, 128]
Value net architecture [512, 256, 128]
Learning rate 3 × 10−4
Optimization epochs 6
GAE 𝜆 0.95
Clip range 0.25
Entropy coefficient 0.008
Value loss coefficient 0.5
Max gradient norm 0.5

The Figures 3, 4 and 5 illustrate the comparison between two
different hyperparameters configuration for two drones training.
For illustration and comparison purposes the values are smoothed
by 0.8, which allows us to track trends and notice huge differences.
The blue line illustrates tuned params, whereas orange represents
the initially chosen parameters. As depicted on the graphs, the
final parameters choice provides more stability in reaching the
goals and all drones reach their goals more frequently. In ideal
training, we should expect 32 reaches per rollout, as we are training
2 drones using 16 different environment which gives 16 × 2 = 32
drones aiming to reach their goals per PPO iteration. Despite more
stable collision avoidance presented in Figure 5, the initially chosen
parameters illustrate the wrong behavior tendency in two other
figures. Specifically, because initial batch size was small the model
did not experience the required variability to explore that reaching
destinations results in greater profit rather than just surviving. The
final parameters result in more stable goal-reaching with values
varying from 29 to 32 compared to 15 to 25 with initial params.
The episodes end faster, namely length vary from 240 to 315 which
illustrates a healthy behavior compared to 400-500 outputted by
initial configuration.

Fig. 3. Drones reaching goal statistics during the training with two different
hyperparameters configurations. The X-axis represents training time steps,
whereas Y-axis describes the number of drones that achieved their goals in
that rollout. Training is done on 2 drones within 16 environments.

Fig. 4. Average episode length during the training with two different hy-
perparameters configurations. The X-axis represents training time steps,
whereas Y-axis describes the average length of the episodes in that rollout.
Training is done on 2 drones within 16 environments.

Fig. 5. Average collisions per step during the training with two different
hyperparameters configurations. The X-axis represents training time steps,
whereas Y-axis describes the number of collisions per step based on the
rollout avarage. Number of collisions per rollout can be rougly calculated
by mutiplying graph’s value by 𝑁 _𝐸𝑛𝑣𝑠 × 𝑁 _𝑆𝑡𝑒𝑝𝑠 . Training is done on 2
drones within 16 environments.

4.5 Reward Function Shaping
Throughout the experimental process reward systemwas remodeled
and rescaled many times in order to achieve better results. The
values of the coefficients and thresholds were altered, depending
on the simulated traffic density and number of agents. The used
reward coefficients can be categorized into three groups, namely,
terminal rewards, distance thresholds and reward coefficients.

The first group is responsible for punishing or rewarding agents
for the events that either end the episode or should provide a stable
punishment. When one of these events happen, only terminal re-
ward value is outputted to the system. For example, at the collision
step the agent will only receive -30 and no further coefficient logic
affect on the reward. Table 3 demonstrates the values used for the
rewarding terminal events.
The second category’s duty is defining thresholds for distances

where agents will be punished or motivated in order to achieve
certain actions. The safe and dangerous radii are responsible for
agent and obstacles repulsion, meaning that agents are punished
within this areas. The repulsion punishment progresses linearly, thus
the agents receive lower rewards as they get closer to another drone
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or obstacle. The final mile, brake and align radii are responsible for
additional shaping terms which teach agents smoothness and real-
world behavior, such as braking, steering to goal and keeping normal
speed. Lastly, the minimum push speed was created to eliminate
too low speed issues. Table 4 demonstrate the values for the area
partition under which the PPO performed best.

The third type of rewards are used for continuous actions. Progress
coefficient is used to award agent for coming closer to the goal,
whereas step cost and action penalty are used for penalizing extra
steps and sharp actions. The aligning, braking and repulsion coef-
ficients are used for scaling the penalties applied for violating the
safeness and smoothness constraints. Specifically, the difference be-
tween maximum allowed distance (defined by radii) and the actual
distance to obstacle or goal is multiplied by these coefficients to
achieve the wanted effect. Logically, zero speed penalty is applied
when the agent either has extremely low velocity or stopped in
place where it was not required. Lastly, the away coefficients are
responsible for motivating agents to stay away from other agents
and obstacles. Table 5 shows the best performing coefficients that
are used in the current reward function model.

Table 3. Terminal Rewards and Penalties

Event Reward / Penalty

Success (reach goal) +150.0
Collision or wall-hit –30.0
Episode truncation –300.0

Table 4. Tunable Distance Thresholds

Threshold Value

SAFE_DIST 15.0
DANGEROUS_DIST 8.0
FINAL_MILE_R 15.0
BRAKE_R 9.0
ALIGN_R 15.0
MIN_PUSH_SPEED 0.5

Table 5. Core Reward Coefficients

Coefficient Value

PROG_COEF 6.5
STEP_COST 0.01
ACTION_PEN 0.005
ALIGN_COEF 0.5
BRAKE_COEF 2.0
REP_COEF 4.0
ZERO_SPEED_PEN 1.0
AWAY_DRONE_COEF 2.5
AWAY_OBS_COEF 1.0

The detailed description of how the reward coefficients and con-
stants depend on the reward output can be found in Appendix A.

5 RESULTS & FINDINGS

5.1 Figures of Merit
In order to evaluate the performance of different models and intro-
duce final results, the paper outlines four figures of merit.

• Collision-free episode rate
• Goal-completion rate
• Training sample efficiency
• Average time steps to complete the episode

These metrics were specifically chosen to outline the complexity
of defining a policy which balances between successfully reaching
the goal and avoiding collision. During the research it was discov-
ered that keeping equilibrium between avoidance and goal comple-
tion is extremely challenging task, because if the penalties are too
severe the agents are afraid to make risky actions, which frequently
result in almost stall behavior. Alternatively, if the penalties are too
soft, the agents are neglecting safety and follow strategy to strongly
reach the goal even when it requires bumping in obstacle.

5.2 Results

Table 6. Training results for varying numbers of drones and obstacles

Dr. Obs. # Steps Req Completion Coll-free Avg Ep. Length
2 0 1,200,000 100.00% 94.20% 257.53
2 4 2,200,000 99.30% 87.20% 289.84
2 8 2,200,000 97.40% 85.70% 322.27
2 10 2,500,000 94.60% 80.20% 379.35
4 0 2,000,000 99.50% 91.30% 315.31
4 4 2,500,000 95.60% 86.30% 349.76
4 8 3,000,000 91.80% 83.70% 380.13
4 10 3,500,000 89.70% 79.70% 396.43
6 0 3,500,000 98.70% 82.40% 344.00
6 4 4,000,000 93.90% 79.10% 396.21
6 8 4,000,000 89.60 % 74.20% 467.53
6 10 4,200,000 83.40 % 69.20% 485.32

Table 6 illustrates the best results achieved during all testing
phases throughout this research. The table represents approximated
number of steps under which PPO converges stable strategy. The
further training with higher time steps values does not produce
dramatically better results. The table also provides the completion
and collision-free episode ratios.

5.3 Reflection on Results
The results in Table 6 reveal several trends in PPO operation un-
der increasing multi-agent complexity. Across all drone number
setups, adding obstacles steadily decreases both goal-completion
and collision-free rates. For instance, with two drones the success
rate drops from 100% in obstacle-free space to 94.6% when 10 obsta-
cles are present, and the collision-free rate falls from 94.2% to 80.2%.
This outlines that the learned policy struggles more with obstacle
avoidance as the workspace becomes crowded. Even in empty envi-
ronments, larger teams require more training steps to reach high
performance 2 drones converge to near-perfect success in 1.2 M
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steps, 4 drones in 2.0 M, and 6 drones in 3.5 M. This indicates that
the state-action space grows rapidly with team size, slowing PPO’s
sample efficiency.

As obstacles or agents increase, the average episode length tends
to increase, for instance from 257.5 to 379.4 time steps for two
drones as obstacles go from 0 to 10. In longer episodes, agents tend
to coordinate more carefully to avoid collisions—but they do not
fully compensate, since collision-free rates still decline.
Despite the initially high expectancy, PPO illustrated promising

but not perfect results in resolving continuous tasks in complex
multi-agent environment. As indicated in the related papers, PPO’s
main problem is that its strict reliance on an on-policy rollouts
results in very poor sample efficiency and slow convergence in
high-dimensional, multi-agent collision-avoidance tasks, making it
impractical for training in high-density environments [4].
Overall, PPO demonstrates robust baseline capability for multi-

agent collision avoidance, but its efficiency and final safety perfor-
mance decreases as both drone and obstacle density grow. While
PPO is a popular on-policy method for single-agent tasks, several
disadvantages make it a less valuable choice for solving complex
multi-agent collision-avoidance scenarios

5.4 Limitations
In this research project PPO treats the multi-agent system as a sin-
gle large Markov Decision Process (MDP). PPO does not explicitly
decompose rewards or actions per agent, thus it does not distin-
guish separate drone’s contributions from the final outcome. Conse-
quently, the PPO treats the system as one single decision-making
problem, where positive actions of one drone can be neglected by
strongly negative actions of another.

The neural policy network in PPOmust encapsulates both: percep-
tion and coordination logic for all drones simultaneously[1, 4, 13].
When the traffic density increases, the network either has to grow
or becomes a bottleneck, leading to negative impact on success and
collision-free rates.
Lastly, the lack of experience in RL, ML and UAV’s spheres, to-

gether with the University’s time constrains, cause a significant
impact on the research outcome. The author of this research has
gained all required knowledge throughout the experimental and re-
search processes. The research would have produced more accurate
and better results if the author had a ready-to-test Stable-Baseline-
3 compatible simulator, or had prior knowledge about the drones
functioning and Reinforcement Learning.

5.5 Future Improvements
This research could be improved upon iterative reward function
improvement and further hyper parameters tuning. The current
setup allows building complex training curriculum with a lot of
configurable variables.
The built simulator is fully compatible to most algorithms avail-

able in Stable-Baseline-3. Therefore, the following simulator can be
used as baseline tool for testing performance of other RL algorithms
in order to achieve stable collision avoidance. Additionally, the sim-
ulator can be reworked to simulate and train models for complex

scenarios in 3D environment, which will result in producing more
relevant and realistic results.

6 CONCLUSION
This research aimed to answer two primary research questions
regarding the use of decentralized PPO policies for multi-drone
collision avoidance under partial observability, and the impact of
enhanced sensor perception - LiDAR on policy effectiveness. The ex-
periments conducted in this study show that decentralized PPO can,
indeed, learn collision-avoidance behaviors in multi-drone settings,
but its effectiveness rapidly drops in high-density environments,
which illustrate that PPO is not recommended to be used in massive
drone swarms.

Effectiveness of decentralized PPO under partial observability. In
order to answer the posed RQ1, the experiments included training
various PPO policies using a variety of hyper-parameters and re-
ward function coefficients. The results demonstrate that PPO can
learn decentralized collision-avoidance behaviors, achieving high
goal-completion and collision-free rates in simple environments,
for instance 100% completion and 94.2% collision-free with 2 drones
and 0 obstacles. However, performance reduces as complexity in-
creases. Across all team sizes, adding obstacles steadily reduced
both completion and safety, Table 6. Moreover, training steps re-
quired grew when simulating scenarios with high number of drones,
reflecting PPO’s on-policy sample inefficiency in high-dimensional
joint state–action spaces.

Impact of LiDAR-style observations. Series of testing trainings
were designated to investigate RQ2. Namely, multiple training con-
figurations were run to measure the efficiency of LiDAR. Moreover,
the research included measuring different reward setups. Introduc-
ing LiDAR-style perception markedly improved learning stability
and final performance. Policies trained with both state vectors and
LiDAR converged faster and provided better results even in mid-
density scenarios and resulted higher collision-free and completion
rates compared to proximity-only baselines. This confirms that
richer data perception mechanisms in partial-observability chal-
lenges enable safer obstacle avoidance and agent spacing.

Outcomes. While PPO provides a solid baseline for decentralized
drone collision avoidance, its sample inefficiency and unified re-
warding process limit scalability. Incorporating richer sensor data
LiDAR improves the results, but further gains likely require different
algorithms, for instance off-policy or factorized multi-agent algo-
rithms. Future work should explore these alternatives and extend
evaluation to 3D environments to better approximate real-world
UAV operations.

USE OF AI
During the research ChatGPT 4o and Grammarly were used to vali-
date grammar, typographical accuracy, and preserve the required
academic style. ChatGPT 4o was also used for additional scrapping
in the Gymnasium, PettingZoo and SuperSuit documentation.
The author takes full responsibility for the content of this work.
Lastly, ChatGPT 4o was used to improve efficiency and debug the
rendering of the simulator.
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Appendix A

Supersuit Wrappers.

1. Dead-Agent Handling with black_death_v3.
Since agents may reach their goals or collide before the episode ends,
black death v3 ensures that their observation and action spaces
remain valid by freezing them and returning zeroed observations.
terminates early.

black_death_v3

This wrapper allows to have a stable observation input for training
model even with variable agents’ lifespans. Without this wrapper,
vectorized training would crash when an agent.

2. PettingZoo to VecEnv Conversion.
The base multi-agent environment, wrapped with PettingZoo’s
ParallelEnv interface, is converted to a single agent-compatible
VecEnv using: wrapped with PettingZoo’s ParallelEnv inter-
face, is converted to a single agent-compatible VecEnv using:

pettingzoo_env_to_vec_env_v1()

This step formats the per-agent structure into a standard vectorized
format, allowing interoperability with Stable-Baselines3 policies
and replay buffers.

3. Vectorization and Parallelism.
In order to improve the training speed and provide episode diversity,
a single environment is duplicated 𝑁 times(in our case 16) via the
function:

concat_vec_envs_v1()

This creates a batch of independent simulations running in paral-
lel, providing 16 experiences per step to the PPO agent. This wrapper
dramatically improves training speed and policy generalization by
creating a more diverse situation for the agents to experience and
allowing agents to try a variety of different tactics per each policy
update.

4. Episode Logging and Statistics.
The wrapped environment is wrapped in VecMonitor wrapper to
enable per episode metric logging, including reward and episode
length tracking. This data allows further improvement in hyperpa-
rameters tunning and reward system adjustment.

5. Normalization with VecNormalize.
Finally, the vectorized environment is wrapped with VecNormalize
to normalize observations(and optionally rewards). Even though
the observations are manually normalized by variables division, for
example, distance is divided by arena size which results in [~0.0-
1.0] normalization, wrapper provides proper format and ensures
normalization. Normalization helps stabilize learning by reducing
sensitivity to input scale and variance.

Depending on the experiment reward normalization was tuned or
even turned off. When rewards are left unnormalized, the training
system fully relies on the configured reward shaping.

PPO HyperParameters. This section outlines the reasoning be-
yond key hyperparameters used in the final model and explains the
rationale behind their values.

Discount Factor - Gamma = 0.99.
Throughout the experiment, it was discovered that a high discount
fact of 𝛾 = 0.99 suits the best as it promotes the path-planning.
Since reaching the goal can take 230–400 timesteps, lower discount
factors (e.g. 𝛾 = 0.95) caused agents to prefer short-term motion
over strategic progress, rs to ineffective trajectories and orbiting
near obstacles.

Neural Network Architecture.
The policy and value networks share the samemultilayer perceptron
architecture:

[256, 128, 64]

This architecture provided a good balance between representational
capacity and training stability. Shallower networks (e.g., [128, 64])
underfit complex observation spaces, especially with LiDAR, while
deeper versions such as [512, 256, 128] were used in training
phases with higher number of agents involved.

Learning Rate.
A constant learning rate of 3e-4 was chosen after comparing with
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scheduled decays and smaller values. It allowed reasonably fast
learning while avoiding gradient explosions. Learning rate schedul-
ing (get_linear_fn) slightly improved the final results. However,
the scheduled learning rate sometimes shortened the critical explo-
ration while training by curriculum stages.

Batch Size and Rollout Steps.
Training was performed with n_steps = 512 and batch_size =
2048 (assuming N_ENVS = 16). This batch size showed sufficient
data diversity across parallel environments while staying compu-
tationally feasible. Specifically, each PPO training epoch is divided
into four mini-batches with a rollout size of n_steps = 512 and a
batch size of 2048. Foremost iterations of hyperparameters involved
link with n_steps = 300 and batchSize = 480 or 120. However,
because some complex episodes with many agents required more
than 300 steps to finish successfully and this setting does not provide
promising results, it was decided to switch to 512, 2048 values.

GAE Lambda = 0.95.
The Generalized Advantage Estimation (GAE) parameter 𝜆 = 0.95
provided a good trade-off between bias and variance. This is a com-
monly used default in continuous control tasks and worked reliably
in early curriculum phases.

Clipping Range clip_range = 0.25.
The clipping parameter was increased from the standard 0.2 to
0.25-0.34 to allow slightly more aggressive policy updates. This
clipping range allowed model to make improvements faster without
causing the instability due to the stabilizing effect of reward shaping
and observation normalization.

Entropy Coefficient ent_coef = 0.008. Entropy regularization
was applied to encourage exploration, particularly in obstacle-dense
stages. A coefficient of 0.008 was empirically tuned to balance ex-
ploration without overwhelming the shaped reward signal. Strongly
higher values led to unpredictable behaviour, while smaller values
represented slow exploration.

Best Configuration. The code snippet 3 presents the final PPO
model configuration, resulting in the best training performance and
generalization across most curriculum stages.

PettingZoo Adapter Methods: reset(seed): Resets the inner
world and returns a dictionary of observations indexed by agent
names instead of the raw observations per drone.
step(action_dict): The following method inputs dictionary

of per agent actions to be taken at this step. Simultaneously, this
DronePZ’s method takes action for all this drones by converting
the input dictionary to raw Numpy array. In comparison to the
DroneWorldEnv’s step(), the DronePZ PettingZoo adapter re-
turns per agent dictionaries of all observations, rewards, done’s
flags, truncation flags, and info for all currently active agents. Fin-
ished agents are dynamically removed from the environment.
render():Delegates visualization to the internal DroneWorldEnv.
close():Cleans up Pygame resources by calling the world’s close

method.

Reward Function
(1) Terminal Cases.

• Success: +REACH_BONUS
• Collision or wall-hit: −COLLISION_PEN
• Truncation: −TRUNC_PEN

(2) Progress and Costs.

𝑟prog = PROG_COEF× Δ𝑑 − STEP_COST − ACTION_PEN× ∥a∥
Where Δ𝑑 is difference between distance to goal in previous
step and in current step. Action penalty is applied to action
∥a∥ taken in this step.

(3) Alignment. Both action a and velocity v are projected onto
the goal direction unit vector ĝ:

𝑟align = ALIGN_COEF ×
(
â·ĝ + v̂·ĝ

)
.

(4) Final-Mile & Braking.Activatedwhen𝑑𝑖𝑠𝑡_𝑔𝑜𝑎𝑙 < FINAL_M_R:
• Well pull: 1 − (𝑑/FINAL_M_R)2
• Braking bonus: BRAKE_COEF max{0, −a·̂g} if𝑑 < BRAKE_R
• Stall nudge / overspeed penalty: small penalties or bonuses
when speed falls below or exceeds thresholds

(5) Tangential Penalty. Discourages movement orthogonal to the
goal:

𝑟tan = − 0.5 ∥v − (v·ĝ) ĝ∥.
This penalty was implemented because of the not optimal
path curves and agent’s orbital braking around the goal.

(6) Repulsion & Collision Avoidance. For the nearest neighbor
distance𝑚 and obstacle distance 𝑜 :
• Static repulsion: − REP_COEF (1 −𝑚/FINAL_M_R)1.2×
max{0, SAFE_DIST −𝑚}/SAFE_DIST

• Danger penalty: similarly scaled by COLLISION_PEN in-
side DANGEROUS_DIST.

• Active dodge: bonus when velocity has negative radial com-
ponent toward the nearest drone or obstacle, scaled by
AWAY_DRONE_COEF or AWAY_OBS_COEF.
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Appendix B

World

Continuous 2-D square
arena, 100m × 100m.
Positioning expressed in
metres, time
discretised at 10 Hz

Agents

Radius = 0.5m;
Max speed = 5m s−1;
Max acceleration = 2m s−2.
Dynamics integrated with
a simple Euler step.

Static
Obstacles

Tunable number of obstacles.
Spawn at random location.
Circular obstacles with
random radius 1.0− 3.5m

Goal

Each agent has a unique
goal location. Mirrored or
random spawn point that is
greater than 15m away.

Observation
Space (16-40
floats)

Own velocity – 2 floats
Vector to goal – 2 floats
Goal direction – 1 float
Vector to closest

wall – 2 floats
Vector to nearest

obstacle – 2 floats
Distance to nearest

obstacle – 1 float
Vector to nearest

drone – 2 floats
Velocity of nearest

drone – 2 floats
Distance to nearest

drone – 1 float
Heading angle

to goal – 1 float
LiDAR observation: 24 rays

of 20m – 24 floats

Action
Space

Two-dimensional
acceleration vector
applied to current velocity.
Clipped to maximum
acceleration.

Frameworks

Gymnasium for
simulation structure.

PettingZoo for multi-
agent tagging.

Stable-Baselines3 for
PPO training.

Supersuit for wrapping
and vectorization.

Pygame for visualization.
Table 7. Environment parameters and structure used in simulation.

Phase Stage Drones Obstacles Timesteps Spawn Area (m)

1 1 1 0 500k 40.0
2 1 3 750k 40.0
3 1 6 1M 45.0
4 1 10 1.25M 60.0

2 1 2 0 1M 40.0
2 2 4 1.25M 40.0
3 2 8 1.25M 50.0
4 2 10 1.75M 70.0

3 1 4 0 1.25M 50.0
2 4 4 1.75M 60.0
3 4 8 2.25M 70.0
4 4 10 2.5M 80.0
5 4 15 2.75M 100.0

4
1 6 0 2.2M 70.0
2 6 4 2.6M 80.0
3 6 8 3M 100.0
4 6 10 3.5M 100.0
5 6 15 4M 100.0

Table 8. Curriculum training stages grouped into testing phases. Each phase
is dedicated to n-number of drones.
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