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Mobile and wearable devices with limited energy resources increasingly
rely on inertial measurement unit (IMUs) for pedestrian localisation. This is
necessary in situations where the global navigation satellite system (GNSS)
or Wi-Fi signals are not available. Although state-of-the-art neural inertial
odometry models such as RoNIN achieve meter-level accuracy at high sam-
pling rates such as 200 Hz [9], operating at these rates significantly drain
battery life and computational resources. This paper investigates the mini-
mum viable IMU sampling rate capable of maintaining acceptable pedestrian
inertial odometry accuracy. To maintain comparable localisation accuracy
at lower sampling rates, two compensation strategies are investigated: (i)
temporal upsampling of low-rate IMU data, and (ii) training neural odometry
models directly with downsampled data. Extensive experiments conducted
using the RoNIN dataset and custom-collected iOS pedestrian IMU data
show a rapid increase in drift as sampling rate decreases. Temporal upsam-
pling, even with sophisticated Kalman–RTS smoothing, fails to recover lost
high-frequency information, resulting in severe localisation errors (>170
m). Direct retraining of RoNIN at reduced frequencies (10–150 Hz) signifi-
cantly outperformed naive interpolation methods, yet accuracy remained
below the 200 Hz baseline. Findings indicate that 40 Hz represents a practical
lower bound for applications tolerant of moderate drift (~10 m after several
minutes), while rates below 30 Hz lead to unacceptable error (≥ 14 m after
several minutes).

CCS Concepts: • Computing methodologies →Model verification and
validation.

Additional Key Words and Phrases: IMU, inertial odometry, neural networks,
RoNIN, low-rate sampling, pedestrian localisation, upsampling, downsam-
pling, energy efficiency

1 INTRODUCTION
Energy-constrainedmobile andwearable devices are relyingmore

and more on IMUs. This occurs when GNSS or Wi-Fi positioning
are unavailable. Recent state-of-the-art neural inertial odometry
like RoNIN [9] has achieved meter-level accuracy at a 200 Hz sam-
pling rate, however, operating at this sampling rate rapidly exhausts
both the sensor’s energy budget and the computational resources
required for always-on systems. Lowering the sample rate appears
to be the solution, but doing so causes the sensor to produce unreli-
able data and rapidly degrade the quality of localisation. This paper
therefore asks: what is the minimum IMU sampling rate that still
yields acceptable pedestrian accuracy, and how can signal-processing
or learning compensate for information lost at low rates (e.g., below
30 Hz)? This study is structured around three central research ques-
tions:
RQ1: Given a start reference, what is the lowest IMU sampling

rate that keeps the drift ≤ 𝑋 m after 30 minutes?
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RQ2: Can upsampling IMU streams collected at lower sampling
rates enable an unchanged 200 Hz RoNIN model to achieve the same
drift performance as with native high-rate input?

RQ3: To what extent can a RoNIN-style network trained directly
on downsampled data (e.g., 20–100 Hz) localise?
The rest of the paper is organized as follows. In Section 2, we

review prior work. In Section 3, we discuss background on IMU data
processing. Section 4 details the methodology, outlining two main
experimental scenarios: (i) evaluating whether upsampling low-rate
IMU data can recover information lost due to reduced sampling rates,
and (ii) assessing the effectiveness of training the neural odometry
model directly on downsampled data. Section 5 presents the results
of experiments, analysing the impact of different sampling rates and
compensation methods on localisation accuracy and drift. Section 6
provides the conclusion and discusses directions for future work.

2 RELATED WORK
This section reviews the evolution of IMU-only localisation chrono-
logically.

Pre-2018
Physics-based

2018
Data-driven

2019–2020
Robust Neural

2021–2022
Energy-aware

EKF, ZUPT, PDR
RIDI, IONet:
Supervised Learning

RoNIN, AI-IMU:
Robust Neural

TinyOdom: NAS,
MCU-ready

Figure 1. Timeline of IMU-only localisation development.

Early Challenges in Inertial Dead Reckoning (Pre-2018):
Traditional inertial navigation systems (INS) estimate position and
orientation using double integration of accelerometer and gyro-
scope data. IMUs operating with low-grade microelectromechanical
systems (MEMS) induce small biases that drift as a cubic function
of time [8]. High-grade IMUs reduce the drift, but mobile devices
are constrained by power and cost limitations [8]. Traditional ap-
proaches use extended Kalman filters (EKF) that track position,
velocity, attitude, and sensor biases [8] and use magnetometer read-
ings to correct for heading, however the indoor environment often
has disturbances that can affect performance [8]. Pedestrian dead-
reckoning (PDR) incorporates zero-velocity updates (ZUPT) that
set the velocity to zero whenever the foot is in contact with the
ground, helping to minimize drift at each step [8]. Step-and-heading
approaches detect foot strikes, estimate step length, and accumulate
2D motion vectors, thus trading off 3D detail for less drift [8].
Data-Driven IMU Odometry Emerges (2018): Robust IMU

Double Integration (RIDI), which uses supervised learning to esti-
mate velocity from raw IMU data, was introduced in [14]. Accel-
erations are corrected to remove gravity, prior to the integration,
improving the accuracy of velocity estimates [14]. RIDI also classi-
fies smartphone placement to select appropriate regression models,
mitigating drift without the use of foot-mounted sensors.
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Concurrent with RIDI, Chen et al. proposed IONet, an end-to-end
recurrent neural network that directly outputs position and heading
changes from raw IMU sequences. IONet uses a Long Short-Term
Memory (LSTM) architecture to process the sequential data [3].
IONet learns sensor error dynamics, handling arbitrary orientations,
gait variations, and sampling jitter, outperforming traditional PDR
and INS on OxIOD benchmarks.

Advances in Robust Neural Inertial Navigation (2019–2020):
Herath et al. proposed robust neural inertial navigation (RoNIN)
using a large-scale dataset (100 subjects, ~40 h) and temporal con-
volutional networks (TCN), normalizing predictions to a heading
agnostic frame and adding a velocity-based loss to stabilize trajecto-
ries [9]. RoNIN outperformed both RIDI and IONet, demonstrating
a lower drift on its own dataset as well as on the OxIOD benchmark.
Brossard et al. presented AI-IMU Dead-Reckoning, which com-

bines an invariant EKF with a neural network that dynamically
adjusts filter covariance parameters. This approach achieved a trans-
lational error of 1.10% on the KITTI benchmark [7] using IMU-only
data [1].
Toward Energy-Aware and Lightweight IMU Localisation

(2021–2022): Saha et al. introduced TinyOdom, a hardware- and
quantization-aware neural architecture search (NAS) framework
producing models 31×–134×smaller than prior networks, deployable
on MCUs with <128 KB RAM, and maintaining 2.5–12m drift over
60 s across scenarios [4].
To conclude, IMU-only localisation has developed from physics-

based EKFs and ZUPT-restricted PDR to robust data driven methods
that learn how to solve drift problems and adapt to a variety of dif-
ferent conditions, and there are also energy-efficient model designs
for embedded applications.

3 BACKGROUND
The foundation of this research is the RoNIN framework pre-

sented by Herath et al. [9], which represents the state-of-the-art in
data-driven pedestrian inertial odometry. RoNIN’s contribution is
threefold: a large-scale dataset, a novel neural architecture, and a
comprehensive evaluation. The experiments in this paper use the
RoNIN dataset and model as the primary baseline for evaluating the
effects of low-rate sampling.

The RoNIN dataset was collected using a unique two-device pro-
tocol: a body-mounted Google Tango device, which is a 3D tracking
phone that provides high-accuracy ground truth trajectories, while
a second phone recorded the IMU data used for training. This setup
allowed subjects to handle the IMU phone naturally (e.g., in a pocket,
hand, or bag), capturing over 40 hours of diverse pedestrian motion
from 100 subjects. Critically, all data was captured natively at 200Hz,
establishing the high-frequency baseline that this work investigates.
RoNIN’s architectural success is attributed to two key design

principles that directly address the challenges of inertial navigation:

• Coordinate Frame Normalization: To make the model
invariant to the phone’s heading, RoNIN normalizes all input
IMU data into a heading-agnostic coordinate frame (HACF).
In this frame, the Z-axis always points in the direction of
gravity, but the rotation around this axis can be arbitrary.
This normalization ensures that the model learns motion

patterns independent of how a user is holding or carrying
their device, which is important for real-world robustness.

• Robust Velocity Losses: Unlike the noisy, instantaneous
velocity vectors generated by the ground truth, RoNIN uses
more stable loss functions. For its recurrent architectures—LSTM
networks and TCN—RoNIN applies a latent velocity loss to
ensure the integral of the predicted velocities over a window
relates to the positional change. RoNIN also uses a strided
velocity loss with its ResNet, predicting change in position
over a full one-second interval.

These features, combined with powerful backbones like LSTMs
and TCNs, make RoNIN a robust baseline. The experiments in this
paper are designed to evaluate how this high-performance, 200Hz-
centric architecture responds when its fundamental data assump-
tions are challenged by significantly lower sampling rates.

Modern IMU-only localisation pipelines increasingly emphasize
signal conditioning and temporal alignment to ensure data quality
before integration into neural or classical models.

Upsampling & Smoothing: IMU data streams are occasionally
upsampled (for example, to reach a model’s fixed input sample rate
or to synchronize sensors with heterogeneous sampling frequencies).
The most basic form of upsampling is linear/spline interpolation,
which is the approach taken by [5], where spline interpolation was
used to match a 1.6 kHz gyro for their high speed testing trials. Chen
et al. used dual-linear interpolation for 400 Hz IMU data to have a
time stamp derived from the 30 Hz camera frame. More complex
upsampling/smoothing stages include a number of predictive filters,
such as a Rauch–Tung–Striebel (RTS) smoother, which performs
the backward pass of an EKF to take advantage of system dynam-
ics and infer intermediate states of the system [11]. Considering
interpolation as a filtering problem allows the algorithm to use both
past and future observations, which will give better performance
than naive interpolation methods. Generally, a zero-phase finite
impulse response (FIR) is used beforehand to avoid increasing noise
in the interpolation. The implementation built in this research fol-
lows the best practices: Filtering with FIR is prior to downsampling,
and upsampling is done using Kalman-based smoothing with FIR
interpolation. This approach ensures that the inputs to subsequent
odometry modules remain band-limited and free from excessive
noise.

Downsampling must be preceded by an antialias low-pass filter
to avoid spectral folding [10]. The frequency spectrum of human
motion IMU signals is generally concentrated at low frequencies.
More than 95% of the signal energy associated with accelerations of
the walking pattern is concentrated below 10–15 Hz [6]. The compo-
nents above that range are usually either sensor noise or incidental
vibrations. Consequently, aggressive filtering and downsampling
of high-frequency components result in minimal information loss
while reducing computational requirements. Fan et al. showed that
there is a decreasing return for the improvements in orientation
accuracy found at higher sample rates: walking was adequate at
100 Hz, running was adequate at around 200 Hz, and only very
fast cyclic actions had improvements in orientation accuracy up to
around ∼400Hz [5]. Increasing the sampling rate beyond 100 Hz
did not yield further improvements in accuracy, likely because the
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additional samples introduced more noise into the measurements[5].
Lower rates therefore save power and wireless bandwidth in wear-
ables [5], echoing other findings that low-bandwidth motion can be
reliably captured once anti-alias filtering is applied [6, 10].
Timestamp Alignment: Precise alignment of time stamps is

critical, since time offsets as small as one millisecond can degener-
ate abruptly after integration. Pipelines typically either resample
one of the streams onto another via interpolation [2] or estimate
offsets directly from spatiotemporal calibration using the sensor
configuration of the IMUs [2]. In most consumer grade systems,
simple interpolation is appropriate: sensor readings are shifted or
interpolated to the nearest timestamp in common, providing a con-
sistent and sensible input into the fusion algorithm. Thus, the IMU
preprocessing workflow involves three steps: (i) low-pass filtered
and downsampled, (ii) upsampled/smoothed on occasion, and (iii)
absolute timestamp integrity maintained. That step uses known
spectral analyses and studies of sampling rates [5, 6] to minimize
systematic errors and random noise drift, and thus provides a clean
representation of the IMU readings intended for processing in the
IMU-only localisation methods described previously.

4 METHODOLOGY
This section describes our approach to study energy-efficient IMU-

only localisation methods focused on both low-rate sensing with
temporal upsampling and the implications of low sampling rates for
neural inertial odometry. The approach had two experimental routes.
The first involves determining if temporally upsampled low-rate
IMU data could adequately run a high-rate RoNIN model without
modifications. The second focuses on determining the performance
of RoNIN models directly retrained only on downsampled IMU data
across all different rates. Figure 2 provides a visual overview of
these two pipelines. The research method involves: data collection,
data preprocessing, implementation and comparison of upsampling
methods, inference and retraining of the RoNINmodel, and assessing
trajectory accuracy and efficiency.

4.1 Data Collection
iOS IMU Dataset (Utrecht 2025). Two identical Apple iPhones,

taped together, simultaneously recorded pedestrian motion data
during an urban walk in Utrecht, the Netherlands. One iPhone
recorded triaxial accelerometer and gyroscope data at 40 Hz using
the SensorLog app. The other recorded at 100 Hz, enabling direct
comparison and subsequent upsampling of the 40 Hz data to 100 Hz
for validation. This dual-device setup ensured that both low- and
high-frequency datasets captured the samemotion events in parallel,
allowing for accurate assessment of upsampling techniques and their
impact on localisation accuracy.
Android IMU Dataset. The research used the official RoNIN

Android application, following the procedures described in the orig-
inal RoNIN publication [9]. All recordings were subsequently pre-
processed to conform to the data format specified by the RoNIN
framework. For further details regarding the data collection protocol,
refer to [9].

4.2 Data Preprocessing
Parsing and Formatting. To manage the two data sources we im-

plemented specialized loaders. One loader parses the single-table
CSV format from the iOS SensorLog app, while another aligns the
multiple raw sensor streams produced by the Android RoNIN frame-
work.

• SensorLogSequence (iOS). The raw SensorLog CSV exports
use long header names and store user–acceleration, gravity,
quaternion, and GPS samples in a single table.
(1) Detects the timestamp column, converts nanoseconds to
seconds when necessary.

(2) Renames SensorLog headers to concise labels
(e.g. motionUserAccelerationX(G)→ accX).

(3) Adds the gravity vector back to motionUserAcceleration
to reconstruct the raw accelerometer signal and then con-
vert the result from multiples of 𝑔 to SI units (𝑚/𝑠2).

(4) Projects GPS latitude/longitude to a local tangent Merca-
tor frame using Pyproj [12].

(5) Rotates gyroscope and accelerometer vectors into a global
gravity-aligned frame via device quaternions; gravity sign
is flipped so that +𝑧 is up.

(6) Outputs: timestamps, [ ¤𝜔𝑥 , ¤𝜔𝑦, ¤𝜔𝑧 , 𝑎𝑥 , 𝑎𝑦, 𝑎𝑧 ], ground-truth
2-D velocity from GPS speed and heading, and local 𝑥–𝑦
position for evaluation.

• AlignedSensorLogSequence (Android, GPS-adjustedRoNIN).
Adapted from the original RoNIN framework, this loader pro-
cesses Android IMU and GPS data as follows:
(1) Aligns raw IMU streams (gyroscope, accelerometer, mag-
netometer) onto a unified timeline.

(2) Replaces the Tango-based ground truth with phone GPS
data.

(3) Converts GPS latitude, longitude, and altitude to local
East-North-Up (ENU) coordinates for positional ground
truth.

(4) Uses GPS-derived velocity estimates as target values.
(5) Enables realistic positioning without dependence on spe-
cialized hardware like the Tango device.

Both loaders construct a consistent 6-channel IMU feature vector
(gyroscope and accelerometer) for each timestamp. After prepro-
cessing, each experiment yields three aligned arrays: features (𝑁 ×6),
targets (2-D velocity), and auxiliary data (timestamps, orientation
quaternions, and ground-truth position).

4.3 Upsampling Techniques
We selected a 40Hz sampling rate to emulate a realistic low-power

configuration, as this is a common lower bound for reliable human
motion capture. Additionally, we tested a 100 Hz rate to examine an
intermediate, moderate-power setting that still challenges neural
inertial odometry models.

We tested three interpolation strategies to reconstruct high-frequency
IMU streams from the original data:

• Linear Interpolation: Missing samples were interpolated
by piecewise linear interpolation between original 40Hz data
points using the function interp1d in the SciPy package [13].
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Upsampling Techniques

Raw IMU Data

Data Preprocess-
ing & Gravity
Alignment

FIR Filter
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Kalman Filter
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Inference with
Pre-trained

RoNIN Model

Raw Android
RoNIN Dataset

Data Preprocess-
ing & Gravity
Alignment
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(Low-pass Filter
+ Decimation)

Train New RoNIN
Models at each Rate
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Trajectory

Performance
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to 200 Hz

200 Hz

10, 20, 30, 40,
50, 100, 150 Hz

Route 1: Upsampling for Inference Route 2: Downsampling & Retraining

Figure 2. Diagram of the IMU-based localisation methodology. It shows the two experimental routes: (i) upsampling low-rate iOS data to run on a pre-trained
high-rate RoNIN model, and (ii) downsampling high-rate Android data to retrain and evaluate new RoNIN models at various sampling rates. Both pipelines
result in a 2D trajectory which is evaluated against ground truth data.

• FIR Filter-Based Upsampling: Zero-stuffing was employed
by inserting zeros between samples to perform upsampling
and then applying a polyphase FIR low-pass filter designed
using the firwin and upfirdn functions in the SciPy pack-
age [13]. The cutoff frequency was set to 20Hz producing a
smooth band-limited signal.

• Kalman Filter-Based Upsampling: A discrete four-state
Kalman filterwith Rauch–Tung–Striebel (RTS) smoothing [11]
was created per signal axis. The filter state contained posi-
tion, velocity, acceleration and bias, with the filter predicting
intermediate points at the higher sampling rate (0.01s steps
for 100Hz, and 0.005s for 200Hz) and being updated every
0.025s based on the actual (observed) 40Hz measurements.

4.4 Model Inference and Evaluation
The pre-trained RoNIN ResNet model, originally trained on 200Hz

data, was used for predictions. For evaluation on lower-rate data
(e.g., 40Hz or 100Hz), first we temporally upsampled input sequences
to 200Hz using the corresponding interpolation or filtering tech-
nique, ensuring compatibility with the model’s expected input rate.
Windowing was then performed to match the original model config-
uration (e.g., 400 samples per 2 seconds window), and model outputs
were integrated to generate 2D trajectories.

4.5 Downsampling
This part of our work assesses how the IMU sampling rate affects

inertial odometry performance. Our methodology is based on a

4



Beyond 200 Hz: An Evaluation of Low-Rate IMU Sampling for Pedestrian Inertial Odometry TScIT 43, July 4, 2025, Enschede, The Netherlands

downsampling analysis of the well-known RoNIN inertial dataset
[9]. The first phase of this analysis involves recreating the original
RoNIN training to arrive at a high-frequency baseline of 200Hz.
Following a spectral analysis of the IMU signals in the RoNIN dataset
[9], the process involved designing an appropriate lowpass filter and
implementing a decimation scheme to generate multiple datasets at
reduced sampling frequencies (10Hz, 20Hz, 30Hz, 40Hz, 50Hz, 100Hz,
and 150Hz). The overall objective of the analysis is to identify the
lowest sampling rate to which IMUs can be downsampled, in which
the model could still maintain an overall acceptable performance
before its performance rapidly decreased.

Downsampling Procedure: Each trajectory underwent the stan-
dard RoNIN preprocessing procedure, this involved calibrating out
sensor biases, transforming raw accelerations to linear acceleration
by removing gravity, and rotating all IMU measurements to the
global (gravity-aligned) frame of reference. Following this prepro-
cessing, down-sampling occurres. An FIR low-pass filter with zero
phase lag, designed using a Hamming window, was applied first us-
ing the firwin and filtfilt functions from the SciPy package [13].
Decimation was then performed by selecting every 𝑛th sample from
the filtered high-rate signal to obtain the desired lower frequency.
The cutoff frequency was set to 15 Hz, based on the results of the
spectral analysis of human motion, which was done with the RoNIN
dataset, showing that over 95% of the signal energy is concentrated
below 15 Hz. This choice ensures that as much motion information
as possible is retained, while effectively reducing aliasing. These
same procedures represent a substantial improvement over what
occurred in the RoNIN study which only relied on the smoothing
properties of the device.

Model Training at Lower Rates: We trained individual RoNIN
models from scratch at each downsampled rate, namely, 10, 20, 30,
40, 50, 100, 150 Hz. The original RoNIN ResNet-model architecture
and training procedure remained unchanged, with only the input
sequence length adjusted to match the new sampling rate. Thus, a
fixed-duration (e.g., 2-second) input window at 200 Hz contained
400 samples, whereas at 40 Hz, it contained only 80 samples. Each
model was trained independently, beginning from random weight
initialisation, thus eliminating any potential bias from the original
pre-trained model. This provided an unbiased measure of how well
the model could adapt specifically to low-rate IMU inputs.

Performance Evaluation: To assess the trajectory precision for
each model trained on downsampled data, we measure Absolute Tra-
jectory Error (ATE) and Relative Trajectory Error (RTE), following
the evaluation protocol established in the original RoNIN benchmark
[9]. ATE measures the overall drift in position over the entire trajec-
tory, while RTE measures the drift average over shorter segments
of the trajectory. Evaluation relies on ground truth trajectories from
the RoNIN dataset, originally recorded with a high-accuracy Tango
device. To assess horizontal errors in the trajectories, the ground
truth trajectories were rendered flat on a 2D plane.
Efficient downsampling was accomplished using signal process-

ing methods. Retraining at each sampling rate enabled an explicit
and unbiased evaluation of the trade-offs between IMU sampling
rate and inertial odometry accuracy. The next section summarises
all the quantitative results from the experiments described in this
paper.

5 RESULTS

5.1 RQ1: Effect of IMU Sampling Rate on RoNIN
Performance

Controlled experiments showed the influence of different IMU sam-
pling rates on inertial-odometry drift and accuracy. Two model
types were evaluated:

(a) the original pre-trained RoNIN model (trained on the full RoNIN
dataset at 200 Hz);

(b) four RoNIN models re-trained from scratch on IMU data down-
sampled to 150, 100, 50, and 40 Hz.

All models share the same RoNIN-ResNet backbone and differ
only in input sampling rate. The RoNIN dataset (IMU and ground-
truth trajectories logged at 200 Hz) served as the source of training
and testing data [9].

Table 2 summarises average ATE and RTE on the seen and unseen
RoNIN test sequences. Lower IMU rates, such as 30 Hz, 20 Hz, and 10
Hz, consistently produced larger drift. The 200 Hz pre-trained model
achieved the lowest errors, with a median drift of less than 5 meters
after several minutes of walking and the 40 Hz model showing more
than double the drift on unseen sequences; intermediate rates fell
between these extremes. A more detailed breakdown and discussion
of model retraining at additional sampling rates (30, 20, 10 Hz) is
provided in Section 5.3.

Answer to RQ1. On the RoNIN benchmark (4–10 minutes se-
quences), only the native 200 Hz configuration kept drift within
meter-level bounds (approximately 3 mATE, 2.5 m 1-minute RTE). A
modest reduction to 150 Hz already doubled the accumulated error
to roughly 6m, while further reductions—100Hz (about 6.5 m), 50 Hz
(about 7 m), 40 Hz (about 6.4 m), and 30 Hz or below (8–9m)—pushed
the drift beyond the 5 m target commonly regarded as acceptable for
indoor pedestrian tracking. Consequently, maintaining drift within
5 m with only a single start reference proved achievable only at
200 Hz, if a more relaxed 10 m ceiling is acceptable, 40 Hz serves
as a practical lower bound, with slower rates resulting in rapidly
increasing drift.

5.2 RQ2: Temporal Super-Resolution (Upsampling
Low-Rate IMU to 200 Hz)

To address RQ2, we upsampled low-rate IMU sequences (40 Hz
and 100 Hz recordings form the walk) to 200 Hz using three ap-
proaches: simple linear interpolation, zero-stuffing with FIR low-
pass filtering, and Kalman Rauch–Tung–Striebel (RTS) smoothing.
These 200 Hz reconstructions were then fed into the original pre-
trained RoNIN model (which expects 200 Hz input) without any
retraining. Table 1 summarises the results of the localisation drift.

The experimental findings clearly demonstrated that none of the
three upsampling methods achieved the high-rate accuracy desired
by RoNIN. The drift noted was well over the target accuracy level. In
the case of the 40 Hz sequences upsampled to 200 Hz, the ATE was
between 199 m (linear interpolation) and 215 m (Kalman smoothing),
while the ATE for the original 200 Hz data recorded along the same
trajectory was approximately 3.24 m ATE. The 100 Hz sequences
were marginally better, and had an ATE around 175 m ATE in the
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Figure 3. Example of acceleration data upsampled from 40 Hz to 200 Hz using FIR.

upsampling phase, but still had performance well below the 200 Hz
native data.

Table 1. RQ2 localisation accuracy after upsampling low-rate IMU to 200
Hz and feeding the unchanged RoNIN model. Lower is better.

Input Upsampler ATE [m] RTE [m]

40 Hz→ 200 Hz FIR 203.4 70.2
Kalman 215.1 71.0
Linear 199.0 69.8

100 Hz→ 200 Hz FIR 175.4 68.8
Kalman 177.0 69.2
Linear 173.6 68.6

Native 200 Hz (baseline) – 3.24 2.45
40 Hz (direct, no upsampling) – 160.32 138.40

The results also show negligible differences in final accuracy be-
tween the three interpolation methods. All interpolation techniques
have similar trajectory errors within a few meters, suggesting that
the primary limitation comes from the fundamental lack of high-
frequency information in the lower-rate IMU data, rather than the
interpolation method itself. Moreover, the relative trajectory error
(RTE) seems to have a small positive effect from data upsampling in
the short-term splits—from around 138 m (40 Hz direct) to around
70 m. Although, the short-term smoothing effect was not enough to
address the large, long-term extent of drift. The trajectories from
the upsampled data also had significant differences from the actual
path taken, see Figure 3.

These results demonstrate that temporal upsampling has impor-
tant limitations when the task is to retrieve lost high-frequency in-
ertial information. Once IMU data is undersampled, high-frequency
detail of a movement is lost irretrievably and to which interpolation
cannot authentically recover. Even the more sophisticated Kalman
smoothing, utilizing predictive motion models are unable to produce
authentic high-frequency events.
In terms of computational feasibility, all interpolation methods

tested required a moderate amount of processing time, with linear
interpolation being the fastest, FIR filtering moderately demanding,
and Kalman-RTS smoothing the most computationally intensive.
However, since none of these methods improved localisation accu-
racy after upsampling low-rate IMU data, the additional computa-
tion did not provide any practical benefit.
Given these negative outcomes, further investigation into RQ3

is justified, specifically exploring the potential of training inertial
odometry models directly on low-frequency IMU data, rather than
attempting to artificially enhance the data via temporal super reso-
lution.

5.3 RQ3: Low-Rate Model Retraining (Downsampled IMU
Data 10–150 Hz)

To address RQ3, the RoNIN inertial odometry model was re-
trained on progressively downsampled versions of the original
200Hz dataset, specifically at IMU rates of 150Hz, 100Hz, 50Hz, 40Hz,
30Hz, 20Hz, and 10Hz. Each low-rate model underwent evaluation
on two test sets: (i) the seen set from the RoNIN distribution, and (ii)
the unseen set consisting of RoNIN unseen sequences not included
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Figure 4. Trajectory and velocity predictions for an unseen test sequence at 40 Hz.

in the training set. The seen test assesses performance in the training
data distribution and the unseen test assesses generalisation.
Table 2 summarises the localisation accuracy for each model in

terms of Absolute Trajectory Error (ATE) and Relative Trajectory
Error (RTE). The original 200Hz RoNIN model serves as a baseline,
achieving approximately 3m ATE on unseen data [9].

Table 2. Performance of RoNIN-style models retrained on downsampled
IMU rates. Lower is better for all metrics.

IMU Rate
ATE

seen [m]
RTE

seen [m]
ATE

unseen [m]
RTE

unseen [m]

10 Hz 6.97 55.71 8.96 40.91
20 Hz 6.65 16.44 8.06 18.20
30 Hz 5.40 9.32 8.23 13.58
40 Hz 4.87 5.79 6.41 8.30
50 Hz 5.33 3.48 7.01 4.90
100 Hz 5.59 4.26 6.52 5.31
150 Hz 5.49 3.31 6.22 4.86

Despite retraining, all lower-rate models exhibited increased drift
compared to the 200Hz baseline. On the seen test set, ATE increased
significantly from approximately 3m at 200Hz to 5–7m at lower
sampling rates. The unseen test set showed a more pronounced
performance degradation, with drift at 10Hz reaching nearly 9m
ATE and 41 m RTE, reflecting severe degradation at extremely low
rates.

Models assessed at intermediate rates showed relatively moderate
performance loss, with ATE ranging approximately between 6–7 m.
Interestingly, the model assessed at 40 Hz still performed reasonably
(6.41 m ATE), although this was still double the baseline drift at 200
Hz. The models assessed at 10, 20, and 30 Hz displayed progressively
worse performance with critical thresholds around 40 Hz where
accuracy drops sharply.

Figure 4 shows a typical trajectory from the unseen test set using
the 40 Hz downsampled model. The predicted path has moderate
drift and moves away from the ground truth, highlighting the diffi-
culty of accurate long-term predictions at this rate. The predicted
velocity components (Velocity X/Y (m/s)) are relatively accurate
over short periods, indicating that the model can still capture quick
motion changes at lower rates. However, even with good short-term
accuracy, errors add up over time and lead to noticeable drift in
longer sequences.
It is probable that minor inconsistencies across sampling rates,

such as small relative shifts in performance for medium frequencies
are likely caused by stochasticity of training/training on particu-
lar sequences rather than a benefit associated with any specific
sampling rate.

The drop in accuracy continues even though most human motion
IMU signals are below 15 Hz. Several factors may explain the drop:

(1) Information loss and aliasing: Without perfect anti-alias
filtering, downsampling can remove or distort important high-
frequency details.

7
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(2) Model temporal resolution: Higher sampling rates make it
easier for the model to produce stable and less noisy velocity
estimates.

(3) Training generalisation: Models trained on lower-rate data
may become too used to smoother signals and struggle to
handle sudden movements in real-world situations.

In summary, retraining directly on downsampled data proved
more effective than naive upsampling (RQ2), with lower-rate models
still able to maintain reasonable pedestrian localisation accuracy in
many scenarios.

6 FUTURE WORK
This study demonstrates a clear and difficult trade-off between

the IMU sampling rate and pedestrian inertial odometry accuracy,
showing that currently ubiquitous state-of-the-art architectures,
like RoNIN [9], have great difficulty achieving meter-level precision
below a 150–200 Hz sampling rate. While retraining on downsam-
pled data is an enormous gain from simply naive upsampling, a
meaningful accuracy gap still remains. Future work should shift
from just trying to mitigate information loss, but rather developing
systems that are naturally more robust against sparse observations.
This section suggests two research directions that could help close
the current gap between sampling rate and accuracy.
First, the paradigm of constant-rate sampling should be chal-

lenged in favour of more intelligent, energy-efficient sensing strate-
gies. This work treated sampling rate as a static parameter, yet
human motion is highly dynamic. A promising way is adaptive or
event-driven IMU sampling. A device could operate in an ultra-low-
power state (e.g., 10–20Hz) to monitor for motion, changing to a
higher rate (e.g., 100Hz) only upon detecting significant dynamic
events like the initiation of walking or turning. This would detect
when high-resolution data is needed to minimize drift, while con-
serving energy during static or low-dynamic periods. This approach
requires co-design of the hardware, firmware, and the odometry
model, which must be robust to variable and non-uniform input
data rates.

Second, future work should focus on creating models for different
application needs and on combining data from multiple types of
sensors. This research found that 40Hz is a practical lower limit for
applications that can tolerate about 10 meters of drift. Instead of
aiming for a single model that works for all cases, it is more effec-
tive to develop several models, each tailored to different accuracy
requirements. A 30 Hz model is suitable for casual activity track-
ing, while first responders require a 200 Hz model for navigation.
To improve results at lower rates, it is important to combine IMU
data with information from other low-power sensors. For example,
adding occasional updates from barometers (for altitude), magne-
tometers (for heading), or Wi-Fi/BLE signals can help correct drift
that builds up with low-frequency IMU data. These steps are essen-
tial for achieving accurate, reliable localisation on future mobile and
wearable devices with limited power.

7 CONCLUSION
This paper set out to identify the lowest IMU sampling rate that

can support accurate pedestrian inertial odometry, and to test two

broad compensation strategies: temporal upsampling (RQ2) and
native low-rate retraining (RQ3). Controlled experiments on the
RoNIN benchmark yielded three clear takeaways.

(i) RQ1 – How low can we go? With only a single start refer-
ence, drift rises steeply as the sampling rate falls. Native 200 Hz
remains the only setting that consistently keeps drift within the
tight 5m bound (approximately 3m ATE, 2.5m 1-minutes RTE on
unseen sequences). A modest reduction to 150Hz already doubles
the error (about 6m ATE), and every further reduction—100Hz
(about 6.5m), 50Hz (about 7m), 40Hz (about 6.4m), 30Hz and be-
low (8–9 m)—pushes the trajectory error beyond the 5 m threshold
commonly deemed acceptable for indoor tracking. If the application
tolerates a more relaxed 10 m ceiling, the results suggest that 40
Hz is a practical lower bound, but anything slower leads to rapidly
escalating drift.

(ii) RQ2 – Temporal super-resolution does not help. Upsampling
40–100 Hz IMU data to 200 Hz using linear, FIR, or Kalman–RTS
interpolation did not improve results: ATE increased to over 170 m.
This shows that once important information is lost due to aggressive
downsampling, it cannot be recovered by simply increasing the
sample rate afterward.

(iii) RQ3 – Native low-rate training helps, but not enough. Retrain-
ing RoNIN from scratch at each target rate (10–150 Hz) outperformed
naive upsampling, yet still fell far short of the 200 Hz baseline. The
best low-rate models (40–50 Hz) averaged 6–7 m ATE on unseen
data—roughly double the error at full rate—while 20 Hz and 10 Hz
deteriorated to 8 m + drift and severe 1-minute RTE spikes. In short,
energy savings below 40 Hz come at a sharp accuracy cost with the
current architecture.

ACKNOWLEDGMENTS
I used artificial intelligence tools (like OpenAI models) to help im-

prove the grammar, wording, and clarity of this paper. AI also helped
with technical issues and code debugging. All ideas, experiments,
and conclusions are my own.
In addition, sincere thanks to Undagrid team for their support

and encouragement during this project. Special thanks to Rob Kers,
Martijn Hilders, and Tsung-Huan Wu for their guidance, feedback,
and technical help, which were essential for this paper.

REFERENCES
[1] M. Brossard, A. Barrau, and S. Bonnabel. 2020. AI-IMU Dead-Reckoning. IEEE

Transactions on Intelligent Vehicles 5, 2 (2020), 274–287. https://doi.org/10.48550/
arXiv.1904.06064

[2] T. Chen and et al. 2022. WHUViD: A Stereo-IMU Dataset for Visual-Inertial
Odometry. Remote Sensing 14, 7 (2022), 1691. https://doi.org/10.3390/rs14092033

[3] Y. Chen, X. Zou, Y. Zhang, S. Wang, C. Xie, Q. Huang, and Y. Wang. 2018. IONet:
Learning to Cure the Curse of Drift in Inertial Odometry. In Proceedings of the
AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v32i1.12102

[4] S. S. Saha et al. 2022. TinyOdom: Hardware-Aware Efficient Neural Inertial
Navigation. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT) 6, 2 (2022), 71:1–71:32. https://doi.org/10.1145/3534594

[5] B. Fan and et al. 2025. Influence of Sampling Rate on Wearable IMU Orientation
Accuracy. Sensors 25, 7 (2025), 1976. https://doi.org/10.3390/s25071976

[6] S. Fioranelli and et al. 2024. In-sensor Human Gait Analysis with Machine Learn-
ing. Communications Engineering 1, 1 (2024). https://doi.org/10.1038/s44172-024-
00193-5

[7] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of the

8

https://doi.org/10.48550/arXiv.1904.06064
https://doi.org/10.48550/arXiv.1904.06064
https://doi.org/10.3390/rs14092033
https://doi.org/10.1609/aaai.v32i1.12102
https://doi.org/10.1145/3534594
https://doi.org/10.3390/s25071976
https://doi.org/10.1038/s44172-024-00193-5
https://doi.org/10.1038/s44172-024-00193-5


Beyond 200 Hz: An Evaluation of Low-Rate IMU Sampling for Pedestrian Inertial Odometry TScIT 43, July 4, 2025, Enschede, The Netherlands

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3354–3361.
https://doi.org/10.1109/CVPR.2012.6248074

[8] R. Harle. 2013. A Survey of Indoor Inertial Positioning Systems for Pedestrians.
IEEE Communications Surveys & Tutorials 15, 3 (2013), 1281–1293. https://doi.
org/10.1109/SURV.2012.121912.00075

[9] S. Herath, H. Yan, and Y. Furukawa. 2020. RoNIN: Robust Neural Inertial Naviga-
tion in the Wild. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA). https://doi.org/10.48550/arXiv.1905.12853

[10] Hexagon | NovAtel. 2020. Inertial Navigation Systems and Vibration – Application
Note APN-112. Technical Report. Hexagon | NovAtel.

[11] H. E. Rauch, F. Tung, and C. T. Striebel. 1965. Maximum-Likelihood Estimates of
Linear Dynamic Systems. AIAA Journal 3, 8 (1965), 1445–1450. https://doi.org/

10.2514/3.3166
[12] Howard Snow et al. 2024. Pyproj: Python interface to PROJ (cartographic projections

and coordinate transformations library). https://pyproj4.github.io/pyproj/ Version
3.7.1.

[13] P. Virtanen and et al. 2020. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods 17, 3 (2020), 261–272. https://doi.org/10.
1038/s41592-019-0686-2

[14] H. Yan, Q. Shan, and Y. Furukawa. 2018. RIDI: Robust IMU Double Integration.
In Proceedings of the European Conference on Computer Vision (ECCV). https:
//doi.org/10.48550/arXiv.1712.09004

9

https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/SURV.2012.121912.00075
https://doi.org/10.1109/SURV.2012.121912.00075
https://doi.org/10.48550/arXiv.1905.12853
https://doi.org/10.2514/3.3166
https://doi.org/10.2514/3.3166
https://pyproj4.github.io/pyproj/
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.48550/arXiv.1712.09004
https://doi.org/10.48550/arXiv.1712.09004

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Methodology
	4.1 Data Collection
	4.2 Data Preprocessing
	4.3 Upsampling Techniques
	4.4 Model Inference and Evaluation
	4.5 Downsampling

	5 Results
	5.1 RQ1: Effect of IMU Sampling Rate on RoNIN Performance
	5.2 RQ2: Temporal Super-Resolution (Upsampling Low-Rate IMU to 200 Hz)
	5.3 RQ3: Low-Rate Model Retraining (Downsampled IMU Data 10–150 Hz)

	6 Future Work
	7 Conclusion
	Acknowledgments
	References

