
1

Distillation and Partial Model Freezing for
Continual Learning in Neural Fields

Wouter Visser

Abstract—Neural fields have increasingly been utilised as signal
representations. Using neural networks, they can be applied as
solutions to problems such as creating continuous representations
and solving inverse problems.

In some use cases, the signals represented are not only spatial
but also temporal. In practice, when such a signal has to be
represented, it can be beneficial to incorporate measurements into
an existing neural field as soon as they are available. However,
this presents a problem, as neural networks, which neural fields
are based on, can forget knowledge learnt when being presented
with new knowledge.

Considerable research has been conducted on remedying
this problem in general neural networks. However, differences
in model input and architecture compared to general neural
networks mean that the results from this research may not be
directly applicable to neural fields.

In this work, we investigate how continual learning affects neu-
ral fields of different architectures. Additionally, we demonstrate
two methods that can be used to remedy the problems caused by
continual learning in neural fields. First, we demonstrate how
the model trained on earlier tasks can be reused to prevent
performance degradation through knowledge distillation when
learning a subsequent task. Second, we demonstrate how, for
models using a DINER architecture, a part of the model can be
frozen, thereby lowering performance loss while still allowing the
model to learn to represent new measurements.

In summary, we show that the continual learning of neural
fields of various architectures is, to a reasonable extent, feasible.

I. INTRODUCTION

In recent years, neural fields, also known as implicit neural
representations, have emerged as a novel method for continu-
ously representing signals on low-dimensional domains [1].
In neural fields, a signal is modelled with the help of a
multi-layer perceptron (MLP). Given a function on a spatial
or spatiotemporal domain, a neural field takes coordinates
in space and/or time as input and is trained to output the
signal or signals at that coordinate. This training is often
done using reference outputs for some coordinates. During
inference, the value can be queried for any coordinate in the
coordinate space. This means the training creates a continuous
representation based on the training data.

A neural field can be trained directly, but training of
neural fields can also be achieved indirectly through a dif-
ferentiable transformation of the output. Differentiability is
necessary so the gradients can be backpropagated through
the transformation to the parameters of the neural field.
The ability to create an interpolatable representation from
measurements from inverse problems makes neural fields an
attractive solution for signal representation. Because of this,
neural fields have seen use in diverse applications like 3D

shape representation [2], medical image reconstruction [3]–[5]
and novel view synthesis [6], [7].

These applications utilise spatial coordinates, but neural
fields can also be used to represent spatio-temporal signals.
This has been used for areas like video representation [8] and
disease monitoring [9]. Most neural field methods assume that
all datapoints used for fitting are available simultaneously,
allowing for a single fitting stage. In practice, this might
not always be the case. For instance, if the time between
measurements is long, a trained neural field might already
be needed between measurements. In this case, it would be
advantageous to process the available signals as they become
available. However, if the neural field has to be changed
when additional measurements become available, it would be
inefficient to retrain it completely. Additionally, the measure-
ments used to train the model initially may no longer be
available. Instead, fine-tuning the existing parameters to fit
the new measurements would be more efficient. This could
present a problem, as MLPs suffer from a problem called
catastrophic forgetting [10], meaning that when training data
is incrementally introduced to an MLP, data learnt first tends
to be forgotten.

A large amount of research has been done into remedying
the effects of catastrophic forgetting, i.e. ’continual learn-
ing’ [11]. Most of the previously done research has been on
more general machine learning applications, such as image
classification. Some differences between these applications
and neural fields mean that some of the research might not
fully transfer.

First, there is a significant difference in the input. Instead of
the high-dimensional and complex input used in many general
machine learning tasks, neural fields have a very structured
and low-dimensional input. Theoretical research on continual
learning through the Neural Tangent Kernel shows that the
similarity of the data contributes to forgetting [12]. Due to
the high similarity of the input for neural fields, they may be
especially prone to catastrophic forgetting.

Additionally, neural fields often have a distinct architecture
compared to other neural network applications. This is because
the signals learnt by neural fields often have a high frequency.
This is a problem for neural networks, as they are slower
at learning higher-frequency signals, known as the spectral
bias of neural networks [13]. To solve this problem, changes
are made to the models to make them more resistant to this,
often by changing the activation function of the network [14]–
[16]. The chosen activation functions also affect how a neural
network behaves in a continual learning scenario [17].

In this work, we analyse how commonly used models for
neural fields and their hyperparameters affect continual learn-

2

Fig. 1: The stability-plasticity tradeoff visualised. A model
should have the plasticity to move away from θ1, but the
stability not to move too far to θ2.

ing behaviour. Next, we show two methods that can be used to
remedy catastrophic forgetting. First, the structure of the input
can be used to allow an old version of the model to teach a new
version on old tasks through knowledge distillation. Second,
the architecture employed by hashmap-based models enables
the separation of the output representation from the input
coordinate structure. This means we can reduce forgetting by
learning only one of these parts while preventing the other part
from learning. Through experiments with representations of
natural and medical images, we show how these can contribute
towards continual learning in neural fields.

II. BACKGROUND

The big challenge for continual learning is catastrophic
forgetting [10], [17]. Catastrophic forgetting is the problem
where, when a machine learning model is incrementally
trained on tasks, it loses performance on early tasks [18], [19].
If a model or method can overcome forgetting, it is described
as stable.

However, this is only one aspect of continual learning. Not
only can the model forget old knowledge, but it can also lose
the ability to learn new knowledge. This aspect is known as
plasticity, where a model that can learn new knowledge is
described as plastic. In the field of continual learning, most
research has focused on overcoming catastrophic forgetting;
however, some studies indicate that models are also unable to
acquire new knowledge infinitely [20].

Together, this problem is called the stability-plasticity trade-
off. Machine learning models should remain plastic enough to
learn new knowledge, but stable enough to remember what
is learnt from earlier samples. This principle is visualised
in Figure 1. Here, θ1 denotes the model’s parameters after
training on task 1. Plasticity means the ability to move the
parameters away from θ1, ideally to θ1:2, the parameters with
the best performance on tasks 1 and 2. Stability is the ability
to resist continuing this movement to θ2, the ideal parameters
for just task 2.

Several techniques have been developed for continual learn-
ing. In general, these can be divided into five categories.

a) Weight Regularisation: The first group of methods
restrict the weight changes between tasks. Starting from the
second task, these methods add a regularisation term to the loss
function of the task learnt. This regularisation term consists of
the difference between the model parameters after training a
previous task and the current parameters. However, as some
parameters are more important to the model’s output on a
task than others, this difference is weighted by an importance
metric for each parameter. Examples of this include the Fisher
information for Elastic Weight Consolidation (EWC) [18] or
the history of gradients during training for Synaptic Intelli-
gence [21].

b) Experience Replay: Another method used is selec-
tively saving samples from previous tasks. Then, during the
training of the next task, these samples are replayed to the
model, so it does not forget them. Research surrounding this
method focuses on two key questions: Which samples are the
most effective to save (e.g., [22]), and which sample is the
most suitable to use during training for the new task (e.g.,
[23]).

c) Knowledge Distillation: A downside of saving pre-
vious samples is that it requires storage, as well as prior
knowledge that continual learning will occur. To solve this
problem, a previous version of the model can be used. After
training on a task, the model should perform well on that task.
So, when trying to maintain performance, a previous version
of the model can be used instead of saving the solution to these
inputs. Then, for some input, the currently training model is
also trained to maintain the output of the previous model.
This method is known as knowledge distillation. However,
determining the input to use for distillation is a challenge,
for which previous works have proposed using training data
from previous tasks [24], unlabeled data [25], or new training
data [26].

d) Optimisation Strategies: Fourth, the optimisation
strategy can also be adapted to prevent forgetting. An example
of this is Orthogonal Gradient Descent [27]. In this method, the
derivative of the loss on a task with respect to the parameters
is stored after training each task. Then, during the training of
subsequent tasks, the calculated weight updates are changed
such that they are orthogonal to the stored derivative.

e) Architecture Changes: Lastly, the model itself can
also be adapted to prevent forgetting. This means designating
certain parts of the model to different tasks. One possibility
is to use parameters that are important for a specific task
selectively through a learnt binary mask (e.g. [28]). Another
option is creating specific parts of the model for different tasks
(e.g. [29]).

III. RELATED WORK

Some works exist that explore continual learning in neural
fields. Most of these methods employ a version of knowledge
distillation to achieve their goal.

Continual Neural Mapping [30] continuously learns a signed
distance function (SDF). This is done by incrementally using
measurements from different depth camera views. To prevent
forgetting, a combination of knowledge distillation and replay

3

TABLE I: NeRF continual learning methods and their distil-
lation data generation method

Paper Ray generation method

Po et al. [31] Saving previous rays
CLNeRF [32] Saving centre rays and camera parameters
MEIL-NeRF [33] Generator neural network
UNIKD [34] Uncertainty-filtered randomly generated rays

is used. For zero level-set samples, a fixed-size buffer of
samples from previous tasks is kept. The previous network
is only used for off-surface samples.

A large number of methods [31]–[34] are defined on Neural
Radiance Fields (NeRF), a famous use case of neural fields. In
NeRF [6], a 3D representation of a scene is constructed using
images of that scene. For each pixel of these images, a ray is
marched through the neural field, which regularly evaluates the
neural field using the position and viewing angle. The neural
field returns the colour and density at these positions, which
are combined to give an output colour. The loss is calculated
on the output colour and the actual pixel value.

In these NeRF continual learning methods, previous rays are
either saved or used to generate new ones, depending on the
technique. The exact methods used to generate rays per method
are shown in Table I. These rays are then marched through the
old neural field. The output is then used to supervise the new
model.

These methods do not cover all cases for multiple reasons.
First, instead of expanding the input domain, these methods
focus on specifying information in previously trained regions.
Often, the scene represented using these methods remains
in the same region of space, but views are incorporated
from different angles to correct any mistakes. However, new
measurements can also be incorporated in different regions of
the input space for which no measurements are available yet.
As this is a different approach, findings from these methods
do not necessarily generalise to new input regions or outputs
that are trained.

Second, these works propose methods that rely on their
specific use case to function. For the NeRF models, infor-
mation about the rays marched through the model in previous
tasks is used to prevent forgetting. Similarly, Continual Neural
Mapping utilises the structure of SDF to determine whether
distillation or replay should be employed and which samples to
use. However, when not using these use cases, these methods
are not defined.

Lastly, these works each only investigate how to solve the
problem for one model architecture, most commonly a posi-
tionally encoded ReLU model. This model is often used for the
NeRF use case. However, as explained in the introduction, the
choice of model architecture likely influences the forgetting
behaviour of neural networks. Additionally, as more models
are commonly used in neural fields, understanding how these
influence forgetting behaviour is important.

IV. PROBLEM SETTING

In neural fields, we are interested in approximating a signal
consisting of values for every coordinate in a coordinate space.

(a) Full Sample (b) Input Expansion (c) Output Expansion

Fig. 2: Examples of the signal expansion types. Each image
shows an example of the first task. Figure 2b shows the top
quarter of the image. Subsequent tasks would consist of the
other parts of the image. Figure 2c shows only the red band
of an RGB image. The following tasks could be the green and
blue bands of the image.

This coordinate space can be spatial or spatiotemporal. The
representation is done by training a neural network, with
parameters θ. Typically, this network is trained using a single
training set, where the loss, called Lfit, is minimised. This
training set typically consists of coordinates for which the
corresponding values are known. However, it can also consist
of transformations, for which coordinates can be calculated,
whose values can be combined to train the neural network.
An example of this is images and their associated camera
parameters, as seen in novel view synthesis.

In continual learning of neural fields, the training set is split
into tasks. Each task has its own associated training set of
samples.

A. Signal Expansion Types
We identify two ways in which newly acquired measure-

ments can be integrated into a trained neural field. Figure 2
visualizes an examples of each type for a 2D image.

First, data can be acquired from new regions in the spatial
or spatio-temporal coordinate space. This means that a model
could be trained on measured data from one region and
expanded with data from another area, while preserving the
information from the previous region. Each task would then
consist of measurements from distinct regions in the input
space. For instance, measurements can be made at different
points in time, which are added to a spatiotemporal neural field
when they become available. Alternatively, separate measure-
ments can be made in different areas of space and combined
into a unifying representation.

Second, new information may become available for pre-
existing regions in the input space. So, for every point in
the spatiotemporal coordinate space, the number of outputs
increases. The coordinates from each task would then be from
the same region. However, during each task, only a subset
of output values is available. For example, measurements of
different properties in the same domain can be combined into
a unifying representation.

V. METHODS

A. Neural Field Architectures
Several models have been proposed for neural fields. The

primary difference between the models is how they deal with

4

(a) Ground Truth (b) ReLU (c) Postional Encoding (d) SIREN (e) FINER (f) DINER

Fig. 3: Comparison of how well each neural network architecture used fits a sample image. The ReLU model does not fit the
sample well due to the spectral bias.

(a) ReLU (b) SIREN (c) FINER

Fig. 4: Comparison of the activation functions used.

spectral bias [13]. This is the problem that neural networks
are slower to learn high-frequency signals compared to low-
frequency ones. An example of this is shown in Figure 3b,
where the model fails to accurately fit a sample image. As
neural fields often need to represent high-frequency signals,
such as images, they frequently suffer from spectral bias.
Various techniques have been proposed to address this issue.
The different approaches we use are introduced in this section.
Examples of how each model fits an image are shown in
Figure 3.

1) Postional Encodings: A commonly used method to
address the spectral bias problem is to utilise positional
encodings. These transform the coordinates into a higher-
dimensional space. The encoded coordinates are used as input
for a regular ReLU model. We refer to the combined system
as a P.E. ReLU model.

The positional encodings are similar to and inspired by
the positional encodings used by transformers [35]. We use
the positional encodings used by Neural Radiance Fields
(NeRF) [6]. This encoding consists of L increasingly high-
frequency sine and cosine functions to encode each input
variable x, according to the following formula:

γ(x) = [sin(20πx), cos(20πx),

sin(21πx), cos(21πx), . . . ,

sin(2L−2πx), cos(2L−2πx)

sin(2L−1πx), cos(2L−1πx)]

The positional encodings for each input variable are concate-
nated to form the model input.

2) SIREN: Sinusoidal representation networks
(SIREN) [14] replace the activation function of the neural
network with a sine function and scale the input to this
activation function by a factor called ω0. This makes the
activation function used α(z) = sin(ω0z). The activation

function is shown in Figure 4b. The scaling factor allows the
activation function to be tuned to suit the frequency of the
signal it attempts to fit, with a higher ω0 enabling the model
to fit higher-frequency features.

In the body of the original SIREN paper [14], the authors
state that ω0 should be applied in the first layer of the neural
network. However, in the appendix, they state that performance
increases if a scaling factor is included in all layers. To
differentiate the scaling factor used in the initial layers from
the factor in the later layers, we refer to the former as ω0 and
the latter as ωi

3) FINER: While SIREN and positional encodings enable
the fitting of high-frequency features, the (co)sine functions
mean the model is only well-suited to a subset of frequencies.
To combat this, Flexible spectral-bias tuning in Implicit Neu-
ral Representation (FINER) [15] further adjusts the SIREN
activation function, creating α(z) = sin(ωi(|z| + 1)z). This
means that as |z| increases, the frequency of α(z) increases.
This is also made visible in Figure 4c.

To further utilise the frequency range, the initialisation
scheme is modified, such that the biases are drawn from
U(−k, k), where k is relatively large. The broader range of
biases this initialisation scheme creates means that z will also
be in a larger range. And as the magnitude of z affects how
high-frequency α(z) is, α(z) will have a broader range of
frequencies at initialisation.

4) DINER: Instead of a handcrafted function to reduce
the relative frequency of the output, like in positional
encoding, Disorder-Invariant Implicit Neural Representation
(DINER) [36] learns this transformation. This is achieved
using a hashmap that maps the input coordinates to an L-
dimensional point in a latent space. These new L-dimensional
points are then used as input to an MLP. The output values of
the hashmap are optimised together with the parameters of the

5

Fig. 5: Architecture used by the DINER models.

Source: [36]

Fig. 6: Schematic representation of our version of knowledge
distillation. θ1:s denotes the currently training model. θ1:s−1

is used for the saved model.

MLP. This way, the signal the MLP needs to learn can be low
frequency, with the mapping being arbitrarily high frequency.
As the mapping is learnt instead of designed, it becomes
very well suited to the specific signal to be learnt. However,
because the encoding has to be learnt, the mappings for points
which have not been trained on are unknown, making DINER
unsuitable for interpolation.

B. Knowledge Distillation for Neural Fields

As mentioned in the related work, what input to use for
knowledge distillation is complicated, as the input to the model
is often complex and large to store. However, as the input
for neural fields is more structured, we use this structure to
generate the data used for distillation.

After training a task, the model parameters are stored. These
parameters are replaced whenever a task finishes training, so
only one set of previous parameters is stored. Additionally,
if the input is expanded, after training a task, we store the
domain of the coordinates of that task. This is done by storing,
for each axis of the coordinate space, the highest and lowest
coordinate value.

When training a subsequent task, points are sampled uni-
formly at random from the domains of the previous tasks. This
input is called xdistil. The number of points sampled is equal
to a percentage pdistil of the number of points used to train the
current task. If the input is expanded, this number of points
is sampled for each task’s domain. However, if the output is
expanded, this number of points is sampled from the full range
of the input for the model.

Then, an output is generated for xdistil using the previously
trained and currently training parameters, called ydistil and
ŷdistil, respectively. These outputs are used to calculate a loss,
denoted as Ldistil, using the same loss function employed for

fitting the task. This loss is combined with Lfit as the loss
function minimised during training, in the following manner:

Ltotal = Lfit + λLdistil

Here, λ is a hyperparameter used to tune the importance of
distillation and compensate for differences in magnitude for
losses of different tasks.

A schematic representation of our method is shown in
Figure 6.

C. DINER Stabilisation

A DINER model consists of two parts, each serving a
distinct purpose. The hash map, which maps input coordinates
to a latent space, represents the structure of each point that has
been learned. The MLP backbone learns a mapping from the
latent space to the output space.

This explicit separation between learning the structure of the
signal and learning how to represent the signal can be used
to prevent forgetting. When expanding the input space used,
the values of the previously learnt points in the hashmap will
not change during training. Therefore, if only the hashmap is
trained and the MLP is frozen after learning the first task, no
forgetting can occur. If the distribution of the signal is similar
between tasks, the MLP should also be able to represent the
later tasks.

Similarly, when adding another output to the model, the
structure at each point remains the same, while the mapping
changes only slightly. Therefore, by freezing the hashmap and
only learning the MLP, the learnt function from the latent
space to the original output space has the same input. If the
original signal is a good predictor for the new signals, learning
the new signal should also work well.

In summary, when the input is expanded, the MLP is frozen,
while if the signal is expanded, the hashtable is frozen.

D. Datasets

In our experiments, three datasets are used. Two datasets
focus on input expansion: the ImageNet and 4D ACDC
datasets. The ACDC Segmentation dataset is used to test
output expansion.

The representations for all datasets are learnt using Huber
loss [37].

1) ImageNet: Images from the ImageNet [38] dataset are
resampled such that the shortest axis has 256 pixels. Then,
centre crops are taken, resulting in 256x256 pixel images.
These images are vertically split into four 256x64 bars. These
bars are used as the tasks. This is done for 25 images.

To fit these images, the RGB values of the images are scaled
to be between 0 and 1. The MLP of the neural field has
three outputs, corresponding to each of the colour channels.
A sigmoid activation function is added to the output of the
model.

2) 4D ACDC: In this dataset, 4D MRI scans from the
ACDC dataset [39] are used for representation. Each of these
scans consists of a sequence of 3D frames which together
show one complete heart cycle. From each series of scans,
twelve scans are selected. This is done such that the entire

6

heart cycle is represented and all scans are as evenly spaced
as possible. Twelve scans are used, as this is the length of the
shortest sequence. Each of these frames is learnt sequentially,
making up the tasks. This has been done for 10 scans.

To fit the MR scans, the voxel intensity values are nor-
malised to lie between 0 and 1. The MLP of the neural field
has one output, which does not use an activation function.

3) ACDC segmentation: In this test, MRI scans and seg-
mentations from the ACDC are learnt in two tasks in an
output expansion way. First, the full MR scan is taught to
the model. Then the full segmentation mask is given to the
model. This segmentation mask consists of the left ventricular
endocardium and epicardium, as well as the right ventricular
endocardium. This has been done for 10 scan and segmentation
combinations.

The voxel intensities are again normalised between 0 and
1. The neural field has five outputs, corresponding to the scan
representation, the background, and the segmentation classes.
Each output has a sigmoid activation function. To fit the
segmentation mask, binary cross-entropy loss is used.

VI. EXPERIMENTS AND RESULTS

We test our setups on 2D image representation and various
forms of MRI representation.

In this section, several graphs are presented that compare
performance on the first and last tasks. In these graphs, models
in the top right corner have the least forgetting and can fit the
tasks well. In the top left are models that perform well on
the last task, but suffer heavily from forgetting. In the bottom
right are models that maintain good performance but suffer
from low plasticity. Finally, in the bottom left are models that
perform poorly, either due to a combination of forgetting and
low plasticity or because they are unable to fit the signal well.
Additionally, attention should be paid to the axis labels, as
there is sometimes a difference in scale between the x and y
axes.

The performance on the first and last tasks, after the model
finished training on the last task, is reported. Both are needed,
as some training methods are more susceptible to forgetting,
while others are more susceptible to low plasticity. These are
also used to illustrate the differences in how well the models
can fit the signals, which vary between models and training
methods.

For the tables, the mean value is given, along with the
standard deviation in brackets.

A. Experimental Settings

All models employed the same basic layout, consisting
of three hidden layers with 256 neurons each. For image
reconstruction tasks, the PSNR and SSIM [40] are reported.
For segmentation tasks, the mean Dice similarity index is given
for all non-background tasks.

B. Model Hyperparameter Experiment

In this test, the effect of model hyperparameters on the
learning and forgetting performance is evaluated. This means

TABLE II: Comparison of first and last task performance
on the ImageNet dataset by model. The chosen model hy-
perparameters have a big impact on the continual learning
behaviour.

Model Hyperparameters Task 1 Task 4
PSNR SSIM PSNR SSIM

P.E. ReLU L=5 10.8 (4.03) 0.19 (0.11) 25.7 (2.56) 0.70 (0.10)
L=10 11.1 (4.16) 0.17 (0.10) 26.6 (4.29) 0.73 (0.17)

SIREN

ω0 = 15, ωi = 1 13.5 (2.23) 0.31 (0.17) 23.5 (2.70) 0.54 (0.17)
ω0 = 15, ωi = 15 11.7 (3.13) 0.08 (0.04) 35.1 (2.43) 0.95 (0.02)
ω0 = 30, ωi = 1 12.2 (2.44) 0.22 (0.12) 25.5 (2.67) 0.67 (0.13)
ω0 = 30, ωi = 30 11.1 (3.98) 0.07 (0.04) 38.7 (7.30) 0.93 (0.18)

FINER ω0 = 5, ωi = 1 12.6 (2.48) 0.07 (0.03) 39.5 (1.85) 0.98 (0.02)
ω0 = 5, ωi = 5 11.8 (3.47) 0.07 (0.05) 46.2 (2.44) 0.99 (0.01)

DINER
L=1 16.0 (5.88) 0.64 (0.25) 28.8 (8.48) 0.81 (0.32)
L=2 16.1 (5.60) 0.66 (0.27) 36.8 (11.0) 0.88 (0.30)
L=3 16.6 (5.74) 0.71 (0.23) 44.8 (13.3) 0.92 (0.25)

that no continual learning strategies are employed. For this
test, the ImageNet dataset will be used, as described above.

In Figure 7, the results of reconstructions for a sample image
from all models are compared.

Figure 8 and Table II present a comparison of the first and
last task performance, in terms of both PSNR and SSIM, for all
models and their respective hyperparameters. The full PSNR
and SSIM performance is in Table IX. From this and the
comparison graph, it can be seen that the model choice has a
significant influence on both fitting performance and continual
learning behaviour.

The P.E. ReLU suffers heavily from forgetting. In this case,
it appears to be due to the similarity of the input, which causes
the model to repeat the last task for earlier tasks. This is
especially visible in the reconstructed image, where the bottom
of the fish is visible for the earlier tasks.

For SIREN, the choice of ω0 and ωi influences the perfor-
mance. If ωi is set to 1, the model appears to retain a vague
memory of the previous tasks’ structure. This is evident in
the SSIM, but particularly in Figure 7, where parts of the fish
remain distinguishable after the task switch. However, when
ωi is set to be equal to ω0, the output from previous tasks
more closely resembles noise than the structure that was there
before. On the other hand, setting the ωi to 1 instead of equal
to ω0 significantly lowers the fitting performance.

For FINER, setting ωi to 1 instead of ω0 has a lesser
effect on both fitting and forgetting performance. Here, for
both versions of the model, most of the previously learnt
representation is forgotten after the training task switch.

For DINER, the colours output by the model are correct for
old tasks, but the structure remains more stable after training
on later tasks. This can be observed in the images, as well
as in the difference between PSNR and SSIM for the models.
All models maintain a relatively high SSIM, but the PSNR
decreases more significantly. Additionally, as the latent space
dimension increases, the colours are kept better as well.

An issue arises for DINER when incrementally learning an
image, where the first task consists of an even colour. In one
image of ImageNet, shown in Figure 9, the entire first task
consists of an evenly coloured sky. When this is the case,
the model is unable to process the rest of the image, instead
consistently showing this even colour, even when being trained
for other colours. This shows an extreme example of a lack
of plasticity.

7

Fig. 7: Comparison of model outputs after training the last task on an example from the ImageNet dataset

Fig. 8: Comparison of first and last task performance on the
ImageNet dataset by model. The chosen model hyperparame-
ters have a big impact on the continual learning behaviour.

Fig. 9: Comparison of model outputs after training the last
task on a sample in the ImageNet dataset. If the first task
consists almost entirely of one colour, DINER does not learn
to represent other colours. Other models like FINER do not
suffer from this.

C. Distillation Experiments

In this experiment, samples are trained using distillation to
demonstrate the influence on training performance. We use
different values of pdistil, the ratio of distillation samples used.
Distillation is compared against a benchmark of not applying
any special technique, referred to as ’naive’.

(a) Naive (b) Distillation pdistil = 20%

Fig. 10: Comparison of taskwise loss during training on the
ImageNet dataset for FINER ω0 = 5, ωi = 5. It shows that
training naively causes the loss of old tasks to rise, while
distillation keeps it low.

This test is conducted on the ImageNet, 4D ACDC, and
ACDC Segmentation datasets.

1) ImageNet: In Figure 10, the mean per-task losses of
a naively trained and a distillation-trained FINER model are
compared for the ImageNet dataset. For the naive model,
catastrophic forgetting is evident, as the loss of the previous
task returns to an untrained level after training begins on a new
task. However, for the distillation model, the loss increases
only slightly before decreasing to a lower level.

In Figure 11, the input images are reconstructed after
training for each model. These models are trained naively in
Figure 11a and using distillation in Figure 11b. As is visible,
all of the models visually more closely reconstruct the original
image in both structure and colour when using distillation.

Similar results are also visible in Figure 12 and Table III,
which compare the performance on the first and last tasks. The
performance on all tasks is in Table X. For every model, using
distillation increases both SSIM and PSNR on the first task
compared to not using any strategy. The effect it has depends
on the model.

For the positionally encoded model, both SSIM and PSNR

8

(a) Naive

(b) Distillation pdistil = 20%

Fig. 11: Comparison of model outputs after training the last
task on an example from the ImageNet dataset. Structure and
colour are kept much better with distillation.

Fig. 12: Comparison of first and last task performance on the
ImageNet dataset with distillation.

of the first task improve when distillation is applied. The
number of samples used does not significantly impact the
results.

SIREN and FINER have similar behaviour. Both lose per-
formance on the last task when distillation is applied. Some
of this performance is regained if more samples are used for
distillation. The FINER models show these patterns slightly
less.

For the DINER model, applying distillation improves per-
formance not just on the earlier tasks, but also on the last
task. This is notable, as it would be expected that the model
performs best on the last task when no continual learning
strategy is employed.

2) ACDC 4D: In Figure 13 and Table IV, the performance
on the first and last scans in the sequences is compared. The
performance on the first and last two out of twelve tasks is
shown in Table XI. The effect of distillation on performance
varies depending on the model.

TABLE III: Comparison of first and last task performance on
the ImageNet dataset with distillation.

Model Training Type Task 1 Task 4
PSNR SSIM PSNR SSIM

P.E. ReLU

Naive 11.1 (4.16) 0.17 (0.10) 26.6 (4.29) 0.73 (0.17)
Distillation pdistill = 5% 21.6 (2.86) 0.61 (0.12) 26.5 (2.75) 0.73 (0.09)
Distillation pdistill = 10% 21.6 (2.86) 0.61 (0.13) 26.7 (2.75) 0.74 (0.08)
Distillation pdistill = 20% 21.6 (2.81) 0.61 (0.12) 26.8 (2.74) 0.75 (0.08)

SIREN

Naive 11.1 (3.98) 0.07 (0.04) 38.7 (7.30) 0.93 (0.18)
Distillation pdistill = 5% 20.3 (4.06) 0.38 (0.18) 30.7 (3.88) 0.88 (0.07)
Distillation pdistill = 10% 24.3 (4.98) 0.61 (0.19) 33.9 (3.79) 0.94 (0.04)
Distillation pdistill = 20% 27.6 (5.28) 0.77 (0.13) 36.3 (3.36) 0.96 (0.02)

FINER

Naive 11.8 (3.47) 0.07 (0.05) 46.2 (2.44) 0.99 (0.01)
Distillation pdistill = 5% 29.1 (3.80) 0.84 (0.07) 38.7 (2.67) 0.97 (0.01)
Distillation pdistill = 10% 31.7 (3.72) 0.90 (0.05) 40.2 (2.49) 0.98 (0.01)
Distillation pdistill = 20% 33.5 (3.39) 0.93 (0.03) 41.1 (2.34) 0.98 (0.01)

DINER

Naive 16.7 (5.46) 0.69 (0.23) 36.3 (12.1) 0.84 (0.34)
Distillation pdistill = 5% 31.4 (5.02) 0.89 (0.19) 38.2 (9.94) 0.92 (0.25)
Distillation pdistill = 10% 33.1 (5.92) 0.92 (0.19) 37.6 (9.75) 0.92 (0.25)
Distillation pdistill = 20% 34.3 (6.42) 0.93 (0.19) 38.0 (10.1) 0.92 (0.25)

Fig. 13: Comparison of first and last task performance on the
ACDC 4D dataset with distillation.

For the positionally encoded model, applying distillation
does not significantly influence the continual learning be-
haviour. However, this is also the case because the positionally
encoded model does not seem to forget or suffer from low
plasticity to a significant extent for this dataset.

For SIREN and FINER, applying distillation improves per-
formance on the old tasks, but as the task becomes older,
performance is lost further. The number of samples used for
distillation does not significantly change this.

Without distillation, DINER performs poorly on all tasks,
including the last one. However, when some distillation is
applied, the model becomes much more capable of fitting the
data.

3) ACDC Segmentation: Since every model fits the seg-
mentation mask well, Figure 14 instead shows the performance
on the representation portion to illustrate forgetting. This
is done through a comparison of the representation metrics
before and after training the segmentation mask. In this graph,
the x-axis shows the model’s ability to fit the scan, while the
y-axis indicates the model’s capacity to keep its representation.
The Dice scores, PSNR, and SSIM after training are shown
in Table V.

For the positional encoded, SIREN, and FINER models,
applying distillation significantly improves performance on the
MRI representation. This is done without decreasing perfor-

9

TABLE IV: Comparison of first and last task performance on
the ACDC 4D dataset with distillation.

Model Training Type Task 1 Task 12
PSNR SSIM PSNR SSIM

P.E. ReLU

Naive 25.2 (2.96) 0.79 (0.05) 25.3 (2.94) 0.80 (0.05)
Distillation pdistill = 5% 25.3 (3.28) 0.81 (0.05) 25.4 (3.28) 0.81 (0.05)
Distillation pdistill = 10% 25.3 (3.41) 0.80 (0.06) 25.4 (3.43) 0.80 (0.06)
Distillation pdistill = 20% 25.3 (3.44) 0.80 (0.05) 25.4 (3.44) 0.80 (0.05)

SIREN

Naive 16.6 (2.99) 0.07 (0.04) 31.7 (4.26) 0.90 (0.07)
Distillation pdistill = 5% 23.7 (3.51) 0.57 (0.08) 30.3 (3.68) 0.89 (0.06)
Distillation pdistill = 10% 23.9 (3.51) 0.58 (0.08) 30.3 (3.96) 0.89 (0.07)
Distillation pdistill = 20% 24.0 (3.34) 0.60 (0.07) 30.3 (3.59) 0.89 (0.06)

FINER

Naive 16.8 (3.46) 0.20 (0.06) 35.3 (3.58) 0.86 (0.05)
Distillation pdistill = 5% 21.0 (2.91) 0.41 (0.07) 30.9 (2.24) 0.80 (0.04)
Distillation pdistill = 10% 21.0 (2.90) 0.40 (0.07) 30.9 (1.99) 0.79 (0.04)
Distillation pdistill = 20% 20.9 (3.02) 0.38 (0.05) 31.0 (1.78) 0.90 (0.02)

DINER

Naive 21.7 (5.17) 0.48 (0.40) 41.6 (41.5) 0.50 (0.43)
Distillation pdistill = 5% 35.6 (5.48) 0.93 (0.05) 54.2 (9.60) 0.99 (0.01)
Distillation pdistill = 10% 37.1 (6.73) 0.93 (0.05) 59.6 (20.9) 0.99 (0.01)
Distillation pdistill = 20% 36.5 (6.00) 0.92 (0.07) 50.5 (9.88) 0.98 (0.01)

Fig. 14: Comparison of representation performance after
training just the first and both second tasks on the ACDC
Segmentation dataset with distillation.

mance on the segmentation representation task. The extent to
which the model can keep its representation of the scan varies
depending on the model, with the SIREN model performing
best.

The DINER model struggles with representing the scan
when trained in this manner, even when trained solely on it.
Because of this, no forgetting takes place, so the distillation
has no effect on the forgetting behaviour. However, the model
does accurately represent the segmentation mask.

D. DINER stabilisation

In this experiment, models are trained using stabilisation of
a part of a DINER model to show the influence on training
performance. The MLP is frozen for input expansion, while
the hash map is frozen for output expansion. The stabilisation
strategy is compared to distillation with pdistil = 20% and
naively training. This approach is specific to the DINER archi-
tecture, as DINER decouples the encoding and representation
parts of the model. This test is done on the ImageNet, 4D
ACDC, and ACDC segmentation datasets.

1) ImageNet: In Figure 15, the losses of naive training,
training with distillation, and stabilised training are compared.
There, it is visible that the stabilised model does not lose
performance on old tasks when training new tasks, thereby

TABLE V: Comparison of performance on the ACDC Seg-
mentation dataset with distillation.

Model Training Type Mean Dice PSNR SSIM

P.E. ReLU

Naive 0.95 (0.03) 14.8 (1.57) 0.13 (0.06)
Distillation pdistill = 5% 0.95 (0.03) 22.5 (1.64) 0.57 (0.02)
Distillation pdistill = 10% 0.95 (0.03) 22.6 (1.64) 0.58 (0.02)
Distillation pdistill = 20% 0.95 (0.03) 22.6 (1.62) 0.58 (0.02)

SIREN

Naive 1.00 (0.01) 16.7 (1.90) 0.18 (0.05)
Distillation pdistill = 5% 0.95 (0.10) 23.3 (2.45) 0.52 (0.14)
Distillation pdistill = 10% 1.00 (0.00) 24.6 (1.16) 0.62 (0.06)
Distillation pdistill = 20% 0.97 (0.07) 24.0 (1.84) 0.57 (0.16)

FINER

Naive 1.00 (0.00) 15.9 (1.78) 0.18 (0.06)
Distillation pdistill = 5% 1.00 (0.00) 23.2 (1.23) 0.54 (0.07)
Distillation pdistill = 10% 1.00 (0.00) 24.0 (1.05) 0.60 (0.06)
Distillation pdistill = 20% 1.00 (0.00) 24.0 (1.35) 0.59 (0.06)

DINER

Naive 1.00 (0.00) 16.3 (1.99) 0.12 (0.07)
Distillation pdistill = 5% 1.00 (0.01) 16.2 (1.96) 0.12 (0.07)
Distillation pdistill = 10% 0.99 (0.04) 16.2 (1.96) 0.12 (0.07)
Distillation pdistill = 20% 1.00 (0.00) 16.2 (1.96) 0.12 (0.07)

TABLE VI: Comparison of performance on the Imagenet
dataset with stabilisation.

Training Type Task 1 Task 4
PSNR SSIM PSNR SSIM

Naive 16.7 (5.46) 0.69 (0.23) 36.3 (12.1) 0.84 (0.34)
Distillation pdistill = 20% 34.3 (6.42) 0.93 (0.19) 38.0 (10.1) 0.92 (0.25)
Stabilised 36.6 (7.51) 0.94 (0.20) 30.6 (9.18) 0.88 (0.24)

preventing forgetting. It is also clear that performance for
later tasks does not reach the level of performance that earlier
tasks had immediately after training. However, this is also the
case for the naive trained models and the models trained with
distillation. This shows that the DINER model itself suffers
from a lack of plasticity.

Figure 16 compares an example of the outputs of the naive
trained, distillation trained and stabilised trained models. The
naive sample suffers from a colour representation that changes
when the tasks change, which means the colours for older tasks
are not correct. The distillation and stabilised models do not
suffer from this.

Also in the SSIM and especially the PSNR values of
Figure 17 and Table VI, this pattern is visible. While the
SSIM remains relatively high when training naively, the PSNR
drops significantly, indicating that the colours are not accurate,
while the structure is. For models trained with distillation or
stabilisation, both the PSNR and SSIM are higher overall.
However, for the distillation models, the later tasks have a
higher SSIM and PSNR, while for the stabilised models, this
is the case for the earlier tasks.

Both distillation and stabilisation perform well on the Im-
ageNet dataset, and which performs best depends on whether
stability or plasticity is more important. For stability, stabili-
sation performs best, while for plasticity, distillation performs
best.

2) ACDC 4D: For the ACDC 4D dataset, the difference is
bigger. In Figure 18 and Table VII, the SSIM and PSNR of the
first and last two tasks are compared. Here, it is evident that
the stabilised model can represent later tasks well using the
representation learnt in the first task. It performs better than
the model trained using distillation in terms of PSNR, but the
SSIM is slightly lower for later tasks.

3) ACDC Segmentation: The performance on the ACDC
Segmentation dataset is shown in Figure 19 and Table VIII.
Because the DINER model is unable to fit the representation
well, it is difficult to determine the effect of stabilisation and
distillation compared to naive training.

10

(a) Naive (b) Distillation pdistil = 20% (c) Stabilisation

Fig. 15: Comparison of taskwise loss during training on the ImageNet dataset for DINER L=2

Fig. 16: Comparison of DINER L=2 outputs after training the
last task on an example from the ImageNet dataset

Fig. 17: Comparison of performance on the ImageNet dataset
with stabilisation.

VII. DISCUSSION

In this work, we demonstrated that neural fields are highly
susceptible to catastrophic forgetting in a continual learning
setting. We also demonstrated that the extent to which this
issue arises depends on the model architecture used. Posi-
tionally encoded ReLU, SIREN, and FINER models are more
susceptible to forgetting than DINER models.

To address this issue, we explored utilising the trained
model to mitigate forgetting through knowledge distillation.
We have demonstrated that knowledge distillation can mitigate
a significant amount of forgetting in neural fields in both
input and output expansion scenarios. Additionally, we have
demonstrated that when the MLP backbone of a DINER model
is frozen after training on the first task, the model can often
learn to represent subsequent tasks when expanding the input
regions trained on.

Fig. 18: Comparison of performance on the first and last two
tasks on the ACDC 4D dataset with stabilisation.

TABLE VII: Comparison of first and last task performance on
the ACDC 4D dataset with distillation.

Training Type Task 1 Task 12
PSNR SSIM PSNR SSIM

Naive 21.7 (5.17) 0.48 (0.40) 41.6 (41.5) 0.50 (0.43)
Distillation pdistill = 20% 36.5 (6.00) 0.92 (0.07) 50.5 (9.88) 0.98 (0.01)
Stabilised 97.2 (55.1) 0.98 (0.04) 86.7 (52.5) 0.91 (0.24)

A. Model Hyperparamters Results

In this work, we have shown that for neural fields, the
choice of architecture not only affects the model behaviour
while fitting but also in a continual learning setting. This yields
similar results to previous work, which has demonstrated that
the choice of activation function affects the continual learning
behaviour of a neural network [17].

Another notable result from the naive trained models is the
effect of the ωi values for the SIREN model. When this is set
to 1, the model suffers a lot less from forgetting compared to
when it is set to be equal to ω0. This could be because having
a high ωi value means that a slight change in input to the
activation function has a bigger difference for the output. As
a result, changes in the model’s weights have a greater impact
on its output. This could also explain the difference between
the SIREN models with ω0 = 15 and ω0 = 30.

Interestingly, the effect when changing ωi is less visible for
the FINER model. Here, both models perform similarly on old
tasks, while the model with ωi = 5 outperforms the model
with ωi = 1. This could be because the activation function

11

Fig. 19: Comparison of representation performance after
training just the first and both second tasks on the ACDC
Segmentation dataset with stabilisation.

TABLE VIII: Comparison of performance on the ACDC
Segmentation dataset with stabilisation.

Training Type Mean Dice PSNR SSIM
Naive 1.00 (0.00) 16.3 (1.99) 0.12 (0.07)
Distillation pdistill = 20% 1.00 (0.00) 16.2 (1.96) 0.12 (0.07)
Stabilised 0.00 (0.00) 18.5 (2.94) 0.40 (0.22)

used by FINER is already of a higher frequency. Therefore, a
slight change in the model’s weights might already result in
such a significant difference.

Another interesting phenomenon is how DINER can keep
the representation of the structure of the early tasks. This
means that if the colours are similar between tasks, the colour
representation learnt early can be used for later tasks.

B. Distillation Results

For the SIREN and FINER models, performance decreases
on the last task when training with distillation. This is not
an entirely unexpected phenomenon, following the stability-
plasticity dilemma [41]. This means that some methods can
prevent the model from forgetting, but do so by inhibiting
learning. However, if this were the only factor, later task
performance would continue to decrease as the model becomes
more stable. This is not what happens, as when pdistil is
increased and the model’s performance becomes more stable,
its later performance also increases.

A similar pattern is also visible for the DINER model,
but to a lesser extent. The surprising part is that here, the
performance on the last task is higher with distillation than
with naive training. This is especially the case for the ACDC
4D dataset. This appears to be because the DINER model has
low plasticity on its own.

In Figure 10b, the loss of previously trained tasks increases
when a task shift appears, before decreasing to near the trained
level. This initial loss spike is expanded in Figure 20. This
indicates that some forgetting still occurs, but that distillation
helps mitigate its effects. This behaviour has been identified
before, being known as the ’stability gap’ [42]. This refers
to a loss of performance upon the start of a new task,
which recovers as the new task is trained. Multiple factors
could contribute to this behaviour. First, distillation works by
comparing the outputs of the previously trained model with

Fig. 20: First task loss during the switch to training the second
task. The stability gap refers to the increase in loss on the first
task that occurs when training for the second task commences.

(a) Ground Truth (b) Stabilised Reconstruction

Fig. 21: Reconstruction of a sample under stabilisation for
DINER L=2. Training stabilised can fail if the first task is
dissimilar to the rest of the image.

those of the current model. However, as these models are the
same in the first epoch, there will be no difference between
these outputs. So, the regularisation factor of distillation does
not yet play a part. Next is the difference in scale between Lfit

and Ldistil. As the loss for the current task starts high, while
the distillation loss is low, lowering the overall loss is done
best by decreasing the fitting loss. This can come at a small
cost to the distillation loss. However, as the model starts to fit
the current task better, lowering the overall loss is achieved
most effectively by reducing both losses simultaneously. This
then lowers the loss for the earlier tasks to near the previous
level.

C. Stabilisation Results

The PSNR of later tasks for some samples from the Ima-
geNet dataset is significantly lower for the stabilised model
compared to the distillation model. An example of this can be
seen in Figure 21. As is visible here, the model can reconstruct
the first task, but for later tasks, while the structure is correct,
the colours are wrong. This is because the first task does not
allow the model to create a good representation of the output
structure used across the tasks. Because of this, the model
must attempt to approximate the later tasks without the colours
present in these tasks. So, it is still able to learn the structure,
but not the colours, which results in a higher SSIM, but a
lower PSNR.

12

D. Future Work

In this study, we conducted an experimental evaluation of
strategies that can be employed to enable neural fields to
learn to represent signals incrementally. This phenomenon can
also be studied theoretically. In recent years, research has
been done to analyse catastrophic forgetting using the Neural
Tangent Kernel (NTK). The central part of this method is the
NTK itself. The NTK is a method for illustrating how the
training dynamics of a model are influenced by the derivatives
of the model output with respect to its parameters. This can
be used to describe the training process for a neural network.
From these analyses on catastrophic forgetting, two main
routes can be identified.

The first angle is related to data relatedness. Doan et al. [12]
uses the NTK to derive a formula for the forgetting occurring
in neural networks during continual learning. An essential part
of this formula is what they refer to as the ’NTK overlap
matrix’. This overlap matrix represents the similarity of the
NTK of a model across the inputs of different tasks. When
these are similar, training on one task will have a significant
influence on the output of the other tasks. So, to prevent
forgetting, the overlap of the NTKs should be as small as
possible.

When training neural fields, in contrast to other neural
network approaches, the input to the model is more structured.
To an extent, it can often be known how a neural field could be
extended in the future, even if the measurements with which it
has to be trained are not yet available. The knowledge of how
the input is structured and control over how the input can be
extended could be used to influence the overlap of the NTKs,
thereby preventing forgetting. However, initial experiments
with reducing the similarity of the input to the models have
not yet yielded a significant improvement.

Lan and Mahmood [43] also identify the overlap between
NTKs as the leading cause of forgetting, but propose a
different solution to it. In their work, the authors hypothesise
that this overlap can be minimised by increasing the sparsity
of the model gradients. This is because when the gradients
become sparser, the likelihood of overlap between the NTKs
becomes smaller. To this end, the authors propose the elephant
activation function, which is sparse and has a sparse gradient.
Using this activation function in the penultimate layer of a
neural network yields a performance improvement compared
to naive training and EWC. However, initial tests in replacing
the finer function of the second-to-last layer of a FINER net-
work with the elephant function did not significantly increase
the forgetting performance.

VIII. CONCLUSION

In this work, we have demonstrated that neural fields are
severely affected by catastrophic forgetting in a continual
learning setting, with SIREN and FINER models experiencing
more significant issues than DINER models. Additionally,
we have demonstrated that knowledge distillation and partial
model freezing can, to some extent, mitigate these issues.

REFERENCES

[1] Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan,
F. Tombari, J. Tompkin, V. Sitzmann, and S. Sridhar,
“Neural fields in visual computing and beyond,” Computer
Graphics Forum, vol. 41, no. 2, pp. 641–676, 2022,
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14505. [On-

line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.
14505

[2] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“DeepSDF: learning continuous signed distance functions for shape
representation,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2019, pp. 165–174, iSSN: 2575-
7075. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
8954065

[3] Y. Sun, J. Liu, M. Xie, B. Wohlberg, and U. S. Kamilov, “CoIL:
coordinate-based internal learning for tomographic imaging,” IEEE
Transactions on Computational Imaging, vol. 7, pp. 1400–1412, 2021,
conference Name: IEEE Transactions on Computational Imaging. [On-
line]. Available: https://ieeexplore.ieee.org/abstract/document/9606601

[4] A. W. Reed, H. Kim, R. Anirudh, K. A. Mohan, K. Champley, J. Kang,
and S. Jayasuriya, “Dynamic CT reconstruction from limited views
with implicit neural representations and parametric motion fields,” in
2021 IEEE/CVF International Conference on Computer Vision (ICCV),
Oct. 2021, pp. 2238–2248, iSSN: 2380-7504. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9709943

[5] L. Shen, J. Pauly, and L. Xing, “NeRP: implicit neural representation
learning with prior embedding for sparsely sampled image
reconstruction,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 35, no. 1, pp. 770–782, Jan. 2024, conference Name: IEEE
Transactions on Neural Networks and Learning Systems. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9788018

[6] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: representing scenes as neural radiance fields for
view synthesis,” Commun. ACM, vol. 65, no. 1, pp. 99–106, Dec. 2021.
[Online]. Available: https://dl.acm.org/doi/10.1145/3503250

[7] R. Martin-Brualla, N. Radwan, M. S. M. Sajjadi, J. T. Barron,
A. Dosovitskiy, and D. Duckworth, “NeRF in the wild: neural
radiance fields for unconstrained photo collections,” in 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2021, pp. 7206–7215, iSSN: 2575-7075. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9578784

[8] Z. Chen, Y. Chen, J. Liu, X. Xu, V. Goel, Z. Wang, H. Shi, and
X. Wang, “VideoINR: learning video implicit neural representation
for continuous space-time super-resolution,” in 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2022, pp. 2037–2047, iSSN: 2575-7075. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9878371

[9] D. Alblas, M. Hofman, C. Brune, K. K. Yeung, and J. M. Wolterink,
“Implicit neural representations for modeling of abdominal aortic
aneurysm progression,” in Functional Imaging and Modeling of the
Heart, O. Bernard, P. Clarysse, N. Duchateau, J. Ohayon, and M. Vial-
lon, Eds. Cham: Springer Nature Switzerland, 2023, pp. 356–365.

[10] M. McCloskey and N. J. Cohen, “Catastrophic interference in
connectionist networks: the sequential learning problem,” in Psychology
of Learning and Motivation, G. H. Bower, Ed. Academic Press,
Jan. 1989, vol. 24, pp. 109–165. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0079742108605368

[11] L. Wang, X. Zhang, H. Su, and J. Zhu, “A comprehensive
survey of continual learning: theory, method and application,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 46, no. 8, pp. 5362–5383, Aug. 2024, conference
Name: IEEE Transactions on Pattern Analysis and Machine
Intelligence. [Online]. Available: https://ieeexplore.ieee.org/ielx7/34/
10582780/10444954/supp1-3367329.pdf?arnumber=10444954

[12] T. Doan, M. A. Bennani, B. Mazoure, G. Rabusseau, and P. Alquier,
“A theoretical analysis of catastrophic forgetting through the NTK
overlap matrix,” in Proceedings of the 24th International Conference
on Artificial Intelligence and Statistics. PMLR, Mar. 2021, pp.
1072–1080, iSSN: 2640-3498. [Online]. Available: https://proceedings.
mlr.press/v130/doan21a.html

[13] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht,
Y. Bengio, and A. Courville, “On the spectral bias of neural
networks,” in Proceedings of the 36th International Conference
on Machine Learning. PMLR, May 2019, pp. 5301–5310, iSSN:
2640-3498 shortConferenceName: ICML. [Online]. Available: https:
//proceedings.mlr.press/v97/rahaman19a.html

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14505
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14505
https://ieeexplore.ieee.org/abstract/document/8954065
https://ieeexplore.ieee.org/abstract/document/8954065
https://ieeexplore.ieee.org/abstract/document/9606601
https://ieeexplore.ieee.org/abstract/document/9709943
https://ieeexplore.ieee.org/abstract/document/9788018
https://dl.acm.org/doi/10.1145/3503250
https://ieeexplore.ieee.org/abstract/document/9578784
https://ieeexplore.ieee.org/abstract/document/9878371
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://ieeexplore.ieee.org/ielx7/34/10582780/10444954/supp1-3367329.pdf?arnumber=10444954
https://ieeexplore.ieee.org/ielx7/34/10582780/10444954/supp1-3367329.pdf?arnumber=10444954
https://proceedings.mlr.press/v130/doan21a.html
https://proceedings.mlr.press/v130/doan21a.html
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html

13

[14] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and
G. Wetzstein, “Implicit Neural Representations with Periodic
Activation Functions,” in Advances in Neural Information Processing
Systems, vol. 33. Curran Associates, Inc., 2020, pp. 7462–
7473. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
hash/53c04118df112c13a8c34b38343b9c10-Abstract.html

[15] Z. Liu, H. Zhu, Q. Zhang, J. Fu, W. Deng, Z. Ma, Y. Guo, and
X. Cao, “FINER: flexible spectral-bias tuning in implicit NEural
representation by variableperiodic activation functions,” in 2024
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2024, pp. 2713–2722, iSSN: 2575-7075. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/10655302

[16] V. Saragadam, D. LeJeune, J. Tan, G. Balakrishnan, A. Veeraraghavan,
and R. G. Baraniuk, “WIRE: wavelet implicit neural representations,”
in 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2023, pp. 18 507–18 516, iSSN: 2575-
7075. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
10204916

[17] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgetting in gradient-
based neural networks,” Mar. 2015, arXiv:1312.6211 [stat]. [Online].
Available: http://arxiv.org/abs/1312.6211

[18] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, Mar. 2017,
publisher: Proceedings of the National Academy of Sciences. [Online].
Available: https://www.pnas.org/doi/abs/10.1073/pnas.1611835114

[19] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan,
“Measuring catastrophic forgetting in neural networks,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
Apr. 2018, number: 1. [Online]. Available: https://ojs.aaai.org/index.
php/AAAI/article/view/11651

[20] S. Dohare, J. F. Hernandez-Garcia, Q. Lan, P. Rahman, A. R.
Mahmood, and R. S. Sutton, “Loss of plasticity in deep continual
learning,” Nature, vol. 632, no. 8026, pp. 768–774, Aug. 2024,
publisher: Nature Publishing Group. [Online]. Available: https:
//www.nature.com/articles/s41586-024-07711-7

[21] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through
synaptic intelligence,” in Proceedings of the 34th International
Conference on Machine Learning. PMLR, Jul. 2017, pp. 3987–3995,
iSSN: 2640-3498 shortConferenceName: ICML. [Online]. Available:
https://proceedings.mlr.press/v70/zenke17a.html

[22] L. Kumari, S. Wang, T. Zhou, and J. A. Bilmes, “Retrospective adver-
sarial replay for continual learning,” Advances in Neural Information
Processing Systems, vol. 35, pp. 28 530–28 544, Dec. 2022. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2022/hash/
b6ffbbacbe2e56f2ec9a0da907382b4a-Abstract-Conference.html

[23] R. Aljundi, E. Belilovsky, T. Tuytelaars, L. Charlin, M. Caccia,
M. Lin, and L. Page-Caccia, “Online continual learning with
maximal interfered retrieval,” in Advances in Neural Information
Processing Systems, vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/
15825aee15eb335cc13f9b559f166ee8-Abstract.html

[24] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL:
incremental classifier and representation learning,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Jul. 2017, pp. 5533–5542, iSSN: 1063-6919. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8100070

[25] K. Lee, K. Lee, J. Shin, and H. Lee, “Overcoming catastrophic
forgetting with unlabeled data in the wild,” in 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Oct. 2019, pp.
312–321, iSSN: 2380-7504. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/9010368

[26] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp.
2935–2947, Dec. 2018. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/8107520

[27] M. Farajtabar, N. Azizan, A. Mott, and A. Li, “Orthogonal gradient
descent for continual learning,” in Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics.
PMLR, Jun. 2020, pp. 3762–3773, iSSN: 2640-3498. [Online].
Available: https://proceedings.mlr.press/v108/farajtabar20a.html

[28] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming
catastrophic forgetting with hard attention to the task,” in Proceedings
of the 35th International Conference on Machine Learning. PMLR, Jul.

2018, pp. 4548–4557, iSSN: 2640-3498 shortConferenceName: ICML.
[Online]. Available: https://proceedings.mlr.press/v80/serra18a.html

[29] S. Ebrahimi, F. Meier, R. Calandra, T. Darrell, and M. Rohrbach,
“Adversarial continual learning,” in Computer Vision – ECCV 2020,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham: Springer
International Publishing, 2020, pp. 386–402.

[30] Z. Yan, Y. Tian, X. Shi, P. Guo, P. Wang, and H. Zha, “Continual
neural mapping: learning an implicit scene representation from
sequential observations,” in 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), Oct. 2021, pp. 15 762–15 772, iSSN: 2380-
7504. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
9711071

[31] R. Po, Z. Dong, A. W. Bergman, and G. Wetzstein, “Instant
continual learning of neural radiance fields,” in 2023 IEEE/CVF
International Conference on Computer Vision Workshops (ICCVW),
Oct. 2023, pp. 3326–3336, iSSN: 2473-9944. [Online]. Available:
https://ieeexplore.ieee.org/document/10350630

[32] Z. Cai and M. Müller, “CLNeRF: continual learning meets NeRF,” in
2023 IEEE/CVF International Conference on Computer Vision (ICCV),
Oct. 2023, pp. 23 128–23 137, iSSN: 2380-7504. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10377110

[33] J. Chung, K. Lee, S. Baik, and K. M. Lee, “MEIL-NeRF: memory-
efficient incremental learning of neural radiance fields,” IEEE Access,
pp. 1–1, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/11029250

[34] M. Guo, C. Li, H. Chen, and G. H. Lee, “UNIKD: UNcertainty-filtered
incremental knowledge distillation for neural implicit representation,”
in Computer Vision – ECCV 2024, A. Leonardis, E. Ricci, S. Roth,
O. Russakovsky, T. Sattler, and G. Varol, Eds. Cham: Springer Nature
Switzerland, 2025, pp. 237–254.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all
you need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[36] H. Zhu, S. Xie, Z. Liu, F. Liu, Q. Zhang, Y. Zhou, Y. Lin,
Z. Ma, and X. Cao, “Disorder-invariant implicit neural representation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 46, no. 8, pp. 5463–5478, Aug. 2024. [Online]. Available:
https://ieeexplore.ieee.org/document/10436706

[37] P. J. Huber, “Robust estimation of a location parameter,” Annals
of Mathematical Statistics, vol. 35, no. 1, pp. 73–101, Mar. 1964,
publisher: Institute of Mathematical Statistics. [Online]. Available:
https://projecteuclid.org/journals/annals-of-mathematical-statistics/
volume-35/issue-1/Robust-Estimation-of-a-Location-Parameter/10.
1214/aoms/1177703732.full

[38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: a large-scale hierarchical image database,” in 2009
IEEE Conference on Computer Vision and Pattern Recognition,
Jun. 2009, pp. 248–255, iSSN: 1063-6919. [Online]. Available:
https://ieeexplore.ieee.org/document/5206848

[39] O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P.-A. Heng,
I. Cetin, K. Lekadir, O. Camara, M. A. Gonzalez Ballester, G. Sanroma,
S. Napel, S. Petersen, G. Tziritas, E. Grinias, M. Khened, V. A.
Kollerathu, G. Krishnamurthi, M.-M. Rohé, X. Pennec, M. Sermesant,
F. Isensee, P. Jäger, K. H. Maier-Hein, P. M. Full, I. Wolf, S. Engelhardt,
C. F. Baumgartner, L. M. Koch, J. M. Wolterink, I. Išgum, Y. Jang,
Y. Hong, J. Patravali, S. Jain, O. Humbert, and P.-M. Jodoin,
“Deep learning techniques for automatic MRI cardiac multi-structures
segmentation and diagnosis: is the problem solved?” IEEE Transactions
on Medical Imaging, vol. 37, no. 11, pp. 2514–2525, Nov. 2018.
[Online]. Available: https://ieeexplore.ieee.org/document/8360453

[40] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, Apr.
2004. [Online]. Available: https://ieeexplore.ieee.org/document/1284395

[41] M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity
dilemma: investigating the continuum from catastrophic forgetting to
age-limited learning effects,” Frontiers in Psychology, vol. 4, Aug.
2013, publisher: Frontiers. [Online]. Available: https://www.frontiersin.
org/journals/psychology/articles/10.3389/fpsyg.2013.00504/full

[42] M. D. Lange, G. v. d. Ven, and T. Tuytelaars, “Continual evaluation
for lifelong learning: identifying the stability gap,” Mar. 2023,
arXiv:2205.13452. [Online]. Available: http://arxiv.org/abs/2205.13452

https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html
https://ieeexplore.ieee.org/abstract/document/10655302
https://ieeexplore.ieee.org/abstract/document/10204916
https://ieeexplore.ieee.org/abstract/document/10204916
http://arxiv.org/abs/1312.6211
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://ojs.aaai.org/index.php/AAAI/article/view/11651
https://ojs.aaai.org/index.php/AAAI/article/view/11651
https://www.nature.com/articles/s41586-024-07711-7
https://www.nature.com/articles/s41586-024-07711-7
https://proceedings.mlr.press/v70/zenke17a.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b6ffbbacbe2e56f2ec9a0da907382b4a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b6ffbbacbe2e56f2ec9a0da907382b4a-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://ieeexplore.ieee.org/abstract/document/8100070
https://ieeexplore.ieee.org/abstract/document/9010368
https://ieeexplore.ieee.org/abstract/document/9010368
https://ieeexplore.ieee.org/abstract/document/8107520
https://ieeexplore.ieee.org/abstract/document/8107520
https://proceedings.mlr.press/v108/farajtabar20a.html
https://proceedings.mlr.press/v80/serra18a.html
https://ieeexplore.ieee.org/abstract/document/9711071
https://ieeexplore.ieee.org/abstract/document/9711071
https://ieeexplore.ieee.org/document/10350630
https://ieeexplore.ieee.org/abstract/document/10377110
https://ieeexplore.ieee.org/abstract/document/11029250
https://ieeexplore.ieee.org/abstract/document/11029250
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://ieeexplore.ieee.org/document/10436706
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-35/issue-1/Robust-Estimation-of-a-Location-Parameter/10.1214/aoms/1177703732.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-35/issue-1/Robust-Estimation-of-a-Location-Parameter/10.1214/aoms/1177703732.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-35/issue-1/Robust-Estimation-of-a-Location-Parameter/10.1214/aoms/1177703732.full
https://ieeexplore.ieee.org/document/5206848
https://ieeexplore.ieee.org/document/8360453
https://ieeexplore.ieee.org/document/1284395
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2013.00504/full
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2013.00504/full
http://arxiv.org/abs/2205.13452

14

[43] Q. Lan and A. R. Mahmood, “Elephant neural networks: born to
Be a continual learner,” Oct. 2023, arXiv:2310.01365 [cs]. [Online].
Available: http://arxiv.org/abs/2310.01365

http://arxiv.org/abs/2310.01365

15

TABLE IX: Model Hyperparameter Experiment Results.

Model Hyperparameters Task 1 Task 2 Task 3 Task 4
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

P.E. ReLU L=5 10.8 (4.03) 0.19 (0.11) 11.2 (2.80) 0.19 (0.09) 13.3 (2.92) 0.28 (0.09) 25.7 (2.56) 0.70 (0.10)
L=10 11.1 (4.16) 0.17 (0.10) 11.0 (2.95) 0.18 (0.08) 13.4 (3.62) 0.27 (0.11) 26.6 (4.29) 0.73 (0.17)

SIREN

ω0 = 15, ωi = 1 13.5 (2.23) 0.31 (0.17) 14.9 (2.25) 0.36 (0.11) 17.4 (2.69) 0.44 (0.11) 23.5 (2.70) 0.54 (0.17)
ω0 = 15, ωi = 15 11.7 (3.13) 0.08 (0.04) 11.8 (2.11) 0.07 (0.04) 12.4 (2.14) 0.07 (0.03) 35.1 (2.43) 0.95 (0.02)
ω0 = 30, ωi = 1 12.2 (2.44) 0.22 (0.12) 14.2 (2.34) 0.32 (0.09) 15.9 (2.44) 0.40 (0.09) 25.5 (2.67) 0.67 (0.13)
ω0 = 30, ωi = 30 11.1 (3.98) 0.07 (0.04) 11.0 (2.75) 0.07 (0.03) 11.9 (2.87) 0.07 (0.04) 38.7 (7.30) 0.93 (0.18)

FINER ω0 = 5, ωi = 1 12.6 (2.48) 0.07 (0.03) 13.4 (1.71) 0.13 (0.04) 15.4 (2.26) 0.22 (0.07) 39.5 (1.85) 0.98 (0.02)
ω0 = 5, ωi = 5 11.8 (3.47) 0.07 (0.05) 11.9 (2.54) 0.10 (0.05) 13.8 (3.08) 0.16 (0.06) 46.2 (2.44) 0.99 (0.01)

DINER
L=1 16.0 (5.88) 0.64 (0.25) 15.5 (4.90) 0.59 (0.29) 17.6 (6.08) 0.65 (0.30) 28.8 (8.48) 0.81 (0.32)
L=2 16.1 (5.60) 0.66 (0.27) 16.4 (5.03) 0.66 (0.27) 17.9 (6.04) 0.68 (0.33) 36.8 (11.0) 0.88 (0.30)
L=3 16.6 (5.74) 0.71 (0.23) 17.2 (5.15) 0.72 (0.24) 19.9 (5.80) 0.77 (0.27) 44.8 (13.3) 0.92 (0.25)

TABLE X: Imagenet Distillation Results

Model Training Type Task 1 Task 2 Task 3 Task 4
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

P.E. ReLU L=10

Naive 11.1 (4.16) 0.17 (0.10) 11.0 (2.95) 0.18 (0.08) 13.4 (3.62) 0.27 (0.11) 26.6 (4.29) 0.73 (0.17)
Distillation pdistill = 5% 21.6 (2.86) 0.61 (0.12) 22.2 (2.57) 0.60 (0.09) 23.7 (2.36) 0.65 (0.08) 26.5 (2.75) 0.73 (0.09)
Distillation pdistill = 10% 21.6 (2.86) 0.61 (0.13) 22.2 (2.57) 0.60 (0.09) 23.9 (2.32) 0.65 (0.08) 26.7 (2.75) 0.74 (0.08)
Distillation pdistill = 20% 21.6 (2.81) 0.61 (0.12) 22.3 (2.56) 0.60 (0.08) 23.9 (2.28) 0.65 (0.08) 26.8 (2.74) 0.75 (0.08)

SIREN ω0 = 30, ωi = 30

Naive 11.1 (3.98) 0.07 (0.04) 11.0 (2.75) 0.07 (0.03) 11.9 (2.87) 0.07 (0.04) 38.7 (7.30) 0.93 (0.18)
Distillation pdistill = 5% 20.3 (4.06) 0.38 (0.18) 21.4 (2.74) 0.53 (0.14) 25.1 (2.97) 0.71 (0.12) 30.7 (3.88) 0.88 (0.07)
Distillation pdistill = 10% 24.3 (4.98) 0.61 (0.19) 25.0 (3.69) 0.71 (0.14) 28.2 (3.82) 0.81 (0.10) 33.9 (3.79) 0.94 (0.04)
Distillation pdistill = 20% 27.6 (5.28) 0.77 (0.13) 27.9 (4.00) 0.81 (0.11) 30.7 (3.75) 0.88 (0.08) 36.3 (3.36) 0.96 (0.02)

FINER ω0 = 5, ωi = 5

Naive 11.8 (3.47) 0.07 (0.05) 11.9 (2.54) 0.10 (0.05) 13.8 (3.08) 0.16 (0.06) 46.2 (2.44) 0.99 (0.01)
Distillation pdistill = 5% 29.1 (3.80) 0.84 (0.07) 30.2 (2.89) 0.88 (0.05) 32.9 (2.73) 0.92 (0.04) 38.7 (2.67) 0.97 (0.01)
Distillation pdistill = 10% 31.7 (3.72) 0.90 (0.05) 32.3 (2.97) 0.92 (0.04) 34.4 (2.63) 0.94 (0.03) 40.2 (2.49) 0.98 (0.01)
Distillation pdistill = 20% 33.5 (3.39) 0.93 (0.03) 33.7 (2.76) 0.94 (0.03) 35.4 (2.39) 0.95 (0.03) 41.1 (2.34) 0.98 (0.01)

DINER L=2

Naive 16.7 (5.46) 0.69 (0.23) 16.8 (4.56) 0.70 (0.23) 18.6 (5.79) 0.75 (0.28) 36.3 (12.1) 0.84 (0.34)
Distillation pdistill = 5% 31.4 (5.02) 0.89 (0.19) 32.2 (7.53) 0.89 (0.24) 33.1 (8.10) 0.89 (0.25) 38.2 (9.94) 0.92 (0.25)
Distillation pdistill = 10% 33.1 (5.92) 0.92 (0.19) 33.7 (8.01) 0.90 (0.24) 35.0 (8.68) 0.91 (0.25) 37.6 (9.75) 0.92 (0.25)
Distillation pdistill = 20% 34.3 (6.42) 0.93 (0.19) 34.6 (8.29) 0.91 (0.24) 36.5 (8.95) 0.91 (0.25) 38.0 (10.1) 0.92 (0.25)

TABLE XI: ACDC 4D Distillation Results. For readability, only the first and last two tasks are included.

Model Training Type Task 1 Task 2 Task 11 Task 12
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

P.E. ReLU L=10

Naive 25.2 (2.96) 0.79 (0.05) 19.3 (3.99) 0.46 (0.08) 22.2 (2.69) 0.63 (0.12) 25.3 (2.94) 0.80 (0.05)
Distillation pdistill = 5% 25.3 (3.28) 0.81 (0.05) 22.5 (3.13) 0.63 (0.09) 23.9 (3.35) 0.76 (0.07) 25.4 (3.28) 0.81 (0.05)
Distillation pdistill = 10% 25.3 (3.41) 0.80 (0.06) 22.7 (3.40) 0.64 (0.11) 23.9 (3.59) 0.75 (0.08) 25.4 (3.43) 0.80 (0.06)
Distillation pdistill = 20% 25.3 (3.44) 0.80 (0.05) 22.5 (3.12) 0.62 (0.10) 23.7 (3.71) 0.76 (0.07) 25.4 (3.44) 0.80 (0.05)

SIREN ω0 = 15, ωi = 15

Naive 16.6 (2.99) 0.07 (0.04) 16.6 (3.01) 0.07 (0.04) 17.8 (3.44) 0.14 (0.07) 31.7 (4.26) 0.90 (0.07)
Distillation pdistill = 5% 23.7 (3.51) 0.57 (0.08) 24.1 (3.51) 0.60 (0.08) 26.6 (4.07) 0.73 (0.10) 30.3 (3.68) 0.89 (0.06)
Distillation pdistill = 10% 23.9 (3.51) 0.58 (0.08) 24.1 (3.55) 0.60 (0.08) 26.2 (4.20) 0.71 (0.11) 30.3 (3.96) 0.89 (0.07)
Distillation pdistill = 20% 24.0 (3.34) 0.60 (0.07) 24.2 (3.40) 0.61 (0.07) 26.2 (4.11) 0.72 (0.10) 30.3 (3.59) 0.89 (0.06)

FINER ω0 = 5, ωi = 5

Naive 16.8 (3.46) 0.20 (0.06) 16.8 (3.51) 0.20 (0.06) 19.1 (3.21) 0.28 (0.05) 35.3 (3.58) 0.86 (0.05)
Distillation pdistill = 5% 21.0 (2.91) 0.41 (0.07) 21.1 (2.87) 0.41 (0.08) 25.6 (3.18) 0.57 (0.06) 30.9 (2.24) 0.80 (0.04)
Distillation pdistill = 10% 21.0 (2.90) 0.40 (0.07) 21.0 (2.87) 0.40 (0.08) 25.7 (2.89) 0.56 (0.06) 30.9 (1.99) 0.79 (0.04)
Distillation pdistill = 20% 20.9 (3.02) 0.38 (0.05) 20.9 (2.97) 0.37 (0.05) 25.5 (3.04) 0.69 (0.04) 31.0 (1.78) 0.90 (0.02)

DINER L=1

Naive 21.7 (5.17) 0.48 (0.40) 23.8 (8.32) 0.47 (0.49) 27.1 (12.5) 0.48 (0.40) 41.6 (41.5) 0.50 (0.43)
Distillation pdistill = 5% 35.6 (5.48) 0.93 (0.05) 36.8 (6.15) 0.95 (0.04) 48.9 (6.30) 0.99 (0.01) 54.2 (9.60) 0.99 (0.01)
Distillation pdistill = 10% 37.1 (6.73) 0.93 (0.05) 38.8 (5.24) 0.96 (0.03) 51.8 (12.5) 0.99 (0.01) 59.6 (20.9) 0.99 (0.01)
Distillation pdistill = 20% 36.5 (6.00) 0.92 (0.07) 38.6 (5.64) 0.94 (0.05) 47.6 (6.58) 0.98 (0.01) 50.5 (9.88) 0.98 (0.01)

TABLE XII: Imagenet Stabilisation Results

Training Type Task 1 Task 2 Task 3 Task 4
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Naive 16.7 (5.46) 0.69 (0.23) 16.8 (4.56) 0.70 (0.23) 18.6 (5.79) 0.75 (0.28) 36.3 (12.1) 0.84 (0.34)
Distillation pdistill = 20% 34.3 (6.42) 0.93 (0.19) 34.6 (8.29) 0.91 (0.24) 36.5 (8.95) 0.91 (0.25) 38.0 (10.1) 0.92 (0.25)
Stabilised 36.6 (7.51) 0.94 (0.20) 30.4 (8.05) 0.89 (0.24) 29.4 (8.37) 0.88 (0.25) 30.6 (9.18) 0.88 (0.24)

TABLE XIII: ACDC 4D Stabilisation Results. For readability, only the first and last two tasks are included.

Training Type Task 1 Task 2 Task 11 Task 12
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Naive 21.7 (5.17) 0.48 (0.40) 23.8 (8.32) 0.47 (0.49) 27.1 (12.5) 0.48 (0.40) 41.6 (41.5) 0.50 (0.43)
Distillation pdistill = 20% 36.5 (6.00) 0.92 (0.07) 38.6 (5.64) 0.94 (0.05) 47.6 (6.58) 0.98 (0.01) 50.5 (9.88) 0.98 (0.01)
Stabilised 97.2 (55.1) 0.98 (0.04) 86.7 (52.0) 0.91 (0.24) 85.4 (52.1) 0.91 (0.24) 86.7 (52.5) 0.91 (0.24)

	Introduction
	Background
	Related Work
	Problem Setting
	Signal Expansion Types

	Methods
	Neural Field Architectures
	Postional Encodings
	SIREN
	FINER
	DINER

	Knowledge Distillation for Neural Fields
	DINER Stabilisation
	Datasets
	ImageNet
	4D ACDC
	ACDC segmentation

	Experiments and Results
	Experimental Settings
	Model Hyperparameter Experiment
	Distillation Experiments
	ImageNet
	ACDC 4D
	ACDC Segmentation

	DINER stabilisation
	ImageNet
	ACDC 4D
	ACDC Segmentation

	Discussion
	Model Hyperparamters Results
	Distillation Results
	Stabilisation Results
	Future Work

	Conclusion
	References

