
Mutation Adaptive Genetic Algorithm for Constrained Capacity
Planning Problems in Operations Research
FLORIN ALEXANDRU PRIBOI, University of Twente, The Netherlands

Having the best planning for business processes is essential for maximising
profit and reducing production times. The problem arises when a large num-
ber of variables, for instance, the number of products, workers, locations,
or production times, have to be taken into account, as such a combinatorial
problem is computationally expensive. In the past, Genetic Algorithms (GA)
have been proposed for solving these optimisation problems, and they have
yielded great results. This study explores the application of GAs in Opera-
tions Research and breaks down each design consideration needed to adapt
the Standard Genetic Algorithm to solve optimisation problems. With these
requirements in mind, a new Mutation Adaptive Genetic Algorithm (MAGA)
is proposed.

Additional Key Words and Phrases: Genetic Algorithms, Capacity Planning,
Black-Box Optimization

1 INTRODUCTION
In today’s competitive market, it is paramount for businesses to
find the most efficient way of utilising their resources to maximise
productivity, reduce operational costs, and maintain a competitive
edge while meeting customer demands effectively [1]. When plan-
ning the resources necessary for certain capacity loads, multiple
parameters have to be taken into account. Finding the best values for
numerical parameters is known as optimisation and is a subfield of
Operations Research (OR). Some variants of optimisation problems
are Linear, Nonlinear, Integer or Mixed-Integer Programming. Being
an NP-hard combinatorial problem, it is infeasible to calculate each
combination of parameters for large solution spaces.
There have been multiple solutions proposed for solving these

problems, like branch-and-bound [9] or cutting-plane generation
[2]. Modern numerical solvers use a combination of multiple types
of algorithms to arrive at the optimal solution [9]. The caveat is
that they also require an extensive amount of time for convergence,
especially for a large number of parameters, and they may not work
on highly nonconvex, nonlinear problems.

Another proposed solution is the use of Genetic Algorithms (GA).
They are a class of metaheuristic search algorithms used for explor-
ing a large solution space. First introduced by John Holland in 1975
[4], GA mimics evolution to arrive at the best candidate solution. At
the beginning of the program, a population of candidate solutions
is initialised, each with random “genes”. These genes represent the
encoding of parameters in the solution space that need to be ex-
plored. Afterwards, each candidate solution – called a phenotype
– is evaluated using a fitness function, and the best individuals get
to “reproduce” in a process called crossover. Individuals swap parts
of their genes, thus producing offspring. After crossover, random

TScIT 43, July 4, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

mutations of genes occur with a certain probability to introduce
diversity and attempt to avoid the local minima. Afterwards, a new
generation is formed. The process is then repeated until all the
candidate solutions converge or after a set number of steps.

Although being used widely for rapidly generating high-quality
solutions, GAs also have some drawbacks. Firstly, evaluating the
phenotypes with the fitness function can be time-consuming. Doing
this for each trial solution over hundreds of generations can be
computationally expensive. Secondly, it is important to consider the
constraints present in most optimisation problems when evaluating
a phenotype. In addition, there is no guarantee of finding the optimal
solution. Depending on the fitness landscape, GA can get stuck in a
local optimum [6].

This study aims to explore how genetic algorithms can be used for
automated capacity planning. The new Mutation Adaptive Genetic
Algorithm (MAGA) is introduced, which builds upon the GSMR
algorithm, alongside a novel use of the percentage-wise mutation
operator. The new algorithm is tested on common optimisation
benchmarks and compared to various algorithms from the literature
in terms of objective value and convergence time. To achieve this,
the following research questions have to be answered.

(1) RQ1: What are the key design considerations and adaptations
required for a Genetic Algorithm to solve constrained capacity
planning problems effectively?

(2) RQ2: How does MAGA compare to current Genetic Algo-
rithms from the literature?

The paper is structured as follows: Section 2 presents an overview
of current work on Genetic Algorithms (GAs). In Section 3, the
requirements for a GA to effectively address capacity planning
problems are discussed in detail. Section 4 offers a comprehensive
explanation of the MAGA algorithm, while Section 5 presents the
results of the experiments conducted. Following the results, Section
6 includes a theoretical analysis of MAGA, and Section 7 concludes
the paper.

2 RELATED WORK
A thorough literature review must be done to answer the research
questions proposed. There are already pieces of literature regarding
the use of GA in capacity planning and similar problems, each of
them proposing different additions to the basic algorithm detailed
by Mr. Holland [4]. Extensive research was also done on modifica-
tions of the algorithm to try to mitigate the limitations mentioned
above. In this section, an overview of the current knowledge will
be presented.
In the 2019 paper by Jankauskas et al. [5], the authors proposed

two modified GAS for capacity planning in medium- and large-scale
capacity planning problems in biomanufacturing. These GAS were
compared to Mixed Integer Linear Programming (MILP) solvers and
yielded great results in terms of time required to converge to the

1

TScIT 43, July 4, 2025, Enschede, The Netherlands Florin Alexandru Priboi

optimal solution. The first algorithm proposed used another evolu-
tionary algorithm called Particle Swarm Optimisation (PSO) [7] to
find the best values for the mutation and crossover rates in a process
called meta-optimisation. This meta-optimised GA was tested on
a medium-sized problem with one production facility, converging
3.6 times faster than the MILP solver. The second algorithm added
an additional modification to how the planning is realised. The full
problem was split into 15 different overlapping sub-problems, which
were independently solved by local GAS, and the best solutions were
combined into a global schedule. This second variant was tested on a
large-scale problem involving multiple facilities, and it converged to
a value within 0.8 of the global optimum faster than its counterpart.
These results are promising for the use of GA in capacity planning,
especially for smaller-scale problems.
Another paper published by Yousefi et al. [14] demonstrates the

use of GA in resource planning. This study focuses on an emergency
department at a hospital in Brazil, where multiple parameters need
to be optimised to decrease the average length of stay. The authors
proposed a GA with a chaotic mutation operation, and after testing
the solution in a real-life setting, it was shown to decrease the
average length of stay by 14%. The chaotic mutation operator was
introduced as a mitigation against the tendency of the GA to get
stuck in a local maximum.
The study of genetic algorithms and their optimal convergence

abilities is not limited to their use in capacity planning. Early work
by Srinivas and Patnaik [13] has shown that implementing adaptive
mutation rates based on an individual’s fitness greatly increases
performance. In a more recent study, Basak et al. [1] have proposed
that a rank-based adaptive mutation outperforms the fitness-based
adaptive mutation proposed by Srinivas and Patnaik. This rank-
based mutation probability ensures that the best individual is not
changed and that the distribution of the fitness function does not
influence the probability.
A Cellular Automaton is a type of computational model used to

simulate the behaviour of cells interacting with their neighbours
based on a set of rules. This simulation is representative of how
individuals choose partners in real life, so naturally, it was used to
model selection in the study of Genetic Algorithms. In their paper,
Salto et al. [11] explain how a structured population leads to a slower
diffusion of genetic traits throughout the population, resulting in
neighbourhood “niches” and a greater population diversity. First
proposed by Whitley in 1993, the Cellular Genetic Algorithm (CGA)
has been widely used as a mechanism to try to stop premature
convergence.

In a study published in 2022 [8], Kumar et al. proposed the Group
Elite Selection of Mutation rates (GESMR) algorithm. In their ap-
proach, a set of mutation rates is evolved alongside the candidate
solutions. Each mutation rate is assigned to a subset of the popu-
lation and is mutated based on the increase in fitness of the group.
No crossover operation is used to isolate the effect of the mutation
operation. The authors found that GESMR outperformed previous
adaptive algorithms in multiple tasks, such as optimisation and neu-
roevolution for Image Classification and Reinforcement Learning.
One algorithm that outperformed GESMR in Image Classification is
15MR [10], but failed to generalise in other tasks.

An important aspect to consider when optimising is handling
constraints. Due to the random nature of the initialisation and oper-
ations of the GA, a phenotype has the chance of becoming infeasible.
The most common way of addressing infeasibility is by adding a
large penalty, but other methods are also available. Santos et al. [12]
describe a model where each phenotype is sorted into subsets ac-
cording to the deviation from the constraints. Each set, called a band,
represents a range for the deviation, with a smaller band assignment
meaning a smaller deviation. When selected for mating, first the
band is checked, and the individual with the smaller band gets to
reproduce. If two individuals share a band, only then is the fitness
taken into account. The bands get reduced after each generation,
guiding the search towards the feasible region of the solution space.

A simpler approach was designed by Deep et al. [3] and it involves
introducing the deviation in the fitness function. If there are no
feasible phenotypes in the population, the fitness then becomes the
deviation from the constraints. This ensures that the phenotypes
closer to the feasibility space get selected for reproduction. If there
are any feasible phenotypes, the fitness of the infeasible individuals
will become their deviation plus the worst fitness of the generation.
With this approach, an infeasible phenotype with a larger deviation
but with a very small fitness value does not get to reproduce, a
problem that occurred with normal penalisation techniques.

3 REQUIREMENTS
To answer RQ1, this chapter summarises all the necessary adapta-
tions of the SGA necessary for solving constraint capacity planning
problems.

3.1 Problem Definition
Capacity planning problems can be defined as finding the best values
of some decision variables 𝑋 ∈ R𝐷 , as to minimise an objective
function 𝑓 , subject to some constraints 𝑔

min
𝑋 ∈R𝐷

𝑓 (𝑋) (1)

subject to:
𝑔(𝑋) < 𝑦,𝑦 ∈ 𝑅 (2)
𝑎 < 𝑋 < 𝑏, 𝑎, 𝑏 ∈ 𝑅

𝑋 ∈ R𝐷 or 𝑋 ∈ Z𝐷 or 𝑋 ∈ {0, 1}𝐷

3.2 Constraint handling
The first problem to be tackled is constraint handling. There are
multiple ways researchers have tried to handle constraints, with
the most popular being adding a penalty to the cost function. This
approach does not account for the range of the fitness function, nor
the degree of infeasibility. An individual who deviates greatly from
the constraints will be penalised the same as an individual with a
small deviation, and if the first one has a smaller fitness value, it
will have more chances to reproduce. This does not guide the search
towards the feasible region, and a better method has to be used.

As in the papers mentioned above [3] [12], one way of measuring
infeasibility is the degree of deviation from the constraint. As a
constraint is an equation, it consists of a left-hand side (LHS) and
a right-hand side (RHS), which represent 𝑔(𝑥) and 𝑦 respectively

2

Mutation Adaptive Genetic Algorithm for Constrained Capacity Planning Problems in Operations Research TScIT 43, July 4, 2025, Enschede, The Netherlands

(see Equation 2). The deviation becomes a measure of the sum
of |𝑅𝐻𝑆 − 𝐿𝐻𝑆 | for all the constraints of the problem. Using this
measure as a degree of infeasibility helps guide the search towards
the feasible region.
Other methods of constraint handling are problem-specific and

rely upon the encoding or the decoding of the problem. If the prob-
lem is encoded so that no infeasible individuals can be generated,
or the decoding automatically solves the constraints, no handling is
needed.
One important thing to mention is equality constraints. During

the experiments, when testing problems with equality constraints,
no method consistently produced viable solutions. This is due to
the stochastic nature of the genetic operators. As the modifications
take place randomly, equality constraints restrict the solution space
in such a way that GA operators are not designed to handle.

3.3 Operators for different parameter types
An optimisation function can have either binary, integer, or a mix
of these parameters. Each type of value can be mutated with dif-
ferent types of operators, with continuous variables having the
most operators, whilst for binary ones, there is only flipping the bit.
Each mutation operator, such as uniform, Gaussian, or proportional
mutation, alters the phenotype in distinct ways and has specific
advantages and disadvantages that should be taken into account
when designing an algorithm. A GA for capacity planning should
be capable of handling different data types.

3.4 Fine-Tuning and Adaptiveness
The optimum value of hyperparameters can change during the
execution of the algorithm, depending on the position in the fitness
landscape. At the beginning of the program, or when stuck in a local
minimum, higher mutation rates can prove to be more beneficial, as
they promote exploration. The inverse is true for the last iterations;
a smaller mutation rate fine-tunes a solution that is close to the
optimum. In order to help traverse rugged fitness landscapes, a GA
needs to be able to adapt its operators based on feedback from the
evolution.

3.5 Encoding
Independent of the genetic algorithm itself, one important aspect to
mention is the importance of how the problem is encoded. How a
problem is encoded directly affects the search space, which in turn
directly affects performance. If there is a way of preventing infeasi-
ble phenotypes directly from the problem encoding, the algorithm
does not need to first find the optimal space. This enables the opti-
misation process to focus immediately on identifying high-quality
solutions, thereby accelerating convergence and improving overall
performance.

4 ARCHITECTURE DESCRIPTION
In light of the requirements established above, this paper proposes
the Mutation Adaptive Genetic Algorithm (MAGA), an algorithm
that is equipped to adapt tomultiple fitness landscapes due to its dual
mutation operator. MAGA adapts its mutation operator based on the
feedback received from the change in fitness, whilst maintaining a

balance between exploration and exploitation. This section explains
each design choice of the algorithm.

4.1 Mutation Operators
Being an extension of the GESMR [8] algorithm, MAGA uses two
different mutation rate groups, one for each operator. In Additive
Gaussian Mutation, the mutation rate 𝜎 is scaled by a small value 𝜖
drawn from the Standard Normal Distribution and adds this noise
to the current value of the gene.

𝑋𝑡+1 = 𝑋𝑡 + 𝜎𝐺 · 𝜀, 𝜀 ∼ N(0, 1) (3)

The second operator used is Percentage-wise mutation, given
by equation 2, which scales the current value of the gene by the
mutation rate 𝜎 , which represents a percentage.

𝑋𝑡+1 = 𝑋𝑡 · (1 + 𝜎𝑃) (4)

One disadvantage of this operator is early starvation of mutation
rates. If the initial mutation rates that produce a good change in
fitness are positive, negative mutation rates will get starved out,
with no possibility of being reintroduced. A simple and effective
mechanism to solve this problem, which has been used in the past
in maintaining population diversity, is a process called immigration.
Here, a portion of the population, usually made up of the least fit
individuals, is being reinitialised. If a negative mutation rate is more
beneficial, it will quickly start dominating the other mutation rates
For integer and binary variables, a small modification is neces-

sary. Binary variables use a normal mutation with a 20% chance
of mutating. Small Integer variables are not susceptible to small
modifications, so some stochastic option is needed to decide how
to round the new value to the nearest integer. For both mutation
operators, one of the following rounding functions, both with a
probability of 50% is used:

𝑋𝑡+1 =

{
⌈𝑋𝑡+1⌉ with probability 0.5
⌊𝑋𝑡+1⌋ if case 1 fails

(5)

These two mutation operators together are fit to explore the fitness
landscape in a different but complementary manner. More details
about the dual adaptation can be found in the discussion section.
After each generation, the mutation rate groups are themselves
sorted by the best fitness change. Truncation selection is used on
the resulting lists, after which they are mutated according to their
respective equations:

𝜎𝑡+1𝐺 = 𝜎𝑡𝐺 · 𝛼𝜀 , 𝜀 ∼ U(−1, 1) (6)

𝜎𝑡+1𝑃 = 𝜎𝑡𝑃 · (1 + 𝜀), 𝜀 ∼ U(−0.2, 0.2) (7)

Where 𝛼 is a global meta-mutation rate fixed a priori.

4.2 Group Selection of Mutation Operators
For an initial population of N+1 candidate solutions, there are two
groups of mutation rates, G and P, of equal size, with the property
that (G + P)| N. At each generation, the candidate solutions are sorted
according to fitness value. The fittest individuals are chosen to be

3

TScIT 43, July 4, 2025, Enschede, The Netherlands Florin Alexandru Priboi

mutated via truncation selection. The fittest individual, also called
the elite, is preserved and passed to the next generation unaltered,
thus ensuring that no exacerbating mutations set back the algorithm.
After selection, the new generation undergoes mutation via 2

options: Gaussian or Percentage-wise. Initially, both mutation oper-
ators get assigned the same number of groups, but after several gen-
erations, the groups either increase or decrease based on a relative
change in fitness produced by the operator. As there is a one-to-one
mapping between a mutation rate group and a group of solutions,
probabilistic sampling of the two operators becomes unfeasible. The
algorithm uses a greedy strategy to select how many groups are
assigned to each operator, maintaining this value within a certain
bound, in order to allow some exploration during the later stages
of the algorithm. When deciding which operator to increase, only
the past few generations are considered, as information from earlier
trials becomes irrelevant during the later stages.

4.3 Constraint Handling
The most natural constraint handling method for this algorithm
is Deep’s use of deviation ([3]). At each generation, the fitness
score is influenced by whether there are feasible individuals in the
population, thus allowing for quick adaptation of fitness relative to
feasibility. The fitness function for an infeasible phenotype is thus
given by the equation:

𝑓 (𝑥) =
{
|𝑔(𝑥) − 𝑦 |, if there are no feasible solutions
deviation + 𝑓worst, otherwise

(8)

When the algorithm finds a feasible individual, the fitness value of
the other phenotypes, which represented deviation up to this point,
gets adjusted, thus placing them at the end of the rank. The suitable
individual is now considered elite and gets selected for the next
generation. The entire algorithm is described in the pseudocode in
Algorithm 1.

Algorithm 1MAGA – Mutation Adaptive Genetic Algorithm
1: Input: Population size 𝑁 , number of mutation groups 𝑃 , 𝐺
2: Output: Best solution found
3: Initialize population Pop of size 𝑁 + 1, mutation groups 𝑃 , 𝐺
4: Sort Pop based on fitness 𝑓 (𝑋) using Equation (8)
5: Apply truncation selection on Pop
6: while termination conditions not met do
7: Mutate 𝐺 groups using Equation (3)
8: Mutate 𝑃 groups using Equation (4)
9: Apply Equation (5) for integer variables
10: Sort Pop based on fitness 𝑓 (𝑋) using Equation (8)
11: Apply truncation selection on Pop
12: Identify the operator that produced the best fitness change
13: Adjust 𝑃 and𝐺 group sizes based on the result from Step 10
14: Apply truncation selection on mutation rates 𝑃 and 𝐺
15: Mutate 𝑃 and 𝐺 according to Equations (6) and (7)
16: end while
17: return best individual in Pop

5 RESULTS
The algorithm has been tested on multiple benchmarks created to
artificially simulate different fitness landscapes with 100 dimensions
for the solution space.All algorithms have been run on a population
size of 196 individuals for 300 generations, until they converged or
until there was no improvement for 50 generations. More details
about all the hyperparameters of the MAGA algorithm used in these
experiments can be found in Appendix B. To answer RQ 2, the
following algorithms have been chosen for comparison:

(1) Standard Genetic Algorithm (SGA) using Percentage-Wise
mutation and Lagrange crossover

(2) Cellular GA with L5 Neighbourhood search using Percentage-
Wise mutation and Lagrange crossover

(3) Rank-AGA using Percentage-Wise mutation and Lagrange
crossover

(4) GESMR with 14 mutation groups
(5) GESMR-P, a variation of GESMR but only using Percentage-

Wise mutation, with 14 groups

These algorithms were chosen as they possess different adaptabil-
ity techniques, and GESMR-P was specifically designed to test the
Percentage-wise mutation operator in isolation. The mutation and
crossover types were chosen after multiple experimental runs to
assess which operator was the most beneficial for these numerical
optimisation problems.
Besides GESMR and GESMR-P, which do not use the mutation

and crossover rate as a probabilistic decision, the other algorithms
have a fixed mutation rate of 0.2 and a crossover rate of 0.8. GESMR,
GESMR-P and MAGA do not use crossover. During testing, it was
found that crossover hurts evolution in these mutation-centric algo-
rithms, because the changes in fitness cannot be traced back to the
mutation operator. Without a direct relation between mutation and
relative fitness change, the algorithm is not able to select the most
beneficial mutation rates.
In order to assess performance, the evaluation criteria are the

best fitness value, based on 50 independent runs, and the average
number of generations it has taken the algorithm to stop. For prob-
lems where the algorithms did achieve the global optimum, the
differentiating factor is the number of times they converged. Due
to the multiplicative nature of the percentage mutation, all results
have been rounded up to 5 decimal points to avoid small biases
induced by floating-point errors. For an algorithm to be considered
superior, it should show a stastitically significant difference at the
95% confidence level.

As it can be seen from Figure 1, MAGA converges to the optimum
on more problems compared to the other algorithms, achieving the
global minimum 100% of the time on Griewank, Ackley, and Shifted
Sphere, and 92% of the time on Easom. No algorithm converged to
the global optimum on the Rosenbrock and Schwefel benchmarks.
It achieves this performance on a smaller number of generations.
Running pairwise t-tests for the convergence count for all the

problems, the only algorithm that showed a statistically significant
difference at the 95% confidence level is Rank-AGA on the Easom
benchmark, with a p-value of 0.042. Calculating the risk difference
shows that MAGA converged 8% less. This can be attributed to the
relatively flat fitness landscape of the function, where differences

4

Mutation Adaptive Genetic Algorithm for Constrained Capacity Planning Problems in Operations Research TScIT 43, July 4, 2025, Enschede, The Netherlands

Figure 1. Number of Successful Global Optimisations (Unconstrained)

in objective value are relatively minimal from iteration to iteration,
until the deep global optimum is reached. This, in turn, slows down
the evolution of the mutation rates of MAGA and GESMR.

While eachmutation operator excels individually on specific prob-
lem types, neither performs consistently well across all benchmarks.
MAGA effectively combines their strengths, achieving competitive
results on both classes of problems. This evidence indicates that the
hybrid mutation strategy improves robustness and adaptability in
diverse optimisation landscapes.

The same pattern can be observed in the functions where neither
algorithm converged. MAGA achieves similar results as GESMR-P
on Rosenbrock (Figure 2), and similar results as GESMR on Schwefel
(Figure 3).

Figure 2. Best Fitness Value on Rosenbrock Benchmark

In terms of convergence speed, the use of multiple operators does
not significantly slow down evolution. The average convergence
generation can be seen in Figure 4. MAGA successfully uses both
operators simultaneously, even when one of the operators performs
worse in isolation. This implies that both operators help in converg-
ing, not that one operator takes over and the other just perturbs the
solution, resulting in a weaker performance.

Figure 3. Best Fitness Value on Schwefel Benchmark

Figure 4. Average Termination Generation (Unconstrained)

To asses if the difference in convergence speed, a Kruskal-Willis
and Dunn post-hoc tests were performed, as the convergence gen-
erations do not follow a normal distribution. After establishing
that there is statistical difference between all the algorithms for
each individual benchamrk, the Dunn test showed that MAGA was
outperformed only by GESMR and Rank-AGA on the Easom bench-
marmk. The results can be seen in appendix Appendix C. Although
being outperformed on these tests, no other algorithm perfromed
well across all the different benchmarks.

When it comes to constrained optimisation, all the algorithms
were able to converge to a feasible individual in the 50 test runs. All
the constrained benchamrks are the 2D variations. It is important
to mention that all the algorithms use the same constraint handling
method. Only Rank-AGA failed for a single optimisation run on the
G08 function, but this can be attributed to unfavourable random
initialisation. Consistent with previous observations, MAGA per-
forms well across a diverse set of benchmarking problems, being
the only algorithm that converged to the global optimum on all the
optimization problems.
For the constrained benchamrks, Rank-AGA once more demon-

strated better convergence abilities at the 95% confidence level on
one of the benchmarks, namely Rosenbrock Constrained. In relation
to convergence speed, MAGA is outperformed slightly on Mishra

5

TScIT 43, July 4, 2025, Enschede, The Netherlands Florin Alexandru Priboi

Figure 5. Number of Successful Global Optimisations (Constrained)

Figure 6. Average Termination Generation (Constrained)

Bird by GESMR. All the results of the Dunn tests can be seen in
Appendix C.

In summary, the comparative analysis confirms that the proposed
MAGA algorithm is the only algorithm that consistently produces
good results across all the benchmarks, both constrained and un-
constrained, without a great loss of convergence speed. The dual
mutation operator proves to be effective in enhancing adaptability
and robustness, maintaining the good results of the individual coun-
terparts. These findings answer RQ 2, demonstrating that MAGA
is a versatile alternative to traditional evolutionary approaches.
MAGA represents a promising direction for future developments
in evolutionary optimisation, especially in applications requiring
generalisability.

6 THEORETICAL ANALYSIS
MAGA is designed to combine the logarithmical exploration prop-
erties of Percentage Mutation with the local search capabilities of
Gaussian Mutation. The adaptive nature of the algorithm allows for
wide exploration during the early stages and for fine-tuning at the
end. In addition, the dual genetic operator maintains a better popu-
lation diversity and gives the algorithm the possibility of choosing
the best operator at each step of the optimisation process. The idea
of the algorithm was that a solution would be scaled up or down by
the percentage mutation, bringing it closer to the minimum, whilst
the Gaussian mutation would adjust and fine-tune the solution at
the end to be in line with the optimum, analogous to the slope and
y-intercept in a regressor. This behaviour can be seen in Figure 7,

which shows the number of groups assigned to each operator during
a perfect optimisation of the Easom function.

Figure 7. A Perfect Run on The Easom Benchmark

This was the expected behaviour, but it raised another question:
why was the Percentage mutation better for the majority of the
execution? During early experiments, GESMR had perfect results on
a set of problems, while GESMR-P had poor results on the same set
and vice versa. The initial expectation was that, for those problems,
the respective operation would dominate during the execution. In
practice, this is not the case. As can be seen from the result section,
GESMR-P never came close to converging on the Easom function,
but MAGA uses Percentage-wise mutation as the primary operator
while converging to the global optimum. The same behaviour can
be seen in this run for the Randomly-shifted Sphere function.

Figure 8. A Perfect Run on The Shifted-Sphere Benchmark

PercentageMutation performed significantly worse on the Sphere
benchmark, but on some runs of MAGA, it is the optimal operation
(see Figure 8). It is important to note that this does not happen on
all the runs; sometimes, one operator performs similarly or worse
over the entire duration of optimisation, as shown in Figure 9.
One reason for this irregular pattern is population initialisation.

As the population is initialised randomly, there is no telling a priori
which operator would be beneficial at the beginning. In addition,
there is no guarantee that a phenotype will be assigned a specific
operator at a given iteration. Thus, the combined use of the muta-
tions behaves as a different operator, but still achieves great results
on the same benchmarks.

6

Mutation Adaptive Genetic Algorithm for Constrained Capacity Planning Problems in Operations Research TScIT 43, July 4, 2025, Enschede, The Netherlands

Figure 9. Another Perfect Run on The Easom Benchmark

A two-proportion z-test on the number of convergences on the
Easom functions tells us that the difference between perfect runs
is not statistically significant at the 95% confidence level. MAGA
achieves the same results on the test functions where the individual
operators perform great, but the combined use has a different effect
on the population.

Unfortunately, there is no way to know a priori whether a genetic
algorithm will perform well on a problem, and experiments need to
be done to assess performance. According to the “No Free Lunch
Theorem”, two optimisers perform the same when averaged across
all sets of problems. Since capacity planning problems can vary
widely in terms of complexity and structure, no single optimisation
algorithm can be considered universally superior. The results high-
light the importance of empirical testing and adaptive strategies
when selecting optimisation algorithms.

Since the experiments only focus on the use of two operators,
further research has to be done in order to assess how more muta-
tion functions combine together, and if a combination of multiple
operators still preserves their individual results and increases gen-
eralizability, but also how this would affect convergence speed. In
addition, the handling of integer variables is quite rudimentary, and
further development is required to achieve better results.

7 CONCLUSION
To conclude, this paper presented the Mutation Adaptive Genetic
Algorithm, a novel evolutionary optimisation algorithm specifically
tailored to address constrained capacity planning problems in Oper-
ations Research. Building upon the strengths of previous algorithms
such as GESMR, MAGA integrates a dual mutation strategy with
a mechanism for adaptation based on fitness feedback. The design
of MAGA was directly informed by a set of critical requirements
identified in this study, specifically, the need for effective constraint
handling, adaptive mutation, and support for multiple parameter
types. All of these requirements were addressed in the proposed
algorithm architecture.
MAGA proves it satisfies all the requirements listed for a capac-

ity planning problem. Through extensive benchmarking on both
constrained and unconstrained problems,MAGA demonstrated com-
petitive performance compared to several established GA variants
on a wider set of benchmarking functions. These results confirm
that the hybrid mutation strategy not only maintains the strengths

of its components but also introduces emergent behaviour beneficial
for global optimisation.
These findings confirm that MAGA meets both research objec-

tives: it fulfils the key architectural requirements for constrained
optimisation (RQ1) and achieves superior performance compared
to other genetic algorithms (RQ2). Additional work needs to be
done to explore how the addition of multiple genetic operators influ-
ences generalizability and what the combined effect of the mutation
operators has on population diversity.

REFERENCES
[1] Nils Arne Bakke and Roland Hellberg. 1993. The challenges of capacity planning.

International journal of production economics 30 (1993), 243–264.
[2] Gérard Cornuéjols. 2008. Valid inequalities for mixed integer linear programs.

Mathematical programming 112, 1 (2008), 3–44.
[3] KusumDeep, Krishna Pratap Singh, Mitthan Lal Kansal, and ChanderMohan. 2009.

A real coded genetic algorithm for solving integer and mixed integer optimization
problems. Appl. Math. Comput. 212, 2 (2009), 505–518.

[4] John H Holland. 1992. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT press.

[5] Karolis Jankauskas, Lazaros G Papageorgiou, and Suzanne S Farid. 2019. Fast
genetic algorithm approaches to solving discrete-time mixed integer linear pro-
gramming problems of capacity planning and scheduling of biopharmaceutical
manufacture. Computers & Chemical Engineering 121 (2019), 212–223.

[6] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. 2021. A review on
genetic algorithm: past, present, and future. Multimedia tools and applications 80
(2021), 8091–8126.

[7] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks, Vol. 4. ieee,
1942–1948.

[8] Akarsh Kumar, Bo Liu, Risto Miikkulainen, and Peter Stone. 2022. Effective
mutation rate adaptation through group elite selection. In Proceedings of the
Genetic and Evolutionary Computation Conference. 721–729.

[9] Ailsa H Land and Alison G Doig. 2009. An automatic method for solving discrete
programming problems. In 50 Years of Integer Programming 1958-2008: From the
Early Years to the State-of-the-Art. Springer, 105–132.

[10] Jeffrey T Linderoth, Andrea Lodi, et al. 2010. MILP software. Wiley encyclopedia
of operations research and management science 5 (2010), 3239–3248.

[11] Carolina Salto and Enrique Alba. 2019. Cellular genetic algorithms: Understanding
the behavior of using neighborhoods. Applied Artificial Intelligence 33, 10 (2019),
863–880.

[12] Maristela Oliveira Santos, Sadao Massago, and Bernardo Almada-Lobo. 2010.
Infeasibility handling in genetic algorithm using nested domains for production
planning. Computers & operations research 37, 6 (2010), 1113–1122.

[13] Mandavilli Srinivas and Lalit M Patnaik. 2002. Adaptive probabilities of crossover
and mutation in genetic algorithms. IEEE Transactions on Systems, Man, and
Cybernetics 24, 4 (2002), 656–667.

[14] Milad Yousefi, Moslem Yousefi, Ricardo Poley Martins Ferreira, Joong Hoon Kim,
and Flavio S Fogliatto. 2018. Chaotic genetic algorithm and Adaboost ensemble
metamodeling approach for optimum resource planning in emergency depart-
ments. Artificial intelligence in medicine 84 (2018), 23–33.

A AI ACKNOWLEDGMENTS
For the realisation of this paper, Grammarly and Quilbot were used
to correct grammatical errors and misspellings. Additionally, Chat-
GPTwas used to assist with LaTeX formatting and debugging during
the implementation of the algorithms.

B ALGORITHM PARAMETERS AND DETAILS
As one iteration of the MAGA algorithm comprises multiple steps,
numerous parameters that need to be initialised. At the beginning
of the optimisation process, the initial population is randomly gen-
erated, with each gene being drawn from a uniform distribution
with its upper and lower bounds.

7

TScIT 43, July 4, 2025, Enschede, The Netherlands Florin Alexandru Priboi

The two mutation groups are initiated differently. Mutation rates
for the Gaussian mutations are logarithmically spaced values rang-
ing from 1𝑒 −3 to 1𝑒 +3. Percentage-wise mutation rates are linearly
spaced values from -0.3 to 0.3. Initially, both mutation operators
consist of 7 groups each.
A mutation rate is considered to be better if it produces a better

average change in mutation in that specific generation. If a par-
ticular operator consistently performs better for five consecutive
generations, the algorithm increases the number of groups using
that operator, thereby reinforcing its influence.

Truncation selection is applied with a 25% truncation point, both
for the solutions and the mutation rates. Half of the population
with the Percentage-wise mutation rates are reintroduced every 5
generations.

8

Mutation Adaptive Genetic Algorithm for Constrained Capacity Planning Problems in Operations Research TScIT 43, July 4, 2025, Enschede, The Netherlands

C RESULTS OF DUNN TESTS

Table 1. Dunn post-hoc test for Ackley

Cellular-GA GESMR GESMR-P MAGA Rank-AGA SGA

Cellular-GA 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000
GESMR 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000
GESMR-P 0.0000 0.0000 1.0000 0.7479 0.0000 0.0000
MAGA 0.0000 0.0000 0.7479 1.0000 0.0000 0.0000
Rank-AGA 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000
SGA 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000

Table 2. Dunn post-hoc test for Easom

Cellular-GA GESMR GESMR-P MAGA Rank-AGA SGA

Cellular-GA 1.0000 0.0000 0.0122 0.0000 0.0000 0.0000
GESMR 0.0000 1.0000 0.0000 0.0078 1.0000 0.0005
GESMR-P 0.0122 0.0000 1.0000 0.1314 0.0000 0.7860
MAGA 0.0000 0.0078 0.1314 1.0000 0.0000 1.0000
Rank-AGA 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
SGA 0.0000 0.0005 0.7860 1.0000 0.0000 1.0000

Table 3. Dunn post-hoc test for Griewank

Cellular-GA GESMR GESMR-P MAGA Rank-AGA SGA

Cellular-GA 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000
GESMR 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000
GESMR-P 0.0000 0.0000 1.0000 0.1160 0.0000 0.0000
MAGA 0.0000 0.0000 0.1160 1.0000 0.0000 0.0000
Rank-AGA 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000
SGA 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000

Table 4. Dunn post-hoc test for Rosenbrock

Cellular-GA GESMR GESMR-P MAGA Rank-AGA SGA

Cellular-GA 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
GESMR 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
GESMR-P 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
MAGA 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
Rank-AGA 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
SGA 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000

9

TScIT 43, July 4, 2025, Enschede, The Netherlands Florin Alexandru Priboi

Table 5. Dunn post-hoc test for Schwefel

Cellular-GA GESMR GESMR-P MAGA Rank-AGA SGA

Cellular-GA 1.0000 0.0000 0.0000 0.0000 0.0002 0.7479
GESMR 0.0000 1.0000 0.0000 1.0000 0.4692 0.0000
GESMR-P 0.0000 0.0000 1.0000 0.0000 0.0000 0.0008
MAGA 0.0000 1.0000 0.0000 1.0000 0.4692 0.0000
Rank-AGA 0.0002 0.4692 0.0000 0.4692 1.0000 0.0000
SGA 0.7479 0.0000 0.0008 0.0000 0.0000 1.0000

Table 6. Dunn post-hoc test for Shifted Sphere

Cellular-GA GESMR GESMR-P MAGA Rank-AGA SGA

Cellular-GA 1.0000 0.0010 0.0002 1.0000 0.1987 0.1156
GESMR 0.0010 1.0000 1.0000 0.1339 0.0000 0.0000
GESMR-P 0.0002 1.0000 1.0000 0.0487 0.0000 0.0000
MAGA 1.0000 0.1339 0.0487 1.0000 0.0017 0.0008
Rank-AGA 0.1987 0.0000 0.0000 0.0017 1.0000 1.0000
SGA 0.1156 0.0000 0.0000 0.0008 1.0000 1.0000

Table 7. Dunn post-hoc test for g08

Cellular-GA GESMR GESMR-P MAGA Rank-AGA SGA

Cellular-GA 1.0000 0.0000 0.0058 0.0000 0.0000 0.0052
GESMR 0.0000 1.0000 0.0000 0.3400 0.0367 0.0000
GESMR-P 0.0058 0.0000 1.0000 0.0003 0.0065 1.0000
MAGA 0.0000 0.3400 0.0003 1.0000 1.0000 0.0003
Rank-AGA 0.0000 0.0367 0.0065 1.0000 1.0000 0.0071
SGA 0.0052 0.0000 1.0000 0.0003 0.0071 1.0000

Table 8. Dunn post-hoc test for Keane Bump

Cellular-GA GESMR GESMR-P MAGA Rank-AGA SGA

Cellular-GA 1.0000 1.0000 0.4345 1.0000 0.0508 1.0000
GESMR 1.0000 1.0000 0.0591 1.0000 0.3850 1.0000
GESMR-P 0.4345 0.0591 1.0000 0.0585 0.0000 0.4727
MAGA 1.0000 1.0000 0.0585 1.0000 0.3884 1.0000
Rank-AGA 0.0508 0.3850 0.0000 0.3884 1.0000 0.0456
SGA 1.0000 1.0000 0.4727 1.0000 0.0456 1.0000

10

Mutation Adaptive Genetic Algorithm for Constrained Capacity Planning Problems in Operations Research TScIT 43, July 4, 2025, Enschede, The Netherlands

Table 9. Dunn post-hoc test for Mishra Bird

Cellular-GA GESMR GESMR-P MAGA Rank-AGA SGA

Cellular-GA 1.0000 0.0000 0.0874 0.0000 0.0000 0.0021
GESMR 0.0000 1.0000 0.0000 0.0321 0.0022 0.0000
GESMR-P 0.0874 0.0000 1.0000 0.0000 0.0000 1.0000
MAGA 0.0000 0.0321 0.0000 1.0000 1.0000 0.0000
Rank-AGA 0.0000 0.0022 0.0000 1.0000 1.0000 0.0001
SGA 0.0021 0.0000 1.0000 0.0000 0.0001 1.0000

Table 10. Dunn post-hoc test for Rosenbrock Constrained

Cellular-GA GESMR GESMR-P MAGA Rank-AGA SGA

Cellular-GA 1.0000 1.0000 0.0003 0.7712 1.0000 1.0000
GESMR 1.0000 1.0000 0.0000 0.2493 1.0000 1.0000
GESMR-P 0.0003 0.0000 1.0000 0.3170 0.0193 0.0000
MAGA 0.7712 0.2493 0.3170 1.0000 1.0000 0.2790
Rank-AGA 1.0000 1.0000 0.0193 1.0000 1.0000 1.0000
SGA 1.0000 1.0000 0.0000 0.2790 1.0000 1.0000

11

	Abstract
	1 Introduction
	2 Related Work
	3 Requirements
	3.1 Problem Definition
	3.2 Constraint handling
	3.3 Operators for different parameter types
	3.4 Fine-Tuning and Adaptiveness
	3.5 Encoding

	4 Architecture Description
	4.1 Mutation Operators
	4.2 Group Selection of Mutation Operators
	4.3 Constraint Handling

	5 Results
	6 Theoretical Analysis
	7 Conclusion
	References
	A AI ACKNOWLEDGMENTS
	B Algorithm Parameters and Details
	C Results of Dunn Tests

