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Network telescopes offer valuable insights into unsolicited internet traffic,
but their data is often unwieldy due to its size and the inefficiency of
traditional storage formats. This research investigates the use of a colum-
nar data structure as a more efficient alternative to sequential packet
storage. A prototype system was developed to convert and analyse PCAP-
formatted data, with performance assessed through typical analysis tasks.
The results highlight notable improvements in aggregation task speed
and long-term storage, while revealing shortcomings for optimisation in
packet filtering operations.
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1 INTRODUCTION

As specified in RFC 791 [1], an IP address as found in the Internet
Protocol version 4 (IPv4) header is constructed from a series of
exactly 32 bits. In total, there are approximately 4.3 billion possible
ways to arrange these 32 ones and zeros. This, in turn, allows for
the same number of valid IPv4 addresses. Due to their limited
quantity, ICANN (more specifically, their IANA subdivision) is
in charge of assigning IPv4 addresses to other entities [11]. Even
though all such addresses have been allocated for over a decade,
not all of them are actively in use. Given that, by its definition, an
unused address is not being used by any host machine, one would
expect for these addresses to not receive any traffic. However,
this is in fact not true due to a phenomenon called "internet
background radiation" [13]. By this phenomenon, any IP address
could be addressed by unsolicited traffic for several reasons:

(1) Misconfigurations - traffic sent erroneously due to faulty
software

(2) Denial-of-service backscatter — traffic resulting from IP
spoofing used in DoS attacks

(3) IP scanning - traffic from widespread probing of host ma-
chines in search of specific services and/or vulnerabilities

While most of this background radiation goes unnoticed, if one
were to set up a mechanism to capture the packets that are sent
to unused addresses, it would provide valuable insight into the
causes of these traffic categories.
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This is where network telescopes come in. These machines
are configured to store any of the unsolicited traffic without re-
sponding. Later, the captured data is analysed by researchers. A
problem arises, however, when trying to efficiently analyse the
telescope’s data. The problem stems from the fact that a network
telescope generates a great quantity of data. As an example, the
UCSD network telescope, which is comprised of a /9 and /10
subset, generates around four terabytes of data every day [9].
Captured data is most often stored using either the PCAP [10] or
PcapNG [16] file formats. Both are sequential formats: the cap-
tured data for each packet is stored one after the other. When
analysing network telescope data, not all fields of a packet may be
used, as is exemplified by M. Zakroum et al. [20]. Their research
was focused on the destination port field found in the TCP proto-
col’s header. Performing this analysis using the current storage
method requires looking over irrelevant fields of the TCP header.
Worse yet, packets which do not contain a TCP header are looked
over as well. Would it be possible to somehow read only the fields
in which we are interested, thereby speeding up analysis, and
potentially reducing storage demands?

This paper proposes a new data structure that is organized
within columns, to solve precisely this problem. To assess the
effects of this structure on the analysis of network telescope data,
the following research questions are posed:

e Main RQ - How feasible is the use of a columnar structure
for the analysis of network telescope data, as an alternative
to using PCAP files?

e Sub-RQ 1 - What are the effects of a columnar data struc-
ture on the compute time of typical network telescope
analysis tasks?

o Sub-RQ 2 - What are the effects of the columnar structure
on the data storage requirements?

To find answers to these questions, we created prototype soft-
ware that is capable of converting data encoded using the existing
PCAP file format to the newly proposed data structure. Next
to this, the software can read the data from this new structure,
and perform four different evaluation tasks that are typical for
the analysis of network telescope data. To answer the first sub-
research question, the mean compute time of these tasks was
measured, both using PCAP files and the new format. In order
to answer the second sub-question, the total disk usage of both
formats were measured. These results from these measurements
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were then compared, and evaluated together to answer the main
research question.

This research paper will first cover the requirements that the
new data structure would need to satisfy for it to be applicable
to the analysis of network telescope captures. Next, it outlines
what potential solutions to this problem already exist, as well as
why these do not satisfy the given requirements. Then, the new,
columnar data structure is presented, after which it is verified
whether it does satisfy the requirements. Lastly, the conclusion
provides answers to the research questions stated above, as well
as a discussion of potential further research and improvements.

2 REQUIREMENTS

While the previous section only loosely mentions that the new
data structure should be adept at typical network telescope anal-
ysis tasks, how does this goal affect its design? This section lays
out several concrete requirements that the design has to adhere.

2.1 Reading single fields

Firstly, as is written above, it is assumed that slowdown during
the analysis of network telescope data originates from the process
of separating relevant from irrelevant data. This process involves
iterating over each individual packet, and then disregarding it if
deemed unrelated to the research purposes. Put simply, processing
time is being spent reading data that will not be used. Therefore,
a solution which does not read this thrown-away data, would
in theory be more efficient. A new structure would address this
issue by allowing a program to only scan through the necessary
fields.

2.2 Storing relevant fields

Second, a new structure should have the ability to store the fields
that are relevant to the analysis in question. To have the design
be useful in a broader context, the structure should be flexible
enough to not only facilitate tasks related to network telescope
analysis, but those used in the more general field of network traf-
fic analysis as well. Fields that are typically used during network
traffic analysis are found in Table 1. If the new data structure
stores only these fields, a substantial amount of disk space could
be saved. Such a consideration is not applicable to the analysis of
telescope data however. Nefarious actors do use the padding and
unused bits found in some protocol’s headers to encode actual
information [21]. Given that one of their main traffic classes is
denial-of-service backscatter, it is crucial for the analysis of net-
work telescope data to be able to store such fields. Therefore, it is
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imperative that any new data format should contain all informa-
tion found within a packet.

2.3 No wasted space

Third, while figuring out packet relevancy is a challenge, it is
certainly not the only one faced during network telescope data
analysis. A second issue stems from the sheer volume of data
that is generated by some telescopes. Smaller telescopes, such
as the SURF-NT telescope, covering a /16 and three /24 subnets,
generate a manageable amount of data. However, others like
UCSD’s telescope, utilising /9 and /10 subnets, capture a far greater
amount. This problem only increases with the size of the network
telescope’s underlying subnet, as well as with the general increase
in traffic over time [9]. Clearly, more input data will always lead to
longer compute times. Therefore, it is crucial that the new design
does not use more disk space than the existing PCAP format, as
this would likely counteract any processing speed improvements
arising from its structure.

2.4 Parallel processing

Lastly, another bottleneck faced when processing PCAP files is
that this is mainly done on a single CPU core. Even though it
is true that solutions exist for the parallel processing of PCAP
files [2, 19], these are not viable for the analysis of network tele-
scope data, as they do not consider the normally unused bits.
Next to this, given that the PCAP standard was created in the
late 1980’s, parallel processing was likely not one of its design
considerations, since multi-core processors only became popular
around 1995 [12]. For this reason, a new data format could, and
should take advantage of the capabilities of modern hardware.

3 EXISTING SOLUTIONS

When the new data structure is combined with a program that is
able to interface with it, it creates what is known as an internet
traffic archival system (ITAS). Many such systems do already exist.
However, these are not suitable in relation to network telescopes.
This section goes over the systems mentioned by Chen et al. [4],
and explains the reasons for their unsuitability.

3.1 Telegraph CQ and other flow-based systems

Telegraph CQ, as well as similar flow-based archival systems, de-
rive their record structure from the NetFlow format [5]. Usually,
such records are composed of only five fields, together defining
a flow: the source and destination IP addresses, the source and
destination port number, and the transport layer protocol iden-
tifier. This means that, without specialised settings, most of the

Table 1. Typical fields used in network traffic analysis

Field Protocol | Details

Timestamp N/A Date and time of when the packet was received
Packet Length N/A Number of bytes contained within the packet
Source IP IPv4 IP address of the packet’s origin

Destination IP IPv4 IP address of packet’s target host

Protocol Number IPv4 Identifies what transport layer protocol was used
Time-to-Live IPv4 Can hint at operating system [14]

Source Port

Destination Port
Window Size TCP
Flags (SYN, ACK, etc.) TCP

TCP/UDP | Identifies process on the origin’s machine

TCP/UDP | Indicates a service on the host machine [20]

Can hint at operating system [14]

Used to distinguish port scanning, backscatter traffic and misconfigurations [3]
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Timestamp Source IP Destination IP Source Port Destination Port

Chunk 0 Chunic ) Chunlk 1 Chunk 0 Chuni 0

| 1749338989283 | | 184.227.122.112 | | 147.150.241.244 | 9531 | 80 |
1749338989284 166.251.97.47 147.150.119.249 48928 22

Chunk 1 Chunk 1 Chunk 1 Chunk 1 Chunk 1

| 1749338989312 | | 153.179.89.15 | | 147.150.206.159 | 28391 | 53 |
1749338989364 166.251.97.47 147.150.80.247 48928 22

Fig. 1. Structure of an IPv4 and TCP table with a chunk size of two (as an example, the underlined values belong to the same packet)

flow-based systems will not save the fields we are interested in.
On the other hand, if one were to configure these systems to save
all relevant fields, this would result in a significantly larger record
size. This is because every field of a NetFlow record is stored using
at least one byte. Thus fields that occupy the same bytes within
protocol headers (e.g., IPv4’s flags and fragment offset), take up
more space in a flow record. Additionally, flow-based systems
are not capable of storing the reserved/padding bits, as these are
assumed to follow the respective protocol’s specification.

3.2 Hyperion and other row-based systems

Next, Hyperion [6] and other row-based systems exhibit a differ-
ent issue. For this type of system, their records are a combination
of several fields next to each other. By this, similar to using PCAP
files, in order to extract relevant data, one must sift through data
which is irrelevant to their research goal. Due to this extraction
step, the performance of row-based archival systems would be
sub-optimal for the analysis of network telescope data.

3.3 PCAPIndex

Out of all previously existing systems covered by the research of
Chen et al. [4], only PCAPIndex has both a columnar structure,
as well as packet-level granularity. However, PCAPIndex builds
indexes to speed up sparse queries, for which related results
are spaced far apart in the data. Simply put, these indexes take
up space, and grow in size proportionally to the total number
of records. Despite their applications in general network traffic
analysis, these indexes serve little purpose when it comes to
telescope data analysis, where research is mostly focussed on the
aggregate statistics [14].

4 NEW ARCHITECTURE

With the motivations behind the creation of the new data format
in place, it is time to discuss its structure in detail. It should be
noted that this structure (and the terminology thereof) is inspired
by Apache Parquet [18].

4.1 Database Structure

A packet as it is stored within a PCAP file is made up of three
parts:

(1) Packet header — This contains general packet information,
namely a timestamp and the packet’s length in bytes.

(2) Series of protocol headers — Headers contain information
about different networking protocols. They serve as a col-
lection of fields. For example, the IPv4 header is a combi-
nation of a source address field, a destination address field,
etc.

(3) Payload - This is application-layer data of a variable length.

Even though not all packets use the same protocols, there are
only so many ways to combine them. Taken with the fact that
each header always contains the same set of fields, this gives that
packets with the same collection of protocol headers will also
have the same collection of fields. These are used as schemas in
a similar manner to other database systems. Another similarity
is that the database is divided into several tables. Each table is
dedicated to a different combination of protocols. This is done
so that every packet stored within a certain table has the same
collection of field, i.e., they can be represented by a combination
of the same fields. Thus, a table’s schema is derived from the
union of the sets of fields from the protocol headers contained
within its packets. Additionally, a table stores the timestamp and
length of a packet.

4.2 Columns and chunks

Within a table, each field is assigned a column to store the corre-
sponding values which are extracted from packets. The division
into columns is made so that it is possible to read values of a
specific field, without having to sift through unrelated data, as
was specified in Section 2.1. Each column is subsequently divided
into a series files, each one storing a fixed number of values (see
Figure 1). This number is the chunk size. Since (most) field val-
ues always have the same length, it is simple to calculate exactly
where a specific value is stored. If one were to recreate a packet’s
data, they would have to retrieve values from every column, all at
the same position. There are two distinct kinds of columns: ones
with a fixed size, and ones with a variable size. These will now be
covered in detail.

4.2.1 Fixed-sized Columns. First are fixed-size columns. The val-
ues in this type of column are always represented using the same
number of bits, the column width. Most fields in protocol headers
are represented by some multiple of eight bits, i.e., whole bytes.
There are some fields however, that do not nicely align to this
convention. The fragment offset found in the IPv4 header, for
example, is thirteen bits wide. To preserve space within chunk
files, these values are densely packed, and do not follow byte



TScIT 43, July 4, 2025, Enschede, The Netherlands

Thom Kastelein

Column Chunk File

Byte 0 I Byte 1 I Byte 2 I Byte 3 I Byte 4 I Byte 5 I Byte 6 I Byte 7 I Byte 8 I Byte 9

Fixed-size, byte-aligned [

Fixed-size, non-byte-aligned [ [ [ [ [

Offsets [

Variable-size, byte-aligned [ [

Fig. 2. Value alignment within a column chunk file

boundaries. Specialised reading and writing algorithms are re-
quired to work with this. Both of these algorithms are slightly
less efficient than those for byte-aligned columns. With a column
width of w bits, to read a single value, the reading algorithm takes
at most |—”§"-| + 1 byte read operation. Similarly, to write a single
value, the writing algorithm requires at most [%] + 1 write opera-
tions, and possibly a read operation. Pseudocode for both is given
in Appendix B. When working with byte-aligned values, these
algorithms greatly simplify so a sequence of byte read/writes.

4.2.2 Variable-sized Columns. Next to fixed-size fields, some pro-
tocol headers contain fields that are variable in length. An example
of these are TCP options [7]. Due to their variable length, the
regular calculation to figure out a value’s position does not work.
Instead, for these columns, an extra columns is constructed. The
purpose of this extra column is to store the starting positions of
the variable-length values (see Figure 2). Thus, to retrieve a value,
first both its and the next value’s starting positions are retrieved.
Then from the regular chunk file, the data between both starting
positions is read. Since packet payloads also vary in length, they
are stored using the same mechanism.

5 EVALUATION

Whether the proposed, columnar data structure indeed meets the
requirement specified in Section 2 was experimentally verified.
To make sure that this was performed under realistic conditions,
a random sample of five PCAP files captured (in 2025) by the
SURF-NT network telescope were used. Each file is around 430
MB in size, for an approximate total of 2.2 GB. These were then
sequentially combined into larger PCAP files, i.e., one with only
the first PCAP file, one with the first and second, another with the
first, second and third, and so on. For all evaluation tests, a virtual
machine was used. This virtual machine was equipped with an
AMD EPYC 9534 processor running 2.45 GHz. Any memory read
and write operations were performed using a 500 GB HDD with
an average read speed of 540 MB/s.

5.1 Task run time comparison

To measure the processing speed of a system using the columnar
data structure, the mean compute time of a set of four tasks was
measured using both PCAP files, and the new structure. These
tasks are typical for the analysis of network telescope data:

(1) Find the top ten most common source IP addresses. [14]

(2) Find the top 10 most common destination ports, across
both TCP and UDP. [20]

(3) Retrieve every packet which uses UDP, with 53 (DNS) as
its destination port. [15]

(4) Calculate the percentage of packets using TCP with desti-
nation port 80, which contain an HTTP GET request. [17]

The runtime of these tasks was measured using chunk sizes of
4096, 8192, 16384, 32768, and 65536. For each combination of task
and chunk size, ten iterations were performed to reduce the vari-
ance of the sample means. To make sure measurements were
independent on the others, all cache memory was cleared before
every test iteration. By comparing the results from tests that used
different chunk sizes, it was found that these do not differ signifi-
cantly. Therefore, to increase readability, only results obtained by
using a chunk size of 65536 are presented below. We have chosen
to not include the time required to convert PCAP files to the new
structure, because of the assumption that data would be stored
using the new structure in the long term.

5.1.1 Task 1 - Top 10 source IP addresses. The results for task
1 show a clear distinction in compute time between the old and
new structure. This is what was expected, as utilising the new
format, a program would have to traverse around 95% less data
than if if were to use PCAP files. Theoretically, the counting step
should also be faster for the new format, as it can deal with raw
bytes, while tshark can only output specific fields using text-based
formats. In practice however, only 0.4% percent of the time taken
by the old method is used to count IP address frequencies, making
this difference negligible. Therefore, the differences between the
two data structures seen in Figure 3 are primarily a result of
method of extracting the IP addresses.
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Fig. 3. Relation between input size and task 1 compute time

5.1.2  Task 2 — Top 10 destination ports. Task 2 produces an ex-
tremely similar result (see Figure 4) to that of task 1. It is therefore
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likely that task 2 is faster when using the new format for the
same reasons. On top of the reduced reading that arises from the
columnar structure, the new method should, in theory, also be
faster because of the initial division into tables based on protocol
usage. In reality however, TCP and UDP traffic makes up 98.9%
of the testing data, therefore only causing a marginal difference.

700 A
—8— New Format (C5=65536) -
—=- PCAP + tshark 7
600 -

w
o
o
L
A
1

S
=]
=]
L
\
hY

Mean Compute Time (s)
AY
\

01— o— . & - =

T T T T T T
0.50 0.75 1.00 1.25 1.50 175 2.00
Input PCAP Size (GB)

Fig. 4. Relation between input size and task 2 compute time

5.1.3 Task 3 — Retrieving DNS packets. For task 3 and 4, two
existing methods of packet filtering were tested: tshark and tcp-
dump. While tshark is general a general purpose tool for traffic
and packet analysis, tcpdump is specifically optimised to filter
packets. This is also reflected in the resulting graphs (Figures 5
and 6). By comparing these existing methods with the new struc-
ture, it can be seen that the prototype is again significantly faster
than tshark. On the other hand, the prototype fails to outperform
tcpdump. It should be noted that the prototype used to perform
these tests is by no means fully optimised. Firstly, there are very
likely to be much faster read and write algorithms than those
shown in Appendix B. Also, the prototype does not leverage the
potential for parallelism offered by dividing columns into chunks.
It is possible that, if these improvements were to be made, the
new format would be comparable to (or even surpass) tcpdump
in performance.
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Fig. 5. Relation between input size and task 3 compute time
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5.1.4 Task 4 — Calculating HTTP GET percentage. For task 4, the
new format is again slower than tcpdump. This time however, the
contrast between the two is much larger. Since this task deals with
packet payloads, which is a variable-length field, it is possible
that this discrepancy is the result of having to read extra data
from its offset column.
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Fig. 6. Relation between input size and task 4 compute time

5.2 Disk space comparison

When considering the disk space usage of the new format, there is
a clear contrast between compressed and uncompressed storage
methods. First, regarding the unzipped method, the columnar
format takes up significantly more disk space than the old format.
Even though the data in the chunk files is the exact same as that
in the PCAP files, just rearranged, the number of chunk files has
a significant impact on the disk space usage. This is also evident
from the graph in Figure 7, as is shows that using larger chunk
sizes, which result in fewer files, reduce the overall disk usage.

On the other hand, there are the compressed versions of the new
format. These show a general trend of using less disk space than
a compressed PCAP file, with larger chunk sizes again using less
disk space. This can be explained by the fact that run-length en-
coding schemes, which gzip is based on, are more space-efficient
when contiguous data is homogeneous [8]. Since the new for-
mat divides its columns into chunks, it also makes it possible
to gather specific records by selectively decompressing chunk
files. In summary, when uncompressed, the new format uses 100
bytes per packet on average, compared to 79.2 bytes with PCAP
files. When gzip compressed, these average to 26.7 and 30.2 bytes,
respectively.

6 CONCLUSION

To conclude, this paper covers the concept of an internet traffic
archival system designed specifically for the analysis of network
telescope data. This design divides its structure into columns,
which enables a reduction in the amount of data that has to be read
to perform a query. This final section serves to provide answers
to the research questions posed in the introduction, regarding the
new structure’s impact on processing speed, storage efficiency
and viability for research.
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Fig. 7. Relation between PCAP size and the new format’s disk
usage (uncompressed)

6.1 On sub-research question 1

Firstly, what are the effects of the new data structure on the
processing speed of typical analysis tasks? As is evident from
Figures 3 and 4, the new structure poses significant benefits when
it comes to aggregation tasks, where all values of a single protocol’s
field are used to compute a combined result. This is because for
these task, tshark is most often used, which is outperformed by
the new format. On the other hand, as is shown by Figures 5 and
6, the prototype performs worse than the existing methods on
filtering tasks, where packets are selected based on a predicate.
This is to be expected tcpdump is optimised specifically to perform
this kind of task efficiently.

6.2 On sub-research question 2

Second, what are the effects of the new structure on data storage?
In order to work with the network telescope data, it has to be
in an uncompressed format. From what is shown in Figure 7, it
might seem that if one were to use the columnar data structure,
more disk space would be used whilst processing the captured
data. However, due to the column’s division into chunks, smaller
subsets of packets could be decompressed at a given time, thereby
reducing overall system memory requirements. As can be seen
in Figure 8, the new structure uses approximately 12% fewer
bytes per packet on average when compressed using the gzip
compression algorithm. When taken over the terabytes of data
that are usually captured by network telescope, even this 12%
presents a significant increase in storage efficiency.

6.3 On the main research question

Third, how feasible is the use of the proposed data structure for
use in network telescope analysis? Taking into consideration
the answers to the two sub-research questions, it is safe to say
that new structure definitely has applications for certain research
topics. Specifically, research topics which deal mostly with ag-
gregation tasks. Next to this, there are also applications when it
comes to long-term packet storage, as is illustrated by the size
reduction when the data is compressed using run-length encod-
ing schemes. Despite these benefits, the structure is currently not
ready for research, as it does not integrate with existing analytical
tools.
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6.4 Further work

6.4.1 Prototype optimisations. As shown in Figure 5, methods
using the new structure are approximately twice as slow as the
ones that use PCAP files. While this is a substantial difference,
it may be overcome by further optimisations in the reading and
writing algorithms. Next to this, as was mentioned in Section 5.1.3,
the prototype used for evaluation does not take advantage of the
potential parallelism offered by dividing columns into several
chunk files.

6.4.2  Better compression algorithms. Alongside possible improve-
ments to processing speed, ones which target file sizes are im-
portant as well. Even though using gzip compression on the new
format results in a 12% reduction in disk usage, one may question
if it truly the best option for this purpose. This is because the
characteristics of fields may differ. For example, the IPv4 header’s
identification field exhibits higher entropy than its version field.
Therefore it may be better to determine specifically which fields
should be compressed, and which should not. However, the gzip
algorithm produces variable-length encodings, which are not com-
patible with the concept of accessing arbitrary values. Therefore, a
solution using fixed-length Huffman coding may be able to greatly
reduce file sizes, while preserving random-access capabilities.

6.4.3 Applications in network analysis. While this paper has only
explored the new structure’s effect on the analysis of network
telescope data, there may display similar effects when applied
to the analysis of general network traffic. This idea stems from
the fact that general network traffic analysis is subject to similar
problems, such as efficient data storage. Although it is out of the
scope of this research, the applicability of the new structure in
this broader field warrants further exploration.
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def

def

READ AND WRITE ALGORITHMS

read_value(i: int, col: Column, chunk_size: int):
chunk_id = i % chunk_size # the relevant chunk's number
chunk_file = open_file(col.name + chunk_id) # opens the relevant chunk file

Thom Kastelein

start_byte = i % chunk_size * col.width // 8 # position of the first byte of the value
start_bit = i % chunk_size x col.width % 8 # position of the first bit of the value

out = @ # value to be returned
bits_left = col.width # number of bits left to read

# errant_bits represents the number of bits of the first byte of the read value
# that are shared with the value before it.
errant_bits = (8 - start_bit) % 8

, and added to the output value.

if errant_bits != @: # checks whether the value shares its first byte with the last byte of the previous value.
# The read byte is truncated to 'errant_bits' bits, then shifted into place
out |= chunk_file.read_byte() & ((1 << errant_bits) - 1)
bits_left -= errant_bits

while bits_left > @: # repeats until the entire value has been read
# The read byte is truncated to 'errant_bits' bits, then shifted into place
# signed_shl shifts the first argument to the left by a number of bits that
# second argument. If the second argument is negative, a shift to the right
out |= signed_shl(chunk_file.read_byte(), bits_left - 8)
bits_left -= 8

return out

write_value(value: int, col: Column, chunk_size: int):
# it is assumed that value is within [@, 2%col.width - 1]

chunk_id = i % chunk_size # the relevant chunk's number
chunk_file = open_file(col.name + chunk_id) # opens the relevant chunk file

, and added to the output value.
is determined by the
is performed instead.

start_bit = i % chunk_size * col.width % 8 # position of the first bit of the value

bits_left = col.width # number of bits of the value left to be written

if start_bit != @: # checks whether the new value shares its first byte with the previous value

errant_bits = 8 - start_bit # number of bits available in the last byte

# The last byte is read, and the value's first 'errant_bits' bits are added
last_byte = chunk_file.read_last_byte()

last_byte |
chunk_file.write_last_byte(last_byte)

bits_left -= errant_bits
file.go_to_end() # sets the write pointer to the file's end

while bits_left > 0: # repeats until the entire value has been writen
# The correct eight bits of the value are shifted into place, and are then

to the end of it.

= signed_shr(value, bits_left - errant_bits) & ((1 << errant_bits) - 1)

appended to the file.

# signed_shr shifts the first argument to the right by a number of bits that is determined by the

# second argument. If the second argument is negative, a shift to the left
chunk_file.write(signed_shr(value, bits_left - 8) % 255)
bits_left -= 8

Fig. 9. Algorithms for value reading and writing

is performed instead.
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