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The field of cyber security is one that is constantly chang-
ing and evolving. A part of this field consists of Com-
mon Vulnerabilities and Exposures (CVEs) and their de-
scriptions. The nature of this field makes it difficult to keep
machine learning models that map CVEs to Common Weak-
ness Enumerations (CWEs) up to date. To keep these mod-
els relevant, this paper addresses the problem of concept
drift in vulnerability descriptions. By finding an optimal
training window, this paper improves the training strategy
of language models on the CVE dataset to better reflect the
current cyber security landscape and allows for a more ac-
curate mapping of CVEs to CWEs. Various time windows
have been evaluated, in Which the models trained on the two
years immediately preceding the test set gave the best re-
sults. With this approach, a system for maintaining model
relevance over time is proposed. This methodology will al-
low for a more accurate dataset of CVEs mapped to CWEs
to be used in detecting cyber security threats.

Keywords — CVE, CWE, cyber security, machine
learning, concept drift, sliding window

1 INTRODUCTION
cyber security is a rapidly evolving domain. Failure to main-
tain up-to-date language models risks causing detection sys-
tems to falsely identify innocent activities while overlooking
actual threats. Such failures can lead to significant security
compromises for both businesses and consumers.

Cyber threat analysis fundamentally relies on understand-
ing vulnerabilities. By analysing how CVE descriptions
evolve over time, defenders can not only enhance their un-
derstanding and strengthen their defenses but also improve
the performance of machine learning tools built for security
analysis.

Most current machine learning models that attempt to de-
tect cyber security threats are built upon the CVE and CWE
database. The problem is that not every CVE has a CWE
attached to it. In 2023, nearly 5,000 CVEs (20% of all
published CVEs that year) lacked association with any spe-
cific CWE [14]. This lack of mapping from CVEs to CWEs
causes those models to be less extensive than can be. This
study aims to solve this issue by answering the following
research question:

What training window for mapping CVEs to CWEs
gives the highest weighted F1-score?

To support this investigation, the following sub-research
questions are proposed:

• How does concept drift manifest in CVE descriptions
over time?

• How does the size of the training window influence
model accuracy for different test years?

• How does the number and distribution of CWE classes
vary across different training windows?

2 BACKGROUND

2.1 Common Vulnerabilities and Exposures
(CVE)

CVEs are publicly disclosed cyber security vulnerabilities
that have been identified and solved. The CVE database cur-
rently contains approximately 284,000 records [10]. Each
record has a description explaining what vulnerability was
discovered and the consequences that that vulnerability had.

2.2 Common Weakness Enumeration (CWE)
CWEs are a community-developed classification of common
software and hardware weaknesses that may have security
implications [9]. A ”weakness” refers to a condition within
a software, firmware, hardware, or service component that,
under certain conditions, could facilitate the introduction of
vulnerabilities.

These CWEs serve to categorize all the different CVEs.
For example, CVE-2018-15631 has the following descrip-
tion: ”Improper access control in the Discuss App of Odoo
Community 12.0 and earlier, and Odoo Enterprise 12.0 and
earlier allows remote authenticated attackers to e-mail them-
selves arbitrary files from the database, via a crafted RPC re-
quest.” This description is attached to CWE-862 (”The prod-
uct does not perform an authorization check when an ac-
tor attempts to access a resource or perform an action”) and
CWE-340 (”The product uses a scheme that generates num-
bers or identifiers that are more predictable than required”).
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2.3 Concept Drift

Concept drift refers to the phenomenon where the statistical
properties of the target variable (CVE descriptions in this
case), which a predictive model is intended to learn, change
over time in unforeseen ways. As a result, the model’s as-
sumptions about the data distribution become invalid, lead-
ing to performance degradation if the model is not updated
accordingly [15]. For example, a model trained on online
shopping behavior trained before the COVID-19 pandemic
will behave differently compared to one trained during or af-
ter corona because during that time period online shopping
behavior changed drastically.

3 RELATED WORK

Within the field of concept drift, there have been many dif-
ferent studies that have addressed the problem and proposed
a solution. Some of these studies try to tackle concept drift
in a general way by proposing a framework that can work
for any field [11] [13] [7].

There are also studies that look specifically at concept
drift in cyber security [4] [8].

This section reviews the existing literature on the topic
and groups the concept drift detection methods into different
categories based on this study [1].

During this review, we will discuss the relevance of these
different methods for this study and highlight important pa-
pers that support the claims this paper makes.

3.1 Concept Drift Is An Issue

We first have to note that concept drift is an issue within
cyber security. This has been concluded in this study [3],
where significant deviations between clusters were found,
indicating the presence of concept drift within cyber secu-
rity.

3.2 Concept Drift Detection Methods

3.2.1 Window Based Methods

This type of approach accumulates the incoming data in-
stances and forms a batch of data (or a window). Generally,
the window-based methods contain two windows. The first
window is used to store old instances, and later has new in-
stances of the data stream. The comparison between these
two window instances explained the change in data distribu-
tion and signaled the drift.

This is the methodology that this paper has followed since
we are working with a static dataset, so windows are easily
defined and trained on. But instead of taking two windows
and comparing their distribution, a large set of different win-
dow sizes is taken, allowing for a more complete compari-
son of different window sizes. This method also allowed for
easier answering of the main research question.

3.2.2 Distribution Based

These techniques focus on the distribution of the data to
detect concept drift. For this study, the similarity and
dissimilarity-based method could be used to prove that there
is a concept drift in the CVE-CWE mapping. However,
it falls out of the scope of this study, so the decision was
taken to exclude the distribution-based concept drift detec-
tion technique.

Similarity And Dissimilarity Based Methods These ap-
proaches are based on measuring the similarity and dissimi-
larity among the distribution of data samples with respect to
time. In the case of this paper, the distribution of CVEs that
are already mapped to CWEs would be analysed. If this dis-
tribution shows large deviations year-over-year, you could
conclude that concept drift has occurred.

Statistical Based Methods Statistical based methods are
used to detect the concept drift by comparing the distribu-
tion of historical and current data instances using statistical
tests like Mean, Median, Mode, Kurtosis, Standard Devia-
tion, Regression, Hypothesis Testing, etc. This is a tech-
nique mostly used for data streams, so it is not as applicable
to this research as the window-based methods.

3.2.3 Threshold Based

These techniques set a threshold on a certain distribution
or metric of the model and detect concept drift when this
threshold is surpassed. Because these thresholds are difficult
to set and since it is unnecessary to detect the exact point
where concept drift occurs, this method has not been used
during this study.

Sequential Analysis Based Methods In this type of con-
cept drift detection algorithm, the data instances are exam-
ined sequentially to analyse the change in the data stream
context. It signals the drift when the change in data distribu-
tion exceeds the specified threshold.

Decision Boundary Based Methods Decision Boundary
based Methods generally form a boundary using initial in-
stances of the data stream. The change in decision boundary
is considered to be concept drift.

4 METHODOLOGY
Building on the insights from related work, this study pro-
poses a method for detecting concept drift and identifying
an optimal time window for training machine learning
models to map CVE descriptions to CWE classes. The
proposed methodology, based on [2], is illustrated in
Figure 1. To extend this research, a method for measuring
CVE description quality is proposed and a formula for
ranking different time frames is presented.

The model is trained in the following way:
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Figure 1: Pipeline showcasing the workflow for this pa-
per.

1. The first step is to use BERT-based encoding. Because
this study focuses on CVE descriptions, which are writ-
ten in text instead of numbers, the descriptions have to
be encoded before the machine learning model can be
trained.

2. The second step is to load the encoded data. The aim of
this study is to analyse a lot of different models, there-
fore the data is only encoded once and then saved so
that the process of encoding the data does not have to
be repeated, saving a lot of time.

3. After that the data gets cleaned of any CVEs that do not
yet have a CWE attached to them. This step is neces-
sary during the training and testing phase because the
model is trained in a supervised way. This means that
the model has to know the correct CWE for each CVE;
otherwise it cannot train itself.

4. Then all CWEs with less than 10 CVE entries are re-
moved, and depending on the test a limit on the max
amount of CVE entries is set, ranging between 100,
1500 and 2500. There are six CWEs with more than
2500 CVEs, nine with more than 1500 and 64 with
more than 100 CWE entries out of 117 different CWE
categories in the data between 1999 and 2022. These
thresholds were chosen because the very large CWE
categories (with more than 1500 or 2500 CVEs) could
lead to overfitting to those CWEs. To experiment with
this even further the experiment with a limit of 100
CVEs was implemented, because it would limit almost
half the CWEs. This creates a dataset that is very bal-
anced, without it being too little data to train on.

5. The training data are then divided into the 80% training
set and the 20% validation set.

6. After this a shallow neural network with two layers is
created. The first layer consists of 128 neurons that pro-
cess the embeddings and the second layer is the output
layer that predicts the CWE category.

7. The model is then trained in 40 epochs with early stop-
ping, which stops the training if the performance does
not improve for 5 epochs in a row.

8. For each training dataset, three of these models are
trained to get an average performance.

Figure 2: Visualization of the sliding window used to test
different training datasets on the same test set.

The decision to use a sliding-window approach was moti-
vated by several factors:

• This paper aims to evaluate different models based on
performance. Concept drift detection methods like the
threshold or distribution based methods do not pro-
vide any performance metrics, making it impossible to
rank different models. The sliding window approach
allows for easy performance comparison between dif-
ferent time frames.

• The CVE and CWE datasets are static. Although new
data is added every year, the datasets used during this
study are not data streams by nature. Where other
methods often use data streams to detect when concept
drift occurs and retrain the moment this happens, this
is not relevant for CVE and CWE datasets. The main
question of this research is to find the most accurate
training window for the CVE and CWE datasets, not to
detect when concept drift happens.

• Using the sliding-window approach allowed for easy
control over the time frames used. By being able to
easily pick what time frames were included or excluded
from the training data, the process of gathering relevant
data was made a lot easier. The other methods adjusted
the time frame when drift occurred and would stop au-
tomatically without the user being able to set a time
frame to use.

Some clarifications about decisions made for the training
process:

• We only used the training data closest to the test set.
As illustrated in Figure 2, with each iteration the year
that is furthest away from the test set is excluded. Be-
cause concept drift is a temporal effect, the potential
for a model trained on data that excludes the most re-
cent data compared to the test set was considered to be
very low. After analysing some early results however,
the decision was made to do a single test on data be-
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tween 1999 and 2008, but tested on 2023. This test was
done to validate and explain the obtained results.

• We only used a single year as a test set. This allowed for
easier generalization of the results. Using a single year
was considered as sufficient, as with each year there are
more CVEs in the database than in the year before that.
This makes sure that there is always a sufficient amount
of data to test on.

• To analyse the results, the weighted and macro F1-
scores were saved. These scores balance precision
(how many of the model’s positive predictions are cor-
rect) and recall (how many of the actual positive cases
the model correctly identifies) to give a good overview
of the models performance. The weighted F1-score cal-
culates the F1-score for each CWE class and then av-
erages them, weighting each class by its support (the
number of samples for that class in the test set). This
means classes with more samples (e.g., common CWEs
like CWE-79) have a bigger impact on the final score.
The macro F1-score calculates the F1-score for each
CWE class and then takes a simple average, giving
equal weight to every class, regardless of how many
samples it has. So, rare CWEs (e.g., CWE-319 with
10 samples) have the same influence as common ones
(e.g., CWE-79 with 1000 samples). The weighted F1-
score was prioritized during this study, as it reflects the
real world the best. The macro F1-scores are mentioned
in Appendix B.

This paper also analyses the decrease in CVE description
quality. A template-based keyword analysis was conducted
to measure the quality of CVE descriptions over time.
This template, defined in earlier guidelines [6] has been
used to guarantee CVE description quality and uniformity.
Since it can create a bottleneck for registering a new CVE,
this template does not always get adhered to. Two tests
were conducted to inspect the effect that not adhering to
the template has on the quality of CVE descriptions: one
evaluating the presence of required keywords and another
assessing whether the keywords also appeared in the correct
order.

The last step to take was to analyse the results. This has
been achieved by ordering the F1-scores for each test year
from best to worst and looking at how many years you have
to include in the training data compared to the test data to get
the best scores. This method is based on [5], which proved
that this method generates relevant results for ranking dif-
ferent models. The method gives ranks to each F1-score.
These ranks then get added up and divided by the amount of
datasets to get an average rank. By analysing these ranks, a
definitive recommendation on which years to include in the
training set was able to be given. The calculation used looks
like this:
Let rij be the rank of algorithm j on dataset i. We calculate
the average rank for each algorithm as

r̄j =

∑
i r

i
j

n
, (1)

Table 1: Average rank of the three best ’go-back’ years
based on weighted F1-scores

’go-back’ years average rank
2 years back 5.17
4 years back 5.33
3 years back 5.45

where n is the number of datasets.

5 RESULTS & DISCUSSION
This section presents and interprets the results obtained
through the methodology outlined earlier.

The performance of the models was evaluated using the
F1-score across multiple train-test year combinations. Fig-
ure 3, Figure 4, Figure 5 and Figure 6 display the results of
these experiments.

Each line in the plot corresponds to a specific test year,
while each point represents a training window starting from
the year indicated on the horizontal axis and ending one year
before the test year.

For instance, in the 2019 test case of Figure 4 (depicted
as the bottom blue line), the point aligned with 2010 on the
x-axis corresponds to training on data from 2010 to 2018
and testing on data from 2019. The vertical axis reflects the
resulting F1-scores, computed using the standard formulas
mentioned in Appendix A. The last graph (Figure 7) was
an experiment, to see what the effect of training on just old
data but testing it on new data would be.

The results of the research into CVE description quality
can be seen in Figures 8 and 9. The vertical axis in these
graphs represent the quality of the CVE descriptions and the
horizontal axis the year in which those CVE descriptions
were written.

Our ranking method gave the following top three ’go-
back’ years as best performing. See Appendix C for the full
results.

Overall, the results seem to point towards a higher per-
formance when training on more recent years. This is also
reflected in the ranking method.

Although a ’go-back’ year like 23 years back occurs less
often (only for test year 2023) than a ’go-back’ year like
two years back for example (which occurs for every test
set), this does not have any effect on the ranking because
the ranking is based of average rank across the different
models. If 23 years back would perform very well for those
test years that it does occur in it would have a very high
average rank. From these scores the conclusion is drawn
that the best result comes from training on the past two
years. Training on the past three or four years also generates
good results and can be used as a backup or to validate if
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Figure 3: F1-scores obtained from testing different datasets on different test years with a max of 100 CVEs per
CWE.

Figure 4: F1-scores obtained from testing different datasets on different test years with a max of 1500 CVEs per
CWE.
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Figure 5: F1-scores obtained from testing different datasets on different test years with a max of 2500 CVEs per
CWE.

Figure 6: F1-scores obtained from testing different datasets on different test years with unlimited CVEs per CWE.

6



Figure 7: F1-scores obtained from training on data be-
tween 1999 and 2009, tested on 2023.

Figure 8: Percentage of high quality CVE descriptions
per year not in order.

Figure 9: Percentage of high quality CVE descriptions
per year in order.

training on just the past two years is the correct choice for a
CVE dataset.

Interestingly, performance tends to improve for older test
sets, likely due to the reduced complexity in those datasets.
To investigate this further, the additional experiment was
conducted, in which a model was trained solely on data from
1999 to 2008 and tested on 2023. Contrary to expectations,
this model achieved reasonable F1-scores (see Figure 7).
This outcome was attributed to the model being trained on a
dataset that covered only 18 CWE classes, whereas models
trained on more comprehensive windows (e.g., 1999–2022)
addressed up to 128 CWE classes. Thus, although the
simplified model appears accurate, its practical utility is
limited due to its inability to generalize to a wider range of
classes. This was accounted for during the testing phase,
and any CVE that it could not categorize in the correct CWE
category was counted as being predicted wrong. The prob-
lem however, is that while this study balanced the training
sets by limiting the maximum amount of CVEs per CWE,
this was not done for the test set. So the models trained on
the old data were still able to classify the very large CWE
categories that the training set contained, therefore still
achieving a relatively high F1-score while it was unable to
classify around 30% of CVEs because the model had not
seen their CWE before. This effect underscores a critical
issue in interpreting evaluation metrics: higher F1-scores
can misleadingly reflect simpler classification tasks.

A similar trend is observed when examining models
trained on only the most recent year of data. In the 2023
test case of Figure 3 for example, a noticeable increase in
F1-score is observed when the model is trained exclusively
on 2022 data. The training set for 2022 consisted of 9,256
CVE entries, compared to 47,586 entries when training
from 1999 to 2022. Despite this difference in size, both
configurations handled a similar number of CWE classes.
This contradicts the common expectation that larger datasets
lead to better model performance [12], and instead suggests
the presence of concept drift: older data introduces patterns
that no longer align with the distribution of current threats,
thereby degrading performance.

Furthermore, a consistent decrease in F1-score is ob-
served as the test years become more recent. This degrada-
tion is partly attributable to the increasing number of CWE
classes introduced over time, which inherently complicates
classification, as described above. However, another con-
tributing factor could be a decline in the quality of CVE de-
scriptions. Figures 8 and 9 both reveal a downward trend
in description quality over the past decade. Lower-quality
descriptions may hinder embedding models like BERT from
effectively capturing the semantic information necessary for
accurate CWE classification, thereby contributing to lower
model performance in recent years.
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6 FUTURE WORK
Future research in this area warrants further investigation
into alternative methods for concept drift detection beyond
the sliding window approach used in this study. Specifically,
it would be valuable to investigate whether excluding years
identified as having high levels of drift could improve
model performance. Additionally, a promising direction
involves the development of models that assign dynamic
weights to training data from different years based on their
relevance to the target distribution. Such an approach could
enable models to prioritize recent and contextually relevant
data while still being aware of critical information from
historical cyber security vulnerabilities.

7 CONCLUSION
In this study, a classification approach was tested to map
CVE descriptions to their corresponding CWE categories.
The analysis involved evaluating model performance across
multiple training windows and test years. The results in-
dicate that, in the majority of cases, training on data from
the two years immediately preceding the test year yields
the most effective model performance. This conclusion ac-
counts for both the variation in the number of CWE classes
present in different training windows and the observed de-
cline in the structural quality of CVE descriptions in recent
years, both of which were found to influence classification
outcomes.
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8 APPENDIX

A Formula’s

F1-score = 2 · Precision · Recall
Precision + Recall

(2)

Precision =
True Positives

True Positives + False Positives
(3)

Recall =
True Positives

True Positives + False Negatives
(4)

Precision is a measurement for how accurate the posi-
tive predictions are and recall is a measurement for how
complete the positive predictions are. Lets say you build a
model that detects spam emails. Precision tells you when
the model says something is spam and it is actually spam.
Recall tells you how many of the spam emails you caught.
The higher these scores the better. By combining both
these measurements, a more balanced score of the different
models was obtained. Red markers in the plot highlight the
training set that resulted in the highest F1-score for each test
year.

B Graphs

Figure 10: Macro F1-scores obtained from testing dif-
ferent datasets on different test years with a max of 100
CVEs per CWE.

Figure 11: Macro F1-scores obtained from testing dif-
ferent datasets on different test years with a max of 1500
CVEs per CWE.

Figure 12: Macro F1-scores obtained from testing dif-
ferent datasets on different test years with a max of 2500
CVEs per CWE.

Figure 13: Macro F1-scores obtained from testing differ-
ent datasets on different test years with unlimited CVEs
per CWE.
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C Full Ranking Results

Table 2: Ranking for all the weighted F1-scores for mod-
els trained with CVE limit of 100, 1500, 2500 and unlim-
ited

’go-back’ years average rank
2 years back 5.17
4 years back 5.33
3 years back 5.45
7 years back 5.93
6 years back 6.10
5 years back 6.18
1 years back 6.77
8 years back 7.55
9 years back 8.47
10 years back 9.45
11 years back 10.43
12 years back 11.50
13 years back 12.10
24 years back 13.25
15 years back 14.05
16 years back 14.56
14 years back 14.52
17 years back 14.66
19 years back 15.29
18 years back 15.57
22 years back 16.42
20 years back 16.65
23 years back 16.88
21 years back 17.38

Table 3: Ranking for all the weighted F1-scores for mod-
els trained with no CVE limit

’go-back’ years average rank
7 years back 5.20
6 years back 7.67
10 years back 7.60
8 years back 7.80
4 years back 7.93
12 years back 8.54
9 years back 8.67
3 years back 8.73
24 years back 9.00
23 years back 9.00
2 years back 9.40
19 years back 9.50
13 years back 10.17
17 years back 10.25
11 years back 10.29
5 years back 10.33
15 years back 10.40
16 years back 10.89
1 years back 12.07
14 years back 12.91
18 years back 13.71
20 years back 14.20
21 years back 16.25
22 years back 11.67

Table 4: Ranking for all the weighted F1-scores for mod-
els trained with CVE limit of 100

’go-back’ years average rank
1 years back 1.13
2 years back 2.20
3 years back 3.73
4 years back 4.27
5 years back 4.87
6 years back 5.87
7 years back 7.13
8 years back 7.87
9 years back 8.87
10 years back 11.87
11 years back 11.86
12 years back 13.31
13 years back 13.42
24 years back 13.00
19 years back 14.33
18 years back 15.86
17 years back 16.25
14 years back 16.36
15 years back 16.40
20 years back 16.40
21 years back 16.50
16 years back 16.78
23 years back 17.00
22 years back 17.00
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Table 5: Ranking for all the weighted F1-scores for mod-
els trained with CVE limit of 1500

’go-back’ years average rank
2 years back 3.80
3 years back 3.80
4 years back 3.93
5 years back 4.87
1 years back 5.53
7 years back 5.87
6 years back 6.13
8 years back 7.80
9 years back 8.67
10 years back 9.20
11 years back 9.71
12 years back 12.38
13 years back 13.17
14 years back 14.91
16 years back 15.11
17 years back 15.25
15 years back 15.50
18 years back 16.14
24 years back 17.00
20 years back 17.80
19 years back 18.50
21 years back 19.50
23 years back 20.00
22 years back 20.33

Table 6: Ranking for all the weighted F1-scores for mod-
els trained with CVE limit of 2500

’go-back’ years average rank
5 years back 4.67
6 years back 4.73
4 years back 5.20
2 years back 5.27
7 years back 5.53
3 years back 5.53
8 years back 6.73
9 years back 7.67
1 years back 8.33
10 years back 9.13
11 years back 9.86
12 years back 11.77
13 years back 11.67
15 years back 13.90
14 years back 13.91
24 years back 14.00
16 years back 15.44
18 years back 16.57
22 years back 16.67
17 years back 16.88
21 years back 17.25
20 years back 18.20
19 years back 18.83
23 years back 21.50
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