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ABSTRACT 

Micronutrient deficiencies in staple crops contribute to “hidden hunger” across sub-Saharan Africa, yet 

field measurements of grain nutrient content remain spatially sparse and costly. This study develops a 

framework for predicting four key micronutrients—calcium (Ca), iron (Fe), zinc (Zn) and selenium (Se)—

in Malawian maize grain by combining one-time ground observations with 61 terrain, climate, soil and 

multi-sensor remote-sensing variables. After quality filtering, georeferenced grain samples were paired with 

Sentinel-1/2 imagery, CHIRPS rainfall, MODIS land-surface temperature, MERIT DEM derivatives, 

SoilGrids variables and Global Agro-Ecological Zones (GAEZ). An XGBoost algorithm was trained for 

each micronutrient using spatial cross-validation approach to address the potential spatial autocorrelation 

bias. Model’s performance varied by nutrient. Specifically, Zn and Ca obtained modest but useful test-set 

R² values of 0.14 and 0.15, whereas Fe reached 0.08 and Se showed low explanatory power. For RMSE, 

the model achieved test RMSE values of 18.92 for Ca, 25.05 for Fe, 3.67 for Zn, and 0.029 for Se, 

indicating variable predictive performance across nutrients. Feature-importance analysis highlighted 

elevation, seasonal precipitation, top-soil pH and organic carbon as among the most important variables 

for Ca, Fe and Zn estimations, whereas radar-derived canopy metrics proved to be very important for Se 

estimation. This emphasizes that Se uptake is tightly linked to short-term moisture and redox dynamics. 

The investigation of the spatial distribution of the maize nutrient revealed a consistent south-to-north 

decrease in micronutrient levels, aligning with the known gradients in soil pH, organic matter and climate. 

Despite several limitations, including small sample size, reliance on modelled soil layers and lack of 

variables related to management factors, the proposed framework shows the advantage of using freely 

available geodata for estimating maize nutrient content. These outputs can guide site-specific fertiliser 

recommendations, bio-fortified seed deployment and nutrition programmes, helping local authorities to 

address hidden hunger and advance Sustainable Development Goal 2. Future work should integrate farm-

management surveys, or dynamic moisture–redox proxies to further improve accuracy, particularly for Se 

and Fe. 
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1. INTRODUCTION 

1.1. Background 

Micronutrient deficiency, a form of “hidden hunger,” undermines essential metabolic functions and tissue 

repair, currently affecting more than two billion people worldwide, and constitutes a significant barrier to 

achieving Sustainable Development Goal 2 (Zero Hunger) (WHO, 2023). Sub-Saharan Africa exhibits 

particularly high risks associated with hidden hunger, largely due to local diets heavily dependent on staple 

crops such as maize. These staple crops often lack essential minerals including Fe, Zn, and vitamin A 

(Wessells & Brown, 2012; Gödecke et al., 2018). In Malawi, maize dominates both agricultural production 

and dietary consumption, contributing more than 80% of caloric intake (Galani et al., 2021). However, 

changes in environmental factors such as soil, climate and topography have exacerbated micronutrient 

deficiencies in recent decades, further compromising maize nutritional quality (Voss, 1998; Botoman et al., 

2022a). Traditional lab-based nutrient assessments remain costly and spatially limited, while most 

agricultural and public health policies continue to emphasize caloric yield over nutritional diversity (Yuan 

et al., 2023; Ichami et al., 2022; Pingali & Sunder, 2017). To align with SDG targets, there is an urgent 

need for innovative tools that use machine learning and spatially explicit environmental data (e.g., soil pH, 

precipitation trends, and land use patterns) to predict micronutrient levels in crops, enabling targeted 

interventions in resource-limited agricultural systems.  

 

Addressing micronutrient deficiencies effectively demands a comprehensive understanding of how 

environmental variations influence maize nutritional quality across Malawi. Maize quality in Malawi, as a 

crucial staple crop, is influenced by a combination of genetic, environmental, and agronomic factors 

(Ennen et al., 2021). Environmental determinants, such as soil properties including pH and organic matter 

content, significantly influence the bioavailability of Fe and Zn (Bouis & Saltzman, 2017), while regional 

differences in temperature and rainfall alter nutrient uptake efficiency (Gashu et al., 2021). Critically, these 

environmental drivers interact non-linearly, creating complex spatial patterns that traditional statistical 

methods may fail to capture. In contrast, machine learning methods are uniquely equipped to address this 

limitation. By integrating multiple environmental datasets (e.g., soil data, climate data, and satellite-derived 

land use metrics), machine learning based predictive models can clarify which factors exert the most 

substantial influence on micronutrient variability, and how micronutrients are spatially distributed, thus 

bridging the scale mismatch between localized crop nutrition data and national-level policy interventions. 

1.2. Related work 

1.2.1. Micronutrients and maize productivity in Africa 

Micronutrients such as Ca, Fe, Zn, and Se are essential for maize growth and grain quality. While 

macronutrient deficiencies (nitrogen (N), phosphorus (P), potassium (K)) are often addressed, shortages 

of micronutrients can also significantly constrain yields in Sub-Saharan Africa (Aliyu et al., 2021). For 

instance, apart from N, P, K, deficiencies of elements like Zn, Copper, Boron, and Sulphur have been 

reported to limit maize productivity in African soils (Aliyu et al., 2021). These nutrients play critical roles 

in plant physiology: Fe is required for chlorophyll formation and metabolic enzymes, Zn for enzyme 

activation and hormone regulation, and Ca for cell wall formation and stress resilience (Grabowski et al., 

2024). In practice, hidden hunger for micronutrients is common in Africa since many African soils are 

inherently low in these elements, leading to both reduced crop yields and nutrient-poor harvests. In 
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Malawi, more than half of households are at risk of Ca, Zn, or Se deficiencies, reflecting low availability of 

these nutrients in diets and soils (Joy et al., 2015). Field studies demonstrate the impact of micronutrient 

management on maize. For example, adding Zn fertilizer in Malawi trials increased grain yield by ~11% 

and raised the Zn concentration in maize grain by 15% (Grabowski et al., 2024). Similarly, soil type affects 

the ability of grain to take up nutrients (Joy et al., 2015). These findings highlight that addressing 

micronutrient limitations (through soil amendments, breeding, or agronomic biofortification) is vital for 

improving maize productivity and nutritional quality in Africa (Aliyu et al., 2021; Grabowski et al., 2024). 

Ensuring adequate micronutrient availability can not only boost yields but also enhance the grain’s 

contribution to dietary nutrition, which is critical given maize’s role as a staple in the region (Mhlanga et 

al., 2021; Galani, 2022). 

1.2.2. Use of spatially explicit environmental data in agriculture 

Agricultural research increasingly uses spatially explicit environmental to analyse and predict crop 

performance (Chilimba et al., 2011; Botoman et al., 2022a). Traditional methods like laboratory 

spectroscopy or field sampling, while accurate, are impractical for national-scale assessments due to high 

costs and sparse spatial coverage (Bouis & Saltzman, 2017). Satellite remote sensing offers a promising 

alternative by enabling spatially continuous data collection on soil properties (e.g., organic matter, pH), 

climate variables (e.g., precipitation, temperature), and vegetation health (Bastiaanssen et al., 2000; Lobell 

et al., 2015). High-resolution satellite imagery, such as from the Sentinel constellation, provides detailed 

indicators of crop condition across space and time (Drusch et al., 2012; Thenkabail et al., 2017). In a 

Sahelian agroforestry landscape, for example, multi-temporal Sentinel-2 imagery explained 41–80% of the 

variation in field-level millet and sorghum yields, demonstrating the power of satellite time-series for yield 

estimation even in complex smallholder systems (Karlson et al., 2020). Optical data (e.g. Sentinel-2) supply 

visible and near-infrared bands that enable vegetation indices (NDVI, EVI, etc.) for assessing crop health, 

while radar data (e.g. Sentinel-1) offer complementary information on crop structure and moisture 

independent of clouds (Fathi et al., 2023). NDVI (Normalized Difference Vegetation Index) and thermal 

imagery have been linked to crop nutrient stress in maize systems (Ustin et al., 2020), while hyperspectral 

sensors can indirectly estimate soil micronutrients like Fe and Zn through spectral signatures (Goswami et 

al., 2020). Soil property databases like ISRIC’s SoilGrids provide gridded layers of soil characteristics 

(texture, pH, organic carbon, etc.) at fine spatial resolution. Fathi et al. (2023) showed that integrating 

SoilGrids data with Sentinel-1/2 imagery in a deep-learning model improved maize yield prediction 

accuracy in the U.S. Corn Belt. The soil maps capture spatial variability in fertility and water-holding 

capacity that remote sensing alone might miss. Maize grown on calcareous, high-pH soils in Malawi 

contains significantly higher grain Ca, Zn, and Se levels than maize from the more prevalent acidic soils 

(Joy et al., 2015). Likewise, gridded climate data are indispensable in crop models. Datasets such as 

CHIRPS (Climate Hazards group InfraRed Precipitation with Station data) provide daily rainfall estimates 

at ~5 km resolution across Africa, and have been used to drive yield forecasting models (Lee et al., 2022). 

Lee et al. (2022) used only climate (rainfall, temperature) and vegetation index inputs to successfully 

forecast maize yields in multiple African countries, highlighting that spatial rainfall patterns and 

temperature extremes are key yield drivers. Finally, topographic data from digital elevation models (e.g. the 

MERIT DEM at 90 m resolution) are often incorporated to account for terrain effects on agriculture. 

Elevation and its derivatives (slope, wetness index) influence microclimates, soil drainage, and erosion. 

Accordingly, studies mapping nutrient distribution have included DEM-based features and found that 

topography significantly affects soil nutrient concentrations (Gohil, 2023). For instance, research in 

Malawi and Ethiopia showed that areas of higher elevation or particular landscape positions could be 

linked to higher grain Se or Zn, reflecting underlying soil differences (Gohil, 2023). In summary, the use 

of spatially explicit datasets – from satellites to soil and climate grids – has become a cornerstone of 

modern agricultural analyses, enabling more precise, location-specific insights into crop yields and nutrient 

status. 
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1.2.3. Machine learning for yield and nutrient estimation 

Recent advances in machine learning and geospatial technologies offer transformative potential for crop 

nutrient estimation. Machine learning techniques have gained prominence in agricultural yield prediction 

and nutrient mapping due to their ability to handle complex, non-linear relationships in multi-source data. 

Ensemble tree-based models like Random Forests and Extreme Gradient Boosting (XGBoost) are 

especially popular. These methods can ingest diverse inputs (remote sensing indices, soil properties, 

weather variables, management data) and have demonstrated high predictive accuracy in crop studies 

(Mahesh & Soundrapandiyan, 2024). For example, Asamoah et al. (2024) trained a Random Forest model 

trained on soil, climate, environmental, and management factors (including fertilizer use) to predict maize 

yields in Ghana, achieving a model efficiency coefficient of 0.81 for yield prediction (Asamoah et al., 

2024). Hybrid PROSAIL-PRO retrieval frameworks coupled with Gaussian Process Regression have been 

used to estimate aboveground nitrogen content, delivering R² > 0.90 and full uncertainty quantification 

(Berger et al., 2020). Back-propagation neural networks applied to over 40,000 paddy soil–rice samples 

predicted Zn bioaccumulation in rice grains with R² = 0.93 and a normalized RMSE of 0.21 (Wang et al., 

2021). In hyperspectral nutrient mapping of Valencia-orange leaves, Random Forest outperformed 

Support Vector Machines and other regression methods, achieving R² above 0.85 for both macro- and 

micronutrient predictions (Osco et al., 2020). UAV-based models combining Random Forest and Partial 

Least Squares Regression with multispectral imagery and weather data estimated wheat shoot nitrogen 

concentration and the Nitrogen Nutrition Index with R² up to 0.82 (Tanaka & Gislum, 2025). 

Convolutional neural network and BiLSTM architectures integrating Sentinel-1/2 imagery with SoilGrids 

data have achieved an RMSE of 0.698 t/ha and an index of agreement of 84.7% in U.S. Corn Belt yield 

prediction, outperforming Random Forest baselines (Olisah et al., 2024). Ensemble methods such as 

XGBoost, LightGBM, and CatBoost have further surpassed single-tree algorithms in multi-crop yield and 

nutrient estimation tasks, often achieving R² > 0.80 in comparative benchmarks (Mahesh & 

Soundrapandiyan, 2024). 

 

Deep learning approaches are also increasingly applied in agricultural analytics. Convolutional Neural 

Networks (CNNs) can automatically extract spatial features from imagery (Kattenborn et al., 2021; 

Srivastava et al., 2021). Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory 

(LSTM) networks, can capture temporal dependencies in time-series data (Ienco et al., 2017; Khaki et al., 

2019). For instance, Fathi et al. (2023) proposed a hybrid 2D-CNN + BiLSTM that integrates Sentinel-1 

radar, Sentinel-2 optical, and SoilGrids soil data to predict corn yields in Iowa. By fusing multi-temporal 

satellite data with static soil information, their deep learning model was able to capture short-term 

vegetation signals as well as longer-term site fertility effects, yielding more accurate predictions than 

baseline random forests (Fathi et al., 2023). Similarly, other studies have used CNNs on high-resolution 

imagery to estimate yields at the field scale, or LSTM-based frameworks to forecast yields mid-season 

using sequences of weather and NDVI data. These approaches have shown that deep models can match 

or exceed the accuracy of traditional methods, especially when large datasets are available. Nevertheless, 

simpler machine learning models remain competitive in many cases. For smaller datasets or more 

interpretable results, algorithms like Support Vector Machines (SVM) have also been employed for crop 

yield and quality prediction. For example, researchers in Senegal tested SVM, RF, and ANN models for 

regional yield prediction and found all machine learning methods yielded improvements over linear 

models (with the optimal choice varying by region) (Sarr & Sultan, 2023). In general, the literature suggests 

that no single algorithm is universally best.  The performance of XGBoost, Random forests, SVMs, or 

neural networks depends on the context, but ensemble tree models are a strong starting point for tabular 

agri-environmental data (Mahesh & Soundrapandiyan, 2024), whereas deep learning is powerful when 

leveraging rich spatial or temporal remote sensing data (Sarr & Sultan, 2023). Overall, the application of 
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machine learning has enabled more accurate and scalable estimation of crop yields and even grain nutrient 

contents, which is a significant advancement for agricultural planning and food security analysis. 

1.2.4. Micronutrient estimation in Malawi 

Focusing on Malawi and the broader sub-Saharan context, several studies have directly tackled maize yield 

prediction and assessment of the spatial variation of micronutrient content.. Given maize’s status as the 

national staple, there is high interest in understanding not only how much is produced but also its 

nutritional value. Ligowe et al. (2022) (as part of the GeoNutrition project) examined how agronomic 

practices affect maize yield and grain nutrients in Malawi. Their two-season field trials found that 

conservation agriculture practices (e.g. reduced tillage, residue retention) significantly increased maize grain 

yield (by 1.2–1.8×) and also enhanced grain Se content (by up to 70% higher) relative to conventional 

practices. However, the same trials noted varying effects on other micronutrients: grain Zn and Ca were 

not significantly changed by the treatment, while grain Fe and Mn concentrations actually decreased under 

conservation agriculture. This illustrates the complex interplay between soil management and 

micronutrient uptake. It also reinforces the need for spatially explicit studies.  For instance, the authors 

observed that maize from calcareous soil sites had higher Fe, Zn, and Se than maize from acidic soil sites, 

indicating that underlying soil properties drive micronutrient availability (Galani, 2022). Recently, mapping 

of micronutrient concentrations in crops has been a research focus in Malawi and neighbouring countries. 

Botoman et al. (2022b) conducted a country-scale analysis of maize grain Zn in Malawi. Using a linear 

mixed-effects model, they related grain Zn measurements to an array of predictors including soil 

properties, climate, and topography. Their model identified soil pH and organic carbon as key predictors 

confirming the findings by Gashu et al. (2021) that soil pH and soil organic carbon correlate strongly with 

grain Ca, Fe, Zn, and Se levels in both Malawi and Ethiopia. Topographical factors (elevation, slope) also 

improved the Zn predictions, suggesting that landscape position influences how much Zn ends up in the 

grain (Galani, 2022). Importantly, Botoman et al. (2022b) noted that agronomic Zn interventions could 

have tangible benefits, namely by adding Zn fertilizer the  maize Zn content and yields in on-farm trials 

increased. Complementary work by Gashu et al. (2020) mapped Se in Ethiopian grains, and together these 

studies form part of a growing effort to create “nutrient maps” for African staples. The insights from 

Malawi and Ethiopia emphasize that combining spatial data (soil, climate, remote sensing) with modern 

modelling can reveal nutrient deficiencies and guide interventions (like targeted fertilization or 

biofortification) to address human micronutrient needs. 

1.3. Research gap 

While existing literature establishes the link between soil health, environmental conditions, and crop 

nutrient levels, there remains a notable gap in studies that apply advanced machine learning models to 

estimate specific micronutrient concentrations in maize. Although prior research has explored the use of 

satellite imagery, environmental data, and machine learning techniques to assess nutrient status in 

Ethiopia, these studies have primarily utilized methods such as random forests or traditional statistical 

approaches (Ofori-Karikari, 2024), rather than developing a more advanced framework for estimating 

micronutrients in maize based on diverse environmental variables. 

 

This study aims to address the research gap by developing an XGBoost-based model that uses 

environmental factors derived from satellite imagery to estimate the micronutrient concentration in maize 

crops across Malawi. While random forests have been commonly used in agricultural modelling due to 

their robustness with high-dimensional data and their ability to capture non-linear relationships (Breiman, 

2001; Belgiu & Drăguţ, 2016), XGBoost’s gradient boosting framework provides improved accuracy and 

computational efficiency, especially in handling structured data with complex interactions and missing 

values (Chen & Guestrin, 2016). These capabilities make it particularly well-suited for agricultural datasets 
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where data quality and completeness may vary. The selected environmental factors include soil properties 

such as pH and organic matter, climate data like temperature and precipitation, and topographical features 

including elevation and slope. Besides, Global Agro-Ecological Zones (GAEZ) was also introduced as a 

categorical input feature to capture broad-scale agroecological variability, covering climate, soil potential 

and land-suitability factors that influence micronutrient availability and uptake in maize. This research is 

significant in its potential to provide an efficient, scalable tool for nutrient management, enabling the 

identification of nutrient deficiencies across large agricultural areas. By precisely estimating individual 

nutrient concentrations (Ca, Fe, Zn, and Se), the model can inform more targeted interventions, such as 

optimized fertilizer application, to improve nutrient use efficiency, crop yield, and quality. 

1.4. Objectives and research questions 

The overall goal of this study is to develop and evaluate a framework, to predict maize micronutrient 

concentrations in Malawi using XGBoost‐based machine learning model trained with spatially explicit 

environmental data. 

To achieve this goal, the study will pursue the following specific objectives: 

1) To characterize the spatial distribution of the environmental variables and maize micronutrient 

concentrations across Malawi. 

 

2) To develop and validate an XGBoost machine learning model for predicting maize grain 

micronutrient levels using spatial environmental datasets. 

 

3) To identify and rank the most influential environmental variables contributing to the variability in 

maize micronutrient concentrations. 

 

Research questions:  

1. How do environmental variables and maize micronutrients vary in Malawi?  

2. How accurately does the XGBoost model estimate micronutrient levels in maize grain? 

3. What are the most relevant environmental variables influencing micronutrients in maize yield? 
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2. STUDY AREA 

Malawi is a located in southeastern Africa, nestled between Tanzania, Mozambique and Zambia, with its 

eastern boundary dominated by the long, narrow Lake Malawi and its western border dipping into the 

Zambezi Rift. The country’s relief varies dramatically: steep escarpments and the Nyika Plateau in the 

north rise above 3,000 m, while the Rift Valley floor and lake shores lie near 37 m above sea level. Central 

and southern highlands form rolling plateaus at 800–1,200 m. This topographic diversity shapes a tropical 

to subtropical climate: a rainy season from November to April brings 500–1,800 mm of annual rainfall 

(increasing with elevation), followed by a cool, dry spell from May to August and a hot, dry interlude in 

September–October. Mean daily temperatures range from about 15 °C on the highest plateaus to upwards 

of 30 °C in lowland valleys. 

Roughly two-thirds of Malawi’s land is devoted to smallholder agriculture, with maize the flagship crop 

occupying over 60 % of cultivated area and supplying more than half of household calories. Farms average 

less than two hectares and typify mixed crop–livestock systems; tobacco, cassava and groundnuts are also 

common but play secondary roles. Soils are largely ferralsols and acrisols—deep and well-drained yet 

inherently infertile—with alluvial clays and loams confined to floodplains. Chronic acidification (pH < 

5.5) and low organic matter foster widespread micronutrient shortages, especially of Zn, boron and 

manganese, limiting both maize productivity and grain quality. 

 

Environmental pressures compound these natural constraints. Steep-slope cultivation and deforestation 

for fuelwood accelerate erosion and topsoil loss, while increasingly erratic rains and periodic droughts 

threaten yields. Socioeconomically, most farming households lack access to credit, quality inputs and 

Figure 1 Study area - Malawi 
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mechanization; landholdings average under one hectare, and labour shortages—intensified by health 

crises—delay critical planting and weeding operations. A growing body of agronomic research in Malawi 

has mapped soil fertility hotspots and tested Zn fertilization and organic amendments, yet these field-

based studies remain spatially fragmented. 

 

This complex mosaic of topography, climate, soil chemistry and land use make Malawi an ideal arena for 

machine learning and spatial analysis. By integrating remote sensing (e.g., multispectral imagery, digital 

elevation models) with ground-truth soil and yield data, predictive algorithms such as random forests or 

gradient boosting can generate high-resolution maps of soil micronutrient status and maize nutrient 

uptake. Such models promise to pinpoint zones where targeted interventions—whether micro-dosing of 

Zn or site-specific liming—will most effectively raise both yields and grain micronutrient concentrations, 

thereby strengthening food security and nutrition across Malawi’s diverse landscapes. 
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3. METHODOLOGY 

To systematically evaluate the soil, climate, topography and multi-source remote sensing factors that affect 

nutrients in maize yield, this study integrated soil data, climate data, digital elevation models (DEMs), and 

Sentinel‐1/2 data. Feature extraction was performed based on sample points and their buffers, and a data 

set containing 61 input variables was constructed. The model was constructed and validated under the 

constraints of corn planting masks. Figure 2 shows the complete method flow chart. 

3.1. Data collection 

3.1.1. Micronutrient sample data 

This research applied micronutrient data from the GeoNutrition project, which collected grain and soil 

samples from farmers' fields and grain stores across Malawi during April-June 2018, immediately following 

the 2017-2018 maize growing season. The sampling was conducted with informed consent from farmers 

and under ethical approval from the University of Nottingham's School of Sociology and Social Policy 

Research Ethics Committee (REC; BIO-1819-001 for Malawi). The study protocols were also formally 

recognized by the Director of Research at Lilongwe University of Agriculture and Natural Resources. The 

samples provide ground-truth data on concentrations of Ca, Fe, Zn, and Se in maize grain, which serve as 

the target variables for the machine learning models. In this study, the Se_tripleq values represent Se 

Figure 2 Workflow of integrating multi-source environmental variables for nutrients in maize yield estimation 
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concentrations measured using Triple Quadrupole ICP‐MS. The samples are georeferenced with XY 

coordinates in WGS84 (EPSG:4326). 

3.1.2. Environmental and spatial data 

To capture the environmental factors that potentially influence micronutrient levels in maize, this study 

incorporates multiple datasets representing various aspects of environmental factors: 

 

Satellite imagery 

• Sentinel-2: launched in 2015 (Sentinel-2A) and 2017 (Sentinel-2B), these satellites provide global 

coverage every 5 days with a resolution of 10 m for RGB and key vegetation bands, and 20 m and 60 

m for other bands. Sentinel-2 data is used to compute various vegetation indices that reflect crop 

health and environmental conditions. 

• Sentinel-1: launched in 2014 (Sentinel-1A) and 2016 (Sentinel-1B), these satellites provide radar data 

every 6 days at 10 m resolution. Sentinel-1 data is particularly valuable for extracting soil moisture 

information and computing polarimetric indices, which are less affected by cloud cover compared to 

optical sensors. 

• MODIS Terra: with a 1 km resolution and daily coverage, MODIS data is used to extract land surface 

temperature, an important factor affecting crop growth and nutrient uptake. 

 

Climate Data 

CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) dataset provides daily 

precipitation data at approximately 5.5 km spatial resolution, suitable for analysing rainfall patterns during 

the 2017-2018 growing season across Malawi. 

 

Soil Data 

SoilGrids global soil database (Hengl et al., 2017) provides predictions of soil properties at approximately 

250 m resolution, including soil pH and organic carbon content, which are critical factors affecting 

nutrient availability to plants. 

 

Topographic Data 

MERIT DEM (Multi-Error-Removed Improved-Terrain Digital Elevation Model) has a resolution of 90 

m resolution. This dataset provides elevation data that has been processed to reduce errors such as 

vegetation and building biases found in other DEMs. Slope data is derived from the MERIT DEM using 

Google Earth Engine (GEE), allowing for analysis of how terrain characteristics affect water flow and 

nutrient distribution. 

 

Administrative Data 

GADM (Global Administrative Areas Database) provides country boundaries for Malawi, used for spatial 

reference. 

 

Malawi Maize Mask for 2017 

This is a publicly licensed (Creative Commons Attribution 4.0) dataset produced by the World Bank 

(World Bank, 2017). Derived from Sentinel‐2 satellite imagery and household survey plot labels, this 

binary GeoTIFF map identifies maize and non‐maize areas across Malawi for 2017 at a 10 m spatial 

resolution. 
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3.2. Data preprocessing 

3.2.1. Defining buffers around available grain nutrient samples and maize-mask filtering 

In this study, 100 m × 100 m square buffers were generated around each sample point. The Malawi maize 

mask 2017 (10 m resolution GeoTIFF) was added into ArcGIS pro, and an intersection operation was 

performed between each buffer polygon and the maize-classified pixels. Buffers intersecting at least one 

maize pixel were retained, while those with no overlap were discarded. The resulting set of filtered buffers 

then provided the spatial framework for all subsequent remote-sensing feature extraction. Figure 3 shows 

a part of 100m*100m buffers and maize mask. 

3.2.2. Sentinel-2 data quality assessment and buffer sampling  

A spatial buffer of 60m × 60m was established around each field-validated sampling site to match the 

spatial resolution of Sentinel‐2/‐1 and reduce errors due to geolocation bias. The entire processing 

pipeline is based on the S2_SR_HARMONIZED dataset in Google Earth Engine (GEE), and the core 

can be divided into several steps: first, cloud cover is filtered for each pixel to keep only completely cloud-

free observations to ensure the original quality of the spectral data; second, the pixels with less than 50% 

valid observations during the entire growing season (November 1, 2017 to April 30, 2018) are eliminated 

through the validity screening mechanism to ensure temporal representativeness; next, the seasonal 

average value during the period is calculated based on the retained pixels to generate a robust composite 

image; thereafter, the average reflectance of all pixels in each buffer is statistically calculated, and the 

NDVI variance is attempted to assess the spatial consistency of the vegetation index within the buffer 

(although the variance is not ultimately included in the model construction and is only used for 

preliminary quality assessment and noise detection); finally, the buffer-level point features, including the 

Sentinel‐2 full-band mean (B1–B12) and the average values of several commonly used vegetation indices 

(such as NDVI, EVI, MSAVI2, etc.; seen Table 1) are exported as structured CSV The file is used for 

subsequent modelling and analysis. This process combines cloud detection, time validity control and 

neighbourhood statistics, which not only strengthens the temporal stability of spectral features, but also 

considers spatial representativeness, providing the model with a set of spectral prediction variables with 

high generalization ability. 

 
  

Figure 3 Examples of 100m*100m buffers and maize mask  
(From left to right, the buffers in the first and second images were retained, while the buffer in the third image was removed.) 

 

 

Figure 4 Spatial distribution of log-transformed maize grain micronutrient concentrations in Malawi (Ca, Zn, Fe, Se) 

 

Figure 5 Spatial distribution of log-transformed maize grain micronutrient concentrations in Malawi (Ca, Zn, Fe, Se) 

 

Figure 6 Spatial distribution of log-transformed maize grain micronutrient concentrations in Malawi (Ca, Zn, Fe, Se) 

 

Figure 7 Spatial distribution of log-transformed maize grain micronutrient concentrations in Malawi (Ca, Zn, Fe, Se) 

 

Figure 8 Average temperature of maize during growing season in MalawiFigure 9 Spatial distribution of log-transformed maize 
grain micronutrient concentrations in Malawi (Ca, Zn, Fe, Se) 

 

Figure 10 Spatial distribution of log-transformed maize grain micronutrient concentrations in Malawi (Ca, Zn, Fe, Se) 

 

Figure 11 Spatial distribution of log-transformed maize grain micronutrient concentrations in Malawi (Ca, Zn, Fe, Se) 

 

Figure 12 Spatial distribution of log-transformed maize grain micronutrient concentrations in Malawi (Ca, Zn, Fe, Se) 

 

Figure 13 Average temperature of maize during growing season in Malawi 

 

Figure 14 Average temperature of maize during growing season in Malawi 

 

Figure 15 Average temperature of maize during growing season in Malawi 

 

Figure 16 Average temperature of maize during growing season in Malawi 
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Table 1 Vegetation indices used as input variables for the developed machine learning based maize nutrient content 
estimation 

Abbreviation Index name Expression Application / characteristics Citation 

ARI 
Anthocyanin 

Reflectance Index 
(1 / B3) - (1 / B5) 

Anthocyanin-physiological 

status indicator for different 

plant stress types 

Gitelson 

et al., 2003 

ARVI 

Atmospherically 

Resistant Vegetation 

Index 

(B8 - B6 - (B2 - B6)) / 

(B8 + B6 - (B2 - B6)) 

Corrects atmospheric 

scattering using blue-light 

reflectance 

Kaufman 

& Tanré, 1992 

CI_RE 
Chlorophyll Index - red 

edge 
(B8 / B5) - 1 Chlorophyll content 

Gitelson 

et al., 2003 

DSWI 
Disease Water Stress 

Index 
(B8 - B3) / (B11 + B4) 

Sensitive to water shortage and 

plant damage 

Bochenek 

et al., 2018 

EVI 
Enhanced Vegetation 

Index 

2.5 * ((B8 - B4) / (B8 

+ 6 * B4 - 7.5 * B2 + 

1)) 

Improved NDVI that reduces 

atmospheric influences 

Matsushita 

et al., 2007 

EVIredEdge 
Red-Edge Enhanced 

Vegetation Index 

2.5 * ((B8 - B6) / (B8 

+ 6 * B6 - 7.5 * B2 + 

1)) 

Estimates LAI, chlorophyll 

and canopy water content 
 

GCI 
Green Chlorophyll 

Index 
(B5 / B3) - 1 Estimates chlorophyll content 

Gitelson 

et al., 2003 

GNDVI 

Green Normalized 

Difference Vegetation 

Index 

(B8 - B3) / (B8 + B3) 

More sensitive than NDVI to 

chlorophyll variations (linked 

to N) 

Gitelson 

& Merzlyak, 1998 

HMSSI 
Heavy-Metal Stress 

Sensitive Index 

(B8 - B5 - 1) / ((B5 - 

B2) / B3) 
Heavy-metal stress detection 

Z. Zhang 

et al., 2018 

IRECI 
Inverted Red-Edge 

Chlorophyll Index 
(B7 - B4) / (B5 / B6) Canopy chlorophyll content Jiang et al., 2023 

MCARI 
Modified Chlorophyll 

Absorption Ratio Index 

((B5 - B4) - 0.2 * (B5 

- B3)) * (B5 / B4) 

Responsive to leaf chlorophyll 

& ground reflectance 
Wu et al., 2008 

MSR_RE 
Modified Simple 

Ratio - red edge 

((B8 / B4) - 1) / ((B8 / 

B4) + 1) ** 0.5 

Chlorosis; high sensitivity to 

vegetation biophysical 

parameters 

Wu et al., 2008 

MTCI 
MERIS Terrestrial 

Chlorophyll Index 
(B6 - B5) / (B5 - B4) 

Chlorophyll content of 

canopies 

Dash 

& Curran, 2004 

NDTI 
Normalized Difference 

Turbidity Index 

(B11 - B3) / (B11 + 

B3) 

Water turbidity / suspended 

particles 

Bid 

& Siddique, 2019 

NDVI 
Normalized Difference 

Vegetation Index 
(B8 - B4) / (B8 + B4) Green biomass, LAI 

Sims 

& Gamon, 2002 

NDVI_RE 

Normalized Difference 

Vegetation Index - red 

edge 

(B8 - B5)/(B8 + B5); 

(B8 - B6)/(B8 + B6); 

(B8 - B7)/(B8 + B7) 

Chlorophyll content 
Gitelson 

& Merzlyak, 1994 

NDWI 
Normalized Difference 

Water Index 

(B8 - B12) / (B8 + 

B12) 

Presence & abundance of 

water 
Gao, 1996 

NPCI 
Normalized Pigment 

Chlorophyll Index 
(B4 - B2) / (B4 + B2) Chlorophyll content Huang et al., 2014 

NRI 
Nitrogen Reflectance 

Index 
(B3 - B4) / (B3 + B4) Nitrogen concentration Huang et al., 2014 

PhRI 
Physiological 

Reflectance Index 
(B3 - B2) / (B3 + B2) 

Solar utilisation efficiency; 

disease & abiotic stress 
Huang et al., 2014 

PSRI 
Plant Senescence / 

Reflectance Index 
(B5 - B2) / B3 Plant senescence 

Yu et al., 2018; 

Z. Zhang 

et al., 2018 

PSSRa 
Pigment-Specific 

Simple Ratio (Chl-a) 
B7 / B4 Chlorophyll-a index 

Psomiadis 

et al., 2017 

RERVI 
Red-Edge Ratio 

Vegetation Index 
B8 / B6 

Biomass & chlorophyll 

estimation 
 

RVI Ratio Vegetation Index B8 / B4 
Mitigates irradiance 

& transmittance effects 

Y. Tan 

et al., 2019 
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RVSI 
Red-Edge Vegetation 

Stress Index 
((B5 + B6) / 2) - B6 

Early stress detection 

& vegetative health 

assessment 

 

S2REP 
Sentinel-2 Red-Edge 

Position Index 

705 + 35 * (((B4 + 

B7) / 2 - B5) / (B6 - 

B5)) 

Chlorophyll, N status 

& growth monitoring 

Eleveld 

et al., 2018 

SAVI 
Soil-Adjusted 

Vegetation Index 

((B8 - B4) / (B8 + B4 

+ 0.5)) * (1 + 0.5) 
Reduces soil-brightness effects Huete, 1988 

SIPI 
Structure-Insensitive 

Pigment Index 
(B8 - B2) / (B8 + B2) 

Carotenoid / chlorophyll-a 

ratio; canopy stress; LAI 
Yu et al., 2018 

TCARI 

Transformed 

Chlorophyll Absorption 

& Reflectance Index 

3 * ((B5 - B4) - 0.2 * 

(B5 - B3)) * (B5 / B4) 
Chlorophyll content, LAI Wu et al., 2008 

TVI 
Triangular Vegetation 

Index 

0.5 * (120 * (B6 - B3) 

- 200 * (B4 - B3)) 

Green LAI; sensitive to 

chlorophyll rise with canopy 

density 

Qian et al., 2022 

WDRVI 
Wide Dynamic Range 

Vegetation Index 

(0.2 * B8 - B4) / (0.2 * 

B8 + B4) 

Vegetation fraction; LAI 

sensitivity 
Gitelson, 2004 
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3.2.3. Sentinel-1 and polarimetric indices extraction 

The Sentinel-1 GRD archive was filtered to the same temporal window and spatial buffers as Sentinel-2 

data (November 1, 2017–April 30, 2018), selecting only scenes containing both VV and VH polarizations. 

A custom function computed four polarimetric indices on each image:   

 

DPSVI_S1 = VV² / (VV × VH)                        (dos Santos et al., 2021) 

RVI_S1 = 4 × VH / (VH + VV)              (Nasirzadehdizaji et al., 2019) 

Pol_S1 = (VV – VH) / (VV + VH)                            (Hird et al., 2017) 

CR_S1 = VV / VH                                                   (Frison et al., 2018) 

 

These indices, together with the original VV and VH bands, formed an indexed image collection. The 

collection was then averaged to produce mean composites for each band and index. Finally, mean values 

within each 60 m buffer were extracted and exported as a per-buffer feature table for downstream 

modelling.  

3.2.4. Temperature data processing 

The MODIS Terra Land Surface Temperature (LST) Day product (MOD11A1) was used to extract 

average daytime temperatures for the November 1, 2017–April 30, 2018 period, the growing season of 

maize (Mloza Banda et al., 2024). The image collection was first filtered spatially to the Malawi boundary 

and temporally to the growing‐season window. Each scene’s LST_Day_1km band was converted from 

scaled Kelvin to degrees Celsius (× 0.02 – 273.15) to produce physically meaningful temperature values. A 

per-pixel mean was then calculated across all valid observations to generate a single seasonal composite, 

which was clipped to the national border. To preserve the native sensor detail, the nominal 1 km 

resolution was used when extracting the mean temperature at each sampling point. The resulting point-

level temperature metrics were exported as a CSV table for integration with other predictors. A TIFF file 

of mean temperature in Malawi was also exported and was clipped to Malawi boundary for temperature 

distribution mapping. 

3.2.5. Precipitation data processing 

Daily precipitation estimates were obtained from the CHIRPS dataset for the same November 2017–April 

2018 interval. The collection was filtered by study‐area boundary and date range, then averaged on a per-

pixel basis to create a seasonal rainfall composite. After clipping to the Malawi outline, the dataset’s native 

spatial resolution (250m) was employed to extract mean precipitation at each sample location, ensuring 

consistency with the inherent grid cell size. These point-level precipitation values were likewise exported 

as a CSV file for use alongside the temperature, and other features in subsequent modelling. A TIFF file 

of mean precipitation in Malawi was also exported and was clipped to Malawi boundary for precipitation 

distribution mapping. 

3.2.6. Topology data processing 

The MERIT DEM v1.0.3 was used to capture elevation across Malawi. The DEM was first clipped to the 

country boundary to limit the dataset to the study area. From this clipped surface, slope was calculated in 

degree using a standard terrain‐analysis algorithm, producing a second layer that describes the steepness of 

the landscape. Elevation and slope together are key control factors on soil moisture, erosion potential, and 

nutrient redistribution factors known to affect crop nutrient status. 

 

Both layers were merged into a single multi‐band image, maintaining the native resolution of roughly 90 m 

(resampled to a 100 m scale during extraction). Using the same sampling points as for the spectral 

variables, the elevation and slope values were extracted per location. These point‐level topographic 
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metrics were exported as a CSV table, completing the suite of environmental predictors for subsequent 

machine‐learning analysis. 

3.2.7. Soil data processing 

Soil property layers (soil organic carbon and pH in water) were obtained from the SoilGrids250m dataset 

(Hengl et al., 2017). Because SoilGrids imposes a maximum download window of 2° × 2°, the Malawi 

extent was partitioned into adjacent tiles of this size. Each tile, covering the target depth interval was 

downloaded separately and then mosaicked into a one mosaic raster at the national level. The mosaic was 

clipped to the official Malawi boundary to remove data outside the study area and for soil properties 

distribution mapping. 

 

All soil layers share a 250 m native resolution. Using the same georeferenced sampling points employed 

for climate and topographic variables, the soil‐property value was extracted at each point using ‘rasterio’ 

package in python. These point‐level soil metrics were exported as CSV tables. This workflow ensures 

consistent spatial alignment and uses the globally standardized SoilGrids predictions for integration with 

other predictors in the subsequent machine‐learning models. 

3.2.8. GAEZ extraction 

GAEZ version 4 dataset for Malawi was used in this study, retrieved from the FAO–IIASA portal (Food 

and Agriculture Organization & International Institute for Applied Systems Analysis, 2021). GAEZ maps 

were obtained as a categorical raster covering world croplands. The GAEZ layer was first clipped to the 

Malawi boundary to limit it to the study area. Using the same georeferenced sampling points, the GAEZ 

class value at each location was extracted directly from the clipped raster, generating a categorical feature 

that describes the local Agro-Ecological Zone (AEZ; e.g. rainfall regime, temperature class, soil–water 

balance). This categorical variable captures broad, integrated controls on crop growth, combining climate, 

soil, and terrain into a single descriptor and was added to the point-level dataset alongside the continuous 

spectral, polarimetric, climatic, terrain, and soil predictors.  

3.2.9. Data integration and preparation for modelling 

All point‐level feature tables (Sentinel‐2 reflectance and indices, Sentinel-1 backscatter features and 

polarimetric indices, temperature, precipitation, elevation, slope, soil properties, and GAEZ) were joined 

on the unique sample‐point identifier to form a single comprehensive dataset. Irrelevant columns, such as 

ID, raw geometry fields, variance, and export metadata, were removed to streamline the table. 

3.3. XGBoost modelling and optimisation 

3.3.1. Spatially informed data partitioning 

To address the influence of spatial autocorrelation, a geographically structured partitioning strategy was 

employed. Sample locations, defined by geographic coordinates (longitude and latitude), were grouped 

into spatial clusters using K-Means clustering (k = 10). Data were then partitioned into training and 

testing sets using GroupShuffleSplit, treating each spatial cluster as an indivisible unit. This ensures that 

no samples from the same geographic region are present in both subsets, thus reducing the risk of spatial 

information leakage. 

3.3.2. Hyperparameter tuning and XGBoost model 

To model the relationship between environment features and multiple nutrient targets, the XGBoost 

algorithm (Chen & Guestrin, 2016), was employed, chosen for its scalability, ability to handle mixed data 

types (including categorical variables), and robustness to multicollinearity and missing data. XGBoost 

builds an ensemble of decision trees in a sequential manner, where each new tree attempts to correct the 
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residuals of previous trees using gradient descent optimization. Its regularization features also help prevent 

overfitting, making it a suitable choice for our high-dimensional feature set. 

 

Given the complexity of our dataset and the potential for overfitting, particularly due to spatial 

autocorrelation and collinearity among predictors, an extensive hyperparameter tuning process was 

performed. We used a randomized search strategy across a defined hyperparameter space to efficiently 

identify optimal model configurations. The hyperparameters included the number of boosting rounds 

(n_estimators), learning rate, maximum tree depth, minimum child weight, subsample ratio, column 

sample ratio, and regularization terms (gamma, reg_alpha, reg_lambda). These were sampled from a mix 

of uniform, integer, and log-uniform distributions to ensure adequate coverage of the search space while 

maintaining computational feasibility. 

 

The search procedure used 5-fold cross-validation with shuffling to robustly estimate model 

generalization. A negative root mean squared error (RMSE) metric was used as the objective for tuning, as 

it directly reflects prediction error in the original units of the log-transformed target variable. Each 

nutrient target was modelled independently, enabling separate optimization and evaluation while allowing 

comparisons across nutrients. 

 

Once the best hyperparameter set was identified, a final model was retrained on the entire training subset 

(still using log-transformed targets). This model represents the best compromise between fitting 

complexity and generalization ability, given the available data and the specified search ranges. To evaluate 

how well the model predicted actual concentration values, predictions on both the training and test 

subsets were first produced in log space, as the target distribution is skewed, and then transformed back to 

the original concentration scale by applying the inverse log operation. 

3.3.3. Model performance assessment 

After hyperparameter tuning, the best-performing models for each nutrient target were selected and 

further evaluated on both training and test subsets. To handle non-normality and skew in the target 

variables, log-transformation was applied during training, and predictions were exponentiated back to the 

original scale for interpretation and error calculation. 

 

Model performance was assessed using several standard regression metrics, including Root Mean Squared 

Error (RMSE), normalized RMSE (nRMSE), and the coefficient of determination (R²). These were 

calculated as follows:  

RMSE quantifies the standard deviation of prediction errors in the same unit as the target variable. 

 

𝑅𝑀𝑆𝐸 = √ [𝛴 (𝑦ᵢ − ŷᵢ) ² / 𝑛] 

Where: 

• yᵢ is the observed values, 

• ŷᵢ is the predicted values, 

• n is the number of observations. 

 

nRMSE scales RMSE relative to the mean of the actual values, allowing comparison across nutrients. 

 

𝑛𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸 / ȳ 

Where: 

• ȳ is the mean of the observed values. 
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R² indicates the proportion of variance explained by the model, with values closer to 1 suggesting better 

predictive power. 

𝑅² = 1 − [𝛴 (𝑦ᵢ − ŷᵢ) ² / 𝛴 (𝑦ᵢ − ȳ) ²] 

Where: 

• yᵢ is the observed values, 

• ŷᵢ is the predicted values, 

• ȳ is the mean of the observed values. 

 

MAE is less sensitive to outliers compared to RMSE and provides an additional perspective on prediction 

accuracy. 

MAE = 𝛴 |𝑦ᵢ − ŷᵢ| 

Where: 

• yᵢ is the observed values, 

• ŷᵢ is the predicted values. 

 

To assess the accuracy of the models, actual-versus-predicted value plots were generated, which help 

visualize systematic biases or heteroscedasticity in the predictions. Moreover, feature importance was 

quantified using the gain metric, which reflects the relative contribution of each feature to improving the 

model’s predictive performance. In the context of regression, gain measures the average reduction in the 

loss function (typically mean squared error) achieved by splits on a given feature across all trees in the 

ensemble. Sorting these scores revealed which environmental variables (for example, soil pH, elevation, 

precipitation, or spectral indices) contributed most to reducing prediction error. Horizontal bar charts 

were produced to visualize the top features for each nutrient, offering insight into the primary drivers of 

nutrient variability. These insights support model interpretability and help identify the most influential 

predictors. 

 

Finally, Partial Dependence Plots (PDPs) were created for selected features to illustrate their marginal 

effect on the predicted outcomes. PDPs offer an intuitive view of how the model's predictions change 

with a given feature while averaging out the effects of others, thus aiding in the interpretation of 

potentially non-linear and interactive relationships (Friedman, 2001). 
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4. RESULTS 

4.1. Nutrient spatial distribution maps 

The spatial distribution maps of different nutrients were generated using all available sampling points, 

prior to data cleaning or model-specific filtering. These maps illustrate the general spatial patterns of each 

micronutrient across Malawi (Figure 4).  All nutrient concentrations were log-transformed (natural log) 

prior to visualization and modelling. This transformation was applied to reduce right-skewness, stabilize 

variance, and improve the statistical properties of the data for predictive modelling (Osborne, 2010). 

Moreover, since predictive models were trained using log-transformed nutrient concentrations, visualizing 

the spatial distribution in the same scale allows for consistent interpretation.  

 

The maps show that maize grain nutrient levels are generally highest in southern Malawi and lowest in the 

north (Figure 4). On the map showing the Ca values, the darkest red areas appear around the Shire Valley 

and near Blantyre in the south, while central Malawi is mostly orange and the far north is pale yellow. The 

Zn map follows a similar pattern, with the deepest greens clustered in the south, medium greens in the 

central region, and the lightest greens up north. Fe concentrations also peak in the south, where the 

darkest blue dots are most frequent, tapering to medium blues in central areas and light blues in the north. 

Se is especially low throughout the north and centre (pale purple) but shows higher values (darker purple) 

in the southern Shire Valley. In each case, nutrient-rich maize grain is found primarily in the south, with 

steadily lower levels as one moves northward. 

Figure 4 Spatial distribution of log-transformed maize grain micronutrient concentrations in Malawi (Ca, Zn, Fe, Se) 



ESTIMATION OF MICRONUTRIENTS IN MAIZE YIELD IN MALAWI USING MACHINE LEARNING AND SPATIALLY EXPLICIT ENVIRONMENTAL DATA 

19 

4.2. Environmental variable spatial distribution 

4.2.1. Temperature spatial distribution 

Malawi's average temperatures during the growing season from November 2017 to April 2018 showed a 

clear north-south difference (Figure 5). Temperatures ranged from about 19.4°C to 43.4°C, with most 

areas between 22–28°C. Cooler temperatures were found in the northern highlands and along the shores 

of Lake Malawi, especially near Mzuzu, shown as blue areas with temperatures below 22°C. In the south, 

especially near Blantyre, Nsanje, and Mangochi, temperatures were significantly higher, reaching over 

30°C, shown in orange-red. This spatial variation is closely related to changes in topography height and 

latitude, with low altitudes and high temperatures in the south and cooler highlands in the north. 

Temperature distribution is particularly important for agriculture, as it can affect crop growth cycles and 

yields. 

4.2.2. Precipitation spatial distribution 

Figure 6 shows the average precipitation distribution in Malawi during the crop growing season from 

November 2017 to April 2018 (unit: mm/day). Overall, the spatial distribution of precipitation in Malawi 

shows more precipitation in the north and less in the south, more in the east and less in the west. 

 

The northern region, especially Mzuzu and its surrounding areas, shows a higher average precipitation, 

with an average daily precipitation of more than 8 mm/day, and local areas reaching more than 10 

mm/day, which is the darker area in the figure. This may be related to the large terrain variations and high 

altitude in the region, which promotes more precipitation to gather. The central region (such as Lilongwe) 

has relatively moderate precipitation, with average values mostly in the range of 5–7 mm/day, which is the 

Figure 5 Average temperature of maize during growing season in Malawi 
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light blue area. The precipitation distribution is relatively uniform, which is suitable for the development 

of general dryland agriculture. In contrast, the average precipitation in the southern region (such as 

Blantyre, Nsanje, and Mangochi) is relatively low, with most areas below 4 mm/day, and some areas even 

below 3 mm/day. These areas are shown in light blue on the map, indicating that they have relatively 

scarce precipitation resources and may be more dependent on irrigation or face drought stress. 

4.2.3. Elevation and slope spatial distribution 

Malawi has a very diverse terrain, ranging from a minimum of about 30 meters to a maximum of more 

than 2,900 meters. As can be seen from the map (Figure 7a), the overall elevation shows a trend of 

gradually decreasing from the western and southern edges to the central and eastern parts. 

 

The northern region (especially north of Mzuzu) has many high mountain areas and is the highest area in 

Malawi, highlighted in dark purple. The central region (Lilongwe and its surroundings) is relatively flat, 

mostly between 800–1,200 meters above sea level, and is a typical plateau. The eastern area along Lake 

Malawi, especially near the lakeshore, has the lowest elevation, shown in light yellow. These low-altitude 

areas are usually fertile and humid and are one of the important agricultural belts in Malawi. The spatial 

distribution of elevation affects temperature, precipitation and land suitability, and is also the basic 

condition for slope formation. 

 

The slope distribution (Figure 7b) in Malawi is closely related to its topography. Darker colours represent 

steeper slopes. As shown in the figure, the areas with large slopes are mainly concentrated around high-

altitude areas, especially in the northern and southern marginal areas, where the slope can exceed 30° and 

even reach 70° in some areas. The central plateau area (near Lilongwe) has a smaller slope, and a large area 

has a slope between 0–5°, which is shown in light grey in the figure. These areas are flat and suitable for 

Figure 6 Average precipitation of maize spatial distribution during growing season in Malawi 
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mechanized agricultural development. In contrast, the slopes in the south (such as Blantyre) and around 

the northern mountains are steep, which are not suitable for construction and large-scale farming, and 

there is a potential risk of soil erosion and landslides.  

4.2.4. Soil pH spatial distribution 

The soil pH distribution in Figure 8 is expressed in pH × 10. The colour classification reflects the range of 

acidity and alkalinity. The soil in Malawi is generally acidic to slightly acidic, mainly distributed between pH 

5.0–6.5. Among them, the soil pH in the central region (especially Lilongwe and its surrounding areas) is 

relatively moderate, mostly between 5.5–6.5, which is suitable for the growth of common dryland crops. 

In the southern and northern highlands, the shallow soil still shows high acidity (pH < 5.5), but this is 

alleviated in the deep layer, showing a trend of slightly increasing pH with depth, which may be related to 

leaching and accumulation of surface organic matter. 

a b 
Figure 7 Spatial distribution maps of elevation (a) and slope (b) in Malawi. 
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Overall, the soil pH in most areas of Malawi is acidic, which may limit the absorption of nutrients by 

maize.  

 

4.2.5. Soil of Carbon (SOC) spatial distribution 

The set of figures (Figure 9) shows the spatial distribution of SOC content in different soil layers (from 0–

100 cm) in Malawi, in kg/ha, and the data comes from SoilGrids. In general, the SOC content is unevenly 

distributed in the study area and decreases significantly with the depth of the soil layer. The surface layer 

(0–5 cm) has the highest organic carbon content, with some areas exceeding 3000 kg/ha, mainly 

concentrated in the mountainous areas and lakeshore areas in northern Malawi. These areas have high 

terrain and good vegetation coverage, which promotes the accumulation of surface organic matter. As the 

soil layer deepens, the SOC content gradually decreases. The 5–15 cm and 15–30 cm layers still retain 

certain carbon-rich patches, but the distribution area and concentration have been significantly reduced. 

Figure 8 Soil pH distribution across soil depths in Malawi (0–100 cm, from left to right, up to down: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-
100cm) 
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The organic carbon content of the 30–60 cm and 60–100 cm layers is generally low, with most areas less 

than 1000 kg/ha, and only a few high-carbon areas have relatively high carbon reserves in the deep layer. 

Vertically, SOC shows an obvious “rich on the surface and poor in the deep” distribution pattern, 

indicating that the surface soil is key in the carbon cycle. It also suggests that the deep carbon pool is 

relatively weak in response to natural and human disturbances. 

Figure 9 SOC distribution (g/kg) across soil depths in Malawi (0–100 cm, from left to right, up to down: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 
60-100cm) 
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4.2.6. Agroecological zones in Malawi 

Malawi's agricultural ecological regionalization shows significant latitudinal gradients and topographic 

control effects. As can be seen in Figure 10, most areas are classified as tropical lowland semi-arid 

(Tropics, lowland; semi-arid) and tropical lowland sub-humid (Tropics, lowland; sub-humid), represented 

by light pink and pink respectively, which are widely distributed in the central and southern plains and are 

the country's main food production areas. Some areas, especially the central and northern highlands, are 

classified as tropical highland semi-arid or sub-humid areas (such as magenta and purple areas). These 

areas have complex terrain, high precipitation but limited land resources. 

 

There are significant areas of terrain or soil restrictions (dark brown) in central and northern Malawi and 

along the eastern shore of the lake, which may include steep slopes, shallow soil, rocky surfaces, etc., 

which restrict agricultural production. At the same time, a small amount of well-irrigated land (light blue) 

and wetland areas (blue green) are also marked in the figure, indicating that the local water resource 

distribution is significantly uneven. 

 

In addition, the blue area along Lake Malawi represents a large area of water, showing the important 

position of the lake in the geographical pattern. The red block area represents the main towns or built-up 

areas, which are small but concentrated in the south and along the lake coast, reflecting the concentrating 

of population and economic activities. 

 

Overall, Malawi's agricultural ecological zones have obvious north-south and high-low zone differences, 

which have important guiding value for crop and land management. The tropical lowland semi-arid and 

sub-humid areas are the current key agricultural development areas, whereas the highlands and terrain-

restricted areas need to adopt corresponding sustainable management strategies. 

Figure 10 AEZ of Malawi based on climate, elevation, and land limitations 
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4.3. Descriptive statistics and spatial distribution of maize grain nutrients 

All subsequent analyses, including descriptive statistics and modelling, were based on the pre-processed 

and filtered sample set. 

4.3.1. Descriptive statistics 

The descriptive statistics of nutrient composition in various crops, measured in mg·kg−1, reveal 

significant differences in nutrient densities based on median values. For Ca (n = 319), the mean 

concentration is 61.00 mg·kg⁻¹ and the median is 57.05 mg·kg⁻¹, with a standard deviation of 18.31 and 

an interquartile range of 50.38 – 68.04 mg·kg⁻¹. Fe (n = 270) has a mean of 26.94 mg·kg⁻¹, a median of 

20.15 mg·kg⁻¹, a standard deviation of 28.18, and an interquartile range of 15.41 – 28.24 mg·kg⁻¹. Zn (n = 

319) shows a mean of 22.03 mg·kg⁻¹ and a median of 21.85 mg·kg⁻¹, with a standard deviation of 3.97 

and a 25th–75th percentile range of 19.31 – 24.35 mg·kg⁻¹. Se_tripleq (n = 287) has much lower values: a 

mean of 0.0401 µg·kg⁻¹, a median of 0.0227 µg·kg⁻¹, a standard deviation of 0.0484, and an interquartile 

range of 0.0118 – 0.0475 µg·kg⁻¹. 

 

Figure 11 presents violin plots with overlaid boxplots for these same targets. The left panel shows that Ca, 

Fe, and Zn distributions are right-skewed: Fe spans several orders of magnitude (approximately 5 – 100 

mg·kg⁻¹), whereas Ca and Zn are more tightly clustered around their medians (≈ 57 mg·kg⁻¹ for Ca; ≈ 

21.85 mg·kg⁻¹ for Zn). The right panel isolates Se_tripleq, which is highly skewed toward small values 

(0.001 – 0.10 µg·kg⁻¹); its mean lies well above its median. These results support the use of a log 

transformation in subsequent modelling to stabilize variance and reduce skewness. 

Figure 12 presents the distributions of Ca, Fe, Zn, and Se concentrations across three AEZs in Malawi, 
using combined violin and boxplots. Overall, notable differences in micronutrient concentrations are 
observed between AEZs, particularly between lowland and highland regions. 
 
Ca (Figure 12a) exhibits substantial variation across AEZs, with the Lowland Semi-arid and Lowland Sub-
humid zones displaying higher median values and broader distributions compared to the Highland Semi-

Figure 11 Violin and box plots showing the spatial distributions of soil micronutrient concentrations for Ca, Fe, Zn 
(left), and Se_tripleq (right) across all sampling points 
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arid zone. The violin plots in lowland areas show positive skewness and long upper tails, suggesting the 
presence of high-concentration outliers and greater variability. In contrast, the highland zone presents a 
narrower distribution with lower overall values, indicating more uniform but limited Ca availability. 
 
A similar spatial pattern is observed for Fe (Figure 12b), though with even more pronounced skewness. 
The Lowland Semi-arid zone shows a wide distribution and exceptionally high Fe concentrations in some 
samples, as indicated by the elongated upper tail. The Highland Semi-arid zone again exhibits the lowest 
and least variable Fe concentrations, reinforcing the trend of reduced micronutrient availability at higher 
elevations. 
 
Zn (Figure 12c) presents a more balanced distribution across AEZs. While concentrations are still higher 
in the two lowland zones, particularly in the Lowland Sub-humid region, the differences among zones are 
less pronounced than those observed for Ca and Fe. The distributions are more symmetrical and 
moderately spread, indicating relatively consistent Zn levels across the zones. 
 
Se (Figure 12d), measured in micrograms per kilogram, shows the lowest absolute concentrations and the 
strongest right skew among the four nutrients. The Lowland Semi-arid zone displays the highest Se values, 
although the overall range remains small. The Highland Semi-arid zone shows both the lowest median and 
the narrowest distribution, suggesting that Se deficiency may be most severe in upland areas. This spatial 
pattern likely reflects the influence of parent material, drainage, and topographic conditions on Se 
availability. 

 
In summary, these distributions reveal clear spatial heterogeneity in micronutrient concentrations across 
Malawi. The consistently lower concentrations in the Highland Semi-arid zone highlight the need for 
targeted nutrient management or biofortification efforts in highland regions. 

a b 

c d 

Figure 12 Combined violin and boxplots of nutrient concentrations in maize yield by AEZ class: (a) Ca, (b) Fe, (c) 
Zn, (d) Se. 
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4.3.2. Spatial distribution of filtered samples 

The resulting spatial clusters and the train/test partition are illustrated in Figure 13. Each cluster is 

represented by a different colour. Training samples are marked with black circles, while testing samples are 

shown without border. The map is overlaid with the national boundary of Malawi for geographic context. 

 

It can be observed that the spatial split preserves geographic separation between training and testing data, 

thereby enabling spatially informed partitioning strategy. 

4.4. XGBoost model performance 

4.4.1. Hyperparameters 

After adjusting parameters with different nutrients as targets, the hyperparameters of the four models were 

obtained, as shown in Table 2 below. The optimal hyperparameters varied considerably across the four 

nutrient targets, reflecting differences in data structure and model complexity requirements. For example, 

Ca and Se_tripleq models adopted deeper trees and lower learning rates. In contrast, Fe achieved optimal 

performance with a higher learning rate and more conservative tree depth. The Zn model showed a strong 

L1 regularization (reg_alpha) and nearly full sampling (subsample ≈ 0.99), implying sensitivity to input 

Figure 13 Spatial Clustering of Training Samples and Train/Test Split Distribution Across Malawi 
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features and possible overfitting risk. Meanwhile, Se_tripleq required stronger L2 regularization 

(reg_lambda), possibly due to weaker or noisier feature-target relationships. 

 
Table 2 Model hyperparameters in models tuning with different nutrients as targets 

Parameter Ca Fe Zn Se_tripleq 

colsample_bytree 0.83446203 0.687270059 0.635674516 0.886122385 

gamma 0.329130195 1.863096003 0.161868646 5.35E-07 

learning_rate 0.003717036 0.06504857 0.007651054 0.001031998 

max_depth 9 6 5 4 

min_child_weight 3 5 9 3 

n_estimators 565 664 206 642 

reg_alpha 1.57E-08 3.69E-05 0.026156272 0.004906091 

reg_lambda 0.00145807 6.31E-08 3.95E-08 0.02096063 

subsample 0.58855534 0.729624446 0.993443468 0.802979987 

 

4.4.2. Comparison between actual and predicted nutrient concentrations 

Figure 14 shows the comparison between the actual concentrations of four micronutrient elements in corn 

grains (Ca, Fe, Zn and Se) and the model prediction values, presented in the form of a scatter plot. The 

horizontal axis is the actual observed value, the vertical axis is the model prediction value, and the red 

dotted line represents the ideal prediction line (i.e., predicted value = actual value). By analysing the 

distribution trend of the scatter points in the figure, the accuracy and bias of the model prediction for 

different elements can be intuitively evaluated. 

 

In the prediction graph of Ca (Figure 14a), most sample points are concentrated in the low to medium 

concentration range of 45–80 mg/kg, and the scattered points are relatively closely distributed near the 

ideal line, showing a certain fitting trend, indicating that the overall prediction ability of the model for Ca 

is relatively stable. However, in some high-concentration samples (such as >100 mg/kg), the predicted 

values are significantly lower than the actual values, showing a certain underfitting or "regression to the 

mean" phenomenon, which means the model is difficult to accurately capture extremely high values, 

resulting in a low prediction of high-concentration Ca. Overall, the prediction R² of Ca is 0.15 and the 

RMSE is 18.92.. 

 

The prediction graph of Fe (Figure 14b) reflects large deviations and instability. Although some points in 

the low concentration area (<50 mg/kg) are close to the diagonal line, the overall predicted value is 

generally lower than the actual value, especially in the high concentration area (such as >100 mg/kg), 

where multiple points deviate significantly from the ideal line, forming a significant underestimation trend. 

This underestimation phenomenon indicates that the model has great difficulty in learning the distribution 

law of Fe, which may be related to the extremely skewed distribution of the original Fe data. In addition, 

the large span of Fe concentration may also make it difficult for the model to adapt to its distribution 

changes. The R² of this group of predictions is only 0.08, and the RMSE is 25.05, which shows a poor 

fitting effect. 

 

The prediction results of Zn (Figure 14c) are relatively good, and most of the sample points are 

concentrated in the range of 15–25 mg/kg and are close to the ideal line. Although there are a few 

underestimations, the overall linear relationship and consistency are strong, showing good generalization 

ability in Zn concentration prediction, and can accurately identify the relative changes between different 

samples. The R² of the model is 0.14 and the RMSE is 3.67, indicating that its prediction stability and 

reliability are high. 
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The prediction of Se (Figure 14d) faces greater challenges. First, the concentration level of Se is extremely 

low (usually in the μg/kg range). As shown in the figure, most of the scattered points are concentrated in 

the area with low actual values (<0.05 μg/kg), and the model prediction values are correspondingly low. 

However, in the medium and high concentration samples (such as >0.10 μg/kg), the model prediction 

values are significantly lower and underestimated, indicating that the model has a weak ability to identify 

high Se values. In addition, the unit of Se is different from that of the other three elements (μg/kg instead 

of mg/kg), which may also increases the modeling difficulties caused by the difference in numerical scales. 

The R² of this group of predictions is -0.51 and the RMSE is 0.03, indicating that the model not only fails 

to effectively explain the changes in Se concentration, but also produces large errors. 

 

Figure 14 Comparison of actual and predicted values of each micronutrient: (a) Ca, (b) Fe, (c) Zn, (d) Se. 

a b 

c d 
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Overall, the model has a good fitting effect on Zn and Ca, and the predicted values are basically consistent 

with the actual values. However, Fe and Se have significant underestimation problems, especially in areas 

with high concentrations or extreme values.  

4.4.3. Overall model performance 

In the prediction of all elements, the model's fitting ability for extreme values is weak, and the prediction 

results tend to regress to the central value, reflecting its insufficient generalization ability when it exceeds 

the mean behaviour range, which is also consistent with the generally low R² phenomenon of the test set. 

For each nutrient element, Train_RMSE and Train_nRMSE reflect the model's fitting ability on the 

training data (expressed in original units and standardized units), while Train_R² indicates the proportion 

of variance that can be explained during the training process. Similarly, Test_RMSE, Test_nRMSE, 

Test_R², and Test_MAE measure the generalization error of the model on unseen data (Table 3). 

 
Table 3 Overall model performance 

Nutrient Train_RMSE Train_nRMSE Train_R2 Test_RMSE Test_nRMSE Test_R2 Test_MAE 

Ca 13.38438 0.22135 0.41148 18.92374 0.30217 0.15047 12.43531 

Fe 24.16926 0.93355 0.28121 25.05130 0.80215 0.07867 14.16494 

Zn 3.28879 0.14993 0.31313 3.66949 0.16447 0.13722 2.79445 

Se_tripleq 0.04199 0.95158 0.36592 0.02879 1.08884 -0.51345 0.02515 

 

For Ca, the model showed a certain fitting ability on the training set, with Train_R² of 0.41148, indicating 

that the model can explain about 41% of the variance in Ca concentration. However, on the test set, 

Test_R² dropped to 0.15, and the prediction performance decreased significantly, indicating that the 

model tends to overfit on new data. In addition, Test_RMSE is 18.92, which is significantly higher than 

13.38 in the training set, which also confirms this hypothesis. Although the normalized error 

(Test_nRMSE = 0.30217) is not extreme, the overall predictive ability is weak. This result is consistent 

with the trend of significant underestimation of high concentrations of Ca in the figure, and the model's 

performance at the tail of the distribution needs to be strengthened. 

 

The prediction performance of Fe is the weakest, with Train_R² of 0.28121 and Test_R² even lower, at 

only 0.07867, which has almost no explanatory power. Although the training error is slightly lower 

(Train_RMSE = 24.17), the test error has almost no improvement (Test_RMSE = 25.05), and the 

normalized error is still high (Test_nRMSE = 0.80215), indicating that the model has serious difficulties in 

fitting the Fe concentration and has very poor generalization ability. The image also shows that Fe is 

significantly underestimated in the high value area, which may be greatly affected by the skewed 

distribution of its data, making it difficult for the model to learn its rules. 

 

For Zn, the model prediction performance is relatively good, with R² of 0.31 and 0.13 for training and 

testing respectively. Although the performance of the test set has declined, the Test_RMSE is 3.67, the 

normalized error is only 0.16447, and the Test_MAE is relatively low (2.79), indicating that the model has 

a certain generalization ability. Combined with the image, the overall distribution of the prediction results 

of Zn is reasonable, and a small amount of underestimation does not significantly affect the overall trend. 

It is the most balanced one among the four elements. 

 

Se performed well in training (Train_R² = 0.36592), but performed extremely poorly on the test set, with a 

negative value of -0.51345, indicating that the model's prediction effect is even worse than simply 

replacing it with the mean. Although the test error is small in absolute value (Test_RMSE = 0.02879), due 

to the extremely low concentration of Se (μg/kg), its normalized error is as high as 1.08884, reflecting the 

serious underfitting problem of the model in Se prediction.  
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Overall, the model has good prediction stability for Zn and Ca, but poor prediction for Fe and Se, 

especially the weak generalization ability on the test set. All elements have a certain degree of performance 

degradation on the test set, indicating that the current model has not been able to cope with the 

complexity of the data well, especially the lack of modelling ability for outliers or the tail of the 

distribution. 

4.5. Feature importance 

Figure 15 shows the feature importance of each model in estimating different nutrients in maize. 

Elevation and precipitation are among the most relevant predictors for Ca, Fe and Zn, proving that 

topography‐derived covariates and rainfall consistently explain most spatial variance in grain or soil 

micronutrients (Gohil, 2023). Their dominance in our model, therefore, aligns with the broader literature 

that identifies terrain-controlled hydrology and weathering as first-order nutrient drivers (Páez-Bimos, 

2023). 

 

The Ca model identifies the elevation as the most relevant variables, followed by seasonal rainfall and the 

acidity level of surface soil (pH 5–15 cm). Higher regions in Malawi are cooler and better drained, and, 

together with moderate rain and near-neutral pH, makes Ca easier for maize roots to absorb (Chilimba et 

al., 2011). Vegetation indices from Sentinel-2 are among the next most relevant input variables. Greener 

and thicker canopies is an indication that the crop has a high Ca concentration (Gatti et al., 2023).  

 

In the case of Fe, the importance of elevation is even more pronounced. Alongside soil properties such as 

SOC_5_15 and pH, multiple spectral bands (e.g., B2_mean, B7_mean) play a strong role. This implies Fe 

availability is shaped by both soil characteristics and surface reflectance properties. 

 

For Zn model, elevation, rainfall and soil carbon are very important for Ca estimation. In addition, 

polarimetric index proves also to be very relevant. Microwave back-scatter rises with canopy biomass and 

moisture, both linked to the period when maize loads Zn into the grain (Khabbazan et al., 2022).  

 

Se stands out: its top-ranked features are almost exclusively spectral indices—CR_S1, PSRI_mean, 

DWSI_S1, and ARVI_mean—with elevation and soil variables appearing further down the ranking. This 

pattern suggests that Se distribution is more tightly linked to remote sensing signals, possibly reflecting 

influences like moisture or vegetation health in Se-limited regions. 

 



ESTIMATION OF MICRONUTRIENTS IN MAIZE YIELD IN MALAWI USING MACHINE LEARNING AND SPATIALLY EXPLICIT ENVIRONMENTAL DATA 

32 

 

Figure 15 Feature importance ranking of XGBoost model in estimating Ca, Fe, Zn and Se_tripleq concentration 
in maize (by Gain value from high to low) 
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4.6. Partial dependence plots 

The PDPs in Figure 16 describe how each model’s three most influential covariates—plotted left-to-right 

in order of ranked importance—alter the predicted micronutrient content when all other features are held 

at their empirical distribution.  

 

In general, Ca, Fe, and Zn all show significant negative effects on the dual gradient of "altitude-

precipitation" - when the altitude increases by about 700 m and the daily average precipitation exceeds 

≈4.5 mm d⁻¹, the model prediction value drops synchronously, echoing the law of nutrient loss caused by 

intensified leaching and limited weathering of parent materials in mountainous areas and heavy rainfall 

scenarios (Kamal et al., 2023; Oishy et al., 2025). 

 

For Ca, Fe and Zn the plots show a clear downward trend with rising elevation and heavier daily rainfall. 

Similar patterns have been reported in mountain soils where cooler and wetter settings slow weathering 

and enhance leaching, lowering micronutrient supply to maize grain (He et al., 2016; Li et al., 2019). Ca 

displays an additional jump when top-soil pH rises above about 6.8, matching the well-known increase in 

Ca²⁺ availability under mildly alkaline conditions (Obreza & Morgan, 2008). 

Figure 16 PDP of the top three features of each element in the XGBoost model (Top 1 to Top 3 from left to right) 
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Fe responds differently to chemistry rather than pH: once the 5–15 cm layer exceeds roughly 50 g kg⁻¹ 

organic carbon, predicted Fe drops sharply and then levels out. High organic matter can bind or co-

precipitate ferric oxides, making less Fe available for plant uptake, a mechanism described in agronomic 

extension literature (Schulte & Kelling, 1999). 

 

Zn again declines with altitude and rainfall, but its third most important variable—the red-edge ratio 

RVI_S1—shows an abrupt cliff beyond about 2.55. Extremely nitrogen-rich canopies can dilute Zn in 

grain, an effect confirmed by large-scale fertiliser trials and meta-analyses (Liu et al., 2022). The model 

captures that threshold with an almost step-like decrease. 

 

Se behaves quite differently. Its predicted concentration is highly sensitive to three features: CR_S1, 

PSRI_mean, and B5_mean. For CR_S1, Se levels remain relatively stable until approximately 0.64, beyond 

which there is a sharp increase, suggesting a threshold effect. PSRI_mean displays a generally negative 

relationship with Se, where higher PSRI_mean values lead to a noticeable decline in predicted Se. Lastly, 

B5_mean demonstrates a distinct breakpoint at around 1000; Se concentrations are higher below this 

value and drop sharply above it, indicating a strong inverse relationship beyond that point. These patterns 

suggest that Se distribution is influenced by nonlinear and threshold-dependent interactions with spectral 

and remote sensing variables (Molnar, 2020). 

5. DISCUSSION 

5.1. Interpretation of findings 

The testing accuracy of our maize-nutrient models (R² ≈ 0.26 for grain Zn) is largely a biological rather 

than a statistical limitation. Extreme genotype × management × environment (G × M × E) heterogeneity 

across Malawi dilutes the predictive signal and inflates the residuals. Nevertheless, the models and PDPs 

point to a coherent set of drivers led by soil pH, SOC, temperature and rainfall. A comparison with 

Ethiopia (Ofori-Karikari, 2024) shows that steeper altitudinal gradients there sharpen nutrient contrasts 

and make spatial prediction easier than in Malawi’s relatively flat terrain. 

5.1.1. Nutrients spatial distribution 

Several factors contribute to higher micronutrient levels in maize grain from southern Malawi compared 

with the central and northern regions. First, the soils in the Shire Valley (southern Malawi) are often 

Vertisols formed on geologically distinct parent materials that naturally contain more Ca, Zn, Fe, and Se. 

These soil types also tend to have higher pH, which improves the availability of Zn and Se for plant 

uptake (Kumssa et al., 2022). Second, soil organic carbon is generally higher in the south and helps retain 

Zn in forms that maize can absorb. Third, the southern region has a slightly warmer climate and different 

moisture regimes (as indicated by higher mean annual temperature), both of which promote greater Se 

interactions and Zn solubility in the soil, respectively. These soil and climate conditions mean that corn 

grown in the south can accumulate more trace elements, whereas cooler temperatures, lower pH, and less 

organic matter in central and northern soils limit micronutrient availability and crop uptake. 

 

5.1.2. Low testing accuracy 

The findings of this study revealed a clear variation in model performance across different micronutrients, 

highlighting the complexity of nutrient–environment interactions and the limitations of current data 
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coverage. Among the four target elements (Ca, Fe, Zn, and Se), Zn and Ca demonstrated relatively better 

predictive results, with R² values of 0.14 and 0.15 respectively. These modest but meaningful predictions 

suggest that the spatial patterns of Zn and Ca in maize grain are largely governed by environmental 

variables included in the model, particularly soil pH, SOC, and topographic features. This aligns with 

established understanding that soil chemical conditions significantly influence Zn and Ca availability 

(Chaudhry & Loneragan, 1972; Thomas, 2016). In contrast, predictions for Fe and Se were notably 

weaker, with Se predictions even yielding negative R² values, indicating performance worse than a simple 

mean. Several factors likely contributed. First, Fe and Se distributions were highly skewed, with many low-

range samples and a few extreme high values that the model failed to capture, resulting in consistent 

underestimation of outliers.  

 

Malawian smallholders plant a mixture of hybrids and local open-pollinated varieties, each with distinct 

nutrient loading efficiencies (Nyirenda et al., 2021). Those genetics interact with highly variable on-farm 

practices that were not recorded but might influence grain composition. Se and Fe have fewer than 300 

points, heavily clustered in the south-central plateau. A spatially stratified split therefore reserves some 

entire eco-regions solely for testing, forcing the model to inference beyond the training range —excellent 

for unbiased assessment, but leading to lower R².  

 

Several key processes were missing from the input variables. No variable directly captures in-field fertiliser 

rates, liming history or short-term redox oscillations that govern Se speciation (Hu et al., 2023; Huang et 

al., 2017; Couture et al., 2015). The resulting omitted-variable bias is clearest in Se predictions, which 

regress toward the mean and yield negative R² despite visually coherent spatial patterns. Critical 

environmental drivers for these nutrients, such as soil redox potential and speciation, were missing from 

the input. Se bioavailability in soil is also strongly affected by redox state, and microbial activity, of which 

were not directly captured in our dataset (Saha et al., 2017; Zhang et al., 2024). 

5.1.3. Key predictors to estimate micronutrient content in maize in Malawi 

Feature importance analysis highlighted soil pH and SOC as consistent top predictors, verifying their 

central roles in micronutrient uptake (Thomas, 2016; Jalal et al., 2023). Sentinel-2 vegetation indices (e.g., 

NDVI, MSAVI2) also showed importance for some elements such as Ca and Se, indicating that canopy 

health reflects underlying soil nutrient status. Topographic factors such as elevation and slope were 

especially influential for Se, suggesting that water movement and microclimate contribute to Se 

mobilization. 

 

Figure 15 ranks features by nutrient importance: elevation, seasonal precipitation, and topsoil pH 

determine Ca, Fe, and Zn, while cross-polarization radar ratio and red-edge vegetation index determine Se. 

Topsoil pH affects Ca and Zn because they are more soluble and less leached in near-neutral soils (Abedi 

et al., 2022); This explains why nutrient “hotspots” cluster on neutral Vertisols in the southern Shire 

Valley. Organic carbon comes in second; it complexes with Zn and buffers soil moisture, so areas with 

SOC > 2% have a slow but steady rise in predicted Zn across the PDP. Altitude and rainfall have a dual 

effect: with increasing elevation and daily rainfall exceeding ≈4.5 mm d⁻¹, cooler temperatures slow 

weathering, while leaching accelerates, dragging all three cationic nutrients downward simultaneously. Se is 

an outlier. Its uptake depends on instantaneous redox pulses rather than long-term averages; thus, radar-

measured moisture proxies and stress indices mask static soil variables in the gain plot. 

5.1.4. Interpretation of the partial-dependence plots 

The soil-pH PDP derived for grain Zn increases almost linearly from pH ≈ 4.5 to 6.3 and then flattens, 

while the Ca PDP follows the same trajectory but bends more sharply near pH 6.8, indicating that both 

nutrients become progressively more available as strong acidity is neutralised before reaching an upper 



ESTIMATION OF MICRONUTRIENTS IN MAIZE YIELD IN MALAWI USING MACHINE LEARNING AND SPATIALLY EXPLICIT ENVIRONMENTAL DATA 

36 

limit in mildly alkaline soils (Botoman et al., 2022a). These results align with well-established chemistry: 

very acidic conditions keep Zn²⁺ strongly attached to oxide and clay surfaces, suppressing desorption, 

whereas the displacement of H⁺ from the cation-exchange complex during liming releases both Zn and 

base cations such as Ca²⁺ into the soil solution (Hamzah Saleem et al., 2022). The subsequent plateau is 

consistent with the onset of hydroxy- and carbonate-Zn precipitation (e.g., Zn(OH)₂, ZnCO₃) that begins 

around pH 6.5–7 and caps further in soluble or exchangeable Zn (Saeed & Fox, 1977). Field data 

corroborate the model inflection: the highest grain-Zn concentrations occur on the neutral Vertisols of the 

Shire Valley in southern Malawi, where the has a pH typically above 6 and where the maize grain Zn is 

about 30 % higher than compared with the maize grown on the more acidic upland Ultisols (Gashu et al., 

2021; Botoman et al., 2022a). Other PDPs reinforce element-specific controls. Predicted grain Zn rises 

with SOC content to roughly 2.5 %, then levels off, alignign with the previous studies that showed that 

moderate carbon enrichment enhances Zn mobilisation but that additional humification offers 

diminishing returns (Botoman et al., 2022a). Se behaves differently: it shows minimal direct response to 

pH or SOC in our model but increases sharply once the radar-based canopy-moisture index crosses a 

narrow threshold, emphasizing the sensitivity of the Se to episodic wetting/drying cycles and the redox 

oscillations in the root zone (Liao et al., 2014). 

5.1.5. Malawi contrasts with Ethiopia 

Ethiopia’s cereal micronutrient maps, generated with Random-Forest models that fuse Sentinel-2 imagery 

and detailed soil layers, display far sharper gradients than Malawi’s (Ofori-Karikari, 2024). Grain Zn and 

Fe concentrations often double between Rift-valley lowlands (<800 m) and highland plateaux (>2 500 m) 

within 250 km. Ofori-Karikari’s (2024) thesis shows that elevation alone explains ≈35 % of the variance in 

Ethiopian grain Zn across 19 AEZs, versus <10 % in this Malawian study. From a SELPR perspective, 

where production-landscape resilience is assessed by the balance between ecological and socio-economic 

services, Ethiopia’s topography create highly heterogeneous nutrient content in the cultivated crops. High-

SELPR zones in the central highlands maintain dense organic soils and reliable rainfall, sustaining 

nutrient-rich cereals despite limited fertiliser access (Zhang et al., 2020). Malawi’s relief produces broader, 

less contrasting zonation: its south-to-north decline in Zn and Ca is gradual. 

5.1.6. Ecological explanation of the spatial nutrient patterns 

There is an ecological explanation of the spatial nutrient patterns Higher Ca and Zn concentrations were 

observed in southern Malawi, corresponding with areas having neutral to slightly alkaline soils, warmer 

climates, and Vertisol parent geology, conditions known to retain these micronutrients more effectively 

(Thomas, 2016). Northern highland zones, typically cooler, more acidic, and erosion-prone showed lower 

concentrations, particularly for Se and Fe. 

5.2. Limitations of this study 

Despite its strengths, this study faces several important limitations that may affect the accuracy, 

transferability, and interpretability of its findings: 

 

• Multi-resolution dataset inconsistencies:  the integration of environmental predictors spanning 

several spatial resolutions introduces potential aggregation and scale mismatches. These 

inconsistencies can obscure fine-scale nutrient variability in maize grain. 

• SoilGrids predictive uncertainty: soil input variables (e.g., pH, SOC) were derived from the global 

SoilGrids model, which estimates soil properties using machine learning and presents explicit 

uncertainty measures. Independent evaluations have shown substantial inaccuracy in regions with 

sparse ground observations (e.g., R² as low as 0.04–0.27 for texture in Croatia), raising concerns 
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about reliability in poorly sampled areas like parts of Malawi (Radocaj et al., 2023; Poggio et 

al., 2021). 

• Limited ground-truth sample size and uneven distribution: although over 300 maize samples were 

collected, samples for Se and Fe remained under 300 and were spatially clustered. Such imbalance 

limits representativeness and increases variance, reducing model performance in under-sampled 

regions (Sharma et al., 2019; Moran et al., 2000). 

• Incomplete environmental and agronomic covariates: important agronomic factors such as 

fertilization rates, soil amendments (e.g., CaCO₃, micronutrient fertilizer), irrigation, and soil 

microbial activity were absent. These are known to influence micronutrient uptake but were 

unrepresented in the model (Rahman et al., 2021). 

• Mask uncertainty from maize delineation: the maize mask used to filter remote sensing-derived 

predictors is subject to classification error. As evidenced by decadal studies, even small 

misclassifications can bias nutrient predictions by inaccurately assigning environmental covariates 

(Liu et al., 2024). 

• One time ground sampling without temporal assessment: around measurements were collected 

only during one growing season, limiting the model’s ability to capture seasonal or inter-annual 

variability. Time-series ground measurements or repeated sampling are essential to understand 

temporal dynamics (Smith & Myers, 2018).  

• Black-box model structure lacking processual controls: XGBoost’s fully data-driven nature may 

capture spurious correlations when key biophysical processes (e.g., soil redox dynamics affecting 

Se) are missing. Hybrid process-driven and data-driven frameworks could reduce this risk and 

improve model robustness (Lu et al., 2023). 

6. CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

This study shows that machine-learning models trained using satellite, climate, terrain and SoilGrids data 

can give a first, country-wide assessment of Ca, Fe, Zn and Se levels in the maize grain. Elevation, rainfall 

and top-soil pH emerged as the main controls on Ca, Fe and Zn, matching agronomic knowledge that 

these nutrients are most available on well-drained, near-neutral soils under moderate moisture. Se behaved 

differently: radar-based vegetation proved to be very relevant predictors, emphasizing the key role of 

short-term soil-moisture and redox changes that microwave sensors can detect. Although the model faced 

challenges with extreme nutrient values, especially for Se and Fe, the resulting maps already highlight 

“cold-spots” where hidden hunger is likely greatest, aligning with earlier field surveys in the country. 

 

This work provides a spatial tool for targeting fertiliser, bio-fortified seed and nutrition programmes. 

Future iterations should incorporate detailed farm-management data, time-resolved moisture and redox 

proxies, and a loss-weighted training scheme so that the model gives appropriate emphasis to the 

nutritionally critical—but infrequently observed—high-concentration samples. 

6.2. Future work 

While this study establishes a valuable spatial mapping framework for maize micronutrients in Malawi, 

several extensions could substantially enhance its predictive power and applicability.  
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First, adopting weighted loss functions tailored to high-concentration or rare samples such as those found 

in Se and Fe can mitigate bias toward common values. Weighted MSE or output-weighted losses have 

proven effective in improving rare-event estimation in imbalanced regression contexts (Ren et al., 2022; 

Zhou et al., 2023). Additionally, data augmentation for regression, which combines resampling and 

synthetic sample generation, can help expand the training distribution and improve model robustness. 

 

Enriching the feature set by integrating additional environmental and soil parameters including cation 

exchange capacity, CaCO₃ content, irrigation indices, and soil microbial proxies would help account for 

variables currently missing from the model. These factors are known to significantly influence 

micronutrient bioavailability but are not captured by standard remote sensing or existing soil datasets at 

the global level. 

 

Feature reduction methods such as recursive feature elimination or regularization can also be investigated 

to identify and remove redundant or noisy predictors, thereby reducing overfitting and improving 

interpretability. 

 

By integrating these enhancements, namely advanced learning strategies (weighted loss, augmentation), 

enriched predictors, expressive ensemble models, and streamlined feature sets, the proposed framework 

can yield more accurate, robust, and interpretable predictions. These improvements are essential for 

deploying reliable nutrient-mapping tools to support precision agriculture and address micronutrient 

deficiencies across smallholder farms. 

6.3. Social impact and policy relevance 

This study offers a powerful tool for identifying regions with low micronutrient levels in maize, especially 

Zn, Fe, and Se, helping to identify where hidden hunger is most pressing. By translating environmental 

and crop data into actionable maps, it supports targeted interventions like biofortification and 

micronutrient-enriched fertilization rather than broad, untailored efforts. 

 

Stakeholders—including farmers, extension services, NGOs, and government agencies—can use this 

framework to pinpoint the most nutrient-deficient areas and channel scarce inputs — such as fertiliser 

subsidies, bio-fortified seed, advisory visits, and credit — toward communities where they will yield the 

greatest nutritional and economic return. Better-aligned agricultural practices not only boost crop yield 

and grain quality but also reinforce livelihoods and build more resilient food systems. 

 

While the current study is grounded in agricultural science, it establishes a strong platform for future 

public-health collaborations that could drive targeted interventions to reduce micronutrient deficiencies, 

strengthen food security, and ultimately enhance community well-being at scale. 

6.4. Ethical Considerations 

In this study, the crop nutrient data was provided by the GeoNutrition project. Informed consent was 

obtained from every farmer before grain and soil sampling took place in both field plots and grain stores 

(Kumssa et al., 2022). The project received formal clearance from the University of Nottingham’s School 

of Sociology and Social Policy Research Ethics Committee (REC) under reference BIO-1718-0004 for the 

activities carried out in Malawi. This approval was also endorsed by the Directors of Research at Lilongwe 

University of Agriculture and Natural Resources (Malawi). 

 

AI-assisted tools have been employed to smoothen language and check for grammar errors. 
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