Coding with a Co-Pilot: The impact of LLMs on Software Developers

AMIR KUANOV, University of Twente, The Netherlands

Currently, large language models (LLMs) like GitHub Copilot and ChatGPT
are widely used within software development projects to increase the pro-
ductivity in daily workflows. Al-supported assistants have been shown to be
quite productive tools in the hands of software engineers. This paper aims
to investigate how professional software developers perceive the impact of
LLMs on their problem-solving skills and independence. This qualitative
study identifies patterns in cognitive offloading, changes in development
approaches, and strategic adaptation by conducting semi-structured inter-
views with professional software developers. The findings contribute to
a better understanding of the implications of LLM use on software engi-
neering problem-solving skills, filling a gap in current productivity-focused
literature.

Additional Key Words and Phrases: Large Language Models (LLMs), Al-
assisted programming, Software engineering, GitHub Copilot,Al tools in
software development, Human-AI collaboration, Skill retention, Problem
Solving, Cognitive Offloading

1 INTRODUCTION

The integration of large language models (LLMs) into software
engineering has pushed human-AI collaboration to a new level,
allowing software engineers to generate and adapt code snippets
through human language prompts, enable code auto completion
and suggestion by connecting them into an integrated development
environment (IDE), summarize and write code documentation [14,
20, 22]. A large language model is a type of deep neural network
that has been trained on various text datasets, to identify patterns
and relationships within a language [20]. This method allows the
model to generate a grammatically correct text and structured code
[16]. LLMs have been shown to be effective at code generation, bug
detection and automated documentation [8, 16].

Software developer productivity has been widely studied, with
factors such as perceived productivity, lines of code written, coding
time, code submission and task completion time commonly used
as indicators [9]. Large Language Models (LLMs), such as GitHub
Copilot, are increasingly adopted in software development [13, 21],
as they have the potential to influence these dimensions of pro-
ductivity. By assisting with repetitive coding tasks, offering syntax
and logic suggestions, LLMs help developers maintain focus and
efficiency. Recent studies highlight a measurable increase in per-
ceived productivity when LLMs are used as coding assistants [22],
particularly when integrated into development environments to
provide in-line support, such as code completions and automated
comments.

Existing literature raises concern about the effects of long-term
LLM usage on developers’ problem-solving skills [4]. Problem solv-
ing is typically defined as the process of identifying a challenge,

TScIT 43, July 4, 2025, Enschede, The Netherlands

© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

analyzing it, and determining an effective solution [15]. In software
development, this often involves synthesizing knowledge, apply-
ing logic, and navigating complex technical tasks [11]. Theoretical
concerns stem from the idea that if developers rely heavily on LLM-
powered copilots to generate solutions, they may engage less in
the critical thinking and exploratory behaviors essential for deep
problem-solving.

It is established that LLM assistants are used as a tool to increase
efficiency of software developers. Cognitive offloading is a psycho-
logical concept that refers to the use of external tools or agents to
reduce the mental effort required for cognitive tasks. This theory is
relevant in contexts where technology is used to augment or replace
human thought processes [18]. In case the of software development,
LLMs act as external tools to aid in cognitive processes, helping
developers to recall syntax, break down and summarize code and
generate code snippets [14, 20, 22]. Cognitive offloading theory sug-
gests that tecnnological tools can enhance performance, excessive
reliance may reduce the retention and application of skills over time
[18]. That is why cognitive offloading serves as a suitable theory
to examine how thinking patterns of software developers change
while they are using LLMs in their workflow. It allows this study to
understand possible negative effects on problem-solving and long-
term skill retention that may come with increasing reliance on these
tools.

This study proposes a qualitative approach that explores how
software developers describe impact of LLM-powered copilots. By
using data acquired from real world professionals, this study aims to
research the impact of Large Language Models (LLMs) from software
developers point of view.

2 BACKGROUND
2.1 Large Language Models in Software Engineering

The applications that are based on the LLMs, such as ChatGPT
and Github Copilot, are quite often used in software development
[13, 21]. Recent surveys mention that 84 percent out of 57 profes-
sional developers use these applications at least several times a week
[4]. Large language models use vast datasets of source code and
natural language to generate code snippets in real time [8]. While
their integration into tools like GitHub Copilot has demonstrated
noteworthy improvements in developer productivity , challenges
such as hallucinated outputs, usability and correctness still need to
be investigated [8, 14, 21].

2.2 Problem Solving Theory

Problem-solving is a cognitive activity that consists of identify-
ing a challenge, understanding it, and taking steps to overcome
it [7]. It is employed in a wide range of real-life scenarios that
range from planning daily activities or more complex and signif-
icant tasks. Problem-solving is the ability to understand the gap
between given state and a desired goal, and applying reasoning and
learned knowledge to come up with a solution. It often requires

TScIT 43, July 4, 2025, Enschede, The Netherlands

analyzing information, researching, generating and comparing al-
ternatives, adapting strategies and validating solutions [7]. This
process is essential in both academic and professional domains,
where adaptive decision-making and independent judgment are
often required. It is widely regarded as one of the most transferable
and teachable cognitive skills, serving as a foundation for critical
thinking, and decision-making.

2.2.1 Problem Solving in Software Engineering. Problem solving in
software engineering is present in multiple activities in the daily
workflow - testing, debugging, creating and refactoring modules [6].
It is crucial for the developers to understand the problem, knowing
where to find the solution and, if it does not exist, create one. Soft-
ware engineering consists of three traditional activities: definition,
design and building the product [19]. However, how does problem
solving apply to these activities? For example, in definition, software
engineers must help the clients to understand what they want to
accomplish and what product would be best suited for their goal
[19], i.e. find a suitable solution to their problem.

2.3 Cogpnitive Offloading Theory

Cognitive offloading refers to the act of using the body or external
environment to reduce internal mental demands [18]. Common
examples include writing down notes, setting digital reminders,
or using GPS for navigation. Researchers have emphasized that
offloading is not just a practical shortcut but a fundamental part
of how humans extend cognition into the world, specifically when
performing tasks related to memory, planning, or reasoning [18].
These methods help humans to work around the limits of attention
and working memory, allowing them to maintain performance even
under increased cognitive load.

Offloading is shaped not only by how difficult a task is, but also
by how individuals evaluate their own mental abilities. People of-
ten choose to offload when they believe their memory or attention
may not be reliable. This reliance is guided by metacognitive judg-
ments, such as lack of confidence, which can lead to offloading
even when it is unnecessary [18]. While cognitive offloading can
improve efficiency and reduce mistakes, studies also raise concerns
about potential long-term effects. Repeated reliance on external
tools may reduce engagement with internal cognitive processes,
potentially weakening memory recall or independent reasoning
over time. These risks are especially relevant in modern environ-
ments where intelligent tools such as Al assistants are frequently
used. In fields like software engineering, where reasoning, plan-
ning, and problem-solving play a critical role, increasing reliance
on intelligent tools may not only reshape development practices
but also reduce the cognitive engagement traditionally required of
developers.

2.4 Current State of Research

Research has shown that these tools offer productivity benefits for
developers, especially in automating repetitive tasks, accelerating
idea generation, and supporting routine coding work [2, 14, 22].
Recent work has conducted a grounded theory study with profes-
sionals in software development and identified clear advantages in
development time, as well as during the prototyping, code analysis

Amir Kuanov

and planning stages. LLMs were frequently used for ideation, docu-
mentation, prototyping and error identification allowing developers
to reallocate cognitive effort to higher-level tasks [2].

At the same time, related literature raised concerns about how
extensive Al assistance may affect critical thinking and cognitive in-
dependence. Recent mixed-method study of 666 participants found
a negative correlation between frequent Al tool use and critical
thinking performance, caused by increased cognitive offloading.
The findings suggest that while Al can reduce cognitive load and im-
prove task efficiency, it may simultaneously decline problem-solving
skills and independent reasoning [10]. These findings intersect with
cognitive offloading theory, which states that individuals externalize
mental tasks to tools in order to manage cognitive load. Although
offloading can be functional in the short term, it may lead to skill
decay when users become dependent on tools that bypass deeper
engagement [18]. In software engineering contexts, this tension
becomes especially relevant. As developers rely more on Al to gen-
erate code, review designs, or troubleshoot issues, they risk reducing
their involvement in complex reasoning tasks.

2.5 Knowledge Gap

While existing work demonstrates that LLM-based tools enhance de-
veloper productivity [2, 22] and that heavy reliance on Al can impair
critical thinking via cognitive offloading [10], there remains a lack
of research that theoretically integrates cognitive offloading within
professional software-engineering workflows, and examines how
prolonged LLM use affects developers’ long-term problem-solving
skills and autonomy. This study addresses these gaps by apply-
ing Cognitive Offloading Theory to developers’ experiences with
LLM-based assistants, investigating both perceived benefits and
potential cognitive costs over time.

2.6 Problem Statement

The use of LLM-based copilots improved efficiency of software engi-
neers by automating routine tasks such as writing boilerplate code,
suggesting API usages, and streamlining debugging workflows [14].
While these tools evidently boost short-term productivity and help
developers prototype features in a shorter amount of time, there is
growing concern that reliance on machine-generated suggestions
may affect problem-solving, independence and technical learning
of the software developers [4]. To address this concern and the gap
in the productivity-focused literature, this study aims to answer
the following research question: How do software engineers per-
ceive the impact of large language models on their problem
solving skills and independence?

3 METHODOLOGY

This study employs a qualitative research approach using semi-
structured interviews to explore the effect of LLM-based assistants
on professional software developers. A qualitative method will allow
for effective capture of detailed narratives that reflect developers
real experiences and perceptions, which as opposed to quantitative
performance metrics [1]. Because, to answer the research question,
it is important to understand how developers perceive the effects
on their problem-solving skills. By sharing their experience with

Coding with a Co-Pilot: The impact of LLMs on Software Developers

the LLMs, developers show how they approach and tackle certain
problems, share details of their own findings on the matter and give
the understanding of the way they interact with LLMs and how they
think it affects them. That is why the qualitative method allows us to
understand the perception of the software developer on the matter,
since quantitative metrics would not provide thought processes
during the LLMs usage, real examples from their experience and
their opinions on the topic.

3.1 Data Collection

Participants were selected through purposive sampling since it fits to
the qualitative research approach employed in this paper [1, 12]. The
sample consists of 5 professional software developers who actively
use LLM-based assistants in their daily work routine. The sample is
relatively small due to the time limitations for this research, however
it will allow to collect reasonable insights from expert developers.

Table 1. Overview of the interviewees

ID ‘ Industry ‘ Role Experience
1 Software Full Stack Developer 2 years

2 | Software Senior Developer 13 years

3 | Software Backend Developer 11 years

4 | Finance Application Administrator | 12 years

5 | E-Commerce | Backend Developer 3 years

Each interview had the duration of 20 minutes on average and was
conducted online. The duration was enough to collect meaningful
data and avoid fatigue [5, 17]. The interviews were recorded with
consent and transcribed for analysis. Questions were open-ended to
encourage participants to share their views freely while following a
general interview guide focused on problem-solving [1]. Interview
transcriptions and recordings were stored and used securely and the
data from the interviews was properly destroyed after their intended
use to comply with the General Data Protection Regulation, since
the research was performed in the Netherlands, which is a part of
the European Union where GDPR is legally binding.

3.2 Data analysis

For the purpose of the research and extracting meaningful data
from the transcribed interviews thematic analysis was performed.
Thematic analysis is widely used for qualitative research and con-
sidered to be one of the ways to create meaningful insights from
raw data [3]. Thematic analysis assists in identifying patterns and
provides detailed description of the data that was derived from the
semi-structured interviews [3]. This method helps to interpret how
developers utilize Al tools, how they perceive changes in their skills,
and how they differentiate the Al with independent thinking, since
it organizes and describes ambiguous data without losing detail [3].
The analysis consists of 6 phases:

4 RESULTS

This section is presented as a continuous narrative. After coding
and analyzing data across five interviews with professional soft-
ware developers, three overarching themes emerged: Productivity,

TSclT 43, July 4, 2025, Enschede, The Netherlands

Table 2. Phases of Thematic Analysis and Their Descriptions

Phase

Description of the Process

1. Familiarizing
yourself with
your data

2. Generating
initial codes

3. Searching
for themes
4. Reviewing
themes

5. Defining and
naming themes

6. Producing
the report

Transcribing data (if necessary), reading and
re-reading the data, noting down initial ideas.

Coding interesting features of the data in a
systematic fashion across the entire data set,
collating data relevant to each code.

Collating codes into potential themes, gathering
all data relevant to each potential theme.
Checking if the themes work in relation to the
coded extracts (Level 1) and the entire data set
(Level 2), generating a thematic ‘map’ of the
analysis.

Ongoing analysis to refine the specifics of each
theme, and the overall story the analysis tells,
generating clear definitions and names for each
theme.

The final opportunity for analysis. Selection of
vivid, compelling extract examples, final
analysis of selected extracts, relating back the
analysis to the research question and literature,
producing a scholarly report of the analysis.

Cognitive Effects, and Challenges. Each theme is organized into
sub-themes, with illustrations of thematic maps and includes quotes
from the interviews.

4.1 Productivity

Using as code

autocomplete

Code
summarization J—
Helps to find
information
Useful for quicker
refactoring
- A v —_—
L) Useful to learn a
Elimination of Routine Task) -
excess code }—> Automation Time Efficiency [€«—{ new language or
framework

Test Generation

N \

Decreased task

and Coverage

Generate simple

completion time

code snippets

Used as translator

Fig. 1. Thematic Map for Theme 1: Productivity

Software developers aim to increase productivity, reduce task

completion time to satisfy the clients and stakeholders: "[...] in soft-
ware engineering you should finish the job fast to deliver to customers."
(Participant 1). Therefore, productivity is crucial for software devel-
opers.

TScIT 43, July 4, 2025, Enschede, The Netherlands

4.1.1 Routine task automation. Software developers’ main use case
is automating routine tasks, that are performed regularly in their
workflow using LLM. When certain problems do not require hu-
man oversight and could be performed through monotonous work,
software developers tend to use the LLM assistant for that: "I often
turn to LLM when the upcoming work is monotonous and volumi-
nous, for example, converting an existing list of data in one format
to another|...]" (Participant 2). The other use scenario is translating
data from one language to another, this could be the case for either
programming or human language: "The second case is the translation
of texts in the application, content. When you need to translate a text
into 10+ languages, it greatly speeds up the task and simplifies this
routine.[...] it was necessary to transfer functionality from Android
to iOS (from Kotlin to Swift), It’s easier to ask to write or convert the
codel...]"(Participant 2). Developers often have to interact with the
code of their colleagues, in order to understand the code they use
LLMs to break down and refactor it.

4.1.2 Time efficiency. Participants noted that integrating LLMs in
their workflow decreased the time they take to do their work: “[...]
now I do it all faster in Chat GPT. So productivity has increased several
times." (Participant 3). Software development industry relies on con-
stant learning and adapting to the new environment, that is, being
able to learn on the go. Rather than trawling through documentation
or Stack Overflow, engineers could pose a natural-language question
and receive an immediate, example-laden answer. It was mentioned
that learning through LLM assistant is the main approach: "I turn to
LLM when I don’t even know an approximate answer in advance, for
example, I don’t know what functionality is available."(Participant 2).

4.2 Cogpnitive Impact

Forgetting
syntaxes

Suggests ideas
for possible
solution

Knowledge gain Problem solving

and retention approach
Helps to learn Helps break down
new language the problem
Suppressed Attention and anea‘teizrﬁe?t)s:‘::?nor
creativity Creativity N
details
[y
No effect on Creapvny_ls not
creativity required in the
field

Fig. 2. Thematic Map for Theme 2: Cognitive Effects

The integration of LLMs into the software development workflow
has not only improved productivity but also introduced cognitive
shifts among developers. These changes are particularly evident in
the areas of knowledge retention, attention to detail, and approaches
to problem solving. While LLMs provide immediate assistance, they
also influence how and what developers learn, raising concerns
about long-term knowledge retention and critical thinking.

4.2.1 Knowledge gain and retention. One of the primary cognitive
impacts reported by participants is the shift in how they acquire and
retain technical knowledge. Developers frequently rely on LLMs

Amir Kuanov

to recall programming syntax or to gain familiarity with a new
language or framework. Instead of memorizing commands or con-
sulting official documentation, developers reported using LLMs to
retrieve code snippets on demand. This approach enables immediate
progress in coding tasks but potentially reduces long-term retention
of knowledge: "Yes, I started to turn to ChatGPT and Copilot more
often to quickly find solutions or examples. It’s convenient, but I un-
derstand that there is a risk of "forgetting how to think""(Participant
4).

4.2.2 Attention and creativity. Another reported cognitive shift that
concerns developers’ attention to detail and creative engagement
with their tasks. While LLMs help complete routine elements more
efficiently, some participants observed a reduction in their attention
toward minor details: "I began to notice that I began to pay little
attention to small syntaxes since the advent of LLM, sometimes I
forget. Yes, this happens often now" (Participant 5)

Moreover, the use of LLMs sparked contrasting views about cre-
ativity. Some participants felt that LLM suggestions could discourage
original thinking: Rather, it has influenced creativity, since I know that
it is easier and faster to turn to Copilot than to waste time and think
for myself. (Participant 4). On the other hand, some participants
either do not use the LLMs for creative tasks or do not think that
the usage of LLM assistant impacted their creativity: "Regarding the
creativity, I think that it didn’t make me uncreative." (Participant 1).

4.2.3 Problem solving approach. LLMs also influence the way de-
velopers engage with problems. Some participants report that the
tool serves as a cognitive assistance for deconstructing complex
tasks into manageable steps: "I usually use Copilot’s suggestions as
a draft. For example, when refactoring a large function, it suggests
breaking it down into logical blocks — this helps structure the code
and make it easier to maintain." (Participant 4). Instead of jumping
straight into coding, developers often begin by framing the problem
in a prompt, using the LLM’s response to get an idea for possible so-
lutions. This iterative process allows them to clarify their approach
before implementation. In contrast, some developers report that it
did not affect how they approach certain problems: " It didn’t affect
me at all how I approach tasks" (Participant 5). The reason might
be that they often try to exercise their own skills or do not prefer
involving LLMs in their problem-solving process.

4.3 Challenges

Solve the problem
ithout assistance

Poor performance
in complex tasks

— Suggestions
Exer<:|s!ng own — always require
skills A 4 validation

Limitations of
LLMs

A A

Strategical use

Initially proposed
— code does not
work

Finalizing code
manually
Avoid when
writing algorithms

Fig. 3. Thematic Map for Theme 3: Challenges

Manual research Reviewing
is better to refresh L— suggestions
knowledge hinders progress

Coding with a Co-Pilot: The impact of LLMs on Software Developers

Despite the productivity gains and cognitive shifts associated
with LLM use, developers described a range of challenges and ways
of finding a balance between productivity and cognitive effects.
These challenges are represented by two intertwined dynamics: the
need for strategic deployment of LLMs to protect problem-solving
and independence, and the limitations of current models that can
disrupt rather than accelerate work.

4.3.1 Strategic Use. Many participants mentioned that they try to
solve problems on their own before turning to LLMs. They prefer
to rely on their own knowledge first, especially when dealing with
tasks that are more complex. Some even set time aside to work
without LLMs, as a way to keep their skills sharp: "I try to write tests
by hand, because LLM can skip some test cases and plus it is useful
to write tests yourself because this way more business logic remains
in your head, all corner cases and you will remember and understand
the project as a whole longer." (Participant 3

Even when developers do use LLMs, they usually refrain copy-
ing the output directly. Instead, they review and improve the code
themselves to make sure it works correctly, This shows that while
LLMs help with problem solving, developers still want to stay in
control of the final product: "I always check and refine the final logic
myself" (Participant 4)

4.3.2 Limitations of LLMs. Integration of LLMs into software de-
velopers’ workflow introduced some limitations in range and depth
of tasks that it could be used for. Developers mentioned several
instances where code suggestions by LLM did not perform as in-
tended or could not be executed at all. While automating many
processes in software development, LLMs have shortcomings that
makes developers prefer manual coding and erodes trust in the
LLM’s ability to handle anything beyond trivial cases: "[...] the writ-
ten code is too superficial, often with errors, so that the project does not
launch [...]" Moreover, the necessity to validate every suggestion
might hinder the progress, searching and correcting mistakes of the
LLM can consume more time than writing the code from scratch.
When initial suggestion is flawed, the iterative prompting can stall
progress, reminding developers to remain autonomous and use the
suggestions with caution .

4.4 Summary

Productivity was the first theme that emerged after grouping the
codes. Developers reported that LLMs help automate repetitive or
low-level coding tasks, such as translating, formatting, auto com-
pleting the code, or generate simple code snippets. These tasks, once
time-consuming, were automated through simple prompts, allow-
ing engineers to shift focus to high-level tasks. The use of LLMs
allowed participants to approach problems more iteratively and
efficiently. Overall, each of these factors contributed to positive im-
provements in perceived productivity. However, these productivity
improvements also implied cognitive shifts in software developers.
Developers described using LLMs to recall syntax, suggest solutions,
or breaking down complex problems, which made them rely on
the LLM more often. Several participants raised concerns about
"forgetting how to think" or having problems with recall of exact

TSclT 43, July 4, 2025, Enschede, The Netherlands

syntax. Creativity was another topic that was concerned: some de-
velopers felt that LLM use limited their original thinking, while
others believed that creativity was not important for most devel-
opment tasks. Attention to detail also seemed to decline in some
cases, as reliance on LLM-generated code reduced the urgency to
manually check for small syntactical or logical errors. In response
to these shifts, participants described methods they use to maintain
their autonomy. Some emphasized the importance of using LLMs
selectively: either as a guidance when tackling a problem or strictly
for simple tasks. Final validation and analysis of the suggestion by
the LLMs is still crucial. Participants are aware of the limitations
of LLMs, especially in complex coding projects, where incorrect or
incomplete responses required debugging or extensive prompting
to achieve somewhat working prototype.

5 DISCUSSION

LLMs such as GitHub Copilot and ChatGPT have shown to be en-
hancing developer perceived productivity [21, 22]. This was strongly
reflected in the theme of Productivity, where participants empha-
sized that LLMs accelerated development by automating routine
tasks. The perceived productivity improvements are in line with
findings on time savings and developer satisfaction when using Al
programming assistants [22].

The theme of Cognitive Effects revealed contrasting experience:
while LLMs help with tackling the problem, they often change the
way developers approach the problem and affect long-term knowl-
edge retention. This aligns with concerns raised in previous studies
on cognitive offloading, where reliance on external tools can reduce
application and retention of skills [18]. Moreover, several partici-
pants admitted to forgetting syntax or refraining from their previous
problem solving approach and turning to LLMs for guidance.

This tension also appeared in participants’ self-reflections on cre-
ativity and attention. Some reported feeling less creatively engaged,
as LLMs offered ready-made solutions that reduced the need for
creative thinking, supporting the arguments made in related studies
that question whether Al tools suppress exploratory behavior in
software tasks[4]. However, others suggested that creativity is not
necessarily harmed by LLM use, revealing the fact in how creativity
is perceived in software development. This insight shows that the
relationship between creativity, problem solving, and Al support is
not uniform, which was not stated in prior literature.

The theme of Challenges further highlighted the intentional,
strategic ways developers manage their use of LLMs. Participants
described conscious efforts to retain the knowledge, such as solv-
ing problems without assistance, manually finishing the logic. This
mirrors concerns from prior studies, that human autonomy in prob-
lem solving must remain central even in Al-augmented workflows
[13, 19].

Importantly, this study identified that participants acknowledge
the cognitive effects caused by LLMs, however in order to increase
the productivity, they attempt to prevent these effects by using
methods that assist with coping and integrating LLMs in their work-
flow to minimize the negative cognitive impact. Developers fre-
quently discussed the need to validate, rework, or even discard
LLM-generated outputs when they did not meet expectations. This

TScIT 43, July 4, 2025, Enschede, The Netherlands

cautious approach aligns with findings from related studies, who
stress the importance of validation and user oversight in Al-driven
code generation [14, 16].

6 LIMITATIONS AND FUTURE WORK
6.1 Limitations

While this study provides valuable qualitative insights into how soft-
ware developers perceive the impact of LLM-based copilots on their
problem-solving skills and independence, several limitations must
be acknowledged. The sample size of 5 participants was relatively
small, while suitable for exploratory research, but limits the depth of
the findings. In addition, participants were selected through purpo-
sive sampling, potentially introducing selection bias. This study is
based entirely on self-reported data through semi-structured inter-
views. While participants shared important insights, their responses
may have been influenced by personal bias. It is also important to
note that the interviews captured perceptions at a single point in
time, without the ability to observe how these perceptions change
long-term with LLM use.

6.2 Future Work

Future research should address these limitations by primarily ex-
panding the sample size, and maintaining diversity in level of experi-
ence and industry. In addition, future work could utilize mixed meth-
ods, combining qualitative interviews with controlled experiments,
to find connections between self-reported insights and behavioral
patterns. This could offer a more objective understanding of the
impact of LLMs on software engineering practices.

7 CONCLUSION

This study explored how software developers perceive the impact
of large language models (LLMs) on their problem-solving skills
and professional independence. By conducting semi-structured in-
terviews and analyzing the responses through Braun and Clarke’s
thematic analysis framework, three key themes were identified:
productivity, cognitive effects, and challenges.

The findings show that developers see LLMs as valuable tools
for increasing productivity. However, developers also expressed
caution about relying too heavily on LLMs, particularly in complex
or critical tasks. Many participants noted a decrease in attention to
small details and raised concerns about losing precise knowledge of
programming languages, due to offloading auto completion to LLM
assistant.

Developers strategically regulate their use of LLMs, often choos-
ing to solve problems independently and validate the outputs of
the models thoroughly. This behavior suggests that while LLMs are
integrated into daily workflows, human oversight and critical think-
ing remain essential. Developers treat LLMs as assistants that can
guide them or accelerate problem-solving, but not as replacements
for their technical judgment or creative reasoning.

Answering the research question: How do software engineers
perceive the impact of large language models on their problem-
solving skills and independence? The developers acknowledge the
impact on their problem-solving and independence. The usage of
LLMs introduced over-reliance, effects on problem solving approach

Amir Kuanov

and knowledge retention. They are aware of the effects and risks,
however, they are adapting strategies and methods to find a balance
between increased productivity and cognitive effects.

REFERENCES

[1] Omolola A. Adeoye-Olatunde and Nicole L. Olenik. 2021. Research and scholarly
methods: Semi-structured interviews. JACCP: JOURNAL OF THE AMERICAN
COLLEGE OF CLINICAL PHARMACY 4, 10 (Oct. 2021), 1358-1367. https://doi.
0rg/10.1002/jac5.1441

[2] Leonardo Banh, Florian Holldack, and Gero Strobel. 2025. Copiloting the future:
How generative Al transforms Software Engineering. Information and Software
Technology 183 (July 2025), 107751. https://doi.org/10.1016/j.infsof.2025.107751

[3] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (Jan. 2006), 77-101. https://doi.org/10.
1191/1478088706qp0630a

[4] Sergio Cavalcante, Erick Ribeiro, and Ana Oran. 2025. The Impact of Al Tools on
Software Development: A Case Study with GitHub Copilot and Other AI Assis-
tants:. In Proceedings of the 27th International Conference on Enterprise Information
Systems. SCITEPRESS - Science and Technology Publications, Porto, Portugal,
245-252. https://doi.org/10.5220/0013294700003929

[5] AnitaN. Chary, Noelle Castilla-Ojo, Christopher Joshi, llianna Santangelo, Christo-
pher R. Carpenter, Kei Ouchi, Aanand D. Naik, Shan W. Liu, and Maura Kennedy.
2022. Evaluating older adults with cognitive dysfunction: A qualitative study
with emergency clinicians. Journal of the American Geriatrics Society 70, 2 (Feb.
2022), 341-351. https://doi.org/10.1111/jgs.17581

[6] Joel Cordeiro, Bruno Antunes, and Paulo Gomes. 2012. Context-based recommen-
dation to support problem solving in software development. In 2012 Third Inter-
national Workshop on Recommendation Systems for Software Engineering (RSSE).
IEEE, Zurich, Switzerland, 85-89. https://doi.org/10.1109/RSSE.2012.6233418

[7] Thomas J. D’Zurilla and Marvin R. Goldfried. 1971. Problem solving and behavior
modification. Journal of Abnormal Psychology 78, 1 (Aug. 1971), 107-126. https:
//doi.org/10.1037/h0031360

[8] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,

Shin Yoo, and Jie M. Zhang. 2023. Large Language Models for Software Engineer-

ing: Survey and Open Problems. In 2023 IEEE/ACM International Conference on

Software Engineering: Future of Software Engineering (ICSE-FoSE). IEEE, Melbourne,

Australia, 31-53. https://doi.org/10.1109/ICSE-FoSE59343.2023.00008

Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann,

Brian Houck, and Jenna Butler. 2021. The SPACE of Developer Productivity:

There’s more to it than you think. Queue 19, 1 (March 2021), 20-48. https:

//doi.org/10.1145/3454122.3454124

Michael Gerlich. 2025. AI Tools in Society: Impacts on Cognitive Offloading and

the Future of Critical Thinking. Societies 15, 1 (Jan. 2025), 6. https://doi.org/10.

3390/s0c15010006

[11] J. Paul Gibson and Jackie O’Kelly. 2005. Software engineering as a model of under-

standing for learning and problem solving. In Proceedings of the 2005 international

workshop on Computing education research - ICER "05. ACM Press, Seattle, WA,

USA, 87-97. https://doi.org/10.1145/1089786.1089795

Greg Guest, Emily E. Namey, and Marilyn L. Mitchell. 2013. Collecting Qualitative

Data: A Field Manual for Applied Research. SAGE Publications, Ltd, 1 Oliver’s

Yard, 55 City Road London EC1Y 1SP. https://doi.org/10.4135/9781506374680

Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes

De Oliveira Neto. 2024. Beyond Code Generation: An Observational Study of Chat-

GPT Usage in Software Engineering Practice. Proceedings of the ACM on Software

Engineering 1, FSE (July 2024), 1819-1840. https://doi.org/10.1145/3660788

[14] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2024. A Large-Scale Survey

on the Usability of Al Programming Assistants: Successes and Challenges. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering.
ACM, Lisbon Portugal, 1-13. https://doi.org/10.1145/3597503.3608128

[15] James Mcguire. 2001. What is problem solving? A review of theory, research and

applications. Criminal Behaviour and Mental Health 11, 4 (Nov. 2001), 210-235.

https://doi.org/10.1002/cbm.397

Ipek Ozkaya. 2023. Application of Large Language Models to Software Engineering

Tasks: Opportunities, Risks, and Implications. IEEE Software 40, 3 (May 2023), 4-8.

https://doi.org/10.1109/MS.2023.3248401

[17] Jude Page, Timothy Broady, Sujith Kumar, and Evelyne De Leeuw. 2022.

Exploratory Visuals and Text in Qualitative Research Interviews: How Do

We Respond? International Journal of Qualitative Methods 21 (April 2022),

16094069221110302. https://doi.org/10.1177/16094069221110302

Evan F. Risko and Sam J. Gilbert. 2016. Cognitive Offloading. Trends in Cognitive

Sciences 20, 9 (2016), 676-688. https://doi.org/10.1016/j.tics.2016.07.002

P.N. Robillard. 2005. Opportunistic Problem Solving in Software Engineering.

IEEE Software 22, 6 (Nov. 2005), 60-67. https://doi.org/10.1109/MS.2005.161

—
o)

[10

[12

=
&

[16

[18

[19

https://doi.org/10.1002/jac5.1441
https://doi.org/10.1002/jac5.1441
https://doi.org/10.1016/j.infsof.2025.107751
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.5220/0013294700003929
https://doi.org/10.1111/jgs.17581
https://doi.org/10.1109/RSSE.2012.6233418
https://doi.org/10.1037/h0031360
https://doi.org/10.1037/h0031360
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.3390/soc15010006
https://doi.org/10.3390/soc15010006
https://doi.org/10.1145/1089786.1089795
https://doi.org/10.4135/9781506374680
https://doi.org/10.1145/3660788
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1002/cbm.397
https://doi.org/10.1109/MS.2023.3248401
https://doi.org/10.1177/16094069221110302
https://doi.org/10.1016/j.tics.2016.07.002
https://doi.org/10.1109/MS.2005.161

Coding with a Co-Pilot: The impact of LLMs on Software Developers TScIT 43, July 4, 2025, Enschede, The Netherlands

[20] Zibin Zheng, Kaiwen Ning, Qingyuan Zhong, Jiachi Chen, Wenqing Chen, International Symposium on Machine Programming. ACM, San Diego CA USA,
Lianghong Guo, Weicheng Wang, and Yanlin Wang. 2025. Towards an understand- 21-29. https://doi.org/10.1145/3520312.3534864
ing of large language models in software engineering tasks. Empirical Software [22] Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin,
Engineering 30, 2 (March 2025), 50. https://doi.org/10.1007/s10664-024-10602-0 Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2024. Measuring
[21] Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin, GitHub Copilot’s Impact on Productivity. Commun. ACM 67, 3 (March 2024),
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity 54-63. https://doi.org/10.1145/3633453

assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN

https://doi.org/10.1007/s10664-024-10602-0
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3633453

	Abstract
	1 Introduction
	2 Background
	2.1 Large Language Models in Software Engineering
	2.2 Problem Solving Theory
	2.3 Cognitive Offloading Theory
	2.4 Current State of Research
	2.5 Knowledge Gap
	2.6 Problem Statement

	3 Methodology
	3.1 Data Collection
	3.2 Data analysis

	4 Results
	4.1 Productivity
	4.2 Cognitive Impact
	4.3 Challenges
	4.4 Summary

	5 Discussion
	6 Limitations and Future Work
	6.1 Limitations
	6.2 Future Work

	7 Conclusion
	References

