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Attack trees and crime scripts are frequently employed in cybersecurity
to analyze vulnerabilities from the perspective of a criminal. However, no
development has been made in researching whether these two formalisms
can complement each other. We propose that a detailed attack tree can be
generated by recreating the steps outlined in a crime script. Our objective
is to uncover hidden attack vectors represented as nodes that were not yet
in the tree and improve the completeness of the attack tree in terms of the
number of nodes (tree depth), using the 2017 Equifax data breach as the main
focus. This was done by simulating the Equifax environment on a virtual
machine in which a vulnerable version of Apache Struts was running. The
attack was then recreated by following the steps of a crime script, and any
missing steps were analyzed, along with alternative paths that the attacker
could have taken. Based on these results, a detailed attack tree was created
that contained the attack in significantly more detail than the initial attack
tree created from the crime script and also included alternative paths.
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1 INTRODUCTION
In cybersecurity, understanding vulnerabilities and how they are ex-
ploited by attackers in a system is vital for building secure systems.
Adopting the perspective of an attacker can often reveal vulnera-
bilities that a security specialist might have overlooked. They also
provide insight into which attacks are the most likely to occur. This
perspective is also valuable when researching data breaches, such
as the Equifax data breach in 2017 [13]. This is one of the most im-
pactful data breaches, resulting in the exposure of important private
information, including names, Social Security numbers, dates of
birth, addresses, driver’s license numbers, credit card numbers, and
dispute documents of 148 million people—nearly half the U.S. popu-
lation. There has also been some research on this breach [13, 18, 20].
This paper aims to analyze this breach using attack trees [17]

and crime scripts [6] to understand how the latter can complement
the former, which has not been done in other papers. This will be
achieved by attempting to convert a crime script into an attack tree.
Crime scripts and attack trees both provide valuable insights into
cyberattacks; however, they serve different purposes. The purpose
of attack trees is to analyze all the paths an attacker could take to
achieve their goal: exfiltrating valuable data from the systems of
Equifax. However, a crime script describes a single attack in great
detail, including how it happened, what steps the attacker took,
and what prerequisites were necessary. Combining these two can
significantly enrich security analyses and uncover hidden attack
vectors that traditional methods, such as using only attack trees or
crime scripts, might overlook. By bridging these two approaches, a
deeper understanding can be gained of both the attacker’s tactics

TScIT 43, July 4, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Preparation
On the 7th of March 2017, a remote command injection (RCI)
vulnerability found in Apache Struts was publicly disclosed.
On the 8th & 9th of March 2017, the Department of Homeland
Security notified Equifax of the vulnerability and Equifax
emailed their employees to instruct them that if they had
Apache Struts running, to apply the patch within 48 hours.
Equifax’s Automated Consumer Interview System (ACIS)
failed to apply the patch.
On the 15th of March 2017, Equifax’s security team scans the
network for any system still affected by the Apache struts
vulnerability, but the scan does not detect them because the
device to monitor it is offline due to an expired certificate.
On the 13th of May 2017, attackers dropped web-shells (a web
based backdoor) to gain remote access to the network.
Pre-activity
The attackers found unencrypted credentials that gave access
to data outside of the ACIS environment.
Activity
Between the 13th of May and the 31st of July 2017, the
attackers used the credentials to extract unencrypted personal
data, including names, Social Security numbers, dates of birth,
addresses, driver’s license numbers, credit card numbers, and
dispute documents from the databases of Equifax.
Equifax did not notice this, since the device used to monitor it
was inactive for 19 months because it was not maintained.
The device had an expired certificate.
Post-activity
On the 31st of July 2017 Equifax becomes aware of the breach
and shut down the vulnerable system.
On the 7th of September 2017 Equifax informed the public of
the breach.

Fig. 1. Crime script of Equifax data breach based on [13]

and the overall security weaknesses of a system due to the exposure
of hidden attack vectors.
Figure 1 presents a crime script that describes the sequence of

events that occurred during the Equifax breach. It provides the
breach in the form of a script from the attackers’ perspective. This is
both helpful in analyzing what went wrong and was compromised,
as well as in learning from the attack to improve security and ensure
that it never happens again. Publishing such findings can help other
companies avoid similar breaches in the future.
Figure 2 presents an attack tree that was derived from a crime

script (see Figure 1), that shows the attack vector used by the at-
tackers to attack Equifax. Unlike the crime script, which describes a
specific sequence of actions, this figure provides a structured rep-
resentation of possible attacks as nodes. Attack trees are generally



TScIT 43, July 4, 2025, Enschede, The Netherlands Stefan Morriën

Fig. 2. Converting the crime script from Figure 1 into an attack tree.

non-exhaustive, as there are too many attack vectors (vulnerabili-
ties) to breach a company. For example, in Figure 2, another path
could be to phish an employee for data. It would simply be close to
impossible to realize every possible vulnerability to attack the com-
pany and add them as nodes in the attack tree, especially because
there are always developments in this area. Therefore, attack trees
are generally scoped in a certain manner to ensure that the tree
does not become too large and that the important attack vectors are
included.

2 PROBLEM STATEMENT
Analyzing the result of the conversion of a crime script (Figure 1)
into an attack tree in Figure 2 shows that an attack tree with only
a single path is generated. This is as expected since an attack tree
contains multiple attack vectors as paths, whereas a crime script
explains a single attack vector in a sequence of events—a script.
Because a path is a single sequence of events, the converted attack
tree from a crime script would only have one branch/path.
The goal of this paper is to determine whether a detailed attack

tree can be generated by replicating the crime script in a simulated
environment. This attack tree would have to be more detailed and
contain more paths, which are alternative paths that the attacker
could have taken.

2.1 Research question
To achieve the goal of converting a crime script into a part of an at-
tack tree, this paper aims to answer the following research question
(RQ).

RQ: Towhat extent does recreating attack steps from crime scripts
derived from cases such as the Equifax Data breach help improve
the completeness of attack trees in terms of added paths?

The research question was divided into three sub-research ques-
tions, which, when answered, can be used to answer the research
question.
RQ.1: Does hands-on vulnerability testing reveal steps missing

from the crime script?
RQ.2: Could recreating attack steps from the crime script reveal

hidden attack vectors that were not used in the original attack?
RQ.3: How much richer in nodes or more realistic does the attack

tree become after incorporating the findings from recreating the
attack?

3 RELATED WORK
Attack trees were popularized by Schneier in 1999 [17]. Attack
trees “provide a formal, methodical way of describing the security
of systems” [17]. They provide an overview of the attack vectors,
which are represented as paths in the attack tree, that an attacker
can use to break into a system. These hierarchical structures contain
a root node which represents the attackers goal, and child nodes
which represent ways to achieve that. They may also include metrics
such as likelihood or cost; however, this is outside the scope of this
paper. Since their introduction and adoption in the cybersecurity
sector, several variations have been made, such as attack-fault trees,
probabilistic attack trees, and attack-defense trees. Attack trees are
useful for cybersecurity because they can be used to analyze which
vulnerabilities should be prioritized for defense.

Crime scripts were popularized by Cornish in 1994 [6]. Crime
scripts are a concept borrowed from cognitive science and crimi-
nology that describe the sequence of actions a criminal has taken
in a specific criminal activity [6]. In cybersecurity, they have been
adapted tomodel digital incidents and consist of actions taken before,
during, and after a crime. [4] propose a structured and methodical
process for populating such crime scripts using open source intelli-
gence (OSINT), further formalizing their application. This provides,
like attack trees, a look into the actions of a criminal and the steps
they take to examine what security measures could be put into place
to make such a crime less likely to happen.
Although crime scripts, sometimes referred to simply as scripts,

and attack trees are well documented, they are often not employed
together. There exists a gap in the existing literature on how these
two can complement each other when the crime script is replicated
through hands-on simulation.
Research on the Equifax data breach has focused on various as-

pects, such as its causes and impacts. According to [18], the breach
was attributed to the failure to apply a patch to a vulnerability
in Apache Struts, used by one of Equifax’s public-facing software,
which was known for months before the attack. Furthermore, [20]
establishedweaknesses in Equifax’s security practices, such as inade-
quate risk management and monitoring. Moreover, [18] emphasized
the critical consequences for both the company and customers, high-
lighting the importance of timely application of security patches
and competent security practices to mitigate such risks.

Hands-on simulations as a method to analyze attacks have been
shown to give results in previous research. For example, [2, 5]
demonstrate the value of modeling and simulating attacks to under-
stand systemic vulnerabilities. Furthermore, [9] uses an automated
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Fig. 3. Assumed relevant infrastructure of Equifax during breach.

testing framework to reconstruct attack graphs to correlate alerts
with attacker actions, arguing that existing alert correlations are
insufficient.

Despite this, no prior work has improved attack trees with crime
scripts through a technical recreation of the steps outlined in the
crime script. This paper directly addresses this gap by recreating the
attack scenario from the Equifax breach. This allowed for a more
detailed extraction of attacker actions and decisions that could be
mapped onto an attack tree. In doing so, this research not only con-
tributes to further analysis of the Equifax breach, but also provides
an approach that can be used to analyze attacks in the cybersecurity
sector.

4 METHODOLOGY
To answer the research questions, an isolated environment with
the vulnerable software used by Equifax at the time of the breach
was set up. The environment is in the form of a virtual machine.
This environment contains an outdated version of Apache Struts
that is vulnerable to the exploit (CVE-2017-5638) [1] used in the
Equifax breach. Other databases were configured to contain dummy
personal data, with credentials put in a configuration file in the
folder of Apache Struts. Furthermore, since the device that was put
in place to monitor traffic was not operational in the attack, it was
omitted in the recreation but was taken into account during every
step. The assumed infrastructure of the relevant system is shown in
Figure 3.

First, the crime script was critically analyzed, then the (grey) liter-
ature was reviewed, and lastly the attack was reproduced. The steps
outlined in the crime script were recreated in this environment to
replicate the attack. During this simulation, the differences between
the planned attack path of the crime script and the attack path taken
in the simulation were noted. Furthermore, the other steps that the
attacker could have taken to reach the goal were considered at each

stage and were analyzed. Simulating and recreating attacks has been
shown to yield valuable insight that traditional methods such as
literature review or post-event analysis often overlook, especially
in underexplored domains[2, 5, 9].

These findings were analyzed by determining whether they align
with the attack in the crime script or represent alternative steps that
could be added to enrich the attack tree. In addition, all findings
were compiled into an attack tree to enrich it. This attack tree (see
Figure 5) was then compared to the initial attack tree by metrics
such as number of nodes, leaf nodes, unique paths to goal, average
children per OR node and maximum tree depth and width to see if
the goal of enhancing the attack tree was achieved. Afterwards, an
enhanced crime script (see Figure 4) was created that also integrated
all relevant findings to demonstrate what findings were found which
can be compared to the initial crime script (see Figure 1).

4.1 (grey) Literature review
Due to a lack of technical depth in the papers on the Equifax breach,
an alternative method was used to gather techniques to execute
the attack. Furthermore, reputable sources, like the CVE database,
where all exploits are indexed, are often the direct source of this sort
of information in papers. Search engines like Google were used to
search for reputable sources such as security labs that explained the
attack in great technical depth. Only authoritative sources and/or
reputable sources that are often used in papers, which were verified
using Google Scholar, were used. Apart from authoritative sources
such as the report from the U.S. House of Representatives Commit-
tee on Oversight and Government Reform which provided a report
on the Equifax breach[13] and the CVE database maintained by the
United States’ Homeland Security Systems Engineering and Devel-
opment Institute FFRDC, only information to execute the attack was
gathered which was first verified during hands-on testing before
being accepted. Furthermore, no formal models, proofs, or concepts
were used from any source that was not a peer-reviewed paper.
These papers were also evaluated by how reputable the journal they
were published in was, how many citations they had, and if the
content seemed of quality such as citations and proper academic
terms were used.
First, the report on the Equifax breach[13] by the U.S. House of

Representatives Committee on Oversight and Government Reform
was analyzed for the sequence of events that lead to the attack. After
verifying this information by checking if it aligned with what other
papers showed, the information was used to create an initial crime
script (see Figure 1) and an initial attack tree (see Figure 2) was
created from this crime script.

Afterwards, the CVE database was inspected for requirements for
the vulnerability, such as vulnerable software versions. Then, other
sources were inspected for exact instructions on how to execute the
attack, where sources that included verifiable reasoning, such as
code[16], were prioritized. The common exploit[1, 16] which was
verified during the hands-on testing, in which mostly the cmd value
(command) differs, is as follows:

Content-Type: ${(#_='multipart/form-data').(#dm=@ognl.
OgnlContext@DEFAULT_MEMBER_ACCESS).(#_memberAccess?(#_
memberAccess=#dm):((#container=#context['com.opensymph
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ony.xwork2.ActionContext.container']).(#ognlUtil=#cont
ainer.getInstance(@com.opensymphony.xwork2.ognl.OgnlUt
il@class)).(#ognlUtil.getExcludedPackageNames().clear(
)).(#ognlUtil.getExcludedClasses().clear()).(#context.
setMemberAccess(#dm)))).(#cmd='whoami').(#iswin=(@java
.lang.System@getProperty('os.name').toLowerCase().cont
ains('win'))).(#cmds=(#iswin?{'cmd.exe','/c',#cmd}:{'/
bin/bash','-c',#cmd})).(#p=new java.lang.ProcessBuilde
r(#cmds)).(#p.redirectErrorStream(true)).(#process=#p.
start()).(#ros=(@org.apache.struts2.ServletActionConte
xt@getResponse().getOutputStream())).(@org.apache.comm
ons.io.IOUtils@copy(#process.getInputStream(),#ros)).(
#ros.flush())}
The payload is described in detail in Table 1.

4.2 Reproduction of the attack
To reproduce the attack, an environment was set up as shown in
Section 4.3 (see Figure A.1 and Figure A.2). Findings discovered
during the previous stage were verified. Steps from the initial crime
script (see Figure 1) were recreated and findings were noted down.
First, it was verified that with the payload shown in Table 1 the
exploit worked (see Figure A.4 and Figure A.5). Then a webshell
was made and uploaded via a Python script utilizing the payload
(see Figure A.6). This payload was then used to search for database
credentials and extract the prepared information from the database
(see Figure A.7). The logs were also analyzed to determine whether
the errors described by sources such as [16] were the cause of the
exploit by referencing the Apache Struts source code (see Figure
A.3). Between each step, including the setup, it was noted what
access the attacker had at that stage and what other directions the
attack could have taken.

4.3 Environment
Ubuntu 24.04.1, a Linux operating system (OS), was used in a virtual
machine using VMware Workstation 17 Pro version 17.5.2. Here,
a simple Apache Struts version 2.5.10 application was written in
IntelliJ using a simple guide[8] and was deployed to recreate the
attack. The Java Development Kit (JDK) used to compile the code
was version 8u112, released in 2016. It was then executed using
the server Java Runtime Environment (JRE) version 8u112 and de-
ployed on Apache Tomcat 8.0.38, which was also released in 2016.
A MySQL database version 24.04.1 was set up on the same machine,
and the database credentials were stored in a configuration file in
the Apache Tomcat files that hosted the Apache Struts application.
Python scripts and curl commands were used to send requests to
the server.

5 RESULTS
This section presents results from three sources: a critical analysis of
the existing crime script for technical details, a review of the existing
(grey) literature, and technical hands-on testing in a simulated envi-
ronment. With this, our objective is to observe findings to answer
the research questions, such as which steps are missing from the
crime scripts, what hidden attack vectors there are, and eventually
create an attack tree to analyze with the gathered information.

Table 1. Explanation of the OGNL code used for the exploit

OGNL code Explanation
${ shows the evaluator that the fol-

lowing text is an (OGNL) expres-
sion.

(#_='multipart/form-data') assigns the content-header to
a random variable, since the
content-type header needs to
contain that otherwise the
wrong path is taken in the code
for our exploit.

(#dm=@ognl.OgnlContext@DEF
AULT_MEMBER_ACCESS).(#_mem
berAccess?(#_memberAccess=
#dm):((#container=#context
['com.opensymphony.xwork2.
ActionContext.container'])
.(#ognlUtil=#container.get
Instance(@com.opensymphony
.xwork2.ognl.OgnlUtil@clas
s)).(#ognlUtil.getExcluded
PackageNames().clear()).(#
ognlUtil.getExcludedClasse
s().clear()).(#context.set
MemberAccess(#dm))))

checks if the _memberAccess is
on the value stack, and over-
writes it. If it is not, it clears the
blacklist the other way that was
previously explained.

(#cmd='whoami').(#iswin=(@
java.lang.System@getProper
ty('os.name').toLowerCase(
).contains('win'))).(#cmds
=(#iswin?{'cmd.exe','/c',#
cmd}:{'/bin/bash','-c',#cm
d})).(#p=new java.lang.Pro
cessBuilder(#cmds)).(#p.re
directErrorStream(true)).(
#process=#p.start()).(#ros
=(@org.apache.struts2.Serv
letActionContext@getRespon
se().getOutputStream())).(
@org.apache.commons.io.IOU
tils@copy(#process.getInpu
tStream(),#ros)).(#ros.flu
sh())

checks if the machine is a win-
dows or linux machine, executes
the command in the variable
“#cmd” which is “whoami” in
this case, which returns the user-
name of the machine, and adds
this to the response to the re-
quest we made.

5.1 Insights from critical analysis of the crime script
Although Apache Struts most likely does not return its version when
scanned on a network, it is easy to check whether the vulnerability
works by modifying the header. An automated network scan can
thus be run on the specific network of Equifax, or just the Internet in
general, to find Apache Struts applications running with vulnerable
versions.

An attacker would upload a webshell on the server, most likely in
the form of a .jsp file, which would be dropped in the public facing
directory and could thus be accessed on the website. This means
that the traffic would be harder to detect and the webshell would
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provide persistent access, even if the exploit in Apache Struts were
to be patched. This webshell executes all GET and POST requests
as shell commands and returns the output.
Unencrypted database credentials were found in a file[13]. It

is unclear what type of file this was, but unencrypted database
credentials are commonly placed in code, configuration files, or on
a shared drive.

The data in the database were subsequently most likely extracted
using the credentials through the webshell.

5.2 Findings from (grey) literature
One of the first requirements is to have an application running a
version of Apache Struts 2 2.3.x before 2.3.32 or 2.5.x before 2.5.10.1
[14].
When a request is made whose content-type header does not

match any expected value, an error is thrown, which includes the
invalid content-type header as the message. An interceptor then
looks for errors and calls the LocalizedTextUtil’s findText method
on it to retrieve the error message. Because the wrapped object
containing the error does not have this message stored anywhere by
the procedures the function takes, it will return the default message.
However, this default message is first passed along to TextParseUtil’s
translateVariables method, which attempts to evaluate the message
as an expression. Here, the unsanitized tainted user input is evalu-
ated as an Object-Graph Navigation Language (OGNL) expression,
which is an expression language, and opens up all sorts of possible
exploits [16].

However, Struts has a blacklist for member access of classes and
packages that causes OGNL not to be able to edit the response or
execute any code. However, another oversight allowed a malicious
actor to empty this blacklist and thus still be able to edit the response
and execute arbitrary code. This is because while the blacklist also
contained all the classes needed to access the blacklist, this blacklist
only prevented from referencing a class member, and unfortunately
a key referencing this object was already on the OGNL value stack.
[16]
Furthermore, some versions of Struts even put the _member-

Access variable on the OGNL value stack, where it is as trivial as
overwriting this variable with the default access one to circumvent
the blacklist. [12]
Therefore, the common exploit[1, 16], in which mostly the cmd

value (command) differs, is described in detail in Table 1.

5.3 Hands-on testing
During the setup phase, several observations were made from the
choices that had to be made, and decisions that had to be consid-
ered more thoroughly. For example, while setting up the database
containing the dummy sensitive data, a user had to be created that
could access this database. This user was required to have a location
from which it could be accessed. If set to "localhost", the user would
only be able to access the database from the computer that hosts
it. However, if it were set to "%", the user would be able to access
the database from everywhere, given that they had the correct cre-
dentials. If set correctly, together with more categorized users with

different access levels, it would have been less likely that an attacker
could have accessed 48 unrelated databases[13].
With the environment fully operational, the Apache Struts vul-

nerability was successfully exploited using a payload that added
a header to the response. The common payload mentioned earlier
allowed for arbitrary code execution. It was first observed that the
payload string containing the content-type header was extremely
long, which could have been detected by a properly configured
firewall[10] that would have dropped the request. Additionally, the
payload caused the response to be malformed, adding the command
output at the end of the headers. This caused some of the methods
used to carry out this attack to fail and not print the response, com-
plaining that the response was malformed. Furthermore, this could
lead to detection by anomaly based[7] detection systems. Despite
no action being defined for the multipart form-data header and the
entirely incorrect content-type header, the response still returned a
status code 200 due to the exploit that tampered with the response,
which could aid in being undetected by monitoring tools that rely
on error-based[15] alerts. Otherwise, without the payload, these
two conditions would result in error codes.
With access to the console of the machine that hosts the web

application, the attacker had access to almost everything on that
machine. With a specially crafted payload, it was possible to upload
a webshell as stated in the crime script (Figure 1), which provided
persistent access even if the exploit were to be patched. With this
webshell, commands could be performed, and the installation was
searched for hard-coded, and/or any configuration files that con-
tained credentials to a database. When such files were discovered,
it was possible to print them with standard commands such as "cat"
and view the credentials. With these credentials, gaining access
to the database was trivial. With the ability to execute shell com-
mands, a command-line SQL client was installed and connected to
the database. From there, the prepared dummy data was found.
Another obstacle was determining how to extract the data from

the database. Simply executing the command and outputting the
result as text to the webshell would technically be possible but
would not be very practical. This is because for that, especially
with that much data, the body of HTTP traffic is not made and the
formatting would also be lost. Exporting the result to a file and then
downloading the file via the webshell proved to be the most efficient
and covert method. With a misconfigured firewall that allows FTP
and DNS traffic to the outside, it would also be possible to extract it
using FTP and DNS Tunneling[19]; however, this would cause more
unusual traffic that would be easier to notice.
Finally, everything from the initial research was verified dur-

ing hands-on testing. For example, the attack also worked with
the content-disposition and content-length header. Although other
headers could have been used, the attackers may have preferred
the content-type header due to wider availability of online doc-
umentation and examples. One thing that was overlooked in the
crime script is that there is no mention of when the attackers first
noticed that the server was vulnerable. There would have been a
time interval between then and the crafting of a payload to upload
the webshell.
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5.4 Answering RQ.1: Steps missing from the crime script
The findings indicate that hands-on vulnerability testing does reveal
steps missing from the crime script, albeit to a limited extent. An
example can be seen in one of the findings, which outlines that there
was no mention of when the attackers first noticed that the server
was vulnerable. With these findings, an updated and enhanced crime
script was created in Figure 4. This could provide valuable insight
into the interval between identifying the vulnerability and exploit-
ing it, indicating the time frame in which the system administrators
have to patch the vulnerability after being informed of the unusual
traffic that often accompanies vulnerability testing.

5.5 Answering RQ.2: Hidden attack vectors
The findings also indicate that recreating attack steps from the crime
script can reveal hidden attack vectors that were not used by the
attacker. For example, the attacker could have exploited the content-
disposition header instead of the content-type header. However, it is
more accurate to say that while therewere other attack vectors, there
were not exactly many hidden ones that surfaced due to the hands-
on testing and could also have been inferred by critical analysis.

5.6 Answering RQ.3: Attack tree richness and realism
To assess how much richer in nodes or more realistic the attack tree
becomes, an updated version was constructed using the findings and
the results of the previous two sub-research questions (see Figure
5). Table 2 compares this attack tree with the initial attack tree in
Figure 2, highlighting the increased number of nodes (8 vs. 47). It
also has more alternative paths instead of just an attack tree with
a single path. Moreover, an actual attack was carried out which
was modeled by the tree, instead of being solely based on literature.
Together, these two aspects make the attack tree more realistic.

5.7 Answering the Research question
With the sub-research questions answered, the main research ques-
tion can now be addressed. Table 2 compares the initial attack tree
in Figure 2 with the attack tree that incorporates the findings from
recreating the attack steps from the crime script in Figure 5, high-
lighting the difference in the number of nodes, leaf nodes, paths,
children per OR node, and maximum depth and width. It shows
that the enhanced attack tree (see Figure 5) has more nodes (47 vs.
8) and more leaf nodes (28 vs. 3), demonstrating the increase in
detail and granularity. It also shows an increase in the maximum
tree depth (8 vs. 5) and width (12 vs. 2), illustrating the increased
amount of detail in the attack paths. Furthermore, it shows that the
enhanced attack tree has more unique paths to the goal (11664 vs.
1) and the increase in the choices the attacker had at each point was
revealed by the increase in the average children per OR node (~2.21
vs. 1), which further demonstrates the inclusion of alternative steps
for the attacker. Because the initial attack tree (see Figure 2) was
based on the crime script with no modifications, it had a single path,
as a crime script outlines a single attack. However, the attack tree
in Figure 5 has many more paths. These structural characteristics
provide formal evidence of the enhanced attack trees improved com-
pleteness, showing that recreating the steps in the crime script had

Preparation
A remote command injection (RCI) vulnerability found in
Apache Struts was publicly disclosed.
The Department of Homeland Security notified Equifax of the
vulnerability and Equifax emailed their employees to instruct
them that if they had Apache Struts running, they should
apply the patch within 48 hours.
Equifax’s Automated Consumer Interview System (ACIS)
failed to apply the patch.
Equifax’s security team scans the network for any system still
affected by the Apache struts vulnerability, but the scan does
not detect them because the device to monitor it is offline due
to an expired certificate.
Attackers create a payload that tests if a server is vulnerable
to the exploit, and scan either the entire internet or target
Equifax specifically.
Attackers notice that Equifax’s ACIS system is vulnerable.
Attackers create or find a web-shell.
Attackers create a payload that uploads a web-shell and
choose which header to exploit (Content-Type,
Content-Disposition, or Content-Length).
Attackers dropped web-shells (a web-based backdoor) to gain
remote access to the network.
Pre-activity
The attackers found unencrypted credentials, most likely in
the form of a configuration file, hard coded on the website or
on an open shared drive, which gave access to data outside of
the ACIS environment.
The attackers found the database(s), most likely with the
credentials, scanning the network or checking the running
services.
Activity
The attackers used the credentials to extract unencrypted
personal data, including names, Social Security numbers,
dates of birth, addresses, driver’s license numbers, credit card
numbers and dispute documents from the Equifax databases,
most likely through the web-shell, FTP or DNS tunneling.
Equifax did not notice this, since the device used to monitor it
was inactive for 19 months because it was not maintained.
The device had an expired certificate.
Post-activity
Equifax becomes aware of the breach and shuts down the
vulnerable system.
Equifax informed the public of the breach.

Fig. 4. Enhanced crime script incorporating new steps identified during
critical analysis, literature review, and hands-on testing.

a significant impact on the its completeness, especially in terms of
added paths.



Enriching Attack Trees by Reconstructing the Equifax Data Breach TScIT 43, July 4, 2025, Enschede, The Netherlands

Fig. 5. Attack tree incorporating findings identified during critical analysis, literature review, and hands-on testing.

6 DISCUSSION
Despite the significance of the 2017 Equifax data breach, to the
best of our knowledge, there is a notable lack of literature that
reconstructs or analyzes the incident. Most papers that reference the
breach either reference it in passing or focus on other aspects, such
as its legal, political, and regulatory implications[3]. As a result, a
technical breakdown of the attack and its possible variations remains
underexplored in peer-reviewed research from reputable sources at
the time of writing.

One paper by Zhang et al. [11] presents one of the few studies that
attempts a technical reconstruction of the Equifax breach. Their
work leverages a custom framework named Cybersafety, which
highlights recurring security failures, such as the lack of a web appli-
cation firewall (WAF) and exposed application versioning. However,
their approach is based on existing literature, making assumptions
where the exact details were unclear, and does not engage in formal

modeling or recreation of the attack. Therefore, it fails to show what
other steps the attacker could have taken, both in the assumed steps
and where the steps were unclear or known.
This paper directly addresses this gap by recreating the attack

scenario from the Equifax breach. This allowed for a more detailed
extraction of attacker actions and decisions that could be mapped
onto an attack tree. The approach goes beyond previous research
by reconstructing the attack, resulting in observable and real-world
findings rather than theoretical inferences. This resulted in not only
a more detailed attack model, but also demonstrated how crime
script analysis and attack tree construction can complement each
other to uncover overlooked attack paths and refine existing ones.
Our research also shows that crime scripts can be enhanced by

recreating the steps (see Figure 4). For example, the initial crime
script lacked details on reconnaissance, such as first identifying the
server as vulnerable. Furthermore, it also lacked details on how the
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Table 2. Comparison of the attack trees in Figure 2 and Figure 5

Metric Figure 2 Figure 5
Total number of nodes 8 47
Number of leaf nodes 3 28

Number of unique paths to goal 1 11664
Maximum tree depth 5 8
Maximum tree width 2 12

Avg. children per OR node 1 ~2.21

data was extracted. Recreating the attack helped to expose these
gaps.

In doing so, this work contributes more than just a refined model
of the Equifax breach. It demonstrates the value of analyzing attacks
by reconstructing the attack to enhance attack trees and crime
scripts that can be used as a means to analyze both what went wrong
and what else could have happened. For example, by identifying
alternative payloads such as Content-Disposition instead of Content-
Type and modeling different extraction types such as FTP or DNS
tunneling, a significantly enhanced attack tree containing 47 nodes
and over 11000 unique paths was created, compared to the single-
path tree that was directly derived from the crime script.

Although the added depth to the attack tree and insight into the
attacker’s decision-making process make the process worthwhile,
it should not be done for all cases. While the method is valuable,
its time cost makes it more suitable for high-impact breaches than
smaller, less significant ones, where standard approaches suffice.
Thus, security officers can use this approach selectively, executing it
only after a breach to better understand the possible attack vectors.
Furthermore, this would be a valuable tool for specialized security
teams and forensic analysts.
Nonetheless, the method has clear practical applications. Foren-

sic analysts and incident response teams can use this method to
operate in a preventive manner rather than only looking at what
went wrong. This method with its alternative attack paths can help
suggest additional protective measures to implement that future
attackers cannot exploit should they uncover some vulnerability.

Screenshots illustrating the successful execution of the exploit and
other key stages of the hands-on testing are provided in Appendix
A.

6.1 Limitations
During our research, we initially used an older version of CentOS
from 2016; however, problems such as expired SSL root certificates
and removed repositories occurred. We later used Ubuntu, as the
Linux kernel version did not have a significant impact on the attack.
Furthermore, other limitations include the fact that the exact

software, other than Apache Struts, and software versions were
not publicly available. In addition, the exact methods used by the
attacker were not publicly disclosed. This led to some speculations,
which were represented as different paths in the attack tree. Future
research with fewer resource constraints could contact the company
for more details, ensuring the realism of the tree.
Lastly, we note that these are our observations, which might

impact the replicability of the results, as others performing this

research might have other realizations. We emphasize that while
the realizations might not be the same, the approach results in
detailed findings that enhance the understanding of the attack.

7 CONCLUSION
This paper demonstrates the value of enhancing attack trees by
recreating attacks from crime scripts. By simulating the steps taken
by attackers, we identified other hidden attack vectors and gaps in
the crime script, especially in the reconnaissance and data exfiltra-
tion phase, which would otherwise have been overlooked. Although
this approach requires time and resources, it provides valuable in-
sights into high-impact incidents. Ultimately, this method offers
security professionals and forensic teams another framework to
better analyze attacks.
This paper showed the feasibility; future work could attempt to

create a more structured approach. Furthermore, future research
could explore automating the process of conversing crime scripts
into attack trees, integrating, for example, AI that can help analyze
and produce findings.
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A SCREENSHOTS OF THE HANDS-ON TESTING
This appendix contains screenshots illustrating the successful execution of the exploit and other key stages of the hands-on testing.

A.1 Screenshots of host

Fig. A.1. Screenshot showing tomcat starting on the host.

Fig. A.2. Screenshot showing data in the database on the host.
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Fig. A.3. Screenshot showing log containing the printed payload in the error message.

A.2 Screenshots of attacker

Fig. A.4. Screenshot showing server vulnerable by non-intrusive header injection method.
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Fig. A.5. Screenshot showing command injection.

Fig. A.6. Screenshot showing process of uploading webshell. Includes python script and webshell
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Fig. A.7. Screenshot showing process of exfiltrating data. Left browser shows initial page, right browser shows result after submitting command
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