Optimizing Multicast in MaritimeManet: Diagnosing Communication
Failures and Evaluating BATMAN-adv Optimizations

JORIM HEBBINK, University of Twente, The Netherlands

MaritimeManet is a Mobile Ad-hoc Network (MANET) using directional an-
tennas for full 360-degree coverage, creating a long-range IEEE 802.11s mesh
network for maritime environments. This study investigates the effective-
ness of multicast video streaming over MaritimeManet using optimizations
in B AT.M.AN. advanced (BATMAN-adv). Communication issues in the
digital twin environment, notably VLAN-related packet loss, were resolved
to ensure reliable testing. Three multicast optimizations in BATMAN-adv,
dedicated multicast packets, multicast as unicast, and multicast as broadcast,
were evaluated under varying network conditions. Results show that broad-
cast yields artificially high throughput due to simulation artifacts, while
multicast as unicast suffers from uneven performance at higher loads. The
dedicated multicast packet mechanism delivers the most stable performance
over all the tested network conditions, making it the preferred option for
multicast video streaming in MaritimeManet.

Additional Key Words and Phrases: MaritimeManet, MANET, BATMAN-adv,
Multicast optimization, Digital Twin, Multicast Video Streaming

1 INTRODUCTION

Ship-to-ship communication has evolved from semaphore flags to
modern satellite systems, yet affordable, high-bandwidth ship-to-
ship connectivity remains a challenge. While very high frequency
(VHF) radio is widely used, it only offers low bandwidth [1]. Other
wireless technologies like LTE depend on shore-based infrastructure,
limiting their range, while satellite networks, although global, suffer
from high costs, high latency, and potential security risks due to
third-party involvement [1]. These limitations underscore the need
for robust ship-to-ship solutions capable of supporting bandwidth-
intensive applications such as video streaming.

Mobile Ad-hoc Networks (MANETS) provide a promising alterna-
tive, as they require no fixed infrastructure and can adapt to chang-
ing topologies [13]. Thales Netherlands developed MaritimeManet,
an experimental MANET based on IEEE 802.11s mesh network-
ing [3, 6]. Unlike conventional mesh networks with omnidirectional
antennas, MaritimeManet uses multi-beam antennas (MBAs) ar-
ranged in a sunflower pattern, enabling directional communication
in a 360-degree radius for increased range and bandwidth [4].

To handle the dynamic nature of such networks, MaritimeManet

uses the Better Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.)

protocol, specifically its B.A.T.M.A.N. advanced (BATMAN-adv) im-
plementation [11, 14]. Operating at the MAC layer rather than the
IP layer, BATMAN-adv enables more efficient routing and reduced
overhead, which is crucial for rapidly changing network topologies.

Physical testing of MaritimeManet has proven expensive and
time-consuming [4]. To address this, a Digital Twin was developed

TScIT 43, July 4, 2025, Enschede, The Netherlands

© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

using virtual machines (VMs) to emulate network behaviour and
facilitate scalable testing.

A key application for MaritimeManet is live video streaming from
a few nodes to many receivers. Because video streaming consumes
significant bandwidth, multicast is proposed as a more efficient al-
ternative to unicast or broadcast. Through the Internet Group Man-
agement Protocol (IGMP) [2], multicast enables data delivery only
to interested receivers, reducing unnecessary network load [19].

This research investigates the available multicast optimizations
within BATMAN-adv to address a gap in understanding their per-
formance in MaritimeManet. By evaluating these mechanisms, the
work aims to improve video streaming and overall network effi-
ciency, contributing to enhancing the effectiveness and reliability
of MaritimeManet.

2 RELATED WORK

Efficient maritime mesh networks are increasingly important for
applications such as video streaming and data sharing between
ships [1]. BATMAN-adv has been widely studied for routing effi-
ciency and mesh network performance [8, 17], and video streaming
over BATMAN-based networks has been evaluated for unicast sce-
narios [16].

While multicast communication has been extensively analysed
in wireless mesh networks [5, 7], little research has focused on
integrating multicast with BATMAN-adyv, particularly in maritime
contexts. This work aims to bridge that gap by evaluating BATMAN-
adv’s multicast optimizations in the Digital Twin of MaritimeManet.

2.1 Digital Twin for MaritimeManet

MaritimeManet has been the focus of several research projects, lead-
ing to the development of a Digital Twin to simulate its network
behaviour. The Distributed Simulator for MaritimeManet (DSM)
generates network topologies and node connections, which the
BATMAN Topology Configurator (BTC) translates into configura-
tions for the Network Controller (NC) [12]. Initially implemented
on a physical testbed, the system now operates entirely virtually in
Proxmox for improved scalability [4].

The virtual environment contains the Simulator VM, comprised
of the DSM, BTC, and a controller that automates virtual machine
creation. Each simulated node consists of two VMs: a Debian-based
Execution Environment (EE) for running applications and an Open-
WRT BATMAN node for mesh connectivity via BATMAN-adv. An
architectural overview is shown in Fig. 1.

EE and BATMAN VMs connect through a Proxmox Linux bridge
(Proxmox LAN Bridge) using IEEE 802.1q VLANS for intra-node
isolation. The BATMAN Mesh network uses a separate bridge (Prox-
mox Mesh Bridge) with IEEE 802.1ad (Q-in-Q) VLAN tagging to
segregate node traffic. This ensures all inter-node communication
routes through the NC, where the outer VLAN tag identifies the

TScIT 43, July 4, 2025, Enschede, The Netherlands

node and the inner tag distinguishes MBAs. Fig. 2 details the net-
work configuration for two nodes.

Because the bridged setup relies on Ethernet while Maritime-
Manet uses Wi-Fj, it initially fails to reflect realistic wireless con-
ditions. To compensate, a qdisc network emulator applies delay
(1 ms), packet loss (0.2%), and DSM-calculated bandwidth limits
on each Q-in-Q interface in the NC for more accurate network
behaviour.

[——— | —
|| EE, — - Batman, \—._
o -, ===
; z :
' = : é network
[—— T~ 1 = ! control
_/
: ‘ EE, ———--—— Batman, ‘ : i
(G . T T
[————— Tl))
' EE;, ——--—— Batman; f
| I
| G p—
1 r
root
simulation control

[| = virtual machine (VM) H

[| = Proxmox network (PN) i__"_I = platform

Fig. 1. Overview of the Digital Twin architecture

EE1
10.10.0.2

[ens19.1

EE2

10.10.0.2
[ens192 |

ens2g
ens2{

Proxmox EE Bridge

[etnt [eni2
BATMAN1 | }» BATMAN 2
10.10.1.1 B 10.10.1.2
121[1.22] . [1.26 221[222] . [226
etho etho

eth2

Simulator
10.0.0.2

aBplLIg 100y oW x0Id

Proxmoyx Mesh Bridge

ethd
[126[221]222] _ [226

1.21]1.22]

Network Controller

ath2

Fig. 2. Detailed network topology for two nodes

Despite the Digital Twin’s flexibility, a critical issue persists: al-
though BATMAN nodes discover each other and populate neighbour

Jorim Hebbink

tables, actual data transmission fails, preventing reliable application-
level testing until resolved.

3 PROBLEM STATEMENT

Effective multicast communication is essential for enhancing ship-to-

ship interactions in maritime environments, particularly for bandwidth-

intensive applications such as video streaming. This research aims
to improve the multicast capabilities of MaritimeManet by evalu-
ating the multicast optimizations offered by BATMAN-adv. These
optimizations will be assessed in terms of throughput and packet
loss using a multicast application deployed across various nodes
and topologies within the Digital Twin environment.

A significant challenge in the Digital Twin implementation arises
from a communication issues between BATMAN nodes. These issues
interfere with packet forwarding and distort multicast performance
metrics, undermining the reliability of throughput and packet loss
measurements.

This leads to the following research question:

How can the configuration and optimization of BA.TM.A.N.
nodes and network setup within the Digital Twin im-
prove multicast video streaming performance in Mar-
itimeManet, particularly with respect to bandwidth and
packet loss?

To answer this research question, the following sub-research
questions are formulated:

(1) What causes the communication issues between BATMAN
nodes in the Digital Twin of MaritimeManet, and how can
these be resolved to ensure reliable data transmission?

(2) What multicast optimizations are available in BATMAN-adv,
and how can they be effectively implemented and tested
within the Digital Twin of MaritimeManet?

(3) Which multicast optimization provides the best performance
for MaritimeManet in terms of bandwidth usage and packet
loss, and how do these results compare to each other?

4 METHODOLOGY

To address the main research question, this study is structured
around three core investigative steps. First, it examines the commu-
nication issues present in the Digital Twin of MaritimeManet. Next,
it explores available multicast optimizations in the B.AT.M.AN.
advanced protocol and how these can be integrated into the sim-
ulation. Finally, it outlines the approach for evaluating multicast
performance through structured testing across various simulated
network conditions. The following sections describe each of these
steps in detail.

5 DIAGNOSING AND RESOLVING NODE
COMMUNICATION ISSUES

To resolve the unreliable network connections, we first needed
insight into the actual behaviour of the network. A static simulation
was created in which the nodes remained fixed in position and
orientation. This simulation included two nodes connected by a
single link. The nodes configured in the simulation are shown in
Fig. 3, and, an abstraction of, the expected network topology is
illustrated in Fig. 2.

Optimizing Multicast in MaritimeManet: Diagnosing Communication Failures and Evaluating BATMAN-adv Optimizations

~
)
— s
|f).
C D
-
\._.-j B

Fig. 3. Connected nodes in the simulator

In the expected topology, the two BATMAN nodes, BATMAN_1
and BATMAN_2, establish a link over their respective hard interfaces,
etho.1.21 and eth@.2.21. ! In the Digital Twin, these hard inter-
faces correspond to VLAN interfaces as illustrated in Fig. 2.

Due to the complexity of the simulated network, the validation
process was structured into three key stages to systematically verify
the different components:

(1) Mesh connectivity between BATMAN_1 and BATMAN_2.

(2) Local connectivity between each BATMAN node and its cor-
responding EE.

(3) End-to-end communication from EE_1 to EE_2, validating the
entire network path.

5.1 BATMAN Mesh Connectivity

Once the simulation was running, the BATMAN nodes were ac-
cessed via SSH from the simulator. Using the batctl neighbour
command provided by BATMAN-adv?, we verified that both nodes
successfully discovered and established connectivity with each other
through the expected hard interfaces: eth@.1.21 for BATMAN_1 and
etho.2.21 for BATMAN_2.

To further analyse the behaviour of the connection between the
BATMAN nodes, we captured traffic transmitted over the BATMAN
mesh. This was achieved by placing tcpdump probes on the rele-
vant hard interfaces (eth@.1.21 and eth@. 2. 21), generating packet
capture (PCAP) files for analysis in Wireshark.

Since PCAP files were generated on the BATMAN nodes, they
were transferred to the Simulator via Secure Copy (SCP). To au-
tomate this, a custom shell script was created to start a tcpdump
capture on a specified interface and automatically transfer the PCAP
file upon completion. The script, provided in Appendix E, was used
consistently throughout all experiments involving tcpdump probes.

Analysis of the captures in Wireshark confirmed that both nodes
were transmitting originator messages (OGM) and Echo Location
Protocol (ELP) messages?, validating that network discovery be-
tween the BATMAN nodes was functioning as expected.

Mesh Connectivity Testing with ICMP Traffic. To further evalu-
ate mesh behaviour, basic IP connectivity between the BATMAN
nodes was tested using the ping command. As in previous tests,

!BATMAN-adv uses virtual interfaces called bat@ which act like distributed switch
ports. The actual network traffic is handled by underlying physical or virtual interfaces
known as hard interfaces, which connect to the mesh [9].

Zbatctl is a tool to configure and debug the BATMAN-adv kernel module. It offers
an interface to all the module’s settings as well as status information, such as the
neighbour and originator tables [9].

3tcpdump and Wireshark are widely used tools for capturing and analysing network
traffic. They allow detailed inspection of packet-level behaviour and are essential for
debugging low-level communication issues [18].

4OGM and ELP messages are internal control messages used by the BATMAN-adv
routing protocol to discover and maintain mesh topology.

TSclT 43, July 4, 2025, Enschede, The Netherlands

tcpdump probes were placed on the hard interfaces (eth@.1.21 and
eth@.2.21) to capture packet-level traffic.

From the simulator, an SSH session was opened to BATMAN_T,
and a ping was initiated to 10.10.1. 2, the IP address of BATMAN_2.
After approximately one minute, the ping and both capture probes
were stopped, and the resulting PCAP files were transferred to the
simulator for analysis in Wireshark.

Under normal conditions, BATMAN_1 should broadcast an ARP
request for 10.10.1. 2, which is received by BATMAN_2, triggering
an ARP reply. Once received, BATMAN_1 would begin sending ICMP
echo requests and receive replies in response.

However, no ping response was observed and 100% packet loss
was reported. Wireshark confirmed that BATMAN_1 transmitted the
ARP request, which BATMAN_2 received and replied to, but the ARP
reply never arrived at BATMAN_1’s interface. Consequently, BATMAN_-
1 continued retransmitting the ARP request, which BATMAN_2 repeat-
edly answered, forming a loop of unanswered ARP communication.

Diagnosing and Resolving Packet Loss. The previous observations
indicated that the ARP reply was lost between the BATMAN hard
interfaces, suggesting the Network Controller as the likely point
of failure. Since the Proxmox Mesh bridge, responsible for relaying
BATMAN mesh traffic between the BATMAN VMs and the Network
Controller, operates at Layer 2, it should forward packets based
solely on MAC addresses, without filtering or modification.

To investigate, tcpdump probes were placed directly on the eth@. 1
and eth@. 2. 21 interfaces of the Network Controller during a repeat
ping test from BATMAN_1 to 10.10.1.2. Wireshark analysis of the
resulting PCAP files showed that the ARP reply entered the Net-
work Controller on eth@.2.21 and exited on eth@.1.21, appearing
to confirm correct Layer 2 forwarding. However, this contradicted
the earlier observation that the reply never arrived at BATMAN_1,
casting doubt on the assumption that the Linux bridge was behaving
transparently.

Given that both BATMAN nodes and the Network Controller are
virtual machines hosted on Proxmox using the KVM hypervisor, and
are connected via TAP interfaces to the shared bridge as illustrated
in Fig. 4, it became more likely that packet loss was occurring at the
TAP interface level. Supporting this hypothesis, Chapter 16 of [15]
notes that VLAN-tagged traffic from KVM guests can be exposed
via TAP interfaces on the host, where it is selectively accepted and
forwarded based on VLAN tags.

BATMAN 1 BATMAN 2

eth0 eth0

tap108i0 tap110i0

‘ Proxmax Mesh Bridge ‘

1ap105i0

ethl

NetworkGontroller

Fig. 4. Visualization of the TAP interfaces within Proxmox

.21

TScIT 43, July 4, 2025, Enschede, The Netherlands

Upon verifying that the TAP interfaces were not VLAN-tagged, a
new configuration was applied: the outer VLAN tag of each BAT-
MAN node was explicitly added to its respective TAP interface, and
the Network Controller’s TAP interface was set to accept all outer
VLAN tags. This was achieved using the following command:

bridge vlan add dev {tap_interface} vid {vlan}

After this reconfiguration, the ping test between BATMAN_1 and
BATMAN_2 was repeated with tcpdump probes on eth@.1.21 and
eth@.2.21. This time, 100% of the ping packets were successfully
delivered, as confirmed both by the ping utility and Wireshark
analysis. The ARP reply was now correctly received at eth@.1.21,
allowing BATMAN_1 to initiate ICMP echo requests, which were
answered by BATMAN_2.

However, this still did not explain why the ARP reply was consis-
tently lost only during the final hop from the Network Controller
to BATMAN_1, nor why broadcast messages were always correctly
received, even though all packets were VLAN-tagged. This anomaly
remained unresolved and warrants further investigation.

5.2 Local BATMAN-to-EE Connectivity

After confirming that the BATMAN mesh connectivity was func-
tioning correctly, tests were conducted to verify connectivity be-
tween each BATMAN node and its corresponding EE over their
local VLAN-based link on the Proxmox LAN Bridge. Given the sim-
ilarity to the BATMAN mesh setup, it was suspected that the TAP
interfaces on the EE and BATMAN nodes might also require explicit
VLAN tagging.

To test this hypothesis, tcpdump probes were placed on the ens19.1
interface of EE_1 and the eth1.1 interface of BATMAN_1. A ping
was then initiated from BATMAN_1 to 10.10.0.1, the IP address as-
signed to EE_1. As anticipated, the ping resulted in 100% packet loss.
PCAP analysis in Wireshark confirmed packet loss consistent with
the earlier mesh connectivity issue.

To resolve this, the correct VLAN tags were assigned to the TAP
interfaces of all the EE and BATMAN VMs. When the test was re-
peated under identical conditions, the ping achieved 100% successful
delivery, confirming that the packet loss had been caused by missing
VLAN tags on the TAP interfaces.

5.3 End-to-End EE Connectivity

After resolving the VLAN-related issues in both the BATMAN mesh
and the local BATMAN-to-EE links, a final test was performed to
validate end-to-end communication between the EEs.

For this test, tcpdump probes were placed on the ens19.1 in-
terface of EE_1 and the ens19. 2 interface of EE_2. A ping was
initiated from EE_1 to 10.10.0. 2, the IP address assigned to EE_2.

As anticipated, the ping was successful with 0% packet loss. PCAP
analysis in Wireshark confirmed the bidirectional exchange of ICMP
echo requests and replies, demonstrating that end-to-end connec-
tivity through the entire virtual network—including the BATMAN
nodes and the Network Controller—was functioning correctly.

This outcome validated the effectiveness of the VLAN tagging on
the TAP interfaces and confirmed that all critical network paths in
the simulation were operating as intended.

Jorim Hebbink

5.4 Automating Network Configurations

To eliminate manual VLAN configuration for each simulation, the
NetworkController class, located in the Controller of the Simu-
lator, was extended to automatically apply correct VLAN settings
during each simulation reload, ensuring consistent connectivity
across nodes.

During this process, existing VLAN tags on TAP interfaces are
cleared to avoid unintended traffic leaks. New tags are then assigned
based on node roles: TAP interfaces connected to the EE bridge
receive VLAN tags matching the node’s unique ID, isolating each
EE and its corresponding BATMAN node. For the Mesh bridge,
BATMAN nodes are similarly tagged with their node IDs, while the
Network Controller’s TAP interface is assigned all VLAN IDs to
enable mesh-wide communication. These tags are set by establishing
an SSH connection to the Proxmox host and executing the same
bridge vlan command described in Section 5.1.

This automated tagging, managed entirely by the Simulation
Controller, allows the network to be reliably reloaded and scaled
without manual intervention.

6 MULTICAST OPTIMIZATION IDENTIFICATIONS AND
INTEGRATION

Multicast forwarding optimizations in BATMAN-adv were identified
based on the official Open-Mesh documentation[10]. BATMAN-adv
supports the following optimizations for multicast traffic:

(1) Encapsulation of multicast packets using a dedicated BATMAN-
adv multicast packet type,

(2) Replication of multicast traffic to individual recipients via
unicast transmissions,

(3) Flooding of multicast traffic through broadcast as a fallback
strategy.

BATMAN-adv internally determines the multicast strategy based
on the decision tree in Fig. 5 and only exposes a single configuration
option, multicast_forceflood. When enabled, this setting forces
all multicast traffic to be broadcasted, bypassing the optimization
methods.

To study the effects of each optimization individually, a more
granular control mechanism was necessary. Based on the decision
tree, we concluded that BATMAN-adv can be forced to use a specific
optimisation.

To enable the multicast packet optimization, all nodes needed to
support the multicast optimization and the encapsulated IP packet,
including all its destination node entries needed to fit into a 1280
bytes frame (excluding the outer Ethernet frame header).

All BATMAN nodes in our simulator used BATMAN-adv ver-
sion 2024.3, which automatically enabled support for the multicast
optimizations, satisfying the first requirement.

For the second requirement, packets were restricted to limited
Ethernet frame sizes. To illustrate these frame sizes the BATMAN-
adv documentation has provided size limits (referred to as Ethernet
frame size) for various group sizes. These size limits are provided in
Table 1.

These values can be derived by subtracting the overhead of var-
ious headers from the maximum frame size of 1280 bytes. The
overhead includes: 12 bytes for the BATMAN-adv multicast packet

Optimizing Multicast in MaritimeManet: Diagnosing Communication Failures and Evaluating BATMAN-adv Optimizations

Has interested
IPV4/IPV6 Multicast
Listener(s)/Router(s)?

Discard

Fits into
batman-adv Multicast
Packet Type?

All nodes support
Multicast Packet Type?

Send via batman-adv
Multicast Packet Type

#receiving nodes <=
multicast-fanout setting?

Send via batman-ady
Unicast Packet(s)
No
Send via batman-ady
Broadcast Packet Type

Fig. 5. BATMAN-adv Multicast optimization decision tree [10]

Table 1. Ethernet frame size for the number of destinations

Destinations | Ethernet frame size (in Bytes)
2 1222

8 1186

32 1030

128 454

196 46

header, 6 bytes per destination (MAC address), 14 bytes for the inner
Ethernet header, and 20 bytes for the inner IPv4 header.
This yields a general formula:

Ethernet frame size = 1280 — 12 — (6 - n) — 14 — 20 (1)

where n is the number of destination addresses.

To enable multicast packet optimization, packet sizes must remain
less than or equal to the value calculated in Formula 1. To ensure
consistency across tests, the maximum Ethernet frame size will be
determined based on the test scenario with the largest number of
listeners. The specific value used will be provided in Section 7.1.

To isolate the unicast optimization, it is necessary to prevent
the multicast packet optimization from being triggered. Therefore,
the Ethernet frame size must exceed the multicast packet thresh-
old, while remaining small enough to avoid distorting performance
results. A frame size of 1234 bytes satisfies these requirements,
corresponding to the case where the multicast destination list is
empty (n = 0). Additionally, the unicast optimization depends on the
multicast_fanout setting. When the number of destinations is less
than or equal to this fanout value, unicast forwarding is used; other-
wise, packets are broadcasted. To ensure that the unicast optimiza-
tion is consistently applied during testing, the multicast_fanout
must be set to at least the number of listeners in each scenario.

TSclT 43, July 4, 2025, Enschede, The Netherlands

Broadcasting represents the fallback mechanism within the mul-
ticast forwarding decision flow. It is utilized when neither the mul-
ticast packet nor the unicast optimization is viable or when the
multicast_forceflood setting is explicitly enabled, which was
the method used for testing the broadcast optimization in this study.
Although broadcast behaviour will be included in the experimental
evaluation, it is important to note that the simulator used in this
study operates over Ethernet rather than Wi-Fi. Unlike Wi-Fi, where
broadcast transmission is usually performed at lower data rates and
may be less efficient for sustained data transfer, Ethernet supports
more efficient broadcast delivery. As a result, performance measure-
ments for the broadcast optimization in this simulated environment
are expected to be artificially high and may not accurately reflect
real-world performance in wireless mesh deployments.

6.1 Implementation of the optimizations

The three multicast optimizations supported by BATMAN-adv were
tested under controlled conditions by adjusting specific configu-
ration parameters. Table 2 summarizes the settings used for each
optimization. In this table, x is the maximum payload size calculated

Table 2. Configuration for each multicast optimization

Optimization forceflood | fanout | payload size
Multicast packet 0 n x

Unicast replication | 0 n 1234
Broadcast 1 0 1234

using Formula 1, and 7 is the number of multicast listeners, which
determines both the multicast payload size and the multicast_-
fanout threshold.

The forceflood parameter forces all multicast traffic to be broad-
cast, bypassing other optimizations, and was set in the BATMAN
VMs via:

batctl multicast_forceflood 1 # Enable forceflood
batctl multicast_forceflood @ # Disable forceflood

The multicast_fanout was set in the BATMAN VMs via:
batctl multicast_fanout n

Unlike these parameters, the payload size is not directly config-
urable in BATMAN-adv but is determined by the application-layer
on the EE VMs. In this study, payload sizes were chosen at the ap-
plication layer to trigger the desired forwarding behaviour based
on BATMAN-adv’s internal logic.

7 EVALUATING MULTICAST OPTIMIZATIONS
7.1 General Test Plan

To identify the most suitable multicast forwarding approach for
MaritimeManet, a structured set of tests will be conducted. These
tests measure throughput and reliability across various network
conditions and configurations, focusing on BATMAN-adv’s three
multicast optimizations within the Digital Twin of MaritimeManet.

The performance of each strategy is evaluated by varying several
parameters:

TScIT 43, July 4, 2025, Enschede, The Netherlands

(1) Number of Sessions — single vs. multiple concurrent multi-
cast sessions.

(2) Hop Count — the number of intermediate nodes between
sender and receiver.

(3) Casting Mode — unicast vs. multicast traffic.

(4) Topology Type — static networks, mobile nodes, and chang-
ing topologies.

(5) Number of Receivers — evaluating scalability under differ-
ent group sizes.

Details on these parameters, including expectations and reason-
ing, are provided in Appendix B.

7.1.1 Test Plan. Based on these parameters, six primary tests are

defined:

(1) Unicast baseline over multiple hops
A single unicast session tested over 1 to 4 hops in a static
network topology, establishing a performance baseline for
multicast comparisons.
(2) Multicast with a single listener
Identical to Test 1, but using multicast transmissions with
only one receiver.
(3) Multicast with multiple listeners
A multicast session spanning 2 hops with 2 or 3 receivers,
assessing how performance scales with increasing group size.
(4) Multicast with multiple senders
Two simultaneous multicast sessions over 2 hops, each with
its own receiver, evaluating network load under concurrent
multicast sources.
(5) Multicast with moving receiver
Similar to Tests 2 over 2 hops, but with a mobile receiver node
that constantly connects to other nodes during the session.
(6) Multicast with changing topology
Similar to test 3 spanning 2 hops with 3 receivers, a single
node joins or leaves the multicast group during the session,
simulating dynamic group membership.

Table 3 provides a detailed overview of the entire test plan.

Table 3. Overview of the defined test plan, detailing the parameters used
in each test scenario.

Test # | Sessions | Hops | Type Topology | Receivers

1 1 1-4 Unicast Static 1

2 1 1-4 Multicast | Static 1

3 1 2 Multicast | Static 2-3

4 2 2 Multicast | Static 1 per session

5 1 2 Multicast | Moving 1 (mobile Rx)
6a 1 2 Multicast | Changing | 2 — 3 (1 joins)
6b 1 2 Multicast | Changing | 3 — 2 (1 leaves)

Full details, including test expectations and precise configurations,
are provided in Appendix B.

7.1.2 Traffic Generation. To execute the tests defined in Section 7.1.1,
a tool was needed to generate UDP and multicast traffic with con-
figurable bandwidth and packet sizes.

iPerf2 was chosen for its precise traffic control and multicast
support, which iPerf3 lacks. All tests used UDP (-u), which was

Jorim Hebbink

required for multicast traffic and to avoid transport-layer effects,
and ran for 60 seconds (-t 60) to average out transient fluctuations.
The specific iPerf2 options are described below.

(1) Bandwidth Constraints
Links in the simulated topology have an approximate through-
put of ~26 Mbps (details in Appendix F). The following band-
widths were tested:
e 5,10, 15 Mbps Well below link capacity.
e 20, 25 Mbps Near saturation, with iPerf2 generating al-
ways more traffic then specified.
e 26 Mbps: Slightly over-saturated to test congestion han-
dling.
(2) Packet Size Considerations
BATMAN-adv’s forwarding depends on packet size, as de-
scribed in Section 6.1. For the multicast tests with up to 3
listeners, the Maximum Ethernet Frame size was calculated
as 1216 bytes (Formula 1).
Since iPerf2’s -1 flag specifies the payload size excluding the
UDP header, 8 bytes were subtracted, resulting in 1208 bytes
for multicast tests. For consistency, this same adjustment
reduced the maximum packet size for other tests from 1234
bytes to 1226 bytes.

The final iPerf configurations are provided in Appendix C

7.2 Test Framework Implementation

To execute the test plan efficiently and reduce manual work, a cus-
tom Python-based framework was developed. It interfaces with the
simulation environment to automate multicast optimization settings,
initiate traffic flows, and collect performance metrics.

The framework does not create or modify the network topology;
instead, it assumes a predefined scenario manually loaded in the
simulator. Topology-specific tests therefore require manual initial-
ization. However, once the correct scenario is active, the framework
automatically executes all relevant tests, iterating over specified
parameters such as multicast optimizations, session counts, and
receiver numbers.

The framework was crucial in generating the final dataset used
for analysis. The full source code and documentation are available
in the GitLab repository listed in Appendix D.

8 RESULTS
8.1 Unexpected Behaviour and Resolution

While performing test 1 and 2 of the test plan, Unicast, Multicast
Forceflood, and Multicast Packet optimizations showed the expected
throughput across all hop counts. However, the Multicast Unicast
optimization performed significantly worse at all tested bandwidths,
the results for a configured bandwidth of 20 Mbps over 1 hop is
shown in Table 4.

The significant performance drop suggested a potential misconfig-
uration. To investigate, a tcpdump probe was placed on the eth@.1.21
interface of the first BATMAN node (see Section 5) and the test for
Multicast Unicast was repeated. Analysis of the captured traffic
in Wireshark revealed that multicast packets were duplicated and
flooded to all nodes instead of only the single recipient, indicating

Optimizing Multicast in MaritimeManet: Diagnosing Communication Failures and Evaluating BATMAN-adv Optimizations

Table 4. Expected vs. actual bandwidth for multicast optimizations over
one hop.

Optimization Hops | Expected bandwidth | Actual bandwidth
Unicast 1 20 Mbits/sec 20.9 Mbits/sec
Multicast Forceflood | 1 20 Mbits/sec 20.9 Mbits/sec
Multicast Packet 1 20 Mbits/sec 20.0 Mbits/sec
Multicast Unicast 1 20 Mbits/sec 247 Kbits/sec

a potential issue with the BATMAN-adv multicast group manage-
ment.

Reviewing BATMAN-adv documentation showed that the Linux
bridge connected to bat® must either act as a multicast querier or
be connected to one, which was missing initially. To ensure proper
multicast group management in BATMAN-adv and avoid unwanted
packet loss or flooding, the following settings were enabled in the
network configuration:

e multicast_querier set to 1 on the bridge device to enable
multicast querier functionality,

e igmp_snooping setto 1 to allow the bridge to track multicast
group memberships and support the querier,

e /sys/class/net/br-mesh/brif/bat@/multicast_flood set

to 1 to permit multicast flooding on the bat®@ interface; with-
out this, multicast packets originating from the EE connected
to the bridge would not be forwarded to the BATMAN inter-
face.

This combination allowed the bridge to manage multicast groups
correctly while ensuring multicast packets were not prematurely
dropped. After applying these changes, the Multicast Unicast opti-
mization performed as expected, matching expected throughput of
20.9 Mbit/sec over one hop.

8.2 Final Measurement Results Under Correct
Configuration

All measurement results are summarized below. Detailed figures
and plots for all tests are provided in Appendix G.

(1) Unicast Baseline
Throughput slightly decreased with increasing hop count but
remained largely stable from 1 to 4 hops. Unicast showed
near-zero packet loss up to 25 Mbps bandwidth, achieving a
maximum throughput of approximately 24.6 Mbps. Jitter de-
creased modestly at higher bandwidths and increased slightly
with hop count.

(2) Single-Receiver Multicast
multicast_forceflood behaved similarly to Unicast with
near-zero packet loss and comparable throughput. Mean-
while, multicast_unicast and multicast_packet experi-
enced around 1% packet loss, increasing slightly at higher
bandwidths, causing moderate throughput reductions likely
due to additional BATMAN-adv header overhead. Jitter trends
were similar to Unicast.

(3) Multicast with Multiple Receivers
With two receivers, multicast_forcefloodandmulticast_-
packet maintained performance comparable to Single-Receiver

TSclT 43, July 4, 2025, Enschede, The Netherlands

Multicast. At three receivers,multicast_forceflood through-
put dropped significantly at 25 Mbps due to high packet loss
on Node 2, while Nodes 3 and 4 remained consistent with test
2. multicast_unicast showed irregular behaviour consis-
tent with Section 8.1, with Node 3 suffering significant packet
loss above 10 Mbps and variable throughput across nodes.
(4) Two Concurrent Multicast Sessions
multicast_forceflood throughput capped near half net-
work capacity (13 Mbps), as could be expected with two simul-
tanious streams. multicast_packet maintained stable per-
formance comparable to single-session tests, andmulticast_-
unicast exhibited throughput patterns similar to Multicast
with Multiple Receivers at low bandwidths, aligning with
multicast_packet above 20 Mbps. Jitter measurements re-

flected these trends. Due to unrealistic throughputinmulticast_-
forceflood (see Section 6), subsequent tests focused onmulticast_-

packet and multicast_unicast.

(5) Mobile Receiver
multicast_unicast was the only strategy maintaining some
data transfer at low bandwidth (1 Mbps), though throughput
dropped sharply afterward with near 100% packet loss, simi-
lar to multicast_packet, likely due to slow routing conver-
gence. Jitter remained consistently high, indicating dynamic
link changes.

(6) Changing Topology
Node join and leave events caused transient disruptions, but
overall performance after convergence was comparable to
static scenarios except for the changing nodes. The joining
node achieved higher throughput with increased packet loss
and low jitter (less than 1 ms), while the leaving node had
lower throughput and significantly higher jitter (more than
10 ms), reflecting mobility-related patterns. This occurs be-
cause the joining node starts far but ends up close and briefly
static near the sender, whereas the leaving node moves away
immediately and remains out of range.

9 DISCUSSION AND CONCLUSIONS

This section discusses how the research addressed the challenge
of optimizing multicast video streaming over MaritimeManet us-
ing BATMAN-adv, as outlined in Section 3. The discussion reflects
on the research questions, interprets key findings, and highlights
implications for maritime network design and future work.

First, regarding communication issues in the Digital Twin (RQ1),
the study identified that the TAP interfaces connecting virtual ma-
chines to Linux bridges caused packet loss when VLAN tags were
detected on a non-VLAN aware TAP interface. These issues dis-
rupted forwarding and distorted performance measurements, mak-
ing initial tests unreliable. By configuring the TAP interfaces to
be VLAN-aware, the communication problems were resolved, en-
abling reliable data transmission and ensuring the Digital Twin
environment accurately reflected the intended network behaviour.

Second, in exploring available multicast optimizations in BATMAN-
adv (RQ2), the research examined optimizations documented in the
BATMAN-adv wiki [10], leading to the selection of three approaches:

TScIT 43, July 4, 2025, Enschede, The Netherlands

the dedicated BATMAN-adv multicast packet type, multicast trans-
mitted as unicast, and multicast transmitted as broadcast. These
optimizations were not configurable using settings but were instead
triggered automatically by conditions such as packet size and num-
ber of listeners. This behaviour required developing automation
scripts to systematically generate the required traffic conditions for
each optimization, allowing precise and repeatable testing.

Third, the study implemented a structured test plan to evaluate
the performance of these optimizations under diverse network con-
ditions (RQ3). Tests varied critical parameters such as hop count,
number of receivers, bandwidth, mobility, and dynamic topology
changes. The automated framework facilitated extensive measure-
ment collection and ensured that all scenarios were tested consis-
tently and could easily be replicated for further research.

Finally, the test results provided clear insights into the suitabil-
ity of each multicast optimization for MaritimeManet. Multicast
transmitted as broadcast showed artificially high throughput results
due to the simulator’s reliance on Ethernet rather than true Wi-
Fi behaviour, making it unreliable for realistic maritime scenarios.
Multicast as unicast performed well at low bandwidths and with
few nodes, but at higher bandwidths and larger receiver groups,
it exhibited significant asymmetry, with some nodes consistently
achieving higher throughput than others, making it unsuitable for
multicast video streaming with multiple listeners. In contrast, the
dedicated multicast packet demonstrated stable and reliable perfor-
mance, maintaining low packet loss and high throughput even with
increased hop count and multiple receivers. This indicates that the
dedicated multicast packet approach is the most promising strat-
egy for supporting high-throughput multicast video streaming in
MaritimeManet.

Overall, this research demonstrates that careful network configu-
ration and the selection of appropriate multicast optimizations in
BATMAN-adv can significantly improve multicast performance in
MaritimeManet. These findings are valuable for designing robust
communication systems for bandwidth-intensive applications in
maritime environments.

9.1 Limitations

While this research provides valuable insights into multicast opti-
mization for MaritimeManet, several limitations must be acknowl-
edged.

First, the Digital Twin environment used Ethernet-based virtual-
ization, which does not fully replicate wireless medium behaviour,
even though network emulation was used to introduce delays,
packet loss and maximum throughput based on simulated RSSI
values. This limitation contributed to the artificially high through-
put measurements observed for multicast transmitted as broadcast,
making those results less representative of real maritime scenarios.

Second, the experiments were conducted with a limited number
of nodes, focusing on small-scale network topologies. Performance
and scalability in larger networks remain to be investigated.

Third, testing was restricted to specific traffic patterns, primarily
data transmissions at defined bandwidths. Other application types
or variable traffic conditions might yield different results.

Jorim Hebbink

Finally, while dynamic scenarios like mobility and topology changes
were considered, the simplified movement patterns and stable link
conditions in the Digital Twin may not fully capture the complexity
of real-world maritime environments.

9.2 Future Work

Several opportunities exist for extending this research.

Future work should validate the findings on physical hardware
in realistic maritime conditions to confirm the applicability of the
multicast optimizations under true wireless constraints.

Integrating a detailed wireless simulation layer into the Digital
Twin would help capture essential radio effects, allowing more ac-
curate evaluation of multicast performance, especially for broadcast
scenarios.

Scaling experiments to larger mesh networks is crucial to assess
routing convergence, multicast group management, and overall
network stability under higher loads.

Further research could explore mixed traffic scenarios, evaluating
how multicast optimizations coexist with other types of maritime
network traffic.

Lastly, investigating enhancements to BATMAN-adv itself—such
as adaptive mechanisms for selecting multicast strategies based on
real-time conditions—could further improve multicast performance
in MaritimeManet.

ACKNOWLEDGMENTS

I would like to thank my supervisor, Jan Laarhuis, for his valuable
feedback and support throughout my research project. His guidance
helped me overcome challenges and deepen my understanding.

REFERENCES

[1] Fahad S. Alqurashi, Abderrahmen Trichili, Nasir Saeed, Boon S. Ooi, and
Mohamed-Slim Alouini. 2023. Maritime Communications: A Survey on Enabling
Technologies, Opportunities, and Challenges. IEEE Internet of Things Journal 10,
4(2023), 3525-3547. https://doi.org/10.1109/JI0T.2022.3219674

[2] Bill Fenner. 1997. Internet Group Management Protocol, Version 2. RFC 2236.
https://doi.org/10.17487/RFC2236

[3] Guido R. Hiertz, Dee Denteneer, Sebastian Max, Rakesh Taori, Javier Cardona,

Lars Berlemann, and Bernhard Walke. 2010. IEEE 802.11s: The WLAN Mesh

Standard. IEEE Wireless Communications 17, 1 (2010), 104-111. https://doi.org/10.

1109/MWC.2010.5416357

Nathan Jongejan. 2024. Virtualisation of Swarms : Designing a digital twin

prototype for MaritimeManet. http://essay.utwente.nl/101759/

[5] K.S. Kumar and Saumya Hegde. 2009. Multicasting in Wireless Mesh Networks:
Challenges and Opportunities. 514 - 518. https://doi.org/10.1109/ICIME.2009.92

[6] Jan H. Laarhuis. 2010. MaritimeManet: Mobile ad-hoc networking at sea. In 2010
International WaterSide Security Conference. 1-6. https://doi.org/10.1109/WSSC.
2010.5730256

[7] P.Lavanya, V. Siva Kumar Reddy, and A. Mallikarjuna Prasad. 2017. Research and
survey on multicast routing protocols for MANETSs. In 2017 Second International
Conference on Electrical, Computer and Communication Technologies (ICECCT).
1-4. https://doi.org/10.1109/ICECCT.2017.8117929

[8] Ligang Liu, Jianpo Liu, Hanwang Qian, and Jun Zhu. 2018. Performance Evaluation
of BATMAN-Adv Wireless Mesh Network Routing Algorithms. 122-127. https:
//doi.org/10.1109/CSCloud/EdgeCom.2018.00030

[9] Open-Mesh.org. 2018. BA.TM.A.N. advanced Wiki. https://www.wireshark.org/
docs/wsug_html_chunked/AppToolstcpdump.html Accessed: 2025-06-26.

[10] Open-Mesh.org. 2024. batman-adv Multicast Optimizations. https://www.open-

mesh.org/projects/batman-adv/wiki/Multicast-optimizations Accessed: 2025-06-
22.

[11] Open-Mesh.org. 2025. Open-Mesh Branches Explained. https://www.open-mesh.

org/projects/open-mesh/wiki/BranchesExplained Accessed: 2025-06-25.

Michal Raczkiewicz. 2023. Better Approach To Mobile Ad-hoc Networking in

MaritimeManet. http://essay.utwente.nl/96407/

[4

=
&N

https://doi.org/10.1109/JIOT.2022.3219674
https://doi.org/10.17487/RFC2236
https://doi.org/10.1109/MWC.2010.5416357
https://doi.org/10.1109/MWC.2010.5416357
http://essay.utwente.nl/101759/
https://doi.org/10.1109/ICIME.2009.92
https://doi.org/10.1109/WSSC.2010.5730256
https://doi.org/10.1109/WSSC.2010.5730256
https://doi.org/10.1109/ICECCT.2017.8117929
https://doi.org/10.1109/CSCloud/EdgeCom.2018.00030
https://doi.org/10.1109/CSCloud/EdgeCom.2018.00030
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstcpdump.html
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstcpdump.html
https://www.open-mesh.org/projects/batman-adv/wiki/Multicast-optimizations
https://www.open-mesh.org/projects/batman-adv/wiki/Multicast-optimizations
https://www.open-mesh.org/projects/open-mesh/wiki/BranchesExplained
https://www.open-mesh.org/projects/open-mesh/wiki/BranchesExplained
http://essay.utwente.nl/96407/

Optimizing Multicast in MaritimeManet: Diagnosing Communication Failures and Evaluating BATMAN-adv Optimizations

[13] Dinesh Ramphull, Avinash Mungur, Sheeba Armoogum, and Sameerchand Pu-
daruth. 2021. A Review of Mobile Ad hoc NETwork (MANET) Protocols and their
Applications. In 2021 5th International Conference on Intelligent Computing and
Control Systems (ICICCS). 204-211. https://doi.org/10.1109/ICICCS51141.2021.
9432258
Benjamin Sliwa, Stefan Falten, and Christian Wietfeld. 2019. Performance Evalua-
tion and Optimization of B.A.T.M.A.N. V Routing for Aerial and Ground-Based
Mobile Ad-Hoc Networks. In 2019 IEEE 89th Vehicular Technology Conference
(VTC2019-Spring). 1~7. https://doi.org/10.1109/VTCSpring.2019.8746361
[15] Bhanu Prakash Reddy Tholeti. 2013. Hypervisors, Virtualization, and Networking.
Elsevier, 387-416. https://doi.org/10.1016/b978-0-12-401673-6.00016-7
[16] Mok Shao Chung Thomas, Mau-Luen Tham, Yi Jie Wong, and Yoong Choon
Chang. 2024. Performance Evaluation of Video Streaming in Wireless Mesh
Networks. In 2024 IEEE 12th Conference on Systems, Process & Control (ICSPC).
390-394. https://doi.org/10.1109/ICSPC63060.2024.10862838
Zhe Wang, Jiao Zhang, Yichi Zhang, Haitao Zhao, and Jibo Wei. 2022. Comparison
of Mobile AdHoc Network Routing Protocols Based on NS3. In 2022 IEEE 22nd
International Conference on Communication Technology (ICCT). 11-16. https:
//doi.org/10.1109/ICCT56141.2022.10072455
Wireshark.org. 2025. Capturing with “tcpdump” for viewing with Wireshark. https:
//www.wireshark.org/docs/wsug_html_chunked/AppToolstcpdump.html Ac-
cessed: 2025-06-26.
Ales Svigelj and Melisa Junuzovi¢. 2017. Network Coding-Assisted Retransmis-
sion Scheme for Video- Streaming Services over Wireless Access Networks. In
Broadband Communications Networks, Abdelfatteh Haidine and Abdelhak Aqqal
(Eds.). IntechOpen, Rijeka, Chapter 8. https://doi.org/10.5772/intechopen.71784

[14

[17

[18

[19

A Al STATEMENT

During the preparation of this work, I used ChatGPT GPT-4o to
assist with improving academic language and to help identify issues
within the network configurations. After using this tool/service, I
thoroughly reviewed and edited the content as needed, taking full
responsibility for the final outcome.

B DETAILED TEST PARAMETERS AND
CONFIGURATIONS

B.1 Test Parameters

The following elaborates on the key test parameters introduced in
Section 7.1.

(1) Number of Sessions

A session consists of one multicast sender (Tx) and one or

more receivers (Rx). By increasing the number of concurrent

sessions sharing the same topology, we assess how session
density impacts bandwidth utilization and forwarding effi-
ciency.

(2) Hop Count

Hop count represents the number of intermediate nodes be-

tween a sender and receiver. Since forwarding complexity

typically grows with path length, tests with 1-4 hops high-
light how each multicast strategy performs under increasing
forwarding demands.

(3) Casting Mode

Two traffic types are examined:

e Unicast (UDP): Used to establish a performance baseline
for single-source, single-destination traffic. UDP is chosen
over TCP to ensure consistency with multicast testing and
to avoid the influence of transport-layer retransmissions.

e Multicast (UDP): Covers the three BATMAN-adv strate-
gies. Each strategy is tested individually under identical
conditions for direct comparison.

(4) Topology Type

TSclT 43, July 4, 2025, Enschede, The Netherlands

Three topological configurations are tested to simulate both

stable and dynamic maritime conditions:

e Static: Node positions and links remain fixed, providing a
baseline for performance comparison.

e Mobile Nodes: Nodes move but remain connected, reflect-
ing scenarios like ships maintaining radio contact during
coordinated movement.

e Changing Topology: Nodes may join or leave the network
mid-session, simulating intermittent connectivity due to
movement in or out of range.

(5) Number of Receivers

This is relevant only to multicast tests. Varying the number

of receivers reveals how well each strategy scales. Based on

BATMAN-adv’s forwarding mechanisms, it is expected that:

o Multicast packet forwarding performs best in larger groups.

e The unicast optimization incurs significant overhead as
receiver count increases.

e Broadcast in the simulation environment may appear to
perform well for both small and large groups. However, this
does not accurately reflect real-world wireless behaviour,
as the simulator does not model the increased contention,
collisions, or reliability issues typically associated with
broadcast in actual wireless networks.

B.2 Detailed Test Plan and Expectations

Each test described in Section 7.1.1 has the following detailed con-
figuration and expectations:

(1) Unicast baseline over multiple hops

e Description: A single unicast session is tested over 1 to
4 hops in a static network topology to establish baseline
performance metrics for comparison with multicast opti-
mizations.

e Expectation: Performance is expected to degrade linearly
with increasing hop count due to accumulated delays and
potential retransmissions, providing a reference for subse-
quent multicast tests.

(2) Multicast with a single listener

e Description: The same scenario as Test 1, but using multi-
cast transmissions while maintaining only a single receiver.

o Expectation: Results should closely match the unicast
baseline, as there is a single listener, making all optimiza-
tions similar to a unicast transmission.

(3) Multicast with multiple listeners (2-3)

e Description: A multicast session spanning 2 hops, now
including 2 or 3 receivers. This test assesses how multicast
scales with increasing group size.

e Expectation: It is expected that broadcast and multicast
packet forwarding outperform unicast forwarding when
multiple listeners are present, since they send a single trans-
mission instead of separate transmissions for each node.

(4) Multicast with multiple senders

e Description: Two multicast sessions are active simulta-
neously over 2 hops, each with its own single receiver,
to evaluate the network load under concurrent multicast
sources.

https://doi.org/10.1109/ICICCS51141.2021.9432258
https://doi.org/10.1109/ICICCS51141.2021.9432258
https://doi.org/10.1109/VTCSpring.2019.8746361
https://doi.org/10.1016/b978-0-12-401673-6.00016-7
https://doi.org/10.1109/ICSPC63060.2024.10862838
https://doi.org/10.1109/ICCT56141.2022.10072455
https://doi.org/10.1109/ICCT56141.2022.10072455
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstcpdump.html
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstcpdump.html
https://doi.org/10.5772/intechopen.71784

TScIT 43, July 4, 2025, Enschede, The Netherlands

e Expectation: An increase in network utilization is ex-
pected compared to a single multicast session. However,
since there is only a single listener for each multicast sender,
all senders are expected to have similar results for all the
multicast optimizations.

(5) Multicast with moving receiver

e Description: The same network as in Tests 3 and 4 is
used, but a single receiver node is mobile, continuously
connecting and disconnecting from different nodes while
maintaining an active session.

o Expectation: Increased packet loss, higher jitter, and low
bandwidth are expected due to frequent route changes. The
robustness of multicast forwarding strategies will be tested
in dynamic link conditions.

(6) Multicast with changing topology

e Description: Two sub-tests are conducted:

- 6a — Node joins: A new node joins the multicast group,
changing the receiver count from 2 to 3.

— 6b — Node leaves: A node leaves the multicast group,
reducing the receiver count from 3 to 2.

o Expectation: Transient disruptions are expected during
join/leave events due to tree reconfiguration or group man-
agement overhead. However, the steady-state performance
after convergence is anticipated to be similar to Test 3,
assuming the multicast protocols handle group changes
efficiently.

C IPERF CONFIGURATION

Unicast traffic was generated using the commands in Table 5.

Table 5. iPerf configuration for Unicast tests

Node | IP Address | Command
Server | 10.10.0.x iperf -s -u
Client | 10.10.0.y iperf -c 10.10.0.x -u -t 60 -b {rate}M -1 1226

For multicast, senders transmit to a group address to which lis-
teners subscribe. The commands are specified in Table 6.
e Group addresses are chosen from the 239.0.0.x/24 range,
reserved for private multicast use. A listener subscribes to
a multicast group by binding to the group address using -B
239.0.0.x.
e A TTL value of 32 (-T 32) is set to prevent premature packet
drops. However, BATMAN-adv operates at Layer 2 and does
not consider IP TTL during forwarding.

Table 6. iPerf configuration for Multicast tests

Node IP Address | Command
Sender 10.10.0.x iperf -c 239.0.0.x -u -T 32 -t 60 -b {rate}M -1 {size}
Listener | 10.10.0.y iperf -s -u -B 239.0.0.x

D GITLAB REPOSITORY

For this study, a dedicated GitLab repository was created to host
all source code, scripts, and Python programs developed during the
research.

10

Jorim Hebbink

The repository is publicly available at: https://gitlab.utwente.nl/
$2987716/maritimemanet-multicast
The repository includes (but is not limited to):

e The complete multicast testing environment
o An iPerf parser for generating CSV files from multicast test
output
o Custom TCPDUMP probes for both execution environments
and BATMAN nodes
Each component is documented in the repository README to
support reproducibility and further experimentation.

E TCPDUMP PROBE

This appendix includes the full TCPDUMP probe script used for
various tests.

Listing 1. TCPDUMP Probe Script

#!/bin/bash
TCPDUMP script for nodes using BASH (such as
Debian nodes)

Check if an interface argument is provided
if ["$#" -ne 1 1; then

echo "Usage: $0 <interface>"

exit 1
fi

Define variables

ROOT_INTERFACE="ens20"

IP_ADDR="$(ip -4 addr show $ROOT_INTERFACE | awk
'/inet / {split($2, a, "/"); print al1]1}')"

Get the interface and hostname
INTERFACE="$1"
HOSTNAME="$(hostname)"

Generate the file name
DUMP_FILE="capture-$INTERFACE-$IP_ADDR-$HOSTNAME .
pcap”

Define the SSH host to copy the files to
REMOTE_USER="maritimemanet"
REMOTE_HOST="10.0.0.2"

Define the base directory for tcpdump on the
remote server

BASE_DIR="/home/maritimemanet/digital_twin-main/
tcpdump /"

Find the highest numbered subdirectory
HIGHEST_DIR=$%$(ssh $REMOTE_USER@$REMOTE_HOST "l1ls -1
$BASE_DIR | sort -n | tail -n 1")

REMOTE_PATH="$BASE_DIR/$HIGHEST_DIR/$DUMP_FILE"

Check if the highest directory exists
if [-z "$HIGHEST_DIR" J; then
echo "Error: No subdirectories found in
$BASE_DIR on the remote server."
exit 1

https://gitlab.utwente.nl/s2987716/maritimemanet-multicast
https://gitlab.utwente.nl/s2987716/maritimemanet-multicast

Optimizing Multicast in MaritimeManet: Diagnosing Communication Failures and Evaluating BATMAN-adv Optimizations

fi

Start tcpdump in the background
echo "Starting tcpdump on interface $INTERFACE..."
tcpdump -i "$INTERFACE" -w "$DUMP_FILE" &

Get the PID of the tcpdump process
TCPDUMP_PID=$%!

Function to stop tcpdump and copy the file
cleanup () {

echo "Stopping tcpdump..."

kill $TCPDUMP_PID

wait $TCPDUMP_PID 2>/dev/null

echo !
scp

"Copying dump file to remote server...'
"$DUMP_FILE" $REMOTE_USER@$REMOTE_HOST:"
$REMOTE_PATH"

echo "Done."

3

Trap SIGINT (Ctrl+C) and SIGTERM (kill) signals
trap cleanup SIGINT SIGTERM

Wait for tcpdump to finish
wait $TCPDUMP_PID

F BANDWIDTH MODELLING IN THE SIMULATION

In the simulation’s state handler, bandwidth values are predefined
and assigned based on Received Signal Strength Indicator (RSSI)
values. Higher RSSI values indicate stronger signal strength and
therefore higher potential bandwidth. For this simulation, RSSI val-
ues below -90 dBm are considered insufficient for data transmission.
The mapping between RSSI values and corresponding bandwidths
is provided in Table 7.

Table 7. Mapping of RSSI values to bandwidth in the simulation.

RSSI (dBm) | Bandwidth (Mb/s)
> -64 65
> -65 58.5
> -66 52
>-70 39
> -74 26
>-77 19.5
>-79 13
> -82 6.5
<-82
<-90 0

The simulation models three different ship sizes, each equipped
with a distinct number of antennas: small (6 antennas), medium
(12 antennas), and large (24 antennas). Transmission power scales
with the number of antennas, so smaller ships generate lower RSSI

11

TSclT 43, July 4, 2025, Enschede, The Netherlands

values at equivalent distances compared to larger ships. As a re-
sult, bandwidth also varies depending on ship size and separation
distance.

Table 8 illustrates the relationship between transmission distance
and resulting bandwidth for ships of equal size. For example, a pair
of small ships (each with 6 antennas) separated by 2000 meters
achieves a bandwidth of 19.5 Mb/s.

Table 8. Maximum transmission distances (in meters) for different ship
sizes and bandwidths (in Mb/s).

Antennas 65 58.5 52 39 26 19.5 13 6.5 1
6 <568 < 627 <691 | <1023 | <1514 <2032 < 2472 <3317 < 6586
12 <1245 | <1373 | <1514 | <2241 | <3317 < 4450 <5413 <7264 | < 14423
24 <4035 | <4450 | <4908 | <7264 | < 10749 | < 14422 | < 17545 | < 23540 | < 46742

TScIT 43, July 4, 2025, Enschede, The Netherlands

G DETAILED PLOTS AND FIGURES

This appendix contains all measurement plots referenced in Section 8.2, organized by test number and parameter settings for clarity. The
figures present the results of Tests 1 through 6, showing measured network performance metrics, including bandwidth, packet loss, jitter, or
a combination thereof, plotted against the configured target bandwidths used during the experiments. These plots help visualize how the

network behaved under different load conditions and settings.

Test 1 & 2 - Throughput & Loss

Configured Bandwidth (Mbps)

Configured Bandwidth (Mbps)

Fig. 6. Results of Test 1 and 2: bandwidth, packet loss, and jitter.

12

—— 1 hop - BW ~—— 2 hops - BW —— 3 hops - BW —— 4 hops - BW
=== 1hop - Loss —=== 2 hops - Loss === 3 hops - Loss === 4 hops - Loss
multicast_forceflood multicast_packet
21 100 100
80 = 80 =
72 g g g
2 2 2 2
= 60 3 = 60 3
27 g3 o
) 85 3
3 10 40 ¢ 3 40 ¢
£ g E g
5 20 20
5:"‘
_gmz==f
i N _.---t‘ o pumssaagEn === o
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)
multicast_unicast unicast
5? i 100 100
80 = 80 —
72 g g g
2 2 2 2
= 60 3 2 60 3
27 g 3
) 8 5 3
3 104 40 ¢ 3 40 ¢
£ gF g
5 20 20
1 A
.--..--‘u-“u':u-n‘--""" o L e hmmmm = £
5 10 15 20 2526 5 10 15 2526
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)
Test 1 & 2 - Jitter
—— 1 hop —— 2hops —— 3 hops —— 4 hops
. multicast_forceflood multicast_packet
10
))
E £
o} o}
£ £
10-1]
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)
multicast_unicast unicast
10°
@ w
E E
g g
107! 1
5 10 15 20 2526 10 15 20 2526

Optimizing Multicast in MaritimeManet: Diagnosing Communication Failures and Evaluating BATMAN-adv Optimizations

Test 3: 2 Rx - Throughput & Loss

TSclIT 43, July 4, 2025, Enschede, The Netherlands

Configured Bandwidth (Mbps)

Configured Bandwidth (Mbps)

—— Node 2 - BW —— Node 3 - BW
—--- Node2-Lloss ~--- Node3-Loss
multicast_forceflood multicast_packet multicast_unicast
100 100 F 100
25
220 80 g B e 2 g
2 -] 8 2 @
= 8 = 3 = g
=z 15 60 - T 60 = T -
3 g 2 L 3 g
2 s 2 s 2 S
S0 20 & % 20 & 2 &
£ 5 2 5 2]
= 2 F 2 F]
5 20 = P 20 = =
Y
------- il N . f======—p 0
5 10 15 20 25 5 10 15 20 25
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)
Test 3: 2 Rx - Jitter
—— Node2 —— Node3
multicast_forceflood multicast_packet multicast_unicast
10! 4 E
)))
£ £ E
g 10 g £
1071 E
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)
Fig. 7. Results of Test 3 (2 receivers): bandwidth, packet loss, and jitter.
Test 3: 3 Rx - Throughput & Loss
—— Node 2 - BW —— Node 3 - BW —— Node 4 - BW
—--- Node2-loss ~--- Node3-Loss ~--- Node4-Loss
multicast_forceflood multicast_packet multicast_unicast
, 100 wo [T F 100
s -
% 80 ¥ 4 80 8 5 g
220 < 7 £ 7 o
2 2 2 2 2 2
= 8 = s = g
s 60 - T 60 - =
3 g 2 L 3 g
£ S 2 s £ S
T 0 & % a0 & 9 &
g s £ 5 E 5
£ H
£ 3 E 3 3
5 20 = 20 = =
0 mepmmmm=mmpemmaag® 0 [
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)
Test 3: 3 Rx - Jitter
—— Node2 —— Node3 —— Node4
multicast_forceflood multicast_packet multicast_unicast
)) i
E E E
o}] 3
£ ! £
9
4 !]
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Configured Bandwidth (Mbps)

Fig. 8. Results of Test 3 (3 receivers): bandwidth, packet loss, and jitter.

13

TScIT 43, July 4, 2025, Enschede, The Netherlands Jorim Hebbink

Test 4 - Throughput & Loss

—— Node 3 - BW —— Node 4 - BW

—--- Node3-Loss --- Node4-Loss
multicast_forceflood multicast_packet multicast_unicast

100 100 a a r 100

25

80 80
20

15 60 60

10 40 40

Throughput (Mbps)
Mean Packet Loss (%)
Throughput (Mbps)
Mean Packet Loss (%)
Throughput (Mbps)
Mean Packet Loss (%)

20

—pmmm—— acfpmm=mmmg==="

10 15 20 25
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)

Test 4 - Jitter

—— Node3 —— Node 4

multicast_forceflood multicast_packet multicast_unicast

Jitter (ms)
g
Jitter (ms)
Jitter (ms)

...
2

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)

Fig. 9. Results of Test 4: bandwidth, packet loss, and jitter.

Test 5 - Throughput & Loss

—— Node 2 - BW
—=- Node 2 - Loss
multicast_packet multicast_unicast
r # 100 p e —mmmmm Amm “ 1100
25 4 1
-
. 80 8 = | L 80 §
220 2 al - 2
2 2 2 2
= s = 3
<15 60 - T 60 -
a g 2 g
E 85 3
S 104 20 & 3 40 &
£ § 2 5
£ £
e 3 E 3
54 20 = 20 =
0 0
5 10 15 20 25 5 10 15 20 25
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)
Test 5 - Jitter
—— Node 2
multicast_packet multicast_unicast
>
) i
‘E’ 10* %]
o} g
E E
5 10 15 20 25 5 10 15 20 25
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)

Fig. 10. Results of Test 5: bandwidth, packet loss, and jitter.

14

Optimizing Multicast in MaritimeManet: Diagnosing Communication Failures and Evaluating BATMAN-adv Optimizations ~ TScIT 43, July 4, 2025, Enschede, The Netherlands

Test 6a - Throughput & Loss

—— Node 2 - BW —— Node 3 - BW —— Node 4 - BW
~=- Node2-lLoss ~--- Node3-loss ~--- Node4-Loss
multicast_packet multicast_unicast

100 100
TS\. 80 ¥ fg 80 ®
2 @ 2 @2
= 60 2 = 60 o
2 g2 g
) 85 8
2 40 & 8 20 &
2 c 2 c
= 8 & s
S 2 E 3

20 = 20 =

0 0

Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)

Test 6a - Jitter

—— Node2 —— Node3 —— Node 4
multicast_packet multicast_unicast

10* E
))
E E
5 10° 5
£ £

L
107! E

5 10 15 20 25 5 10 15 20 25
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)

Fig. 11. Results of Test 6a: bandwidth, packet loss, and jitter.

Test 6b - Throughput & Loss

—— Node 2 - BW ~—— Node 3 - BW —— Node 4 - BW
~=- Node2-loss ~-- Node3-loss --- Node4 -Loss
multicast_packet multicast_unicast

100 100
7 80 g g 8 g
g w g 0
o 60 - 60 -
a g 2 g
£ s £ o
s a0 & 2 40 &
4 s g <
e 3 E 3

20 = 20 =

0 0

Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)

Test 6b - Jitter

—— Node2 —— Node3 —— Node4

multicast_packet multicast_unicast

. W _—6\/

Jitter (ms)
g
Jitter (ms)

. M M\

®

5 10 15 20 25 5 10 15 20 25
Configured Bandwidth (Mbps) Configured Bandwidth (Mbps)

Fig. 12. Results of Test 6b: bandwidth, packet loss, and jitter.

15

	Abstract
	1 Introduction
	2 Related Work
	2.1 Digital Twin for MaritimeManet

	3 Problem Statement
	4 Methodology
	5 Diagnosing and Resolving Node Communication Issues
	5.1 BATMAN Mesh Connectivity
	5.2 Local BATMAN-to-EE Connectivity
	5.3 End-to-End EE Connectivity
	5.4 Automating Network Configurations

	6 Multicast Optimization Identifications and Integration
	6.1 Implementation of the optimizations

	7 Evaluating Multicast Optimizations
	7.1 General Test Plan
	7.2 Test Framework Implementation

	8 Results
	8.1 Unexpected Behaviour and Resolution
	8.2 Final Measurement Results Under Correct Configuration

	9 Discussion and Conclusions
	9.1 Limitations
	9.2 Future Work

	Acknowledgments
	References
	A AI Statement
	B Detailed Test Parameters and Configurations
	B.1 Test Parameters
	B.2 Detailed Test Plan and Expectations

	C iPerf Configuration
	D GitLab Repository
	E TCPDUMP Probe
	F Bandwidth Modelling in the Simulation
	G Detailed Plots and Figures

