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ABSTRACT

This study explores the use of probabilistic model checking (PMC)
to verify agent-based models (ABMs) from the social sciences. It
focuses on a rumour-spreading model proposed by Mazzoli et al.
(2018) [12]. The ABM has been encoded as a discrete-time Markov
chain in the PRISM model checker. A set of 14 properties has been
defined in order to formally verify the model. The results show con-
sistency with the original paper’s simulation results, confirming
that formal verification can capture core dynamics, such as sponta-
neous activation of spreaders or debunking effects. However, chal-
lenges like state-space explosion or limited scalability demonstrate
the trade-offs of this approach. This study shows that formal tools
like PRISM are able to reproduce and even deepen the analysis of
ABM:s, offering formal guarantees and better insights into system
behaviour. However, limitations were also observed, such as large
memory usage and scalability issues. This positions PMC as a com-
plementary method to simulation, valuable for medium-scale social
networks with rule-driven or well-defined agent behaviours.

Keywords: Agent-Based Models, Rumour Spreading, Probabilistic
Model Checking, PRISM model checker, Reproducibility Study, So-
cial Simulation, Formal Verification

1 INTRODUCTION
1.1 Background and Context

Social sciences focus on studying human behaviour and general
phenomena across domains such as politics, economics, and cul-
ture. Computer science is concerned with the design, analysis, and
implementation of algorithms and systems that aid in facilitating
life. These sciences are deeply intertwined as new technologies
such as computational social sciences, are able to analyse social in-
teractions [4]. One of the most recent and widely used approaches
in linking these sciences is the Agent-Based Model (ABM). The
agents represent entities which can make decisions autonomously
[1]. Modelling such agents means observing their actions and deci-
sions in a specific environment and drawing conclusions in order
to simulate real-world situations and to assess the results. ABMs
can bridge the gap between multiple disciplines, such as computer
science and the social sciences, as they have the power to address
problems from a large variety of sciences, as well as improve col-
laboration between different fields [2].
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When it comes to linking computer science to social sciences, alt-
hough ABMs represent a powerful resource, they often lack valida-
tion of results and guarantees of the behaviours they simulate
[7]. These challenges require methods capable of formally validat-
ing the correctness and reliability of model behaviours. Such ability
can be achieved by using probabilistic model checking. Model
checkers are tools able to validate the correctness of a given model.
They are given two inputs: the system (represented by state transi-
tions) and its formal property, and they output whether the model
is indeed correct - and the property holds, or they get stuck due to
complexity [9]. They perform this validation by analysing all pos-
sible scenarios of the model. Probabilistic model checkers (PMCs)
extend this functionality, as they can return the probability of
reaching a certain set of states (events).

ABMs heavily rely on empirical simulations to “understand” social
phenomena. However, such understanding comes from simply ob-
serving the outcomes of many simulations, rather than having for-
mal proofs [8]. Simulations alone are not able to capture all possible
outcomes, especially considering rare or critical scenarios. PMCs
can systematically explore all possible interactions and transitions
between agents, therefore verifying whether the key properties are
respected throughout the entire behavioural space.

This paper aims to conduct a reproducibility study on an agent-
based model derived from social science literature. The scope is to
formalize it for input into a probabilistic model checker (PRISM)
[11], assess how accurately the model can be reproduced, analyse
the resulting formal verification outcomes, and reflect on the find-
ings and challenges that were encountered during the process.
Overall, the purpose is to formally analyse the diffusion dynamics
of the social science ABM using probabilistic model checking, in
order to assess how reliably key outcomes can be captured beyond
stochastic simulation.

1.2 Problem Statement

One of today’s most pressing issues is the spread of fake news and
misinformation, which has intensified with the emergence of social
media and communication platforms. Different rumour-based mod-
els have been developed for decades, in order to assess the way in
which rumours propagate in social networks [14]. Rumour spread-
ing has been studied through two main approaches in modelling:
macroscopic (based on mean-field equations) and microscopic
(agent-based, where individual nodes interact locally over a net-
work structure) [13].

In this research project, the agent-based model of rumour spreading
proposed by Mazzoli et al. (2018) [12], is selected here for reproduc-
tion and formal verification. The paper presents a structured and
extensively analysed rumour diffusion ABM, making it suitable for
formal replication. Their model simulates the spread of information
over a scale-free network in which agents are assigned individual
scepticism thresholds (their likelihood of spreading rumours) [12].
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They can become spreaders using three mechanisms: spontane-
ously sharing the news after being exposed to it, being socially in-
fluenced by neighbours, or being persuaded into sharing through
direct communication. Their model captures the dynamic evolution
of rumour propagation at the individual level and incorporates re-
alistic social network structures. Nevertheless, their analysis is
based on stochastic simulations rather than formally validating
possible behavioural trajectories of agents in the system, which this
paper addresses through formal analysis.

1.3 Research Questions

The above problem statement can be expressed through the follow-
ing proposed research question:

To what extent can probabilistic model checking be used to
verify key behavioural outcomes, such as complete rumour
spread, early extinction, and correction effects, in the agent-
based model derived from Mazzoli et al. (2018) [12] and im-
plemented in PRISM?

This main research question is formulated for the purpose of this
study and can be decomposed into the following sub-questions:

1. What is the probability that the rumour reaches all agents
before it dies out?

2. How does the initial number of spreaders affect the prob-
ability of full diffusion?

3. How do the spreading mechanisms (spontaneous, persua-
sion, debunking) influence the system outcomes?

4. To what extent is PRISM a suitable tool for the formal
analysis of such ABMs?

To answer these questions, the model described by Mazzoli et al.
(2018) [12] was manually implemented as a Discrete-Time Markov
Chain (DTMC) in the PRISM model checker. The implementation
contains the original mechanisms described in the paper: sponta-
neous spreading, social influence, persuasion and debunking. Fur-
thermore, several logical properties were defined to observe the dif-
ferent diffusion outcomes. These were verified using model check-
ing and statistical simulation across multiple model instances with
different agent counts, as PRISM supports both model checking and
stochastic simulation. Each sub-question is mapped to one or more
of the formal properties defined.

1.4 Paper Structure

The paper is structured into six main sections, each addressing a
distinct part of the research. The first one introduced the back-
ground on agent-based modelling, probabilistic verification and the
research motivations and questions. Section 2 provides a literature
review, highlighting the work related to formalizing ABMs, rumour
dynamics and the capabilities model checking tools such as PRISM.
Section 3 explores the methodology of the research, including the
formalization of the original model into a DTMC, the encoding of
agents’ behaviours and the properties written for formal verifica-
tion. Section 4 showcases the results that are grouped by outcome
type and theme, and analysed across the different agent configura-
tions. Section 5 presents the discussion, elaborating on the implica-
tions of the findings, comparison to existing literature, evaluation
of PRISM as a tool, and reflection on the study’s limitations and
potential extensions. Lastly, section 6 concludes the paper by sum-
marizing the key contributions, answers the research questions and
proposes directions for further work in integrating formal verifica-
tion in computational social science.

Alexia Balotescu

2 RELATED WORK

Research into ABMs has been well established. Bravo and Farjam
[4] provide an overview of the prospects and challenges for com-
putational social sciences. Similarly, Abar et al. [1] provide a survey
on the current ABM tools and environments, while Axelrod [2] dis-
cusses how such models can bridge the gap between theoretical
modelling and empirical social research by simulating the behav-
iour of individual agents in complex environments. However,
ABMs also face limitations, which arise from conceptual modelling
challenges as well as technical constraints, such as the computa-
tional complexity caused by simulating autonomous decision-mak-
ing or verifying emergent behaviours. Conte and Paolucci [6] ad-
dress the limitations present in the realism of agents, particularly
the difficulty of differentiating between agent- and environment-
driven behaviour. Chopra et al. [5] explore the limits of agency in
traditional ABMs and propose frameworks that could allow agents’
autonomy to proportionally increase with system complexity while
also maintaining realistic behavioural constraints.

Meanwhile, formal verification methods have gained popularity:
tools like STORM (Hensel et al. [9]) and PRISM (Kwiatkowska et al.
[10]) allow for an exhaustive analysis of probabilistic systems.
PRISM and similar tools express the dynamic of a system as proba-
bilistic state-transitions, most commonly Discrete-Time Markov
Chains (DTMCs) [10]. They model systems that progress in discrete
time steps, with the current state influencing the probability of
transitioning to a new state. Banisch et al. (2011) [3] show how
ABMs can be transformed formally into DTMCs and analysed for
transient behaviour and absorbing states.

In the domain of rumour spreading, Nekovee et al. [13] model the
diffusion of information on complex networks using mathematical
approximations. Mazzoli et al. (2018) [12] extend this model by pro-
posing an ABM where agents have individual scepticism thresholds
influencing their behaviour. In this project, the focus will be on re-
producing the model of Mazzoli et al. (2018) [12] and formally ver-
ifying its diffusion properties using PMC techniques.

3 METHODOLOGIES

This section presents the formal modelling steps taken in order to
replicate and verify the rumour-spreading ABM.

3.1 Model Implementation

The first step in this research was to reproduce the rumour spread-
ing model described above. In their model, Mazzoli et al. (2018) [12]
place agents on a scale-free network, with each having individual
scepticism thresholds that determine their chances of spreading in-
formation. There are three ways in which agents can become
spreaders: spontaneous exposure to the news (such as encountering
it on a timeline), being influenced by neighbours who have already
shared the rumour, and persuasion through communication with
another agent. Moreover, the paper includes a debunking mecha-
nism which reduces the chances of further spreading, when misin-
formation is identified.

As model checking large-scale networks is limited, the original net-
work structure was not directly preserved. Instead, a simplified sys-
tem was adopted, in which agents do not interact over a network
graph. Rather than modelling connections through a graph topol-
ogy (such as nodes representing agents and edges representing con-
nections), the interaction is abstracted by encoding influence as
global conditions. All agents are modelled as isolated modules, with
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their interactions being encoded through global conditions repre-
senting influence. This abstraction preserves the essential behav-
iour dynamics from the original paper, while also allowing formal
verification in prism. Experiments were conducted on models of
1,3,6,8 and 10 agents. In each configuration (model), agents were
assigned individual thresholds and behaviour types, to simulate the
heterogeneous scepticism from the original model. The probabilis-
tic transition rules from the original work were respected; modifi-
cations occurred only when accommodating PRISM’s syntax and
execution model.

Throughout the process of implementing the model, emphasis was
placed on maintaining fidelity to the original dynamics. The as-
sumptions made on the core behaviour of agents were kept intact.
Simplifications were made only in structural aspects which would
otherwise lead to intractable state explosion.

The PRISM code for the different numbered agents and the property
specification are accessible via this link: https://github.com/alexi-
amaria3/Probabilistic-Model-Checking-ABM

3.2 Model Formalization

The original rumour spreading model was formalized as a DTMC
in the PRISM model checker. A DTMC, being a probabilistic system,
allows for representing the stochastic interactions and state
changes of agents, as described in the original ABM.

3.2.1 States. Following the principles described in the original pa-
per, in PRISM each agent was represented as an individual module
which contains a state variable, namely sX, with X being the index
of the agent. The state space is encoded as an integer variable with
the following mapping:

> 0:Ignorant (initial state, unaware of the rumour)

» 1: Spontaneous spreader (spreads without social expo-
sure)

»  2:Influenced spreader (spreads due to neighbours’ influ-
ence)

»  3:Persuaded spreader (spread after direct peer communi-
cation)

»  4: Stifler (no longer spreading)

»  5: Debunker (actively stopping the spread)

This categorization respects the roles and transitions of the original
ABM, where the transitions of agents depend on both personal
thresholds and peer behaviour.

3.2.2 Formulas. Constants and Boolean formulas were defined
within the PRISM model to reflect the paper’s scepticism thresholds
and network-based influence. Each agent has a static threshold
value specific to the agent’s index (th0, th1 etc.) which is compared
to the global reliability variable for spontaneous spreading. The in-
fluence of neighbouring agents is captured in formulas such as
enough_inflX, X representing the respective agent, which activates
when a minimum number of neighbours are in the spreading state.

3.2.3 Probabilistic Transitions. The transitions described by Mazzoli
et al. were represented using probabilistic commands. For instance,
spontaneous spreading occurs when an agent with a low scepticism
threshold is exposed to news that carries a certain reliability. In the
formal model, such behaviour is captured by guards — an example
can be seen in the figure below. ‘r’ represents the global reliability
score, and the probabilities reflect the chances of adopting the
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rumour.

// Spontaneous spreading

[1 s0=0 & r >= th0 -> 0.3 : (s0'=1) + 0.7 : (s0'=0);
Influence spreading was encoded as a probabilistic transition which
is activated when an agent has at least one neighbour actively
spreading. The transition assigns an 80% chance of entering the in-
fluenced state (state 2), thus maintaining consistency with the sto-
chastic assumptions in the original ABM. Persuasion is imple-
mented as a separate mechanism: a non-spreading agent directly
interacts with a neighbour who is already spreading. If the agents
have similar scepticism thresholds, persuasion has a 70% success
rate, pushing the agent into the persuaded state (state 3). These sep-
arate transitions capture the conceptual distinction between pas-
sive social influence and active peer communication.

// Influence spreading

[1 s0=0 & enau-;[h_inle -> 0.8 : (=s0'=2) + 0.2 : (=s07"=0);
// Persuasiocn
[1 s0=0 & is_spreadingl -> 0.7 : (s0"=3) + 0.3 : (=0'=0);

The debunking mechanism, where agents reject or revert spread, is
implemented by assigned a special state, namely 5, which halts fur-
ther spreading and can influence others. This behaviour was added
in an extended version of the original model, to support verification
of the correction mechanisms.

// Debunking (if another agent is a debunker)

[] sl=2 & s2=5 -> 0.6 : (s1'=0) + 0.4 (s17=2);

[] s1=2 & s4=5 -> 0.6 : (s1'=0) + 0.4 (s1'=2);

3.2.4 Time and Rumour Reliability. Mazzoli et al. include time dy-
namics; the rumour credibility decreases after a fixed number of
timesteps. This behaviour was modelled by creating a separate time
module, with variables t (time) and r (rumour reliability). Once the
tick count reaches a set threshold, r was lowered to simulate how
scepticism grows over time.

// Time counter (t) to change reliability (r) later
module Time

t : [0..100] init O;

r : [0..100] imnit 99;

// tiek every step, increase time by 1

/4 if time reaches 5, update reliability (news becomes false)

[tick] t < 100 -> 1.0 : (t"=t+l) & (x"=(t=5 ? 4B : r));
endmodul e

3.2.5 Conditions and Rewards. In order to track the number of steps
until termination, reward structures were used, which help assess
properties such as “expected time until spread ends (all agents
reach terminal states)”. PRISM labels were defined to monitor the
key behaviours for temporal formal verification:

»  “spontaneous”: any agent in state 1
“persuaded”: any agent in state 3
“no_ignorants”: all agents are non-zero
“all_done”: all agents either stiflers or debunkers

YV V V

»  “all_influenced”: all agents are in state 2

Overall, this PRISM formalization captures the core behavioural
transitions and agents interactions of the original paper, as well as
abstracting the network structure to allow proper verification. The
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result is a reproductible model which allows for probabilistic model
checking of key rumour diffusion behaviours.

3.3 Property Specification

After formalizing the model, the next step was to define a set of
logical properties which can capture the essential behaviours of the
system, considering the research questions. These properties are
written in Probabilistic Computation Tree Logic (PCTL), a temporal
logic which is supported by PRISM and can assess reasoning about
stochastic processes such as DTMCs. Each property was designed
to correspond to a key outcome of the rumour spreading process,
allowing the probabilistic dynamics to be formally verified and
compared across multiple scenarios. Each of the 5 models (1, 3, 6, 8,
10 agents) had a list of properties to be verified, which are catego-
rized and explained below (all written examples are taken from the
properties file of the model of 6 agents).

3.3.1 Final Spread Completion. This property calculates the proba-
bility of the rumour eventually stopping spreading, meaning that
all agents have transitioned to a terminal state such as stifler or
debunker (states 4 or 5). It checks all the possible agents (s0 to sn,
n being the number of agents) having a final state greater or equal
to 4. This answers the first research question by quantifying the
likelihood of full diffusion. Formally, it tests whether the system
always reaches a terminal absorbing configuration, essential in
checking system convergence.

P=? [ F (s0>=4 & sl>=4 & s2>=4 & s4>=4 & s5>=4) ]

3.3.2 Full Influenced Coverage. The property verifies if all agents
enter the influenced spreader state by peer exposure only, captur-
ing the outcome where everyone reaches the ‘influenced’ state (2)
due to peer exposure only. This helps to check the dominance of the
influence mechanism, showing how strong peer influence is across
runs.

P=? [ F “all influenced”]

3.3.3 Complete Awareness. With this property, it is determined if all
agents leave the ignorant state, regardless of whether they spread
the rumour. This verifies if the system covers the full agent space,
thus validating the questions of effectiveness.

P=? [ F “no_ignorants”]

3.3.4 Spontaneous Spread Occurrence. This label tracks whether at
least one agent spontaneously encountered the rumour based on its
high reliability. It captures the influence of the initial reliability and
how rumours are adopted autonomously, thus linking to the real-
ism of spontaneous spreading and its impact on the system dynam-
ics.

P=? [ F “spontaneous”]

3.3.5 Persuasion Effectiveness. This property observes if any agent
became a spreader by being persuaded. It isolates the effect of one
specific mechanism in the model (persuasion in this case), helping
to understand the internal dynamics and verify assumptions made
in the original ABM.

P=? [ F “persuaded”]
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3.3.6 Debunking Effectiveness. With this label it is checked whether
at least one agent was reverted by a debunker. This makes it possi-
ble to test the impact of the debunking mechanism, especially in
the presence of scepticism. It adds realism to the social element of
the model and also links to the fourth research question.

P=2? [ F “debunked”]

3.3.7 Combined Trigger Conditions. This property tracks if the ru-
mour was triggered by at least one of the spreading mechanisms.
This is important for establishing how complete the model is, mean-
ing that the transitions collectively lead to the rumour being acti-
vated. If this fails, it can indicate modelling or logic flaws.

P=? [ F (“spontaneous” | “persuaded” | “all in-
fluenced”) ]

3.3.8 Time-Bounded Diffusion. This property measures the proba-
bility that all agents hear about the rumour within a timeframe of
10 steps. It provides insight into the short-term effectiveness of the
rumour dynamics. Moreover, it highlights how fast the diffusion
can occur, showcasing temporal patterns that could be missed in
standard simulation.

P=? [ F<=10 “no ignorants”]

3.3.9 Time-Bounded Termination. This tests whether all spreading
stops within 15 steps, number chosen for limiting the expected
number of steps while also allowing enough time for termination.
It is useful for performance analysis, by checking if the model’s ter-
mination can be guaranteed within a specific timeframe. High val-
ues could signal abrupt decay or high correction rates.

P=? [ F<=15 (s0>=4 & sl>=4 & s2>=4 & sd4>=4 ¢&
s5>=4) ]

3.3.10 Early Debunking. A time-bounded property which checks if
any debunking happens within the first 5 steps. It is important in
modelling how real-world misinformation corrects, especially in
fast moving social networks. The number of 5 steps was chosen to
strike a balance between responsiveness and realism. It is early
enough to indicate responsiveness while also allowing time for in-
teractions between a debunker and an agent.

P=? [ F<=5 “debunked”]

3.3.11 Deadlock Detection. This is a sanity check in formal verifica-
tion which validates if the transition structure allows for total sys-
tem exploration, ensuring that the system never reaches a state
from which no transitions are possible.

P<1l [ F true]

3.3.12 State Space Size. Counter of the total number of reachable
states in the model, used to quantify the complexity for the different
agent counts.

filter (count, true)

3.4  Verification and Analysis

Once the model was formalized and the properties were specified,
verification was conducted using the model checker in PRISM. For
the smaller models of 1, 3 and 6 agents, formal model checking was
used, where the full state space could be generated and explored.
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For each of the three models, the PCTL properties listed in the
above section were added to the PRISM properties tab for verifica-
tion and tracking. Reward structures were used to compute the ex-
pected values, and state labels allowed for high-level behavioural
queries. Each of the 14 properties was verified, and the Log tab
within PRISM allowed for every model to have a separate file con-
taining the outcomes of the verification. As the number of agents
increased, the state space grew exponentially, reaching over 38 mil-
lion states for the 8-agent model, and nearly one billion for the 10-
agent version. Thus, due to the limitations of properly checking the
model at this scale, as well as the exhaustive amount of time neces-
sary to compute such formal verification, PRISM’s statistical simu-
lation was used for the 2 larger models. The simulations were run
with 10000 samples, a confidence level of 99% and a maximum path
length of 10000. These parameters allowed for very accurate simu-
lation results alongside runtime feasibility.

Each property was evaluated on all model sizes. For example, the
probability of full spread was constantly above 99% in all configu-
rations. The time bounded properties allowed for direct compari-
sons with the simulation results in the original paper. Moreover, in
the cases where simulation produced timelines spread probabilisti-
cally, the model checker showcased exact convergence probabilities
and expected step counts. In contrast, scenarios such as “all_influ-
enced” or “persuaded” gave mechanism-specific insights which can
be difficult to isolate using stochastic simulation alone. During ver-
ification, deadlocks were also detected and resolved through model
inspection. The model showed consistency in converging to termi-
nal states, and rare paths were still accounted for due to the full-
state analysis.

The analysis confirmed that, to some extent, PRISM can be capable
of verifying high-level outcomes, as well as fine-grained agent be-
haviours. Properties were made time-bounded, mechanism-specific
and reward-based, thus allowing a better and more complete inter-
pretation of the diffusion dynamics compared to using simulation
alone.

4 RESULTS
4.1  Overview

This section presents the outcomes of the formal verification pro-
cess, conducted on the rumour-spreading model. Using PRISM, a
series of properties were evaluated across multiple agent counts.
These results are grouped thematically considering the nature of
the property being tested.

4.2 Property-Based Analysis

Each subsection describes the results of running the property veri-
fication or simulation, grouped by the general information they
represent. Each table will contain the appropriate values, with each
property being referred to as the title from Section 3.3.

4.2.1 Full Diffusion Outcomes. These are the first three properties
(3.3.1, 3.3.2, 3.3.3), which measure whether the rumour fully spreads
or reaches all agents. These align with the first research sub-ques-
tion, as they verify how often the system leads to full awareness or
absorption.

Agent | Final Spread | Full Influence | Complete
count Awareness
1 0.792 0 0.793

3 0.983 0 0.983
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6 0.996 0 0.996
8 0.999 0 0.998
10 0.999 0 0.999

The results show that the diffusion coverage increases as the num-
ber of agents does, which suggests the model’s mechanisms are
very effective in pushing the system toward terminal states. The
complete awareness property (checking if all agents leave the igno-
rant state) behaves similarly, since it reaches almost certainty from
6 agents onwards. In contrast, the full influence property is 0 for all
model sizes, suggesting that agents rarely pass through a distinct
“influenced” phase before becoming spreaders or stiflers. However,
they do eventually engage with the rumour. In this formal model,
agents seem to transition directly from ignorance to spreading
without pausing in a separate, influenced state. This shows a mod-
elling simplification not explicitly mentioned in the original paper,
where influenced was implicitly considered via thresholds or
neighbour pressure, rather than separately encoded. Thus, this
model reveals how simulation captures widespread interaction but
can also overlook intermediary states.

These results are a strong formal support for the original model’s
conclusions regarding the effectiveness of social exposure mecha-
nisms in scale-free networks. The paper explored how the rumour
penetration under certain conditions/thresholds is almost total; the
formal model confirms this with probabilistic certainty. Neverthe-
less, the fact that “influence” alone is never reached without spread-
ing indicates the fact that the model does not clearly distinguish
between belief acquisition and information propagation; instead, it
combines them into a unified process during formalization.

4.2.2  Mechanism-Specific Activation. The next category are the
properties which track the role of different spreading parts (3.3.4,
3.3.5, 3.3.6, 3.3.7). They assess how each individual mechanism be-
haves, supporting the third research sub-question and validating
internal logic.

Agent Spontane- | Persua- Debunk- Combined
Count ous Spread | sion ing Trigger

1 0.792 0 0 0.792

3 0.998 0.28 1 0.998

6 0.998 0.911 1 0.998

8 0.999 0.966 1 0.999

10 0.999 0.987 1 0.999

The values in the table show that spreading spontaneously is con-
sistently active, with its probability reaching almost 1 for 3 or more
agents. This confirms that the model’s mechanism of threshold vis-
ualization (where an agent shares the rumour upon seeing it) is re-
liable and has consistent behaviour. It also emphasizes the im-
portance of spontaneous activation being the initial trigger in
spreading the rumour. However, the persuasion mechanism is dif-
ferent. It starts with a probability of 0 (since no peers are available
to persuade) and rises from 0.28 (3 agents) to 0.987 (10 agents). This
reveals how persuasion needs network interaction: a spreader must
have neighbours who are active and meet the scepticism threshold.
As the number of agents increases, the probability of such interac-
tions naturally rises as well. These findings validate the existence
of persuasion operation in the formal model, but its effectiveness
becomes significant only in networks of moderate sizes. This aligns
with the interpretation by Mazzoli et al. (2018) [12], where it was
shown how peer communication is important in sustaining the
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rumour diffusion after the initial spread. The debunking mechanism
is also confirmed to be active in every instance beyond 1 agent, with
a perfect success rate (1). This perfect score confirms the conclusion
that, once a debunker is present, its influence of correcting is cer-
tain to appear. It is interesting to note that this is independent of
the agent count, so the debunking transition is dominant: whenever
the conditions of reversion are met, it consistently succeeds. Thus,
the authors’ claim that sceptical agents are essential for tempering
spread is confirmed. Lastly, the combined trigger property, acting
like a logical consistency check (true is the rumour is activated by
at least one mechanism) is consistent with the values of the spon-
taneous spread. This implies that spontaneous visualization is the
initiating condition in nearly all cases, especially in smaller net-
works.

These findings strengthen the argument that each mechanism con-
tributes in a complementary manner: spontaneity initiates the
spread, persuasion sustains it and debunking tempers its growth.
The probabilistic results clarify the specific thresholds at which the
persuasion starts being impactful.

4.2.3 Time-Bounded Dynamics. These are the properties that check
how fast certain actions happen (3.3.8, 3.3.9, 3.3.10). The purpose is
to visualize the speed of diffusion and correction, important for
practical effectiveness.

Agent Count | Diffusion Termination | Early  De-
bunking

1 0.766 0.524 0

3 0.981 0.684 1

6 0.088 <0.001 1

8 0.005 0 1

10 <0.001 0 1

The first column represents the probability of all agents reaching a
state of awareness (no ignorants) within 10 steps. There is an in-
verted trend, as the first two instances present a fast and likely dif-
fusion, while for larger agents the probability collapses, reaching
virtually 0 for 10 agents. Such sharp decline reflects how growing
complexity and branching affects diffusion, as more agents are
added. Larger networks need more steps to achieve complete reach-
ability, so time bounds like 10 steps are insufficient. This results
helps to quantify how larger networks require more steps to reach
full propagation, thus reinforcing the limitation of stochastic
ABMs, namely slowing down under growing topologies. In con-
trast, the termination property (rumour dying within 15 steps) has
a slightly different pattern. In small networks termination is likely
but becomes nearly impossible for larger models, since from 6
agents onward the probability is virtually 0. As such, it is suggested
that higher agent counts means the system remains “alive” longer
and becomes more stable (or self-sustaining) through the reinforce-
ment of peer interactions. This aligns with the observation in the
original paper stating that diffusion tends to become persistent in
scale-free networks, where hub notes reinject momentum into the
system. The early debunking property remains stable (1) for all net-
works apart from the smallest one. This means that, as soon as the
debunker is present, their intervention is quick and reliable, within
5 steps and regardless of network size. This validates the model’s
internal design in which scepticism acts as an immediate override;
moreover, it supports the principle that even in large, dynamic en-
vironments, a single critical entity (debunker) can rapidly trigger
correction.
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4.24 Model Complexity. The last category represents the sanity
checks of the integrity and state space of the model (3.3.11, 3.3.12),
thus validating its correctness and scalability.

Agent Count Deadlock Detection | State Space Size
1 false 303

3 false 1616

6 false 1504597

8 false 38790565

10 false 980364277

The results of the deadlock detection property, checking if there are
reachable states in which no further transitions are possible (dead-
locks) is constantly false in all instances, which is the expected out-
come. This means that the system is always guaranteed to have a
valid transition from every reachable state, thus confirming there
are no premature halts or modules constructed improperly. It also
validates the construction of the transition guards, so there is com-
pleteness in all behavioural paths under the PRISM syntax. The
state space counter shows a predictable exponential growth as the
number of agents increases. The first models’ values are relatively
small; however, there is a dramatic jump from the 6-agent model,
which reaches 1.5 million states, and by 10 agents there are 980 mil-
lion. This growth represents a well-known challenge in PMC: the
model, although logically correct, presents a state-space explosion.
As such, the model’s scalability is limited, at least for exhaustive
verification.

Interestingly, these findings are in accord to the limitations in the
original paper, where it is stated that simulating large-scale net-
works with agent heterogeneity is computationally infeasible, be-
yond a certain threshold. In formal verification it appears to be
around 6-8 agents; however, unlike stochastic simulations, model
checking gives explicit confirmations of the structural validity or
deadlock-free status.

4.3 Overall Observations

The findings showcased in the previous sections provide some im-
portant insights into the behaviour and formal structure of the rep-
licated model, as well as how suitable it is for verification using
probabilistic model checking.

Firstly, the model’s outcomes become more stable as network size
increases. In almost all categories, the probability of desirable out-
comes, such as full diffusion, activating mechanisms or early de-
bunking, tends to approach 1 as the number of agents increases.
This trend is especially visible in properties like spontaneous
spreading or persuasion, where values stabilize at almost 100% for
the networks of more than 6 agents. Therefore, the system’s inter-
nal logic becomes more stable when populations are larger, likely
due to the likelihood of peer reinforcement increasing, as well as
the diffusion redundancy present in a scale-free topology. At the
same time, the results also show that long-term convergence be-
comes increasingly unlikely, as the model often fails to terminate
or reach absorbing states within an explicit number of steps. This
is visible especially in the low (or zero) values in the time-bounded
termination checks for larger agent counts. This mirrors the dy-
namics of real-world scenarios, where misinformation or rumours
may not disappear fully from social circles, even if they are coun-
tered broadly or corrected.

Another point of interest is the role debunking plays, which was
consistently activated early, with full certainty, in all multi-agent



TScIT 43, July 4, 2025, Enschede, The Netherlands

models. It is therefore demonstrated that, as soon as the conditions
for scepticism are met (for example a debunker neighbour and a
susceptible spreader), the correction effect is immediate and deter-
ministic. Regardless, it does not guarantee full correction or stifling
of the whole network, suggesting that local effectiveness does not
guarantee the collapse of the global system, especially in scale-free
networks with persistent spreaders. Therefore, debunking is effec-
tive, but insufficient to cause systemic termination on its own. An
additional observation is about the stability and correctness of the
formal model. All models passed the checks of deadlock detection,
and showed the expected growth in state space size, thus validating
that the PRISM encoding models the original ABM dynamics. How-
ever, the explosion of the state space shows the practical limit of
using the exact model checking beyond 6 agents, thus requiring
simulations to explore larger models. This demonstrates the scala-
bility limitations of PMC and how important hybrid analysis can be
when reproducing larger ABMs. Finally, the combined result con-
firms and extend the findings presented in the original paper, show-
ing that rumour dynamics remain difficult to extinguish and sensi-
tive to interaction patterns, even when probabilistically formalized.
Formal verification offers a complementary perspective to stochas-
tic simulations, as it provides probabilistic guarantees and struc-
tural clarity. Moreover, it can also reveal edge cases or divergence
points, as well as computational boundaries which can be hidden
in simulation traces.

5 DISCUSSION
5.1  Comparison to Existing Literature

This study’s results both confirm and extend findings found in pre-
vious literature on ABMs and rumour dynamics. Firstly, the trend
of diffusion stability increasing and the rumour activating through
spontaneous spreading, especially in larger agent populations, is
consistent with the observations of Mazzoli et al. (2018) [12]. Their
original simulations showed that rumour spread was more likely
under low scepticism and moderate influence. Moreover, they ex-
plained how network topology plays a significant role in enabling
widespread diffusion. In this replication as a formal model, these
dynamics have been validated: models with more agents showed
certain spontaneous spread and persuasion activation, which sug-
gests that transitions accurately reflected the underlying social
mechanisms present in the original ABM. However, unlike the sim-
ulations performed in the original paper, this project provides for-
mal certainties and insights into the structure of the model. Con-
sidering a methodological perspective, formalizing the ABM as a
DTMC and its translation into PRISM aligns with the approaches
used by Banisch et al. (2011) [3]. These studies argue that ABMs
should be converted into formal probabilistic models in order to
enable more rigorous analysis. This work contributes to this con-
cept, demonstrating both the feasibility and limitations of such pro-
cess when applied to an ABM inspired by the real world. Further-
more, it confirms that formal tools can be used to reproduce and
extend ABM simulations, while also revealing the ongoing chal-
lenges of scalability and reliability, especially in areas that have
high behavioural heterogeneity.

5.2  Evaluation of PRISM as a Tool

During this study, PRISM proved to be a highly valuable platform
for formalizing and verifying ABMs, particularly in structured and
small or medium scale setting. One of its main strengths is the mod-
ular architecture which allows each agent to be defined with its
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own local state and transition rules. This modularity allowed for
fine grained control over how agents behave and facilitated the en-
coding of the sets of rules. PRISM also supports exact model check-
ing and statistical simulation, thus allowing for flexibility in switch-
ing between full behavioural verification and approximate analysis,
depending on the size of the model. Another valuable advantage is
PRISM’s integration of probabilistic temporal logic, more specifi-
cally PCTL, which allowed for behavioural queries to be formulated
in a readable manner. The ability to use custom labels and reward
structures further showcase the expressiveness of this tool, as these
features allowed the creation of nuanced properties (like time
bounded diffusion or deadlock detection), making PRISM helpful
for checking the level of correctness of the model and identifying
edge-case outcomes.

However, there were several limitations encountered during the
modelling process. A major issue was having to manually duplicate
the agent modules. Each additional agent required an almost iden-
tical block of code, which soon became inconvenient and prone to
errors. Moreover, PRISM lacks the built-in support for generating
network, thus requiring the network topology (scale-free structure
in this case) to be manually coded. This reduced the flexibility sig-
nificantly and introduced additional issues to maintain and resolve.
Another limitation was the fact that connections between agents
are static, since PRISM does not allow state-dependent or dynami-
cally evolving networks. This restricted its use when it comes to
modelling real-time or adaptive interaction patterns, which are
common in larger ABMs. Finally, debugging guard conditions and
resolving conflicts or overlaps from transition logic requires exten-
sive and time-consuming manual checking, especially while work-
ing with complex multi-agent interactions. Overall, the PRISM tool
is powerful and appropriate for replicating and verifying structured
ABM:s, that have modest agent counts and fixed rules on interac-
tion. It is mostly well suited for experiments that are controlled and
reproducible, and where exhaustive behavioural space coverage is
more important than large-scale modelling. PRISM is an excellent
choice for studies that prioritize formal guarantees and traceable
outcomes; however, for modules which involve dynamic topolo-
gies, learning agents or high agent counts, alternative tools or hy-
brid frameworks (such as formal model verification combined with
stochastic simulations) may be more appropriate.

5.3 Implications and Limitations

The results of this study have important insights into intersecting
formal methods with social simulations. It shows that ABMS from
the social sciences can also be formally verified, rather than solely
relying on stochastic (empirical) simulations. This project demon-
strates that formally defined behavioural outcomes can be quanti-
fied with provable guarantees by translating the rumour-spreading
model of Mazzoli et al. (2018) [12] into a format compatible with
probabilistic model checking. This work showcases PMC as a way
to complement the traditional analysis of ABMs. The findings can
also suggest that key dynamics in social models remain robust un-
der format checking, such as debunking consistently occurred
within the given timeframe.

However, there are several limitations to be discussed. The greatest
constraint was the model size. Since states grew combinatorially,
the verified model was restricted to contain at most 10 agents,
which limits the discovery of complex and population-wide effects.
The network structure was static; thus, it lacked the flexibility of
adaptive or rewiring networks. Moreover, agent thresholds had to
be manually assigned, in contrast to a more realistic model which
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could sample them from a distribution or update them dynamically.
The model also abstracted certain principles of social behaviours
like memory, multi-topic interactions or agent learning, features
which are frequently considered in advanced ABMs. Furthermore,
some properties of the verification required delicate design choices,
for instance avoiding infinite values in reward-based properties due
to absorbing paths. These aspects show that, while model checking
brings accuracy and rigour, it also necessitates precise specification
and effort in encoding, which can become brittle over time. Overall,
this study verifies the behaviour of a concrete ABM and maps out
a path forward for integrating formal methods into the future of
computational social science.

6 CONCLUSION

The aim of this study was to evaluate whether probabilistic model
checking (specifically using PRISM) can effectively be used to ana-
lyse agent-based models (ABMs) derived from social sciences. More
specifically, the model used in this research was proposed by Maz-
zoli et al. (2018) [12], which evaluated a rumour spreading model.
By reproducing and encoding the social sciences ABM, this re-
search demonstrated that it is possible to replicate such models
within a formal, small-scaled framework, while also obtaining val-
uable insights into system behaviours that empirical simulations
alone cannot offer. Across 14 properties which were formally veri-
fied, the analysis showed high consistency with the simulations
presented in the original paper, as well as exposing deeper behav-
ioural structures. The results prove the importance of integrating
formal verification into social modelling workflows and simula-
tions.

The analysis shows that the probability of the rumour reaching all
agents before it dies out (sub-RQ1) is high across all agents counts,
reaching over 99% from 6 agents onwards. However, peers being
able to achieve complete influence alone did not occur at all, even
within larger populations; the “all influenced” property returned a
probability of 0 in all cases. This reveals that full diffusion can occur
when spontaneous triggers and persuasion are combined, and not
just from influence alone. The system still reached full awareness
consistently (non-ignorant states), which supports the assumption
that formal modelling is able to capture realistic spreading patterns
in decentralized settings.

The verification of the combined trigger property, as well as the fi-
nal absorption states (sub-RQ2), show that large populations stabi-
lize spread and improve propagation, although the model always
starts with a single spreader. Increasing agent counts caused spon-
taneous and persuasion activation to approach certainty, which in-
dicates that the network size is important for robustness, even
when the initial configuration is limited.

For the third sub-RQ, spontaneous spread proved to occur close to
100% of the cases involving more than (or) 3 agents. Persuasion had
a steady rise, reaching almost 98% for 10 agents. Debunking was
verified to always occur, in both general and within 5 steps, which
shows strong correction potential in all of the model configura-
tions. These findings confirm that spontaneous spreading has a crit-
ical foundational role with persuasion being a secondary amplifier.
Debunking was also proven to be effective but within a localized
environment, aligning with the sociological observations from
studies on misinformation.

To answer the last sub-RQ, PRISM proved to be sufficient to encode
a non-trivial ABM with multiple agents, thresholds and probabilis-
tic transitions, allowing for a rich analysis through its support for
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reward structures and temporal logic. Regardless, increasing the
number of agents becomes a scalability issues, and having to man-
ually duplicate modules limits flexibility. PRISM is henceforth suit-
able for structured reproducibility studies and verification of mod-
est ABMs. Future research could explore tooling or abstraction ex-
tensions in order to expand usability.

Overall, the study demonstrates that probabilistic model checking
can successfully verify a wide range of behavioural outcomes in
agent-based social simulations. Key mechanisms, such as sponta-
neous spread, persuasion and debunking were captured accurately
through formal properties. The system’s emergent behaviour
aligned well with the findings from the original paper. PRISM was
shown to be an adequate verification tool for such ABMs, when the
system is constrained structurally. However, limitations in scalabil-
ity and dynamic network representation place bounds in how far
PMC can be currently extended. Thus, PMC can be used primarily
for small- to medium-scale models with well-defined behaviours. It
is a valuable complement to stochastic simulation, specifically
when strong correctness guarantees are needed.

Future work could extend this researched foundation in multiple
directions. A promising front is automating network generation,
such that it allows for more realistic social graphs (for example
scale-free) to be integrated within PRISM models. Another im-
provement could be enhancing agent complexity and introducing
adaptive or multi-layered behaviours: beliefs, emotions or memory.
To overcome the scalability issues, researchers could experiment
with abstraction techniques which can reduce state space without
losing any analytical power. These directions would enhance the
generalisability and impact of formal methods in computational so-
cial science.
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