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Chapter 1

Introduction

1.1 Clinical background

1.1.1 Disease context

Head and neck cancer (HNC) is a blanket term used to refer to various malignancies that occur in the
head and neck region, 90% of which are squamous cell carcinomas [1]. This type of cancer is commonly
caused by tobacco and alcohol usage [2]. Human papillomavirus has also recently been identified as a
risk factor, but to a lesser extent [3]. With the decrease in tobacco usage globally, the rate of HNC cases
has slowly started declining, showing a decrease of 0.22% per year from 2002 to 2012 for instance in the
US [4]. Nevertheless HNC is still the sixth most common type of cancer worldwide [5], reaffirming that
research into diagnostics and treatment around this illness is still of great importance.

A common long term complication caused by HNC and its treatment is swallowing/deglutition diffi-
culties from the mouth to the esophagus. A study by Garcia-Peris et al. showed that oropharyngeal
dysphagia (OD), as it’s called, was present in 50.6% of the patients studied [6]. This ailment is not only
detrimental for the nutrition and hydration of the patient [7] [8], but it also brings about other issues,
such as aspiration pneumonia and chest infections [9]. These factors decrease quality of life at best and
increase risk of mortality at worst, making it valuable to examine the mechanisms and aetiology of the
complication.

1.1.2 Current diagnostics

Videofluoroscopic Swallow Study (VFSS) is one of the main ways to medically examine OD and has
generally been regarded as one the golden standards [10]. In VFSS a patient is given a bolus loaded
with a contrast agent. During swallowing, an x-ray device is used to capture a fluoroscopic image of the
swallowing act [11] [12]. This footage is then used by the examiner to characterize deglutition pathology
[13]. An example of a VFSS frame can be seen in Figure 1.1.
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Figure 1.1: Example of an image taken in a videofluoroscopic swallow study (VFSS) [14].

Another common method of medical imaging is Fiberoptic Endoscopic Evaluation of Swallowing
(FEES) [15]. FEES evaluates the process by inserting an endoscope through the nose into the throat to
examine the movement and anatomy of the pharynx and larynx [16]. FEES is cheap, can be performed
at bedside and does not contribute to radiation exposure [15] [17]. However, it can only visualize the
surface structures of the throat. It has also been shown that it is not as good at detecting aspiration
events as VFSS, suggesting that supplementary VFSS after FEES might be useful [18] [10].

Instrumental techniques using pressure data have become increasingly popular to investigate swallowing
in the last decade [9]. One such technique is High Resolution Impedance Manometry (HRIM). In this
method a catheter with pressure sensors and electrodes is inserted into the throat. The technique com-
bines manometry to measure contractile activity with electrical impedance measurements to track bolus
movement during swallowing [19] [20]. Although no visual information is collected, the acquired data
can be used to thoroughly investigate and analyze deglutition behavior and possible pathophysiology in
an objective manner [21].

To get a more accurate assessment of OD, HRIM can be used in conjunction with VFSS, especially
in the HNC patient population [22]. VFSS relies on judgment made by clinicians, which can be sub-
jective. HRIM on the other hand is usually more objective, but due to reduced pressure observed in
measurements made on HNC patients, it is more challenging to annotate the manometric regions. This
reduces its objectivity [23]. Thus, combining both techniques overcomes their individual shortcomings
[24].

To integrate HRIM with VFSS one must find a method to match the data from both sources. Manual
annotation of the catheter and sensors is an option, but time consuming and subject to inter-rater vari-
ability. Hence, an automatic process is more preferable. A possible way to automate the task is through
a knowledge-based approach using computer vision techniques. Deep learning (DL) is another approach
to this problem. Advances in hardware, improvements in the methodology and a general increase in
available data have driven improvement in the technique, making it an increasingly popular tool for
medical imaging [25] [26]. This development suggests that the use of neural networks is a promising
alternative to the conventional methods.

1.2 Research goal

To enable the objective characterization of OD in the HNC population. the first obstacle to address is
overcoming the difficulties of integrating HRIM and VFSS in this patient population . A way to achieve
this is to automatically detect the manometric regions in the VFSS and translate them into the HRIM
data. To do this, we first need to accurately detect the HRIM catheter in VFSS videos. Recognizing
what part of the image is the catheter is the fundamental basis of the task. The goal of this project is
to tackle this problem through a deep learning approach, with the main aim being to create a model
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that is proficient at accurately detecting a catheter in fluoroscopy footage. Furthermore, the project
will endeavor to analyze what model characteristics (such as hyperparameters) are most influential and
beneficial for model creation for this task. The hypothesis is that the deep learning approach will indeed
prove fruitful and result in an effective methodology to detect a catheter in fluoroscopy footage.

1.3 Technical background and related works

Deep learning (DL) is a branch of machine learning inspired by biological neural networks. DL models
consist of mathematical functions called artificial neurons interconnected and layered to form an artifi-
cial neural network (ANN). These networks process data in a way determined by three key components.
Their so-called architecture, which includes things like how the different layers are connected, what kind
of functions the neurons apply and how the different layers of the network are connected.The parameters
learned after training, which will be elaborated on shortly. And finally obviously the input data. The
parameters of a model determine the strength of the connections between the neurons, thus influencing
the way data gets transformed as it passes through the network. The model acquires its parameters by
training, which is where the learning in deep learning comes into play. The networks are given large
amounts of data. This data is passed through the network and used to iteratively adjust the parameters
toward values that improve performance on the task [27] [28].

As mentioned before, the use of deep learning for medical imaging has risen considerably in modern
times, with the most popular models at the moment being Convolutional Neural Networks (CNN).
These models use convolution kernels, an already well known concept in computer vision techniques,
to detect patterns. Traditional image processing techniques based on convolution kernels were often
hand-crafted and tuned, which could lead to shallow and suboptimal models. CNN’s on the other hand
are able to tune and refine themselves due to being a DL network, permitting models with higher depth
and better tuned parameters [29].
Networks of the transformer architecture type are a relatively new innovation in the DL field and are
seeing a rapid rise in popularity in the medical imaging field in recent times. Models of this type were
originally designed for natural language processing, but their inherent adaptability turned out to also
make them greatly effective in various other tasks, including ones in medical imaging [30].
Nevertheless, the architecture that dominates the field is U-net. U-net is a type of CNN showing out-
standing performance in medical image segmentation. The network consists of an encoder, responsible
for feature extraction through a series of convolutional layers and downsampling, a decoder for rebuild-
ing the image to its original resolution, and finally, skip connections for retention of image details lost
in downsampling. Despite the advancements made in other architecture types, U-net and its variants
remain the most popular for medical imaging tasks [31] [32].

DL techniques have already been proposed previously for VFSS analysis tasks. In 2020 Caliskan et
al. for instance used Mask-RCNN to detect and track the bolus during a swallowing event in VFSS
footage [33]. Another use case found for DL in VFSS analysis is the automatic detection of aspiration
events. These events are challenging to identify due to often being brief and only occurring over a few
frames. By using DL to detect the aspiration events, as done with CNN’s in [34] and [35], clinicians are
able to shift their focus on diagnosis and interpretation of the detected events.

Catheter detection with DL has been explored in various other research papers, establishing a strong
proof of concept. Models proposed include ones that detect thin intravenous catheters, several catheter
types in neonates and even catheters used in cerebral angiography [36] [37] [38].
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Chapter 2

Methods

This chapter will detail how the research goal of this project was achieved.
The project is divided in two phases. In the first phase a base model was constructed. Its architecture was
chosen based on a review of the literature, whilst the optimal combination of key hyperparameters was
determined through a grid search. In the second phase two main extensions were made: augmentations
were added to the data preparation techniques; and, the base model was modified by the addition of
attention mechanisms in an attempt to further improve the segmentation results.

2.1 Base model

2.1.1 Dataset and data preparation

The available dataset consisted of approximately 1800 frames from VFSS footage of 16 patients at the
Netherlands Cancer Institute (NKI), along with their ground-truth (GT) masks. The images had varying
resolutions in the order of 1000x1000. All images were taken from a lateral perspective with patients po-
sitioned upright and facing the viewer’s left. Some sample images of the dataset can be seen in figure 2.1.

The applied data split method was a so-called single train-val-test split. “Single” refers to the fact
that the subsets were explicitly not mixed, meaning that for instance the images in the validation subset
were never used for training. This method divides the dataset in three subsets:

1. Training set: used to train the model. This subset contained ≈800 images that were randomly
sampled from the videos.

2. Validation set: used to evaluate the performance of the model at the end of each epoch, and the
performance of the best model at the end of a run. This subset contained ≈200 images that were
also randomly sampled from the videos.

3. Test set: Used to evaluate the performance of the best model at the end of a run. This subset
contained all the videoframes of 4 complete swallow videos, adding up to ≈850 images.

Since there are only two classes in this segmentation task (catheter and background), with the catheter
size being small compared to the background, this specific task is referred to as a binary semantic
segmentation task with a large class imbalance. For these types of tasks retaining the finer details of
the smaller class is crucial, meaning that it is beneficial to use the highest resolution possible for the
images. Considering this and among other things the memory and speed constraints of the available
hardware, a resolution of 640x640 was chosen. Each image was transformed to this square resolution
through resizing. The interpolation utilized for resizing however introduced intermediate pixel values for
the binary masks. To restore their binary nature, the masks were rebinarized with simple thresholding,
rounding the intermediate values to their nearest binary value.
Shuffling was employed to achieve better generalization of the model. The training set was shuffled at
the end of each epoch, the validation and testing data however remained unshuffled, ensuring accurate
metric scores.
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Figure 2.1: Randomly sampled raw images from the dataset. The images have varying resolutions and
the patients always face the viewer’s left.

2.1.2 Model architecture

The base architecture used was ResUNet, a U-net variant based on ResNet.
As mentioned before in section 1.3, U-net has been specifically designed to be used for biomedical imaging
applications and is widely popular in the field [39], making it a reliable architecture to expand on.
Higher layer depth has been known to facilitate faster convergence, however the vanishing gradient
problem arises as network depth increases caused by the loss of feature identities [40]. To overcome this
issue a new architecture was proposed utilizing residual learning: the ResNet. This network passes the
feature maps to deeper layers through feedforward connections, helping to preserve the feature maps
better. ResUNet combines the strength of both architectures. For the network, the basic building blocks
of U-net are transformed by adding batch normalization and identity mapping (see Figure 2.2), but the
basic U-shape is left unchanged as seen in Figure 2.3. Due to the convolution layers and downsampling,
this architecture demands images with sides divisible by 16 as input.

Figure 2.2: Basic building blocks: (a) base unit of U-net, (b) base unit of ResUNet [41].

7



Figure 2.3: Schematic structure of the ResUNet architecture [41].
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2.1.3 Training procedure and hyperparameter tuning

A grid search was conducted to analyze the effects of different hyperparameters and find the optimal
combination. The three hyperparameters that were tuned were: optimizer, loss function and learning
rate. Each had three options described in the subsections below. Giving a total of 33 = 27 combinations
of hyperparameters run. Hyperparameters that were kept constant were:

1. Batch size = 4. A small batch size is good for better generalization, but slows down training. 4
was chosen to strike a balance between generalization and training time.

2. Image size = 640x640. As mentioned before, the chosen architecture requires input images to have
specific shapes. Along with the considerations about high resolution and available hardware, a
resolution of 640x640 was chosen.

3. Epochs=50. 50 epochs gives the training curve enough room to plateau whilst still being small
enough for minimal risk of overfitting. It should be noted that the model used for performance
evaluation is not the model of the last epoch after training, but instead the model of the epoch
with the best performance based on the validation set.

Optimizers

The optimizers used were: Stochastic Gradient Descent (SGD), Adam and AdamW. SGD is a simple
gradient-based optimizer known for good generalization but relatively slow convergence [42]. Adam is
an adaptive optimizer designed to converge quicker by adapting its learning rate for each parameter.
This optimizer is widely used for medical image segmentation and is known to produce good results [43].
Finally, AdamW is a modification of Adam introduced relatively recently. This algorithm aimed to be a
refinement of Adam, with the authors showing that the optimizer outperforms standard Adam [44].

Loss functions

The loss functions used were: Dice loss, Tversky loss and Weighted Binary Cross Entropy loss (WBCE).
Dice loss (see equation 2.1) is based around the Dice Similarity coefficient. It is the most commonly used
loss function for medical image segmentation and can serve as a strong baseline. This loss belongs to a
family of loss functions called overlap-based losses that have shown to be useful in tasks with large class
imbalances [45] [46].
Tversky loss (see equation 2.2) is another overlap based loss. Its a generalization of Dice loss, allowing
more flexibility by allowing you to tune how heavily false negatives and false positives in your prediction
image get penalized. The version of Tversky loss used had a weight of 0.1 for the false positives and 0.9
for the false negatives.
Finally, Weighted Binary Cross Entropy (WBCE) (see equation 2.3) loss was also selected to heavily
target the large class imbalance in the task. This loss is a pixel-wise classification loss with weighting of
the two classes. The weights used in the WBCE loss of this project were a catheter weight of 1 and a
background weight of 0.001.

Dice loss = 1−
2
∑N

i=1 yiŷi + ϵ∑N
i=1 yi +

∑N
i=1 ŷi + ϵ

(2.1)

Tversky loss = 1−
∑N

i=1 yiŷi + ϵ∑N
i=1 yiŷi + α

∑N
i=1(1− yi)ŷi + β

∑N
i=1 yi(1− ŷi) + ϵ

(2.2)

WBCE loss =
1

N

N∑
i=1

[wi · (−yi log(ŷi)− (1− yi) log(1− ŷi))] (2.3)

where:

yi ∈ {0, 1} Ground truth label (binary)

ŷi ∈ [0, 1] Predicted probability

α = 0.1, β = 0.9 Tversky coefficients

wi = yi · wfg + (1− yi) · wbg Weighting for WBCE

wfg = 1.0, wbg = 0.001 Foreground and background weights

ϵ = 10−6 Smoothing constant to avoid division by zero

N Total number of pixels
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Learning rates

The learning rates that were tested were: 1e-2, 1e-3 and 1e-4. 1e-3 is a default learning rate used for
Adam, and served as a baseline. Since ideal learning rates can vary per optimizer, learning rates an
order of magnitude 10 higher and lower were also used. 1e-2 is a more aggressive learning rate, which
risks instability, but reduces convergence time and the chance of getting caught in local minima. This
higher learning rate is theorized to be especially compatible with SGD. Finally, a learning rate of 1e-4 is
also included to analyze the effect of reducing the learning rate instead.

2.1.4 Performance evaluation

Due to the large class imbalance in this segmentation task, straightforward general per pixel prediction
accuracy will be heavily biased. The model could for instance classify all the pixels as background, but
since the catheter pixels are so few number, the resulting accuracy will still be high. Only considering
how much of the catheter pixels are detected is a better criterion called recall (see equation 2.4). This
metric however fails to consider False Positives (FP). The metric opted for instead is the Dice Similarity
Coefficient (DSC) also called the Dice score . With the incorporation of false positives into the formula
for DSC (see equation 2.5), this coefficient gives a better measure of how good the model is segmenting
overall. Intersection over Union (IoU) (see equation 2.6) is another commonly used metric that is similar
to DSC, but slightly more stringent. It is included to facilitate easier comparison with results reported
in the literature, where IoU is sometimes preferred.

Recall =
TP

TP + FN
(2.4)

DSC =
2 · TP

2 · TP + FP + FN
(2.5)

IoU =
TP

TP + FP + FN
(2.6)

The final performance evaluation of each model inference was performed over each individual image in
the validation set, later referred to as Random Frames., and the test set, later referred to as Full Videos.
For the performance evaluation the images were not resized. Instead, the images were zero-padded to a
square shape having sides equal to a multiple of 16, matching the network’s required input size

2.2 Extensions

2.2.1 Augmentations

Due to the limited variation in the current dataset, namely the consistent orientation of the catheter from
left-to-right, as seen in figure 2.1, and the similar nature of radiation dosages, we used data augmentation
techniques. Augmentations artificially increase the diversity of the dataset, facilitating generalization,
through transformations of the dataset. The augmentations however must remain anatomically and
clinically realistic to be useful to model training.
Horizontal flipping is a straightforward augmentation which simply flips the image across the y-axis.
VFSS fluoroscopy images are usually captured in a lateral view, but may be taken from either the left
side or the right side, thus horizontal flipping preserves realism. This augmentation was applied to the
training, validation and the evaluation sets.
Small angle rotations (< |10◦|) emulate the slight variations of patient positioning, such as minor head
tilts to the front or back. This augmentation was only applied to the training set.
Finally, Gaussian noise can be added to mimic lower image quality in lower-dose X-rays. This augmen-
tation will result in a more grainy texture in the images. Like small angle rotations, this augmentation
was also only applied to the training set.
The augmentations were randomly applied to the datasets with a probability of 50%. The training set
augmentations were reapplied randomly each epoch, whilst the augmentations for the validation set and
evaluation sets were non-randomized per model run. An example of these augmentation can be seen in
Figure 2.4
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Figure 2.4: Example of the applied image augmentations.

2.2.2 Attention mechanisms

Incorporating attention mechanisms into models has shown to be greatly beneficial for image classification
tasks. In the case of ResUNet, a version with added Attention gates has already been proposed before
by Ehab et al. and has proven to be more effective than U-net and ResUNet at tackling tasks with large
class imbalances [47]. The architecture introduces attention blocks in the skip connections of the U-net
structure. These attention blocks use gating signals originating from a lower layer and the identity map
from the encoder to compute attention weights, which in turn are used for determining what part of the
image is most relevant to focus on. This mechanism is called spatial attention. Figure 2.5 shows the
structure of the architecture.

Figure 2.5: Schematic structure of the attention ResUNet architecture [48]
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Chapter 3

Results

3.1 Base model

In the section the results of the grid search will be presented, as well as performance of the best model.

3.1.1 Grid search

The training and validation scores of every model was recorded. For readability’s sake, the training and
validation curves of only the top 12 models are displayed in figures 3.1 and 3.2. The curves all exhibit a
steep rise at the start, followed by a steady plateauing.

Figure 3.1: Train Dice scores over the course of training for the top 9 runs. The models with adam,
adamW and SGD as optimizer are shades of red, green and blue respectively.
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Figure 3.2: Validation Dice scores over the course of training for the top 9 runs. The models with adam,
adamW and SGD as optimizer are shades of red, green and blue respectively.
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Table I displays the results of the performed grid search, showing the metric scores for each hyperpa-
rameter combination. Since The Full Videos dataset has low variety, more value was given to the scores
on the Random Frames dataset.

Table I: Evaluation results of the 27 models run in the grid search, with the scores rounded to 2 decimal
points. The best scores for both evaluation sets (Random Frames and Full Videos) are highlighted in
bold. For this grid search the batch size, image size and number of epochs were set to 4, 640x640 and
50 respectively

Run Hyperparameters Results
# Optimizer Loss LR Random Frames Full Videos

Dice IoU Dice IoU

1 Adam Dice 0.0001 0.82 0.71 0.85 0.74
2 Adam Dice 0.001 0.82 0.72 0.88 0.78
3 Adam Dice 0.01 0.80 0.68 0.81 0.69
4 Adam Tversky 0.0001 0.77 0.65 0.75 0.61
5 Adam Tversky 0.001 0.72 0.59 0.79 0.67
6 Adam Tversky 0.01 0.68 0.56 0.73 0.60
7 Adam WBCE 0.0001 0.63 0.47 0.69 0.54
8 Adam WBCE 0.001 0.51 0.35 0.56 0.40
9 Adam WBCE 0.01 0.46 0.30 0.52 0.35
10 AdamW Dice 0.0001 0.86 0.76 0.87 0.78
11 AdamW Dice 0.001 0.86 0.77 0.87 0.77
12 AdamW Dice 0.01 0.83 0.72 0.84 0.73
13 AdamW Tversky 0.0001 0.83 0.72 0.89 0.81
14 AdamW Tversky 0.001 0.69 0.55 0.72 0.58
15 AdamW Tversky 0.01 0.69 0.57 0.70 0.58
16 AdamW WBCE 0.0001 0.67 0.52 0.67 0.52
17 AdamW WBCE 0.001 0.51 0.35 0.57 0.41
18 AdamW WBCE 0.01 0.54 0.37 0.58 0.41
19 SGD Dice 0.0001 0.06 0.03 0.06 0.03
20 SGD Dice 0.001 0.81 0.69 0.82 0.70
21 SGD Dice 0.01 0.83 0.72 0.86 0.75
22 SGD Tversky 0.0001 0.42 0.28 0.46 0.30
23 SGD Tversky 0.001 0.81 0.70 0.87 0.78
24 SGD Tversky 0.01 0.83 0.72 0.88 0.79
25 SGD WBCE 0.0001 0.04 0.02 0.03 0.02
26 SGD WBCE 0.001 0.05 0.02 0.05 0.02
27 SGD WBCE 0.01 0.11 0.06 0.12 0.06
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3.1.2 Best model

Based on the performance scores shown in table I, the model from run 11 was chosen to proceed with.
Figure 3.3 and 3.4 show histograms of the evaluation Dice scores of this model.

Figure 3.3: Dice score distribution of the final evaluation on the Random Frames dataset using the model
from run 11

Figure 3.4: Dice score distribution of the final evaluation on the Full Videos dataset using the model
from run 11
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Figure 3.5 displays select sample segmentation masks overlaid on the original image, and compares
them with the ground truth mask (also overlaid on the original) and the original image itself.

Figure 3.5: Comparison of the predicted mask generated by the best performing model. The first picture
shows the original input image. In the second picture the ground truth mask is overlaid in green. The
third one shows the predicted mask by the model overlaid in light-blue, along with the Dice score and IoU
of the prediction. The three rows represent three levels of performance; ”good”, ”typical” and ”poor”.
The typical case is acquired by taking the prediction with a score closest to the average score. The good
and poor case are found in a similar manner by taking the prediction with a score closest to ±2σ.
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3.2 Extended model

For the extended model the best performing model from the grid search (run 11) was used as a foundation
to build off of. All the hyperparameters were copied, except for the batch size. Due to the added layers
in attention ResUNet, a batch size of 2 was used instead to stay within the memory limitations of the
available hardware.

3.2.1 Augmentations

Table II shows the results of applying the augmentations to the different subsets of the data pool.

Table II: Effect of data augmentation on performance with scores rounded to three decimal points. The
models were trained using the hyperparameters of run 11, with the exception of the batch size being
equal to 2

Augmentations Results

Train Set Eval Set Random Frames Full Videos

Dice IoU Dice IoU

No No 0.867 0.776 0.879 0.787

No Yes 0.754 0.632 0.760 0.631

Yes No 0.867 0.775 0.869 0.771

Yes Yes 0.868 0.775 0.866 0.766

3.2.2 Attention mechanisms

In table III the performance results of 4 different scenarios are presented. In the first two scenarios base
ResUNet is used as architecture, only differing from each other in whether augmentations were applied.
Similarly, the last two scenarios also only differ in employment of augmentations, but use Attention
ResUNet instead.

Table III: Comparison of model architectures and augmentation settings. Scores are rounded to three
decimal points. All models were trained using consistent hyperparameters (based on Run 11, but batch
size was 2 instead of 4) except for the model and augmentation scheme.

Model architecture Augmentations Random Frames Full Videos

Dice IoU Dice IoU

ResUNet No 0.867 0.776 0.879 0.787

ResUNet Yes 0.868 0.775 0.866 0.766

Attention ResUNet No 0.860 0.766 0.874 0.780

Attention ResUNet Yes 0.874 0.784 0.882 0.790
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Similarly to the last section, figure 3.6 and 3.7 show the metric score distribution of the best perform-
ing model. Which in this case is the Attention ResUNet model based on run 11 with augmentations.

Figure 3.6: Dice score distribution of the final evaluation on the Random Frames dataset using augmen-
tations and the Attention model based on run 11

Figure 3.7: Dice score distribution of the final evaluation on the Full Videos dataset using augmentations
and the Attention model based on run 11

18



Figure 3.8 shows the attention maps of some sample images used for inference. The number at the
end of the map indicates how deep it is made in the architecture, with 4 being the deepest.

Figure 3.8: Attention maps generated by the Attention ResUNet model for a evaluation on select images
from the evaluation sets. similarly to the inference images from figure 3.5, the inference quality on the
images decrease going from the top row to the bottom, with the middle row showing a raw image and
its maps of a typical performance.
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Chapter 4

Discussion

4.1 Interpretation of findings

The grid search performed in this project resulted in some key findings. These findings are discussed
below.

The training and validation curves seen in figures 3.1 and 3.2, show that the top model runs converged
relatively quickly, often reaching their maximum training and validation Dice scores before the 15th
epoch. Additionally, the high scores suggest that the vanishing gradient problem was not encountered
during training. This outcome supports the notion that usage of ResUNet as architecture results in fast
convergence whilst keeping metric scores high

From the results in table I it is apparent that the runs using adam or adamW outperforms SGD on
average. It is however observed that the SGD models had high variation in their performance, with run
21 for instance having a Random Frames DSC of 0.83, whilst run 25 has a score of 0.04. This hints at
the possibility that some SGD runs got stuck in local minima early in the training process. Additionally
it is noted that the SGD runs strongly benefited from higher learning rates, suggesting that using even
higher learning rates might result in better scores.
Another observation made is that Dice loss and Tversky loss consistently outperformed WBCE loss.
Reestablishing the fact that overlap-based losses are most effective for segmentation tasks with large
class imbalances. Regarding the scores for the two evaluation sets, it is seen that the models are slightly
worse at detecting the catheter in the Random Frames dataset than the Full Videos dataset, indicating
that generalization could be improved.

Figure 3.4 shows that the best model exhibited good prediction performance with high consistency
on the Full Videos dataset, with 95% of the predictions having a score between 0.79 and 0.95. Notably,
even the lower scores weren’t that bad, with the lowest score being 0.65
The scores seen in figure 3.3 however are less tightly grouped together and more skewed. The ma-
jority of predictions were still adequate, but the histogram shows a considerable amount of outliers far
from the average score. The worst score being as low as 0.32. This again hints at issues in generalization.

Overall, The best model of the first phase demonstrated reliable catheter segmentation, with the typical
Dice score being around 0.87. In the poor predictions, like the one seen in figure 3.5, it is noted that the
model often struggles with catheter detection around the jawbone. This localized degradation around
an area with higher radiation attenuation suggests the issue to be caused by lack of contrast.

By exclusively augmenting the evaluation sets, it is shown in table II that the model is poorly gen-
eralized. The Random Frames DSC went from 0.867 to 0.754 which is a decrease of almost 15%. By
also augmenting the training set the model returned to its high metric performances. The scenario
where only the training set was augmented saw no significant decrease in metric scores, indicating that
augmentations do indeed help with generalization.
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Table III shows that in both the cases of augmented and unaugmented dataset the addition of atten-
tion mechanisms did not increase the average metric scores in any meaningful way. In the histograms of
the evaluation sets prediction scores seen in figures 3.6 and 3.7 it is however observed that the number
of low value outliers are reduced, suggesting a slight increase in performance due to the usage of the
attention ResUNet architecture.

The attention maps seen in figure 3.8 reveal that the model is properly focusing on relevant areas.
In the first map, made in the most shallow attention layer, the model identifies the patient as an impor-
tant structure. The second map focuses specifically on catheter like structures, by characterizing them
as thin, linear and having high radiation attenuation. The third map directs the model’s attention to
the outside of the patient, presumably telling it where the entry point is of the catheter. Finally, the
fourth map highlights everything except small high contrast areas very close to the catheter. This map
is likely used to suppress problem areas that could otherwise be included in the segmentation map.

4.2 Limitations

Despite generating important findings, the methodology used in this project had some limitations that
should be acknowledged.

Resizing the input images was necessary to train the model, however making them square introduced
slight geometric distortions. To maintain anatomical realism it is important to change the aspect ratio
as little as possible. It would thus be better if the input images were zero-padded to a set resolution or
resized dynamically per image to stay close to their original aspect ratios.

Retraining models using identical hyperparameters from the grid search yielded similar but non-identical
performance metrics, demonstrating the inherent variability in neural network initialization and training
dynamics. For this reason it could be argued that the results of the grid search, especially the ones that
are close to each other, are not reliable for comparison.

The last point revolves around comparability of the data from the first phase and the second phase
of the project. In the second phase of the project when the augmentations were applied, a batch size
of 2 was used instead of 4 due to memory limitations. This change, although small, does decrease
comparability between the recorded results.

4.3 Recommendations

Since it was noted that the models in some cases especially struggled with low contrast areas such as
around the jawbone, adding contrast enhancing augmentations to the augmentation pipeline might fur-
ther improve the average performance. Contrast Limited Adaptive Histogram Equalization (CLAHE)
for instance could be a suitable candidate, since its applies local contrast enhancement based on need.

Furthermore, it could be useful to train additional models based on less effective model blueprints
for the attention ResUNet analysis . Since the performance of the best model was already near the
ceiling, further improvements were minimal and hard to precisely quantify. By using an ineffective base
model, the improvements, if there are any, will be bigger and thus more easily ascribable to the change
in architecture.
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Chapter 5

Conclusion

To summarize, in this paper a deep learning model was constructed based on literature and a performed
grid search for semantic segmentation of a catheter in VFSS footage. The grid search revealed that
adaptive gradient based optimizers like adam and adamW are generally better for the training models
for this task, as are overlap-based loss functions. Furthermore, it was observed that the addition of
augmentations to the dataset and attention mechanisms to the model architecture further improved
model performance, with augmentations especially having a significant impact on generalization. All of
this culminated in a final model employing an Attention ResUNet architecture, achieving average Dice
scores upwards of 0.87 on evaluation sets.
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