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Wi-Fi signals can reveal patterns of human activity by analyzing how move-
ment disturbs signal propagation. While prior work on Channel State Infor-
mation (CSI) has shown promise for indoor activity recognition, it typically
assumes sensor placement within the monitored environment or in adjacent
rooms. This study investigates a more constrained and privacy-sensitive sce-
nario: can activity inside a home be inferred using low-cost wireless devices
placed entirely outside, with no interior access? Using a custom active sens-
ing setup, we collected over 600 minutes of CSI data across two residential
apartments, capturing room-level presence under varying wall materials,
device placements, and participant behavior. We evaluated multiple learn-
ing strategies—including supervised, unsupervised, and semi-supervised
models—to assess the feasibility of inferring interior activity from exterior
signals. Results show that room-level localization is achievable even through
thick residential walls, though performance varies substantially with envi-
ronmental structure and sensor configuration. These findings demonstrate
the viability of a previously unexplored form of passive activity inference
and raise important questions about wireless privacy in domestic settings.

Additional KeyWords and Phrases: Wi-Fi sensing, channel state information,
human activity recognition, through-wall sensing, ESP32, privacy, one-sided,
localization, semi-supervised clustering, deep learning

1 INTRODUCTION
Human Activity Recognition (HAR) using Wi-Fi signals has gained
significant attention due to its unobtrusive sensing capabilities.
Channel State Information, which captures amplitude and phase
variations across Wi-Fi subcarriers, has proven particularly effective
for detecting fine-grained motion [16]. CSI enables recognition of
subtle activities such as breathing [18] or hand gestures [22], and
offers privacy advantages over camera-based systems by relying on
signal reflections instead of visual data [2].
Wi-Fi CSI sensing has increasingly been proposed as a privacy-

preserving alternative to camera-based and wearable activity recog-
nition systems, especially in health and eldercare contexts. Unlike
cameras, CSI does not capture visual or personally identifiable data,
and unlike wearables, it requires no physical contact or active com-
pliance—making it well-suited for continuous monitoring of individ-
uals who may forget, reject, or be unable to use body-worn devices.
This is particularly relevant for older adults and individuals with
neurodegenerative conditions, where reliable in-home sensing is
critical but intrusive solutions are often unacceptable [5]. Recent
studies demonstrate that CSI-based systems can detect subtle human
motions—such as tremors or hand gestures—with high temporal
precision, enabling non-contact health monitoring in everyday resi-
dential settings [6]. These characteristics position CSI sensing as a
promising tool for unobtrusive, dignity-preserving monitoring of
physical activity in vulnerable populations.
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Most existing CSI-based HAR systems rely on sensors placed
inside the monitored space, often assuming line-of-sight (LOS) be-
tween transmitters and receivers. However,Wi-Fi signals are capable
of penetrating walls, raising the possibility of activity inference from
outside a building. While earlier studies have investigated through-
wall sensing within indoor environments [23], little is known about
sensing in fully external, adversarial conditions—where neither the
transmitter nor the receiver has access to the interior.
This work explores that scenario directly: can low-cost ESP32

devices placed entirely outside a building detect in which room a
person is located, based solely on Wi-Fi Channel State Information?
We use an active CSI sensing setup, where an ESP-NOW-enabled
transmitter broadcasts packets to a passive receiver placed on the
building’s exterior. CSI spectrograms derived from the received sig-
nals are used to classify spatially localized activity — specifically,
presence in the kitchen, hallway, or bathroom — using both super-
vised deep learning and unsupervised or semi-supervised clustering
techniques.

Research question (RQ): To what extent canWi-Fi CSI collected
from outside a building be used to infer room-level occupancy in-
doors?

To explore this overarching question, we examine the following
sub-questions:

• SRQ1: How does transmitter orientation (0°, ±45°) and shield-
ing (open vs. boxed) affect classification and clustering accu-
racy and F1 scores for room-level presence detection?

• SRQ2: What classification accuracy and F1 scores can be
achieved for room-level human activity recognition using su-
pervised, unsupervised, and semi-supervised models trained
on CSI spectrograms?

• SRQ3: How does sensing performance (in terms of accuracy
and variability) generalize across two different apartment
layouts and multiple participants?

This set of questions is relevant both technically and socially, as
it explores whether activity inside a private home can be inferred
using inexpensive external devices. By challenging the traditional
notion that walls guarantee privacy, this research opens up impor-
tant discussions about the boundaries of domestic space, personal
security, and the ethical implications of ambient wireless surveil-
lance.
The remainder of this thesis is structured as follows. Section 2

reviews prior work on human activity recognition using Wi-Fi CSI
and related sensing modalities. Section 3 describes the experimental
setup and data collection process across two apartment environ-
ments. Section 4 details the data preprocessing steps and modeling
strategies used for activity classification. Section 5 presents the
experimental results, structured by environment, model type, and
configuration sensitivity. Section 6 discusses the findings in depth,
including the strengths and limitations of the study, and Section 7
concludes with a summary and directions for future research.
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2 RELATED WORK
CSI-based Wi-Fi sensing has been widely explored for HAR tasks.
Early systems such as E-eyes [27] and CARM [26] demonstrated that
variations in wireless propagation, caused by human movement,
could be captured using Intel 5300 NICs with custom drivers [12].
These works showed successful activity classification in indoor
and LOS scenarios. Subsequent models incorporated deep learning
techniques such as convolutional and recurrent neural networks to
improve performance [25, 29].
Beyond line-of-sight (LOS) environments, prior research has

demonstrated that CSI can detect activity in non-line-of-sight or
through-wall scenarios [23]. These studies commonly involve sensor
placements inside buildings or in adjacent rooms separated by thin
interior walls, allowing relatively direct or low-attenuation signal
paths. While these configurations show the feasibility of through-
wall sensing, they typically assume some degree of proximity and
structural simplicity.

The evolution of CSI-capable hardware has also enabled broader
deployment. Intel 5300 NICs offered high-quality CSI but were lim-
ited by power and platform constraints. Atheros and Broadcom
chipsets later enabled embedded platforms such as Raspberry Pi to
be used for CSI collection [11, 28]. Recent developments have made
it possible to collect CSI data on ESP32 microcontrollers, which are
inexpensive, energy-efficient, and easy to deploy [14, 23].
This study makes four contributions to the field of CSI-based

human activity recognition. First, it investigates a rarely explored
sensing configuration in which both the transmitter and receiver
are positioned on the same side of the wall—such as in a shared
hallway or entirely outside the apartment—with no access to the
monitored interior. To our knowledge, fully external, one-sided sens-
ing setups have only been reported once [13]. Second, the study
collects 648 minutes of labeled CSI data across two distinct apart-
ment environments, enabling a more comprehensive evaluation of
model performance. Third, we apply a range of learning strategies,
including supervised classification with a CNN [15], unsupervised
clustering using K-Means [17] and GaussianMixtureModels [7], and
semi-supervised clustering with MPCK-Means-M-F [4] and COP-
KMeans [24] to compare performance across labeled and unlabeled
conditions. Finally, we assess how sensing performance varies by
apartment layout, wall materials, transmitter orientation, shielding,
and participant identity—offering insight into the environmental
and human factors that affect CSI-based inference.

3 DATA ACQUISITION
To evaluate the feasibility of one-sided, through-wall human ac-
tivity recognition using CSI, we conducted a series of structured
experiments across two different residential environments. This
section describes the hardware setup, experimental design, and data
collection protocols used in the study. We outline the roles of the
ESP32-C6 [9] devices, the spatial configurations in each apartment,
and the procedures used to label room-level activity. Special atten-
tion is given to how environmental variation, participant behavior,
and potential sensing limitations were managed to ensure consistent
and interpretable data.

3.1 Experimental Setup and Hardware
The sensing system consisted of two ESP32-C6 [9] boards configured
for active sensing. One acted as a transmitter, sending ESP-NOW
packets at 20 Hz, while the other functioned as a passive receiver
connected to a Raspberry Pi 4B via USB. CSI data was extracted
using Espressif’s open-source ESP-CSI toolchain [1], and the Pi
recorded timestamped packets for later processing. Both ESP32’s
were equipped with ALFA Network APA-M25 directional panel an-
tennas [3] to enhance signal directivity.

In Apartment A , the transmitter was placed 1meter in front of the
entrance door, and the receiver was positioned 2 metes to the side,
mounted on the exterior wall of the apartment, within the shared
hallway of the building. The full layout, including sensor placements,
is shown in Figure 1a. This parallel arrangement ensured that signal
propagation occurred through a solid reinforced concrete wall. To
suppress side-path signal leakage and increase sensitivity to interior
activity, the receiver was partially shielded with aluminum foil.
Example transmitter setup combinations are illustrated in Figure 2.

Six configurations were tested by combining:

• Transmitter orientation: 0° (in front of the door), 45° left,
and 45° right

• Shielding condition: open-air vs. transmitter enclosed in
a cardboard box lined with aluminum foil, with the opening
facing the door

A sample of these experimental configurations is shown in Figure 2.
Each configuration in Apartment A was repeated across three

participants, with each participant completing two trials per con-
figuration. In each trial, four activity conditions—movement in the
kitchen, hallway, and bathroom, and an empty apartment base-
line—were recorded. The order of these activities was randomized
using the Random.org List Randomizer service [20] to prevent order
effects. Each condition lasted for 3 minutes, resulting in a 12-minute
CSI recording per trial. With 3 angles × 2 shielding conditions × 2
trials × 3 participants, a total of 36 recording sessions were collected
in Apartment A, amounting to 432 minutes of CSI data sampled at
20Hz.

During preliminary calibration, a section of the kitchen in Apart-
ment Awas found to be consistently unreachable by any of the tested
transmitter-receiver placements. This region, marked in Figure 1a
with a hatch pattern, produced CSI signatures indistinguishable
from the empty apartment baseline. To avoid contaminating the
kitchen class label, participants were explicitly instructed not to
enter this dead zone during recording. Consequently, all kitchen
activity was constrained to the signal-reachable portion of the room.
To evaluate the reproducibility of the sensing approach in a dif-

ferent spatial context, an additional round of data collection was
conducted in a second apartment with a distinct layout and wall
materials. Unlike Apartment A, which was a conventional brick-and-
concrete residential unit, Apartment B was a prefabricated shipping
container apartment. This structure features thinner walls, metal
framing, and more prominent glass elements, such as large win-
dows and a partially glazed entrance. Due to spatial constraints, the
transmitter in Apartment B was mounted only 1.5m away from the
door, compared to 2m in Apartment A. The same six transmitter
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(a) Apartment A: kitchen, hallway, bathroom. Transmitter
placements A–C = left/front/right.

(b) Apartment B: kitchen,
bedroom, bathroom.
Transmitter placements
A–C = right/front/left.

Fig. 1. Layouts and sensor placements in Apartment A and Apartment B.

(a) Open - Front (b) Open - Right

(c) Boxed - Front (d) Boxed - Right

Fig. 2. Example transmitter configurations in Apartment A. Rows show
shielding condition (open, boxed); columns show orientation (front, right).

configurations were replicated in Apartment B, using identical place-
ment logic, preprocessing steps, and experimental procedures.While
Apartment A included labeled regions for kitchen, hallway, and
bathroom activities, the layout of Apartment B featured a kitchen,
bedroom, and bathroom. Thus, although the kitchen and bathroom
classes were preserved across environments, the hallway class in
Apartment A was replaced by a bedroom class in Apartment B. All
analyses—including supervised classification, unsupervised cluster-
ing, and semi-supervised clustering—were repeated using data from
the new environment, with models retrained from scratch but the
pipeline held constant.

To minimize ambient interference from other residents, all record-
ingswere conducted onweekdays between 08:00–12:30 and 13:45–17:30.
These time windows were selected after pilot trials showed signifi-
cantly lower classification accuracy when neighboring apartments
were occupied.

4 METHODOLOGY
This section outlines the full processing and modeling pipeline used
to transform raw CSI data into room-level activity predictions. We
begin by introducing the design rationale and formal threat model
that define the one-sided sensing scenario and its constraints. Next,
we describe the preprocessing steps applied to clean and standardize
the data, followed by the supervised and clustering-based learning
strategies used to infer activity. The goal is to provide a transpar-
ent account of the modeling choices and how they align with the
study’s objective of evaluating generalization across environments
and transmitter configurations.

4.1 Design Rationale and Threat Model
The system was designed to reflect a realistic low-resource adver-
sarial setting using only off-the-shelf hardware and minimal compu-
tational power. All sensing was performed with ESP32C6 microcon-
trollers, without relying on access points, internal infrastructure, or
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interior placement. This setup mimics conditions where an external
observer attempts localization using commodity devices alone.
To match these constraints, all models were chosen for their

low computational footprint and ease of deployment. A compact
convolutional neural network (CNN) was selected for supervised
classification, offering a strong balance between accuracy and ef-
ficiency (see Appendix A for architecture details). More complex
architectures such as LSTMs or Transformers were evaluated but
showed no consistent benefit. Clustering and semi-supervised algo-
rithms were likewise selected based on their simplicity and ability
to run without GPU acceleration or large memory requirements.
All models, including the CNN and clustering methods, completed
training or fitting in under five minutes on a standard desktop CPU
(Intel Core i5-7500), suggesting potential for future deployment on
embedded or mobile platforms.

4.2 Preprocessing and Feature Extraction
Raw CSI data was first loaded and processed by calculating the am-
plitude of each complex subcarrier. Null subcarriers were excluded
prior to further processing as they carry no data. To reduce noise
and artifacts, three sequential filtering steps were applied: a Hampel
filter [19] was used to remove outliers, followed by Hamming win-
dow smoothing [21] to attenuate short-term fluctuations, and finally
wavelet-based denoising [8] to reduce multiscale signal noise.

After filtering, the data was normalized using standard score
normalization (z-score) across all samples. The normalized dataset
was then segmented by class and subcarrier, and converted into
windows of 2 seconds (40 frames at 20 Hz). Each resulting sample
had the shape 40 (time steps) × 52 (subcarriers). An illustration of a
spectrogram before and after preprocessing is shown in Figure 3.

Fig. 3. Example 8 second CSI spectrogram before (top) and after (bottom)
preprocessing for kitchen activity in apartment A.

4.3 Supervised Learning
Windowed samples were used to train a convolutional neural net-
work classifier. The full architecture is provided in Appendix A.

Stratified 10-fold cross-validation was performed to evaluate the
model, and the entire process was repeated five times to ensure sta-
tistical stability. For each run, classification metrics such as accuracy,
precision, recall, and F1-score were recorded.

The model was trained using the Adam optimizer with a learning
rate of 0.001, a batch size of 16, and for 20 epochs. The loss function
was categorical cross-entropy, suitable for multi-class classification.

4.4 Dimensionality Reduction and Unsupervised
Clustering

For unsupervised clustering, the filtered and windowed CSI data
underwent two-stage dimensionality reduction. First, we applied
temporal Principal Component Analysis (tPCA) [10] to each sub-
carrier, reducing the 40 time steps per subcarrier to 10 temporal
components. This compressed representation was then flattened
across all subcarriers into a single feature vector for each window.
A second PCA step was applied to these vectors to reduce overall
dimensionality to 5.

The resulting 5-dimensional vectorswere clustered using K-Means
and Gaussian Mixture Models. Clustering performance was evalu-
ated using Hungarian-mapped accuracy and F1 score.

4.5 Semi-Supervised Clustering
The same PCA-reduced data was used for semi-supervised clustering
using the MPCK-Means-M-F and COP-KMeans algorithms. A 20-
fold stratified cross-validation protocol was adopted to simulate a
low-label scenario. In each iteration, one fold (approximately 5% of
the data) was treated as labeled, while the remaining 19 folds were
considered fully unlabeled.
From the labeled fold, pairwise constraints were generated as

follows: all sample pairs with the same class label were assigned
must-link constraints, and all pairs with different class labels were
assigned cannot-link constraints. These constraints were used dur-
ing clustering, but the labeled samples themselves were excluded
from evaluation.

For each run clustering performancewas assessed usingHungarian-
mapped accuracy and F1 score.

5 RESULTS
This section presents the performance outcomes of the proposed
activity recognition approach across several experimental axes. The
analysis is structured to reflect the primary evaluation goals: as-
sessing performance in a controlled setting, comparing supervised
and clustering models, and examining generalization across envi-
ronments. Each subsection highlights model behavior, using both
accuracy and F1 score metrics (reported as mean ± standard devia-
tion in percentage). Full performance tables, including all accuracy
and F1 score values across models and configurations, are provided
in Appendix B.

5.1 Performance in a Controlled Setting (Apartment A)
Experiments in Apartment A, a conventional concrete-walled envi-
ronment, yielded consistently high performance across all config-
urations andmodels. Supervised classification using a CNN achieved
strong room-level recognition, with accuracy ranging from 91.8%± 5.5
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(Open-Left) to 96.1% ± 4.5 (Boxed-Front), and F1 scores closely
matching accuracy across all settings. These results demonstrate
the robustness of CNN-based classification in stable indoor environ-
ments with limited signal interference.

Clustering-based methods also performed reasonably well in this
environment. MPCK-Means-M-F reached up to 80.3% ± 14.7 accu-
racy and 79.1% ± 15.6 F1 score (Boxed-Front), outperforming other
clustering approaches. COP-KMeans trailed behind with accuracy
and F1 scores typically in the 55–72% range. GMM clustering showed
surprisingly strong results in some cases, reaching up to 80.8%± 14.6
accuracy. In contrast, K-Means lagged behind, showing both lower
mean performance and higher variance.

5.2 Comparison of Supervised and Clustering Models
Across all configurations in Apartment A, the CNN consistently out-
performed clustering-based approaches. The average CNN accuracy
across all setups was approximately 93.3%, with a comparable F1
score. MPCK-Means-M-F was the top clustering model, followed
by GMM. COP-KMeans and K-Means performed less reliably, often
falling below 60%.

Clustering methods also exhibited substantially higher standard
deviation compared to CNN, indicating greater sensitivity to ini-
tialization and environmental variation. Despite these limitations,
semi-supervised approaches such as MPCK-Means-M-F provide a
viable compromise in settings where fully labeled data is unavailable.
Figure 4 summarizes these results visually.

5.3 Generalization to a Different Apartment Layout
(Apartment B)

Performance in Apartment B — a less controlled setting with thinner
walls, more glass surfaces, and a different spatial layout — was lower

and more variable than in Apartment A. The CNN remained the top
performer, achieving 80.6% ± 5.5 (Boxed-Front) in its best configura-
tion, but dropping to 43.7% ± 8.9 (Open-Left) in the worst. F1 scores
followed the same trend, highlighting the impact of environmental
variability on signal propagation. This performance degradation
across setups is visualized in Figure 5.
Clustering models were more strongly affected by the domain

shift. MPCK-Means-M-F reached a maximum of 62.9% ± 10.9 ac-
curacy and 62.3% ± 10.8 F1 (Boxed-Front), while most other con-
figurations yielded results below 50%. GMM peaked at 57.3% ± 9.7
in Open-Right, but exhibited similar degradation in challenging
layouts. COP-KMeans and K-Means offered little robustness, with
multiple configurations hovering at or below random baseline levels.

6 DISCUSSION
This section interprets the key findings from the experimental re-
sults in light of the study’s goals and practical relevance.We examine
how model performance was affected by environmental variation,
transmitter configuration, and algorithmic approach, with a partic-
ular focus on the generalizability across apartments. The discussion
also addresses key strengths of the study—such as its one-sided
sensing design and use of real apartment layouts—as well as impor-
tant limitations, including data labeling constraints and unmeasured
environmental factors. These reflections inform the practical impli-
cations of the work and suggest avenues for future research.

6.1 Impact of shielding and orientation
Shielding effects varied depending on both the environment and
the transmitter’s orientation. In Apartment A, adding an aluminum-
lined box around the transmitter had little or no consistent effect on
classification or clustering performance. For example, supervised

Fig. 4. Classification accuracy across model types for both apartments.
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Fig. 5. Comparison of CNN classification accuracy across transmitter configurations in both apartments.

classification achieved 96.1% ± 4.5 accuracy and 96.1% ± 4.5 F1 in
the Boxed-Front setup and 93.8% ± 6.2 accuracy and 93.7% ± 6.3 F1
in Open-Front—differences well within the range of expected varia-
tion. Similar patterns were observed across all other orientations in
Apartment A, suggesting that shielding did not meaningfully alter
signal propagation in this more structurally stable environment.

In Apartment B, shielding generally had a limited effect aswell—except
in one configuration. When the transmitter was oriented left, di-
rectly toward the receiver (see Figure 1), performance differed dra-
matically depending on shielding: Boxed-Left reached 79.2% ± 10.0
accuracy and 78.7% ± 10.2 F1, while Open-Left fell to 43.7% ± 8.9
accuracy and 42.5% ± 9.0 F1—the lowest across all test conditions.
This large gap was not observed in other orientations. For example,
shielding made little difference between Boxed-Front (80.6% ± 5.5
accuracy, 79.9% ± 6.0 F1) and Open-Front (76.5% ± 6.3 accuracy,
76.2% ± 6.5 F1), or between Boxed-Right (66.2% ± 11.7 accuracy,
65.2% ± 12.4 F1) and Open-Right (69.8% ± 8.1 accuracy, 69.1% ± 8.6
F1).
These findings suggest that shielding may help improve signal

consistency in cases where the transmitter is oriented directly at
the receiver, especially in reflective environments like Apartment B.
In such cases, the enclosure may narrow the beam path or suppress
undesired side reflections. Outside of this specific setup, however,
shielding did not consistently improve classification performance.
This trend is clearly illustrated in Figure 5 and points to a context-
specific role for shielding that depends on geometric alignment and
environmental complexity.

6.2 Accuracy of HAR using different learning strategies
The supervised convolutional neural network (CNN) consistently
achieved the highest performance across both apartments. Averaged

over all configurations, it reached a mean accuracy of 83.2% and a
mean F1 score of 82.6%, with particularly strong results in Apart-
ment A (e.g., 96.1% ± 4.5 accuracy in Boxed-Front). These results
confirm that supervised deep learning methods are highly effective
when labeled training data is available, offering both high accuracy
and relatively low variance across conditions.

Semi-supervised clustering, particularlyMPCK-Means-M-F, showed
moderate but consistent performance. Its average accuracy was
62.6%, with a mean F1 score of 61.5%. While it did not match CNN
performance, it consistently outperformed unsupervised models
across most configurations and showed less degradation when tran-
sitioning toApartment B. This suggests that even limited supervision—
in the form of pairwise constraints—can substantially improve clus-
tering outcomes in new environments.

Unsupervised clustering methods performed less reliably overall.
GMM was the strongest among them, achieving a mean accuracy of
61.1% and mean F1 score of 58.9%. However, its high variance and
inconsistent results across configurations—particularly in Apart-
ment B—limit its practical utility. K-Means and COP-KMeans both
averaged below 60% accuracy, with overall F1 scores of 56.4% and
56.8% respectively, and struggled to maintain stability in more com-
plex layouts.

These findings underscore the importance of supervision in CSI-
based activity recognition. Supervised CNNmodels provide themost
robust and accurate performance. When labeling is limited, semi-
supervised methods such as MPCK-Means-M-F offer a viable com-
promise. In contrast, unsupervised clustering approaches remain
too unstable for reliable deployment without domain adaptation or
tuning.
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6.3 Generalization across different apartments and
participants

Results show a clear and substantial performance dropwhenmoving
from Apartment A to Apartment B. In Apartment A, classification
and clustering models performed reliably and with low variability
across configurations. In Apartment B, however, overall accuracy
was lower and much more sensitive to transmitter placement. For
example, the CNN model achieved up to 95.7% ± 4.8 in Boxed-Front
(A), but only 80.4% ± 7.1 in Boxed-Front (B), and just 41.5% ± 9.3
in Open-Left (B). These results suggest that apartment layout and
construction materials—such as thinner walls, metal framing, and
increased glass surface area in Apartment B—introduce signal dis-
tortions that make CSI-based sensing more difficult.

Participant-specific analysis showed no consistent differences in
performance across individuals. All participants contributed data
under each configuration, and no systematic advantage or disadvan-
tage was observed (see Table 3). This suggests that in the context
of this study, participant movement patterns and body types had a
negligible impact on the sensing results.
Overall, these findings indicate that the sensing approach is far

more sensitive to environmental structure than to user variation.
Future research should further explore how spatial features like
wall composition, room geometry, and signal leakage affect sensing
robustness, as these are likely to be the limiting factors in real-world
deployments.

6.4 Implications for Real-World Deployment
While this study demonstrates that room-level activity inference
is technically feasible using external Wi-Fi sensing, the real-world
implications are more limited. Even in the best-performing condi-
tions, reliable classification required controlled settings, stable signal
paths, and a highly specific apartment structure. In one apartment,
semi-supervised clustering reached accuracies that could plausibly
compromise a resident’s privacy—suggesting that under the right
conditions, passive presence detection from outside is possible.
However, replicating those conditions in practice is non-trivial.

The sensing setup requires placing visible hardware near the target
apartment, including a receiver mounted to an exterior wall and
a transmitter positioned near the door. These placements are easy
to notice and difficult to conceal, especially in residential settings.
Moreover, results varied significantly across environments, indicat-
ing that signal propagation—and therefore inference reliability—is
highly sensitive to building layout and materials.

In summary, while the potential for privacy intrusion exists, the
barriers to practical deployment remain high. One-sided sensing
may eventually become more viable as hardware improves, but
under current conditions, it is more a proof of concept than an
immediate surveillance threat. Further work is needed to assess
how generalizable these methods are across diverse settings, and to
explore possible mitigations for privacy-aware wireless design.

6.5 Strengths and Limitations
This study presents several notable strengths. First, it explores a
novel and largely unexamined sensing configuration: fully exter-
nal, one-sided through-wall Channel State Information sensing.

This design is both technically challenging and relevant to ongo-
ing discussions about wireless privacy. Second, the use of low-cost
ESP32-C6 hardware and basic directional antennas reflects a realis-
tic, low-resource adversarial model. Third, the dataset is substantial,
consisting of over 600 minutes of labeled CSI recordings across two
distinct apartments, with varied orientations, shielding conditions,
and participant behaviors. Fourth, the study evaluates multiple ma-
chine learning strategies—including supervised, unsupervised, and
semi-supervised approaches—providing a broad assessment of infer-
ence capabilities under different label availability conditions. Finally,
testing was conducted in a disciplined manner, with time-of-day
scheduling to reduce ambient interference and randomized activity
ordering to minimize bias.

Despite these strengths, the study has important limitations. First,
participant activity was not verified using video or motion sen-
sors, so all ground truth labels rely on protocol compliance. Any
deviation from instructed behavior could have introduced labeling
noise. Second, the environmental diversity was limited: experiments
were conducted in only two apartments, which may not capture the
variability present in other environments. Third, while recording
times were chosen to avoid known peak usage periods, no quan-
titative measurements of background RF noise or signal-to-noise
ratios were collected. As a result, the true interference conditions
remain uncharacterized. Fourth, although transmitter shielding was
varied (open-air vs. aluminum-lined box), the physical impact of this
shielding on signal properties was not directly measured, leaving the
observed performance differences difficult to interpret. Fifth, only
a single CNN model architecture was evaluated. This layout was
selected based on early success on initial datasets, but it is likely that
alternative architectures or tuning strategies could yield even higher
performance across some configurations. Sixth, for semi-supervised
clustering, only a single level of supervision was tested—that is, a
fixed number of labeled samples was used to define must-link and
cannot-link constraints. It remains possible that using fewer or more
labeled samples could significantly affect both clustering accuracy
and variability, particularly for MPCK-Means-M-F.

7 CONCLUSION
This paper explored the feasibility of one-sided through-wall human
activity recognition using commodityWi-Fi hardware. By collecting
over 600 minutes of CSI data across two residential environments,
we evaluated the performance of supervised, unsupervised, and
semi-supervised learning models in classifying room-level presence
from outside the building. Results showed that high classification ac-
curacy is achievable in structurally favorable settings, even without
interior access or line-of-sight.
However, performance varied significantly across apartments,

indicating that environmental factors such as wall composition,
layout, and signal multipath effects play a critical role in sensing
reliability. Among the evaluated methods, supervised CNN models
performed best, while semi-supervised clustering showed promise
in low-label scenarios, though with higher variance.
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Overall, the findings demonstrate that external Wi-Fi sensing can
enable spatial inference under the right conditions, but its effective-
ness remains highly context-dependent. Future work should focus
on improving robustness across diverse environments.
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A CNN ARCHITECTURE
The CNN model used for supervised classification consists of two
convolutional layers followed by max pooling, a flattening opera-
tion, and two fully connected layers. The final layer outputs class
probabilities via softmax activation. The detailed architecture is
summarized in Table 1.

Table 1. CNN architecture used for CSI-based activity classification

Layer Description
Input 40 × 52 × 1 CSI window
Conv2D 32 filters, 2 × 2, ReLU, same padding
MaxPooling2D 3 × 3
Conv2D 16 filters, 2 × 2, ReLU, same padding
MaxPooling2D 2 × 2
Flatten –
Dense 64 units, ReLU
Dropout 0.1
Dense Softmax, output = number of classes

AI STATEMENT
Portions of this paper were refactored using OpenAI’s ChatGPT-
4o to improve clarity, structure, and academic tone. All analysis,
results, and interpretations are original, and full responsibility for
the content remains with the author.
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B DETAILED RESULTS
This section presents the complete classification results across all experimental conditions. Table 2 summarizes the performance of all
models—including supervised (CNN), unsupervised (K-Means, GMM), and semi-supervised (MPCK-Means-M-F, COP-KMeans)—across
different apartment setups and transmitter configurations. Table 3 provides a detailed breakdown of performance by participant for both
apartments, reporting accuracy and F1 scores for each model.

Table 2. Performance comparison of supervised (CNN) and clustering-based (K-Means, GMM, MPCK-Means-M-F, COP-KMeans) methods across apartment
setups. All values are mean ± standard deviation in percentage.

Apartment Setup CNN K-Means GMM MPCK-Means-M-F COP-KMeans
Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

A Boxed-Front 96.1 ± 4.5 96.1 ± 4.5 71.6 ± 16.0 69.1 ± 17.2 80.8 ± 14.6 78.3 ± 17.7 80.3 ± 14.7 79.1 ± 15.6 72.2 ± 15.1 70.8 ± 15.8
A Boxed-Left 92.1 ± 5.9 92.0 ± 6.0 58.0 ± 10.2 55.4 ± 13.9 71.0 ± 14.4 66.4 ± 19.4 73.4 ± 10.2 71.5 ± 12.1 60.3 ± 7.2 59.0 ± 8.4
A Boxed-Right 93.0 ± 4.6 92.8 ± 4.8 54.0 ± 9.5 48.3 ± 9.7 66.7 ± 12.3 61.7 ± 12.9 77.4 ± 6.6 75.4 ± 7.9 57.5 ± 11.1 53.7 ± 12.5
A Open-Front 93.8 ± 6.2 93.7 ± 6.3 65.9 ± 12.1 63.4 ± 12.5 80.1 ± 16.7 78.5 ± 18.0 78.6 ± 13.8 78.0 ± 13.8 68.3 ± 11.9 66.9 ± 12.3
A Open-Left 91.8 ± 5.5 91.7 ± 5.7 54.1 ± 9.0 51.8 ± 7.6 67.7 ± 12.9 62.4 ± 15.3 70.9 ± 9.2 68.9 ± 9.7 55.4 ± 9.6 53.9 ± 9.2
A Open-Right 92.9 ± 6.0 92.7 ± 6.3 55.4 ± 7.5 51.1 ± 6.7 64.8 ± 14.3 59.1 ± 17.8 72.8 ± 10.1 71.0 ± 11.2 55.3 ± 8.0 52.2 ± 8.2
B Boxed-Front 80.6 ± 5.5 79.9 ± 6.0 55.9 ± 1.9 54.0 ± 3.5 49.7 ± 2.5 47.6 ± 3.6 62.9 ± 10.9 62.3 ± 10.8 61.2 ± 10.7 60.3 ± 11.3
B Boxed-Left 79.2 ± 10.0 78.7 ± 10.2 45.3 ± 9.1 46.2 ± 9.8 47.3 ± 8.7 47.8 ± 10.0 50.3 ± 10.8 50.5 ± 11.0 45.6 ± 8.8 46.4 ± 9.6
B Boxed-Right 66.2 ± 11.7 65.2 ± 12.4 44.1 ± 0.9 44.0 ± 1.6 39.2 ± 5.5 36.9 ± 5.7 48.1 ± 4.9 47.6 ± 5.1 44.7 ± 1.8 44.4 ± 1.7
B Open-Front 76.5 ± 6.3 76.2 ± 6.5 45.9 ± 6.9 44.7 ± 8.9 43.6 ± 2.4 39.9 ± 5.7 46.7 ± 5.5 45.9 ± 5.7 47.4 ± 6.6 46.9 ± 7.4
B Open-Left 43.7 ± 8.9 42.5 ± 9.0 36.2 ± 5.7 36.2 ± 5.8 36.5 ± 7.0 35.9 ± 7.0 37.0 ± 5.9 37.0 ± 6.0 37.1 ± 5.5 37.0 ± 5.6
B Open-Right 69.8 ± 8.1 69.1 ± 8.6 54.7 ± 7.5 52.9 ± 8.5 57.3 ± 9.7 55.3 ± 10.2 57.9 ± 9.6 57.9 ± 9.8 56.1 ± 8.5 56.1 ± 9.4

Table 3. Performance comparison per participant for supervised (CNN) and clustering-based (K-Means, GMM, MPCK-Means-M-F, COP-KMeans) methods
across apartments. All values are mean ± standard deviation in percentage.

Participant Apartment CNN K-Means GMM MPCK-Means-M-F COP-KMeans
Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Participant 1 A 92.2 ± 6.0 92.1 ± 6.2 58.6 ± 13.1 55.7 ± 14.1 67.2 ± 15.0 63.3 ± 16.7 73.9 ± 12.1 72.6 ± 12.5 59.6 ± 12.4 57.6 ± 13.2
Participant 2 A 94.7 ± 4.4 94.7 ± 4.5 61.8 ± 13.2 59.0 ± 14.3 75.9 ± 14.6 72.6 ± 17.3 79.2 ± 11.0 78.0 ± 11.9 63.4 ± 13.2 61.7 ± 14.0
Participant 3 A 92.9 ± 6.1 92.7 ± 6.3 59.1 ± 12.1 54.7 ± 13.0 72.4 ± 15.9 67.4 ± 20.6 73.7 ± 10.7 71.3 ± 12.2 61.5 ± 11.8 58.9 ± 12.7
Participant 1 B 64.8 ± 16.6 64.0 ± 17.0 41.4 ± 9.2 40.3 ± 9.6 39.1 ± 7.4 37.1 ± 7.5 45.3 ± 10.0 45.0 ± 10.0 41.6 ± 8.3 41.2 ± 8.5
Participant 2 B 70.6 ± 14.7 69.8 ± 15.2 48.1 ± 7.0 46.8 ± 5.2 49.4 ± 10.2 46.6 ± 10.9 55.3 ± 13.5 54.8 ± 13.5 52.9 ± 12.4 52.8 ± 12.4
Participant 3 B 72.6 ± 13.2 72.0 ± 13.5 51.6 ± 7.6 51.9 ± 8.2 48.3 ± 7.0 47.9 ± 7.9 50.7 ± 9.0 50.8 ± 9.2 51.6 ± 7.6 51.7 ± 8.3
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