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Abstract

Evaluation of knee joint loading is essential for monitoring recovery and supporting return-to-sport
(RTS) decisions following anterior cruciate ligament reconstruction (ACLR). This study investigates
the estimation of three-dimensional knee joint kinetics from inertial measurement unit (IMU) data
using a physics-informed neural network (PINN) during walking and single-leg hop tests.

A data processing pipeline was developed to align and generalize inertial and optical motion capture
data. Segment kinematics derived from IMUs were used as input to estimate knee joint kinetics,
while enabling three-dimensional inverse dynamics through rigid-body modeling. An adaptable neural
network framework was designed to incorporate physical constraints via a loss function based on
three-dimensional segment-based inverse dynamics.

The PINN was compared to a baseline data-driven model to evaluate prediction performance. While
the physical constraints supported biomechanical interpretable estimations, the PINN did not outper-
form the baseline model. Both models showed reduced accuracy for kinetic components with lower
magnitudes, particularly in the mediolateral direction. Moreover, no consistent improvements were
found under limited data conditions or varied physical loss weighting. These findings suggest that
physical constraints may not enhance performance when data quantity or consistency is insufficient.

Despite these limitations, this study provides a methodological basis for future research on IMU-based
kinetic estimation in ACLR rehabilitation. Further development is needed to improve model accuracy
and robustness. With sufficient performance, such models could enable subject-specific assessments
of limb asymmetry and support RTS decision-making, ultimately reducing the risk of reinjury.
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1 Introduction

Anterior cruciate ligament (ACL) tears are among the most common knee injuries, particularly in
sports, with an estimated incidence of 120,000 cases annually in the United States [1, 2]. The
ACL plays an essential role in stabilizing the knee joint by preventing anterior translation of the
tibia relative to the femur and by limiting hyperextension [2–4]. Excessive knee hyperextension or
rotational loading, often occurring during sports, can result in ACL rupture. Due to the ligament’s
limited healing capacity and the resulting knee instability, ACL reconstruction (ACLR) is often required
to restore knee function [3, 5]. The primary goal of ACLR is to enable patients to safely return to
their preinjury activity levels, usually referred to as return to sports (RTS) [4–7]. Reconstruction
typically involves replacement of the ligament with a graft harvested from the hamstring tendon,
patellar ligament or quadriceps tendon [5].

Over the years, several goal or criteria based guidelines have been developed for ACLR rehabilitation
[1, 2, 8, 9]. These guidelines involve multiple phases, in which patients recover from surgery, improve
strength, and enhance neuromuscular control to ultimately return to their preinjury activity level [10].
Throughout this process, clinicians rely on functional performance tests that provide objective, reliable
and valid outcomes for knee quality assessment [8].

Walking assessments are commonly included, as asymmetrical walking patterns have been reported
in patients who fail RTS criteria [1, 11, 12]. In particular, significant differences in knee joint kinetics
have been found between the injured and contralateral limb during walking, even in later phases of
rehabilitation [12–14]. These include reduced peak knee extension and flexion moments, and altered
GRFs. In addition, the single-leg hop for distance (SLH) is one of the most frequently used RTS
tests. This test allows for reliable comparison between injured limb and contralateral healthy limb
[8]. Previous studies have shown significant differences in knee kinetics between the injured and
contralateral limbs during SLH [8, 15, 16]. These include reduced knee joint moments, particularly
in the sagittal plane, and lower vertical GRFs on the injured limb.

Notably, these kinetic asymmetries have been observed months after surgery, even in ACLR patients
who meet criteria for RTS [12, 17]. This indicates that traditional performance tests may underesti-
mate the presence of neuromuscular deficits. The observed kinetic alterations reflect compensatory
movement patterns, which may increase the risk of reinjury or delayed recovery, a concern emphasized
by Gokeler et al. [7]. The authors further reported that only 65% of patients return to their preinjury
level of sports, and that current RTS assessments fail to identify those at increased risk of reinjury
[7]. Therefore, quantitative movement analysis provides a way to enhance decision-making for RTS
during ACLR rehabilitation, by enabling more objective evaluation of joint loading [6, 18].

Optical motion capture (OMC) systems, in combination with force plates (FPs), are considered
the gold standard for quantitative movement analysis [13, 14, 17, 19–22]. These system enable the
assessment of joint loading, reflected in three-dimensional joint reaction forces and net joint moments
[19, 20]. However, this approach contains several downsides, including lab dependency, costs, and
extensive time for preparation. In the context of ACLR rehabilitation, on-field measurements in a
sport-related environment are essential to support decision making for RTS, preferring lab independent
assessment [6, 21]. Due to their cost-effectiveness, portability and ability to monitor on-field, inertial
measurement units (IMUs) offer a promising alternative for quantitative motion analysis outside the
lab [23]. Inertial motion capture (IMC) systems integrate multiple IMUs toe estimate full-body
kinematics. Commercial IMC systems such as Xsens MVN (Xsens, Enschede, the Netherlands) have
shown good agreement with OMC systems in terms of joint angle estimation [21]. This makes them
a practical tool for monitoring kinematic recovery during ACLR rehabilitation in on-field settings.
However, IMUs cannot directly measure external kinetics at the ground interface, such as ground
reaction forces (GRFs) and ground reaction moments (GRMs), which are essential for estimating
joint reaction forces and net joint moments [19, 20]. Therefore, computational methods are needed
to obtain these kinetic parameters.

Machine learning (ML) approaches have shown promise for estimating joint kinetics without direct
GRF or GRM measurements [24]. For instance, Stetter et al. [25] investigated the estimation of
knee joint forces (KJFs) using a ML approach during relevant movements, such as walking and SLH.
The authors showed promising performance of a feedforward neural network (FNN) in estimating
KJFs based on data from two IMUs. However, they reported reduced prediction accuracy for the
mediolateral (M-L) force components, likely due to their relative low magnitude. In such cases, small
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absolute errors can have a large effect on the accuracy of the output estimates. This limitation
is critical in the context of ACLR, where accurate assessment of three-dimensional joint loading is
essential to support decision-making.

To address these challenges, a promising approach is to constrain ML model outputs through biome-
chanical or physical principles. Hybrid models that integrate both data-driven learning and biome-
chanical constraints have shown potential for improving prediction robustness and interpretation,
particularly for level walking and running in healthy cohorts [26–28]. Building on this concept, a class
of hybrid models called physics-informed neural networks (PINNs) has recently been introduced [29,
30]. PINNs incorporate known differential equations that represent underlying physiological mecha-
nisms directly into the training of a neural network. This incorporation allows the model to satisfy
both data-driven as well as physical interpretation. By embedding physical constraints such as inverse
dynamics, PINNs are able to learn and regularize interpretable movement patterns even from sparse
datasets [30, 31]. Notably, Stetter et al. [25] also identified limited training data as a key limitation
on model performance. This further highlights the relevance of PINNs in biomechanical applications
where obtaining large, high-quality datasets is difficult. This is particularly relevant in the context of
ACLR rehabilitation, where data collection is often limited due to small sample sizes and inter-subject
variability [7, 8]. In such cases, the ability of PINNs to generalize from limited data while incorporating
biomechanical interpretation makes them a promising tool for supporting decision-making.

This study focuses on establishing model performance of a PINN in estimating knee kinetics for healthy
control limbs and injured limbs within the context of ACLR rehabilitation. While analysis of limb
symmetry in ACLR patients is clinically important, it is beyond the scope of this work. Establishing
robust and accurate estimation models for these distinct cohorts is a necessary step before extending
the approach to more complex, subject-specific asymmetry analyses.

Hence, the research question of this study is defined as follows:
How does incorporation of three-dimensional inverse dynamics influence the estimation of three-
dimensional knee joint kinetics from IMU data using a PINN during walking and single-leg hop tests
in the context of ACLR rehabilitation?

It is hypothesized that the use of the PINN approach will enhance the estimation performance of ki-
netic components with relatively low magnitudes through improved physical interpretation, compared
to a baseline data-driven neural network. Furthermore, these advantages are expected to be most
noticeable when training data is limited.

To answer the research question, the following sub-questions in this study are defined:

• How can raw IMC and OMC data be spatiotemporal aligned and generalized?

• How can segment kinematics be obtained from IMU data in a way that (1) mimics the
Xsens MVN biomechanical model for use as input to a neural network, and (2) enables three-
dimensional inverse dynamics for rigid-body segments to support physical loss computation?

• How can three-dimensional inverse dynamics be implemented into neural network development
to support biomechanical interpretable estimations?

• How can an adaptable neural network framework be designed to incorporate biomechanical
constraints, including a physical loss function based on three-dimensional inverse dynamics?
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2 Materials and methods

In Section 2.1, the details of the dataset used in this study are presented. In Section 2.2, the
data processing steps are presented and discussed. Part of the processed data is necessary for the
formulated physical loss function, explained in Section 2.3. Further, the processed data as well as
the formulated physical loss function are used for developing various models using the adaptable
framework presented in Section 2.4. The development of each model is done through a developed
deep learning approach, which is explained in Section 2.5. In Section 2.6, a number of performance
metrics are discussed for evaluating the quality of the various developed models.

2.1 Dataset

The dataset contains two participant populations: healthy control subjects and ACLR patients. Sub-
ject characteristics are given in Table 1.

Table 1. Overview of subject characteristics. Mean ± standard deviation (SD) values are shown.

Characteristic Healthy control subjects ACLR patients

(n = 9) (n = 8)

Gender (M/F) 3/6 2/6

Body height (cm) 173.6 ± 7.8 173.2 ± 9.4

Body mass (kg) 70.5 ± 8.9 72.5 ± 17.7

Injury leg (L/R) 2/6

Time since surgery (months) 8.8 ± 2.8

Time since start rehabilitation (months) 8.0 ± 2.8

Participants were monitored in the Movement Lab of Roessingh Research and Development (Enschede,
the Netherlands). This lab contains an eight-camera OMC system (VICON, Oxford, UK), connected
and configured with two embedded FPs (OR6-5-1000, AMTI, Watertown, MA, USA). Besides, the
lab has an IMC system consisting of MTw Awinda IMUs (Xsens, Enschede, the Netherlands).

Prior to the actual measurements, reflective markers and IMUs were placed and fixated on the
participants, as illustrated in Figure 1. Following the instruction of the OMC system, a total of
30 reflective markers were placed on bony landmarks [19]. Additionally, a total of eight IMUs were
placed across the lower body and sternum following the recommended locations [23]. Hence, each
IMU was mounted on a fabricated flat plastic rig containing a cluster of three additional reflective
markers [32]. This rig provides a possibility for spatiotemporal alignment between the IMC and OMC
systems.
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Figure 1. Anterior and posterior view of measurement setup, including reflective markers and IMUs placed
across lower body and sternum [19, 23]. IMUs were mounted on a rig, containing additional reflective markers
[32]. Created with BioRender.com.

After placement and fixation of the necessary markers and sensors, participants were instructed to
perform necessary calibration tasks, including (static) N-pose and segment-specific movement. The
latter includes spinal bending, knee bending and toe tipping, each for five repetitions. Subsequently,
after familiarization, participants performed two successful trials of walking and SLH (per leg). The
trial was deemed to be successful when correct foot placement on the embedded FPs was achieved.

During the successful trials, trajectories of the reflective markers were recorded at 100 Hz using four
Vero 2.2 MP cameras and four Vantage 5 MP cameras (VICON, Oxford, UK). Additionally, both
FPs collected analog GRFs and GRMs at 1000 Hz, temporally aligned with the marker trajectories.
During immediate post-processing, the Plug-in Gait (PiG) model is applied to achieve target kinetics
sampled at 100 Hz, including digital GRFs, joint reaction forces, and net joint moments [19]. Raw
accelerometer, gyroscope, magnetometer data of the IMUs have been recorded at 40 Hz using MT
Manager (Xsens, Enschede, the Netherlands). The IMU data also includes quaternions, describing
the orientation of the sensors over time.

For the purpose of this study, the dataset was divided into two cohorts: (1) healthy limbs, represented
by non-injured limbs of healthy control subjects, and (2) injured limbs, represented by the ACLR-
affected limbs. Importantly, the contralateral (non-injured) limbs of ACLR patients were not included
in the healthy cohort. This exclusion was implemented to ensure that the healthy cohort reflected
truly unaffected movement patterns, thereby avoiding possible confounds introduced by compensatory
strategies known to persist in non-injured limbs during ACLR rehabilitation [12, 16]. While inter-limb
comparisons within ACLR patients are clinically relevant, such analyses was considered beyond the
scope of the current study.
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2.2 Data processing pipeline

The dataset contains several data files associated with successful walking and SLH trials of all par-
ticipants. For each trial, motion files from the OMC+FP system (c3d-file) as well as from each
individual IMU (txt-file) are present. To address the sub-question concerning spatiotemporal align-
ment and generalization of data from both systems, various processing steps are applied to each trial.
These include: Collect data, prepare data, spatiotemporal alignment, segment motion and normal-
ization. An overview of these steps is provided in Figure 2. A more detailed overview is provided in
Figure B.1 (see Appendix B). All processing steps described in this section were done in MATLAB
R2024a (Mathworks, Inc., Natick, MA, United States).

Figure 2. Overview of data processing steps applied to each trial.

Collect data and prepare data

Motion files associated to each trial were initially imported. Reflective marker trajectories, target
kinetics and sensor kinematics were filtered using a third-order zero-phase (non-causal) low pass
Butterworth filter with a cut-off frequency of 15 Hz, in order to prevent distortion of the data by
high-frequency noise [25]. For obtaining true kinematic motion, gravity component removal was
applied to each IMU. This was achieved by subtracting the average linear acceleration in vertical
direction, measured during static periods of the trial. Angular acceleration of the IMUs and linear
accelerations of the markers were determined, which was required for further steps. To obtain these
accelerations, differentiation was applied using the central difference scheme. Due to the possibility
of gaps present during static periods of the trial, only the data during dynamic period was included.
The dynamic period was extracted based on the linear acceleration of the ankle joint.

Spatiotemporal alignment

In order to compare data from both systems, it is necessary to align them both in spatial and temporal
domains to ensure that measurements correspond to the same locations and time points. All data in
this study was processed at 100 Hz, matching the sampling rate of the target kinetics derived from
the PiG model. The IMU data was resampled to 100 Hz in order to match the sampling frequency of
the target data, required for synchronization. Accelerometer and gyroscope data have been resampled
using linear interpolation, whereas quaternion data was resampled using spherical linear interpolation
(SLERP) [33, 34]. To align with the global spatial configuration of the OMC system, a heading reset
was applied to the IMU data (see Figure B.2 in Appendix B) [32, 35, 36]. Here, it was assumed
that participants moved primarily in the anterior-posterior or x-direction, as defined by the OMC
system. Heading directions in the transverse or xy-plane, for both the optical and inertial motion
data, were estimated using principal component analysis (PCA). This was done to determine the
heading difference in xy-plane of the global reference frame for each IMU with respect to the global
reference frame, defined by the OMC system. As both IMC and OMC systems align in vertical or z-
direction, the heading difference was represented by the angle around this direction (yaw). Specifically,
this heading difference was subsequently calculated as the yaw angle between the principal axis derived
from the global linear acceleration of the IMU and the principal axis derived from one of the reflective
markers of the associated rig. To achieve precise temporal alignment between both systems, cross-
correlation was employed (see Figure B.3 in Appendix B) [27, 32]. Specifically, the norm of the
acceleration recorded by the IMU positioned on the right thigh was computed and compared to the
corresponding acceleration derived from the one of the reflective marker from the corresponding rig.
By identifying the time lag through cross-correlation, the temporal offset was adjusted by trimming
the lagging portion. To ensure both datasets covered an identical time span, the longer sequence
was subsequently truncated. If no sufficient alignment was achieved, the procedure stopped and the
trial was excluded from further processing and analysis. This sufficient alignment was defined by an
excellent correlation (r > 0.90) [37].
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Segment kinematics and kinetics

To accurately represent true body motion in accordance with the anatomical spatial configurations of
body segments, sensor-to-segment alignment was applied to the IMU data [20, 23]. This alignment
process involves both a translational shift from the sensor location to the relevant anatomical origin
and a rotational transformation from the local sensor frame to the local segment frame. To enable
these transformations, an additional reflective marker mounted on the associated rig was used to indi-
cate the sensor location, as this information is not directly available from the IMU data. Additionally,
the PiG model provides virtual marker trajectories that represent joint centers and the orientations
of local segment axes. Each segment includes four virtual markers defined within its local segment
frame: at the origin, along the anterior axis, the proximal (longitudinal) axis, and the lateral axis.
The origin marker corresponds to the center of the distal joint, while the proximal marker represents
the center of the proximal joint. A representative visualization of the joint centers and local segment
axes is provided in Figure 3.

Figure 3. Visualization of local sensor axes and representative local segment axes present in the measurement
setup. Virtual markers represent joint centers and the orientations of local segment axes: Origin marker (blue
dot) and markers along anterior, proximal and lateral axis (orange dot). Orientations of the segment axes
(right thigh and shank) are defined by components x (red arrow), y (green arrow) and z (blue arrow). Created
with BioRender.com.

To address the sub-question concerning the estimation of segment kinematics and their use in three-
dimensional inverse dynamics, two distinct sensor-to-segment alignment approaches were applied in
this study. These approaches serve different roles within the adaptable neural network framework.

In the first approach, sensor data was translated to the proximal joint center of the corresponding
segment and rotationally transformed to align with the global reference frame. This approach mimics
the segment reference frames used in the Xsens MVN biomechanical model [23] and provides the
input kinematics to the neural network. In contrast, the second approach translates the sensor data
to the the center of mass (COM) of the associated segment and rotationally transformed into the
local segment frame [20, 38]. The COM location was estimated based on segment length calculated
from the positions of the proximal and distal joint centers, and scaled using segment-specific COM
ratios reported by de Leva [39]. This second approach is essential for enabling three-dimensional
inverse dynamics calculations for a segment, used to support physical loss computation [20, 38].
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Both sensor-to-segment alignment approaches are illustrated in Figure 4.

Figure 4. Sensor-to-segment alignment applied in two distinct ways. Approach 1 (left) translates sensor
location to the segment’s proximal joint center and rotationally transforms to align with the global reference
frame (ΨGlobal). Approach 2 (right) translates to the segment’s COM and rotationally transforms to the
local segment frame (e.g. ΨThigh and ΨShank). Created with BioRender.com.

To apply the three-dimensional inverse dynamics, kinetic data at both segment extremities are required
[20, 38]. The PiG model provides joint kinetics expressed in the distal segment axes, representing
the kinetics at the proximal end of the segment [19]. To obtain the kinetics at the distal extremity,
joint forces and moments of the associated distal joint were rotationally transformed into the local
segment frame using the virtual markers.

Normalization

For generalization and interpretation, kinetic data was normalized to the body anthropometrics of the
participants, as body mass (and weight) has shown to explain a significant amount of the variance
during walking [25, 40, 41]. Specifically, forces were normalized to the bodyweight (BW), while
moments were normalized to both BW and bodyheight (BH). Subsequently, kinematic and kinetic data
components were adjusted to use standardized anatomical terminology, allowing for generalization
across both limbs. Components were adjusted to represent linear and angular motion in or around
anterior-posterior (A-P), medial-lateral (M-L), and vertical (V) directions.

Additionally, both kinematic and kinetic data were normalized over time for both walking and SLH[25].
Time normalization was achieved through segmentation based on GRFs, with specific event points
identified depending on the movement type. For walking, heel strike and toe-off events were identified
using a contact-threshold of 20 N [25]. Since only two embedded FPs were available, each foot could
be measured independently, and consequently, only the stance phase was captured for each limb. For
hopping, four key events were identified: initial push-off, end push-off, initial landing, and end of
landing. These events were identified using a combination of the contact-threshold of 20 N, local
maxima in the vertical GRF signal, and the associated peak knee flexion angle [25, 42].

Finally, kinematic and kinetic variables for each segment were organized into structured datasets and
saved separately based on the associated limb. For limb-independent segments, such as the pelvis
and sternum, separate datasets were generated for each limb-specific trial, aligned to the timing of
the corresponding limb. An overview of the variables included in the structured datasets is given in
Table 2.

10



Table 2. Dataset variables with their corresponding unit and definition. Segments i include sternum, pelvis,
thigh, shank and foot. BW = bodyweight, BH = bodyheight.

Variable Unit Definition

t % Normalized time as percentage of movement.

m kg Body mass.

l m Body height.

li m Segment length.
Ga⃗ip(t̂) m/s2 Linear acceleration vector of segment i over time of movement,

expressed in the global reference frame G with the origin at the
proximal joint.

Bi a⃗iCOM (t̂) m/s2 Linear acceleration vector of segment i over time of movement,
expressed in the local segment frame Bi with the origin at the
COM.

Bi ω⃗i(t̂) rad/s Angular velocity vector of segment i over time of movement, ex-
pressed in the local segment frame Bi.

Bi α⃗i(t̂) rad/s Angular acceleration vector of segment i over time of movement,
expressed in the local segment frame Bi.

Bi F⃗ ∗
ip(t̂) or

Bi F⃗ ∗
i (t̂) BW Normalized force vector of segment i over time of movement, ex-

pressed in the local segment frame Bi with the origin at the proxi-
mal joint. This also represents the normalized joint force.

Bi F⃗ ∗
id
(t̂) BW Normalized force vector of segment i over time of movement, ex-

pressed in the local segment frame Bi with the origin at the distal
joint.

BiM⃗∗
ip(t̂) or

BiM⃗∗
i (t̂) BW ·BH Normalized moment vector of segment i over time of movement,

expressed in the local segment frame Bi with the origin at the
proximal joint. This also represents the normalized joint moment.

BiM⃗∗
id
(t̂) BW ·BH Normalized moment vector of segment i over time of movement,

expressed in the local segment frame Bi with the origin at the distal
joint.

G ⃗GRF
∗
(t̂) BW Normalized ground reaction force vector over time of movement,

expressed in the global reference frame G with the origin at the
center of the FP.

G ⃗GRM
∗
(t̂) BW ·BH Normalized ground reaction moment vector of segment i over time

of movement, expressed in the global reference frame G with the
origin at the center of the FP.
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2.3 Physical loss function

To address the sub-question concerning the implementation of three-dimensional inverse dynamics
into the development of a neural network estimation, a physical loss function was formulated. This
physical loss captures discrepancies in three-dimensional translational and rotational dynamics of
lower limb’s rigid-body segments. The translational and rotational dynamics were represented by
Newtonian and Euler’s three-dimensional equations of motion for a segment, following Section 7.4 in
the work of Winter [20]. In this study, the physical loss was applied to the thigh and shank segments,
as the focus is on knee kinetics.

For the translational dynamics, the normalized net force acting on segment i, denoted as
∑

F⃗ ∗
i ,

included components in A-P, M-L and V direction. The vectorized equation of motion governing the
three-dimensional translational dynamics was transformed to the following loss function:

∑
F⃗ ∗
i (t) =

Bi F⃗ ∗
i,p(t)− Bi F⃗ ∗

i,d(t)−
ζi
g

Bi a⃗iCOM
(t) = Ltranslational,i (1)

This expression includes the normalized forces and the linear acceleration corresponding to the segment
(see Table 2). The term ζi denotes the mass ratio of segment i with respect to the body mass, while
g denotes the gravitational acceleration.

For the rotational dynamics, the normalized net moment acting on segment i, denoted as
∑

M⃗∗
i ,

includes the components in A-P, M-L and vertical (V) direction. The vectorized equation of motion
governing the three-dimensional rotational dynamics was transformed to the following loss function:

∑
M⃗∗

i (t) =
ζil

2
i

gl

k2i,A−P

k2i,M−L

k2i,V

Bi α⃗i(t)+

ζil
2
i

gl

 k2i,V − k2i,M−L k2i,V − k2i,M−L 0

0 k2i,A−P − k2i,V k2i,A−P − k2i,V
k2i,M−L − k2i,A−P 0 k2i,M−L − k2i,A−P

Bi ω⃗i(t)−

1

l

−δi,pli 0 0
0 0 δi,pli
0 0 0

Bi F⃗ ∗
i,p(t) +

1

l

−δi,dli 0 0
0 0 δi,dli
0 0 0

Bi F⃗ ∗
i,d(t)+

BiM⃗∗
i,p(t)− BiM⃗∗

i,d(t) = Lrotational,i

(2)

This expression includes the normalized forces, normalized moments, angular acceleration, angular
velocity, body height, and segment length corresponding to the segment (see able 2). The term
ζi denotes the mass ratio of segment i with respect to the body mass, g denotes the gravitational
acceleration, and ki,A−P , ki,M−L, and ki,V denote the radii of gyration ratios associated with an-
teroposterior (A−P ), mediolateral (M −L), and vertical (V ) direction, respectively. The terms δi,p
and δi,d denote the segment ratios for the distance between the segment’s center of mass and the
proximal (p) and distal (d) ends of the segment, respectively, with respect to the segment length.

Summation of the applied loss functions in Equation 1 and Equation 2 to both thigh and shank, gives
the following physical loss function:

Lphysical =
∑

i=thigh,shank

Ltranslational,i + Lrotational,i (3)

12



2.4 Model frameworks and evaluation

In this study, an adaptable custom framework is designed which allows development of a model through
either or both data-driven and physical interpretation, such as the PINN. Several models have been
developed and evaluated using the custom framework to assess the prediction performance on the
estimation of knee joint and ground reaction kinetics based on segment kinematics. The custom
framework and models were made in Python 3.9.7 (Python Software Foundation, Wilmington, DE,
United States) using the PyTorch package (version 2.4.1) [43].

In this study, a FNN architecture was developed for the PINNs, containing an input layer, several
hidden layers, and an output layer. The model is developed using both data-driven and physics-
informed (PI) constraints. Input variables include linear accelerations and angular velocities of the
pelvis, thighs, shanks and feet. The output variables consists of normalized joint forces and moments
at the hip, knee, and ankle, as well as normalized ground reaction forces and moments. These
variables are given in Table 2 in Section 2.2.

A PI layer is incorporated into the PINN architecture to enable physical interpretation in estimations.
This layer utilizes the input kinematics, predicted kinetics and additional variables, such as angular
velocities, individual segment lengths, and body height to compute the physical loss (see Section 2.3).
An overview of the complete PINN framework is illustrated in Figure 5.

Figure 5. Overview of PINN framework, consisting of two main components: a neural network and a loss
computation compartment. The neural network includes an input layer, several hidden layers, and an output
layer, mapping segment kinematics to joint and ground reaction kinetics. The loss computation compartment
contains a PI layer, which incorporates the variables necessary for computing both the data loss and the
physical loss. The individual losses are weighted (λ) and summed to compute the total loss.

PINNs were developed and evaluated across several movement scenarios: walking in healthy cohort,
walking in injured cohort, SLH in healthy cohort, and SLH in injured cohort. For every scenario,
model evaluation followed a leave-one-subject-out cross-validation (LOSO CV) approach [25, 27]. In
each fold, data from one subject was held out as unseen test-data, while the data from the remaining
subjects was used to train the model. This process was repeated until each subject had been used
as a test-subject once. This enables assessment of the model’s generalization performance across
subjects. This LOSO CV approach is illustrated in Figure 6.
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Figure 6. The LOSO CV approach consists of multiple folds, where in each fold a model is trained on data
from all but one subject and tested on the data from the held-out subject. The average performance across
all folds is used to assess the model’s generalization capability.

To investigate the influence of incorporating three-dimensional inverse dynamics on knee joint kinetics
estimation, the performance of the PINNs was compared to a baseline model. This baseline consisted
of a FNN with the same development and evaluation approach as the PINN, but the without the
physical constraints. In other words, the baseline FNN was developed solely using data loss, omitting
the PI layer and the physical loss component (see Figure 5). The same LOSO CV procedure was
applied to the baseline model for each scenario to ensure a fair comparison of generalized performance.

In addition to the main evaluation, further analyses were conducted to investigate the effects of
specific components during development of the PINN model, including: the characteristics of target
data, the size of the training data and the weighting of the physical loss term.

To assess the variability in target data, knee kinetics from all individual trials within both healthy
and injured cohorts were evaluated. This allowed for inter-subject variability, within each cohort.
Considering such variability is essential, as it can impact the robustness and generalization of the
model [44, 45]. While differences between healthy and injured cohorts (inter-cohort variability) are
acknowledged as important, detailed analysis of these inter-cohort differences is beyond the scope of
the current study. This aligns with the study’s focus on establishing model performance within each
cohort separately before addressing more complex comparative analyses.

The effects of training data size and physical loss weighting were examined within a controlled setting:
a single fold of the LOSO CV applied to the healthy cohort during walking (see Figure 6), where
the same subject was consistently used as test-data. With this approach, the same subject was
consistently used as test-data across all experiments, allowing for a focused comparison of these
individual factors while minimizing confounding variability.

To evaluate the effect of training data size, the number of subjects included in the train-data was
incrementally increased to 20%, 40%, 60%, 80%, and 100% of the available training subjects. Here,
each step builds upon the previous by adding more subjects. This analysis was performed to both the
PINN and the baseline FNN to assess whether the expected benefits of the PINN approach become
more evident when training data is limited. To evaluate the effect of the physical loss weighting, the
weight assigned to the physical loss component was varied across (logarithmic) values of 0.01, 0.1, 1,
10, and 100, while the data loss weight was held constant at 1. As this analysis involves the physical
loss component, it was only applied to the PINN.
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2.5 Model development

In each fold, the model is developed following an approach consisting of: data partitioning, hyperpa-
rameter specification, data preprocessing and formatting, model training, and model evaluation.

Data partitioning

Data is initially divided subject-wise into train-data and test-data, as explained in Section 2.4. The
train-data will be used for model training, while the test-data is used for evaluation of the trained
model. Subsequently, the train-data is further divided into data for training and validation using split
of 80% to 20% of the training subjects, respectively [25].

Hyperparameter specification

Hyperparameters were specified for the development and architecture of the model. These include
number of hidden layers, hidden layer sizes, activation function, training epochs, learning rate, batch
size, optimizer, the percentage of total variance explained by principle components (PCs), data loss
weight, and physical loss weight. The corresponding values are based on literature and can be found
in Table 3 [25, 27, 33, 46, 47].

In the designed custom framework, an option for hyperparameter optimization is embedded. With this
option included, part of the hyperparameters were optimized using the Optuna package (version 4.3.0),
with the objective of minimizing the validation loss across 50 trials [48]. During this optimization
procedure, the model is trained and evaluated with varying hyperparameter settings, dependent on a
pre-defined range with sampling (see Table 3).

Table 3. Hyperparameter specification, including type, fixed values, and settings for optimization [25, 27,
33, 46, 47]. * : optional for model development.

Hyperparameter Type
Fixed Optimization

Value Range Sampling

Number of hidden layers int 2 1 - 4 uniform

Hidden layer sizes int [250, 100] 50 - 250 uniform

Activation function function tanh N/A N/A

Training epochs int 1000 N/A N/A

Learning rate float (log) 1e-5 1e-5 - 1e-1 log-uniform

Batch size float 32 N/A N/A

Optimizer algorithm Adam N/A N/A

Explained variance by PCs* float 0.95 0.90 - 0.95 uniform

Data loss weight* float 1 N/A N/A

Physical loss weight* float 1 N/A N/A

For the main evaluation (see Section 2.4), hyperparameters were optimized if applicable. In the case
of the analyses on the effects of training data size and physical loss weighting, the fixed values were
applied.

Data preprocessing and formatting

Input variables are initially standardized using Z-score normalization. This step is essential not only
to ensure consistent scaling, but also to enable the optional application of a PCA. The PCA was
applied to reduce dimensionality of the input space while balancing information preservation by linear
combinations of the initial input variables. The variables had contributions to the optimized number
of PCs, explaining cumulatively 90 to 95 percent of the total variance (see Table 3) [46, 47]. Thereby,
it decreases the risk of overfitting during model training. The application of a PCA is applied in the
main evaluation (see Section 2.4), while only the standardization was applied in the case of the
analyses on the effects of training data size and physical loss weighting.
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Data corresponding to the input layer, output layer, and PI layer (see Figure 5) were stored in a three-
dimensional dataset organized on a per-trial basis. In other words, the dataset maintains a trial-wise
structure in a three-dimensional space. This three-dimensional dataset is subsequently converted
into a PyTorch Tensor, required for model development using PyTorch [43]. For efficient model
development, the dataset is further wrapped into a DataLoader, which facilitates batches loading and
iteration. During batch creation, sequences were zero-padded to ensure uniform sequence lengths
across all trials within each batch. Simultaneously, a corresponding mask layer was generated using a
custom collate function. This mask identified the padded elements and ensured they were excluded
from subsequent calculations, preserving data integrity during training.

Model training

Models were trained for 1000 epochs with a batch size of 32, using the adaptive moment estimation
(Adam) optimizer implemented in PyTorch (see Table 3). Within each epoch, the model is trained by
iteration across all batches. Within each batch iteration, values associated to the batch were extracted
from the DataLoader, and output variables were scaled using Z-score normalization to ensure equal
contribution to the learning process. A forward pass was initiated to predict the output values using
the current model’s weights and biases. With the predicted output values, the training loss was
computed and subsequently used by the optimizer to update the model’s weights and biases through
backpropagation and gradient descent [27]. For the data-loss (see Figure 5), the mean-squared-error
(MSE) between target and predicted values was used, which is standard practice in regression tasks
[25, 27, 33]. Besides, in cases of using the PINN framework, the physical loss was added to the data
loss with equal weight of 1, forming a composite loss function. Model performance during epochs
was monitored using the validation data, and early stopping was applied if the validation loss did not
improve for 100 consecutive epochs. Hence, the validation loss was represented by the MSE between
the target and predicted values of the validation data [27].

Model evaluation

The performance of the model was evaluated using the test-data. The predicted output values using
the optimized model’s weights and biases was initially determined through the forwards pass. Then,
the test loss was computed based on the target and predicted values through the data-loss.

2.6 Statistical analysis

Predictive performance of the developed models was assessed by the similarity between the target and
estimated output variables (see Section 2.4) using Pearson’s correlation coefficient (r). Pearson’s r
was categorized as weak (r ≤ 0.35), moderate (0.35 < r ≤ 0.67), strong (0.67 < r ≤ 0.90), and
excellent (r > 0.90) [37, 49]. Additionally, the accuracy of the estimation was assessed using the
relative root-mean-squared error (rRMSE) [25, 49]. These performance metrics were averaged across
the cross-validation folds to achieve the mean and standard deviation (SD) of the performance.

Furthermore, the performance metrics for the main evaluation (see Section 2.4) were further tested
on statistical significance. Specifically, intra-cohort comparisons were made between the performance
of the PINN and baseline FNN models, while inter-cohort comparisons were conducted for each
model individually. In order to do so, differences between performance metrics were first assessed
for normality using the Shapiro–Wilk test (p < 0.05). If the normality assumption was satisfied,
a paired t-test was conducted to evaluate the statistical significance (p < 0.05). In cases where
the normality assumption was violated, the non-parametric Wilcoxon signed-rank test was employed
instead (p < 0.05).
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3 Results

In Section 3.1 and Section 3.2, the estimation performance for the main evaluation in this study is
presented, involving the comparison of the performance of the PINNs against the baseline FNNs for
both healthy and injured cohorts, during walking and SLH, respectively. In Section 3.3, the KJFs
used as target for the model development are evaluated across all trials corresponding to healthy and
injured cohorts, during walking and SLH. Further, the effects of training data size are presented in
Section 3.4. Additionally, in Section 3.5, the effects on the physical loss weighting is presented.

3.1 Estimation performance of PINN and baseline FNN during walking

Figure 7 shows the estimated KJFs during walking for specific cross-validation folds, comparing the
PINN and baseline FNN models in both healthy and injured cohorts. In both cases, the models show
a moderate ability to follow the target KJFs patterns in the A-P and V directions. However, the
estimation of the M-L component remains more challenging, with both models exhibiting reduced
accuracy in this direction. Additionally, the estimated KJFs appears smoother for folds correspond-
ing to the healthy cohort compared to those from the injured cohort, suggesting that inter-subject
variability may impact the model’s predictive performance.

(a)

(b)

Figure 7. Target (blue) and estimated (orange) KJFs of PINN and baseline FNN models during walking for
the cross-validation fold corresponding to test-subject ’002’ in healthy cohort (a) and test-subject ’P01’ in
injured cohort (b). Individual trials (thin line), and mean (bold line) and SD (shaded area) across trials are
shown.

Figure 8 presents the average Pearson’s r and rRMSE values across all cross-validation folds for knee
and ground reaction kinetics of both the PINN and baseline FNN models during walking in both
healthy and injured cohorts. An overview of the performance per fold is provided in Table C.1 (see
Appendix C).

In both cohorts, the PINN and FNN models showed comparable performance for KJFs in the A-P and
V directions. Correlation coefficients for these components ranged from 0.43 to 0.95 for the PINNs
and 0.66 to 0.88 for the FNNs. Corresponding rRMSE values were also similar, with 15.84%-38.68%
(A-P) and 11.55%-36.67% (V) for the PINNs, which had similar ranges for the FNNs. However,
performance in the M-L direction was notably lower in both cohorts. Correlation coefficients ranged
widely from 0.22 to 0.77 for the PINNs and 0.19 to 0.91 for the FNNs. The rRMSE values in
this direction were higher, with PINNs reaching 20.77%-84.09%, reflecting the increased difficulty in
predicting this component across both healthy and injured groups.

Performance for KJMs varied across directions. In healthy cohort, the M-L and V directions yielded
moderate to strong correlations, ranging from 0.52 to 0.69 (M-L) and 0.52 to 0.87 (V), with cor-
responding rRMSE values of 23.46%-37.61% (M-L) and 19.76%-43.98% (V). The A-P component
showed greater variability, with correlation coefficients ranging from 0.12 to 0.76 and rRMSE values
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between 23.34% and 84.35%. In injured cohort, lower correlations and higher rRMSE were obtained
for the M-L direction, while the A-P component had increased performance in comparison with the
healthy cohort. A statistically significant improvement (p < 0.05) in the A-P component was observed
in favor of the PINN model in the healthy cohort, whereas the FNN model outperformed the PINN
in this same component in the injured cohort. This suggests a possible cohort-dependent variation in
model performance for this kinetic variable.

For GRFs, both models exhibited strong performance in the A-P and V directions across cohorts.
Correlation coefficients remained high, and rRMSE values were low, indicating accurate predictions.
Interestingly, for the M-L component, both models performed better compared to their respective KJF
M-L predictions. Correlation coefficients ranged from 0.57 to 0.96, and rRMSE values fell between
9.89% and 35.14%. A statistically significant improvement (p < 0.05) in the M-L direction was
observed for the PINN model compared to the FNN, highlighting its relative strength in capturing
this specific GRF component.

GRMs also showed direction-dependent variation across both cohorts. The A-P direction generally
resulted in lower correlation coefficients and higher rRMSE values, consistent with the trends seen
in other kinetic variables. In contrast, the M-L and V components performed better overall. A
statistically significant deterioration (p < 0.05) in the M-L direction was found for the PINN compared
to the FNN in both healthy and injured cohort. However, in the injured cohort, the FNN outperformed
the PINN in this direction (p < 0.05), with the PINN’s correlation coefficients ranging widely from
-0.45 to 0.94, indicating inconsistent predictions in this group.

Figure 8. Comparison of Pearson’s r correlation and rRMSE values of knee and ground reaction kinetic
estimation during walking, between FNN and PINN in healthy and injured cohort. Kinetics include force
components and moment around components (A-P = anterior-posterior, M-L=medial-lateral, V=vertical).
Data are shown as mean + SD. Statistically significant differences are indicated: p < 0.05 (∗).
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3.2 Estimation performance of PINN and baseline FNN during SLH

Figure 9 shows the estimated KJFs during SLH for the same models and cohorts. In the healthy
cohort, both the PINN and baseline FNN models perform well in capturing A-P and V direction
KJFs, consistent with walking. However, the M-L component again shows a greater challenge for
both models. In the injured cohort, estimation performance further declines, particularly in the A-P
and M-L direction. Additionally, the estimated KJFs are visibly less smooth in the fold corresponding
to the injured cohort compared to those from the healthy cohort. This reinforces the observation that
inter-subject variability introduces increased complexity for model estimation.

(a)

(b)

Figure 9. Target (blue) and estimated (orange) KJFs of PINN and baseline FNN models during SLH for the
cross-validation fold corresponding to test-subject ’002’ in healthy cohort (a) and test-subject ’P01’ in injured
cohort (b). Individual trials (thin line), and mean (bold line) and SD (shaded area) across trials are shown.

Figure 10 presents the average Pearson’r and rRMSE values across all cross-validation folds for
knee and ground reaction kinetics of both the PINN and baseline FNN models during SLH in both
healthy and injured cohorts. An overview of the performance per fold is provided in Table C.2 (see
Appendix C).

In both healthy and injured cohorts, the PINNs and FNNs showed strong and comparable performance
in estimating KJFs in the A-P and V directions, consistent with the observations made during walking
(see Section 3.1). Correlation coefficients in these directions ranged from 0.40 to 0.96 for the PINNs
and 0.48 to 0.95 for the FNNs. Corresponding rRMSE for the PINNs were 5.66%-21.39% (A-
P) and 6.64%-19.82% (V), and were similar for the FNNs, indicating high prediction accuracy in
these directions across both cohorts. However, as with walking, the M-L component proved more
challenging. Correlation coefficients in this direction ranged from -0.54 to 0.76 for the PINNs and
-0.40 to 0.82 for the FNNs. The corresponding rRMSE values were substantially higher, with PINNs
reaching 15.06%-66.85%. These results underscore the difficulty of accurately estimating the M-L
component of KJFs.

For KJMs, the A-P and V components showed moderate performance in both cohorts, with correlation
coefficients ranging from -0.14 to 0.73 and rRMSE values between 19.01% and 57.75% across both
PINNs and FNNs. These results reflect notable variability in estimation performance across subjects
and trials. In contrast, the M-L component exhibited improved performance, particularly in the
healthy cohort. Correlation coefficients for this component ranged from 0.34 to 0.88 and rRMSE
values were relatively low, ranging from 9.39% to 19.83%. This indicates better model robustness in
this direction for healthy subjects. This improved performance may reflect more consistent movement
patterns in M-L direction among healthy subjects during SLH, compared to other directions.

For GRFs, both models exhibited strong performance in the V direction across cohorts, aligning
with results seen during walking. In the healthy cohort, the A-P component also showed strong
performance for both models. However, in the injured cohort, the A-P component was considerably
less accurate. Correlation coefficients ranged from -0.10 to 0.43, and rRMSE values increased to

19



17.06% and 43.25% across PINNs and FNNs. Similar was observed for the M-L component. This
reduced accuracy likely reflects altered movement patterns in the injured cohort during SLH. Further,
the FNN outperformed the PINN for the A-P direction in terms of rRMSE value (p < 0.01).

GRMs were difficult to predict across both cohorts and models, particularly in A-P and M-L directions.
Correlation coefficients in these directions were generally low, indicating weak model performance. In
the V direction, performance in the healthy cohort was modest, with correlation coefficients ranging
from -0.07 to 0.58 across both PINNs and FNNs. However, in the injured cohort, correlation coef-
ficients dropped substantially, ranging from -0.39 to 0.26, despite rRMSE values being comparable
to the healthy group. This discrepancy suggests that while the magnitude of errors may remain con-
sistent, the temporal alignment between predicted and actual signals was poorer in injured subjects,
likely due to the increased variability in their movement patterns.

Figure 10. Comparison of Pearson’s r correlation and rRMSE values of knee and ground reaction kinetic
estimation during walking, between FNN and PINN in healthy and injured cohort. Kinetics include force
components and moment around components (A-P = anterior-posterior, M-L=medial-lateral, V=vertical).
Data are shown as mean + SD. Statistically significant differences are indicated: p < 0.01 (∗∗).
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3.3 Target knee kinetics within each cohort

Figure 11 presents the target KJFs across all individual trials during walking for both healthy and
injured cohorts. In the healthy cohort, subjects showed consistent KJF patterns, particularly in
the A-P and V directions. These directions exhibited smooth trajectories containing double peaks,
characteristic the loading and puhs-off phases of walking. These components also showed relatively
low inter-subject variability. In contrast, the M-L component showed greater variability across trials,
with some trials even showing opposite trends. While the absolute magnitude of the M-L component
was lower compared to the A-P and V components, its relative variability across trials was high.
Since the data was regularized, this inconsistency in the M-L direction may have a disproportionate
influence on model training, leading to biased error distribution. This pattern suggests a possible
compensatory strategy aimed at minimizing lateral forces. Additionally, the A-P curves in the injured
group appeared slightly flatter compared to those of healthy individuals, possibly reflecting reduced
propulsion or altered gait mechanics.

In the injured cohort, similar overall trends were observed, showing stable trajectories in A-P and V
directions and more inter-subject variability in the M-L direction. However, the injured cohort showed
less variability overall, particularly in the M-L component. Additionally, the A-P curves in the injured
cohort appeared slightly flatter compared to those of healthy subjects, possibly reflecting reduced
propulsion or altered movement pattern.

(a)

(b)

Figure 11. Individual KJF trajectories corresponding to subjects (subject number) and mean across subjects
during walking for the healthy cohort (a) and injured cohort (b). Individual trajectories (colored lines), and
cohort mean (black line) and and SD (black shaded area) are shown.

Figure 12 presents the target KJFs across all individual trials during SLH for both cohorts. In the
healthy cohort, consistent patterns were again observed across all directions. However, compared
to walking, the shaded regions indicate increased inter-subject variability, particularly around peak
force phases. The V component displayed a sharp impact peak early in the movement cycle at around
10–20%, with some subjects reaching forces near –2.0 N/BW. This reflects more dynamic and variable
push-off or landing mechanics. In the A-P direction, several subjects exhibited force magnitudes close
to or exceeding 1.0 N/BW, suggesting forceful push-off or landing strategies. Notably, some trials
deviated substantially from the cohort mean, indicating potential outliers. These deviations, beyond
variation in data, may affect model training by increasing prediction errors.

In contrast, the injured cohort exhibited more uniform force trajectories across all directions. The
V and A-P components showed similar trajectories to those of the healthy cohort, but with notably
reduced amplitudes. Less or no trials exceeded 1.0 N/BW in A-P or –2.0 N/BW in V direction. The
reduced inter-subject variability and magnitude suggest a more constrained movement pattern during
SLH.
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(a)

(b)

Figure 12. Individual KJF trajectories corresponding to subjects (subject number) and mean across subjects
during SLH for the healthy cohort (a) and injured cohort (b). Individual mean (colored line) and SD (shaded
area), as well as cohort mean (black line) are shown.

Additional results are provided in Appendix D. These include target KJMs within each cohort during
walking (Figure D.4) and SLH (Figure D.5), as well as comparison of target knee joint and ground
reaction kinetics across cohorts during walking and SLH (Figure D.6 and Figure D.7).
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3.4 Effects of training data size

Figure 13 presents the performance of the PINN and baseline FNN models in estimating KJFs under
varying training data size. The focus is on the relative effect of training data size on model accuracy.

The performance of estimating KJFs did not consistently improve with increasing training data size
across components for either model. In the A-P direction, the PINN outperforms the FNN at 20% and
60% of training subjects included, but is slightly less accurate at 80% and 100%. In the V direction,
both models perform similarly across most training sizes, with the PINN only slightly outperforming
the FNN at 100% of training subjects. The most notable improvement is observed in the M-L
direction, where performance improves substantially from 20% to 40% of the training subjects for
both models.

For the KJMs, comparable observations were found to the KJFs. In the A-P direction, a notable
improvement for both models is observed, similar to the M-L component of the KJFs. In the M-L
direction, the PINN deteriorates when the percentage of total training subjects was increased from
80% to 100%, while the FNN improved between these percentages. Further, both models showed
comparable performance across all percentages in the V direction.

Figure 13. rRMSE values of KJFs estimation of the PINN and baseline FNN during walking for healthy
cohort, under varying percentage of total training subjects. Data are shown as mean ± SD.

23



3.5 Effects of physical loss weight

The effects on the performance of the PINN model in estimating KJFs under varying physical loss
weighting is presented in Figure 14. As with training data size (see Section 3.4), the emphasis is on
the relative performance changes rather than absolute improvements.

The performance of estimating KJFs appears to differ under varying physical loss weighting, but
seems to be dependent on the component. In the A-P direction, the performance remained rela-
tively consistent across different physical loss weights, with an improvement at a weight of 10. At
this weight, the rRMSE dropped below the baseline FNN level. A similar trend was observed in
the V direction, where performance stayed stable and consistently below the average rRMSE value
corresponding to the baseline FNN. However, in M-L direction, performance deteriorates as physical
loss weight increases. While lower weights (0.01 to 0.1) maintained rRMSE values near the average
rRMSE of the baseline FNN, a clear increase in error was observed at higher weights, especially at
10 and 100.

For the KJMs, the performance appears to be dependent on the component as well. In the A-P
direction, improvement was found at a physical weight of 1, while the model deteriorates at lower
and higher weights. The opposite was observed in the M-L component, in which the highest error
was found in the case of weight 1. In the V direction, the performance was observed to be stable
across the weights, while being consistently below the average error associated with the FNN.

Figure 14. rRMSE values of KJFs estimation of the PINN during walking for healthy cohort, under varying
physical loss weight. Additionally, the rRMSE value corresponding to the baseline FNN (dashed blue line) is
shown as reference, which does not include the physical loss. Data are shown as mean ± SD.
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4 Discussion

This study evaluated the estimation performance of a PINN in estimating three-dimensional knee joint,
as well as ground reaction, kinetics during walking and SLH in the context of ACLR rehabilitation.
The findings reveal insights into the relative strengths and limitations of these model. To evaluate
the effect of incorporating inverse dynamics during model training, the overall comparison is discussed
in Section 4.1. In Section 4.2, the estimation performance of the PINN is evaluated across kinetic
variables. Moreover, in Section 4.3, the influence of movement complexity and inter-subject variability
is discussed. Further, limitations to this study are given in Section 4.5, and clinical implications can be
found in Section 4.6. Additionally, recommendations on future research are described in Section 4.7.

4.1 Overall comparison

The comparison between PINN and FNN models revealed largely comparable overall performance
across most kinetic variables. To the author’s best knowledge, no study has yet beendone focusing
on estimating knee joint and ground reaction kinetics using IMU-based segment kinematics and a
PINN framework. Though, two similar studies were found, which proposed and evaluated a PINN
framework for estimating joint angle and muscle forces based on surface electromyogram (sEMG)
[50, 51]. Zhang et al [50] showed improved predictive accuracy of the PINN against several baseline
machine learning methods in estimating knee joint angle and related muscle forces. Similarly, Ma et
al. [51] found that the composite loss function, including rotational dynamics, was effective, as their
PINN model achieved improved estimation performance against their baseline FNN model. Although
not demonstrated in this study, previous studies do support the potential of physics-informed models
in movement analysis to enhance both accuracy and biomechanical interpretation, particularly when
estimating complex biomechanical outputs with limited or noisy data.

While both models performed well in dominant directions, the expected advantage of incorporating
physical constraints for estimating components with lower magnitudes, such as the M-L forces, was
limited and varied across conditions. Although such constraints were not directly incorporated into the
neural network, Oh et al. [26] showed high estimation performance in these components as well using
their hybrid model. In this study, the PINNs notably show significant improvements in estimating
the KJM around A-P direction and the M-L component of the GRFs during walking. This highlights
their ability to better capture underlying physical relationships in those directions. However, the FNN
outperformed the PINN in estimating the GRM around the M-L axis during walking and the A-P
component of the GRFs during SLH. These findings suggests that the data-driven models may offer
advantages when movement deviate from standard patterns or physical assumptions are less reliable.

Regarding the physical assumptions, the rigid-body inverse dynamics embedded in the physical loss
function fail to capture subject-specific anatomical variation, muscle force contribution, soft-tissue
deformations, and other biomechanical nuances. Additionally, this assumption might not reflect
altered movement patterns, potentially limiting the physical interpretation of especially ACLR patients
[52]. Therefore, when applied to heterogeneous cohorts, the rigid-body assumption may fail to reflect
true biomechanics, potentially limiting the accuracy of PINN estimations.

4.2 Evaluation on estimated kinetic variables

During both walking and SLH, the highest estimation performance was observed in the V and A-P
components of the KJFs and GRFs. In particular, the V component of the GRFs appeared to be the
most accurately estimated variable, with correlation coefficients frequently exceeding 0.90 and rRMSE
values often below 15%, especially in the healthy cohort. Similarly, A-P forces, especially during SLH
in the healthy cohort, showed strong performance, with some folds achieving rRMSE values below
10%. Similar observations for the GRFs were found by Leporace et al. [53] during walking, which
reported correlation coefficients of 0.97 (A-P) and 0.98 (V) with error values of 1.8%BW (A-P) and
4.5%BW (V). Stetter et al. [25] as well found strong estimation performance in particular the V
and A-P direction of KJFs, with correlation coefficients of 0.71 (A-P) and 0.87 (V) with rRMSE
values of 20.8% (A-P) and 14.2% (V) during walking. The authors as well showed good estimation
performance in these directions during push-off and landing phases of the SLH, reporting correlation
coefficients ranging from 0.77 to 0.92 and rRMSE values between 15.4% and 25.1%.

25



Lower overall prediction performance was observed for the M-L force component. During walking,
correlation coefficients ranged widely from 0.57 to 0.96, with rRMSE values between 9.89% and
35.14%. These findings align with previous studies reporting reduced estimation accuracy in the M-L
direction. Leporace et al. [53] found lower correlations and higher errors in M-L components of the
GRFs in compared to A-P and V directions, reporting a correlation of 0.80 and an error of 1.4%BW.
Similarly, Stetter et al. [25] reported a correlation of 0.60 and an rRMSE value of 27.7% for the
M-L component of KJFs during walking. The authors further found reductions during SLH, with
correlations as low as 0.31 and 0.42 and rRMSE values up to 45.9%. The reduced accuracy in the
M-L direction is often attributed to its lower magnitude, where small absolute errors lead to excessive
large relative errors, strengthened by greater inter-subject variability [25, 53]. While these trends
are consistent with previous findings, the absolute prediction performance observed in this study was
lower. Nevertheless, some peak performances were observed in the M-L direction of GRFs during
walking, with correlation coefficients exceeding 0.90 and rRMSE values below 10% in certain folds.
This suggests that, under certain subject-specific movement patterns, challenging directions can be
captured by the models.

Estimation of both KJMs and GRMs remained more challenging overall, showing lower estimation
performance compared to force components. Similar trend were reported by Johnson et al. [54], who
attributed the reduced correlations to potential misinterpretation of signal noise by the models. In
contrast, Oh et al. [26] reported strong estimation performance across all components, with KJMs
correlations ranging from 0.717 to 0.936, and GRMs from 0.841 and 0.987. In this study, relatively
better performance was observed in specific cases. The V and M-L components of the KJMs showed
promising results during SLH in the healthy cohort, with correlation coefficients up to 0.87 and rRMSE
values as low as 9.39% for the M-L component. Similarly, the V component of GRMs performed
relatively well during walking in the healthy cohort. These findings highlight underscore the difficulty
of estimating joint and ground reaction moments from kinematic data alone, likely due to higher
sensitivity to inter-subject variability and the complex dynamics involved in moment generation.

4.3 Movement complexity and inter-subject variability

Estimation performance was consistently better during walking compared to SLH, reflecting the lower
complexity and greater regularity of walking. Walking involves symmetrical patterns with relatively
consistent GRFs and joint kinetics across subjects. This was reflected in the stable KJF trajectories,
particularly in the A-P and V directions, and lower inter-subject variability observed in both healthy
and injured cohorts. In contrast, the SLH introduced greater complexity and subject specificity,
especially in ACLR patients. This was reflected in increased variability across trials and the occurrence
of outlier peaks. In part, these peaks may also resulted from challenges during data processing.
Minor spatiotemporal misalignments, sensor positional errors, and time normalization could introduce
inconsistencies in kinematic and kinetic estimations [23, 25, 33]. These factors, combined with the
biomechanical complexity of SLH, likely contribute to the increased variability and presence of outliers.

The findings align with known influences on SLH variability, including limb dominance, neuromuscular
compensation strategies, fatigue, and pain-related adaptations [8]. Gokeler et al. [8] reported altered
neuromuscular control in ACLR patients during SLH, typically involving reduced knee joint loading
on the injured limb. In this study, this trend was also observed through reduced KJFs in the injured
cohort during SLH, despite the dynamic demands of the movement.

During walking, injured subjects exhibited lower peak forces than healthy subjects, which is consistent
with findings of reduced peak knee flexion/extension moments and altered GRFs in ACLR [12–14].
Additionally, across both walking and SLH, the injured cohort showed less inter-subject variability
compared to the healthy cohort. This may indicate reduced movement patterns or intentional com-
pensation strategies, supporting findings by Rohman et al. and Moya-Angeler et al. [15, 16]. These
studies reported reduced GRFs in V direction and GRMs in sagittal plane during SLH in injured limbs.

In addition, these findings highlight the importance of considering inter-subject variability when eval-
uating robustness and generalizability of prediction models [44, 45]. As emphasized by Stetter et al.
[49], generalizing across different movements and cohorts is particularly challenging for components
with low magnitudes, such as those in the M-L direction. These components are more sensitive to
noise and subject-specific differences. This study underscores the need for models that can capture
movement and subject-specific variability.
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4.4 Training data size and physical loss weighting

The PINN did not consistently outperform across all components of the KJFs and KJMs, particularly
at lower amount of training data. This is not in accordance with previous studies on PINNs, which em-
phasize the performance in scenarios with limited amount of data [30, 50]. For instance, Karniadakis
et al. [30] highlighted the accuracy of PINNs in learning from limited data by embedding physical
constraints to compensate for sparse datasets. Similarly and more relevant to this study, Zhang et
al. [50] reported lower normalized RMSE (nRMSE) values for a PINN-based framework compared to
baseline data-driven models, suggesting clear advantages when data availability is limited.

In addition to the performance on limited data, both PINN and FNN models did not show consistent
improvement in estimation accuracy with increasing training data size. This is also inconsistent with
the findings of Zhang et al. [50], who showed a clear decrease in nRMSE values with an increasing
number of training data for all tested models. This discrepancy may be caused by the heterogeneity
of the training data. As more subjects are added to increase the data size, inter-subject variability
may introduce additional complexity. This could counteract the benefits of increased data size. These
findings underscore the importance of the quantity as well as the quality and consistency of training
data when developing data-driven and physics-informed models in the context of ACLR rehabilitation.

Varying the physical weighting within the composite loss function of the PINN framework did not result
in consistent improvements in estimation performance across all components of the KJFs and KJMs.
Although estimation accuracy was influenced with varying weight, this effect was direction-dependent.
These findings are partially in line with previous studies that have examined the sensitivity of PINN
performance to the relative contribution of physics-informed against data-driven term in the composite
loss function [55, 56]. Wang et al. [55] and Cao et al. [56] showed that the accuracy of PINNs
can be significantly influenced by irregular loss weighting. The authors emphasized the importance
of dynamically balancing the influence of each component during training. These findings underscore
that model performance in PINNs is highly sensitive to the choice of loss function weighting. As such,
the use of a static or empirically tuned weighting scheme may not generalize well across components.

4.5 Limitations

This study has several limitations that should be considered when interpreting the results and assessing
their applicability. First, assumptions were made in the design and implementation of the PINN
framework in this study. The model structure, architecture, and regularization strategies may not
completely align with the original principles of physics-informed learning [29, 30]. Alternative model
designs or loss function formulations may enhance estimation accuracy and robustness [50, 51].

Further, the dataset was limited in size. A smaller sample size may restrict the model’s ability
to generalize across broader cohorts and may increase the risk of overfitting. This is particularly
important in the context of ML approaches, where larger dataset often improve robustness and
predictive accuracy [25].

In addition, each patient was measured only once at an unknown and potentially varying phase of their
rehabilitation. Although the subject characteristics was reported, it did not fully capture rehabilitation
status. Patients at different phases may exhibit different movement patterns and compensation
strategies, affecting both kinetics and model performance [7, 8]. Other inter-subject differences, such
as age, baseline activity level, and injury history were not accounted for and could have influenced
variability in both biomechanics and model estimation accuracy [57]. Furthermore, all exercises
were performed in a constrained laboratory setting. In particular, the fixed positioning of the force
plates required subjects to adjust their movements to ensure accurate foot placement. This constraint
could have introduced artifacts in both walking and SLH mechanics, potentially limiting the ecological
validity of the findings [21]. Additionally, only two performance tests were evaluated in this study,
including walking and SLH. While both are commonly used in clinical evaluations, ACLR rehabilitation
involves a broader test battery, which are critical for RTS assessment [7, 9, 10, 58].

Lastly, although figures illustrating kinematic variable importance are included in Appendix E, they
were not analyzed within the main text. These results offer potential insights into sensor contributions
across conditions. A more detailed investigation is needed to determine whether certain sensor
consistently influence estimation performance and whether sensor configurations could be optimized
for on-field measurements [27, 33].
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4.6 Clinical implications

This study shows the potential of combining IMUs with ML approaches to estimate knee joint kinetics
during movements relevant in ACLR rehabilitation. Unlike earlier studies that primarily focused on
walking and running in healthy cohorts [25–28], this work extends kinetic estimation to functional
tests relevant for RTS decision-making [8, 12].

The use of IMUs and neural networks presents a promising solution for translating joint kinetics
beyond laboratory setting. Such tools could offer clinicians objective and quantitative insights into
joint loading during performance tests, supporting more individualized and data-driven RTS decision
[8, 12]. This is particularly valuable given the limitations of current assessments and the importance
of addressing movement quality and asymmetries after ACLR [7].

However, the current findings are constrained by the laboratory setting. Movement execution was
influenced by force plate positioning, potentially altering natural movement patterns. Additionally,
only two functional tests were evaluated, while ACLR rehabilitation usually involves more movement
assessments. The single time point per subject in lab-dependent environment further limits the
generalizability of the model across different phases of ACLR rehabilitation and real-world settings.

4.7 Future research

Several aspects for future research are recommended to address the current limitations and enhance
the applicability of estimating knee kinetics using IMUs during ACLR rehabilitation.

Regarding the designed PINN framework, there is potential to adjust the physical loss function for
enhancing model accuracy and interpretation. The current physical loss containing segment-based
inverse dynamics could be extended to include musculoskeletal dynamics, enabling estimation of both
joint and muscle forces. Integration of software like OpenSim [59] and approaches such as those from
from Zhang et al. [50] and Ma et al. [51] could provide more interpretable and biomechanical valid
outputs.

Another recommendation focuses on the loss balancing within the PINN framework. The relative
weighting between data-driven and physics-informed loss components affects model performance [55,
56]. Future research should could explore a balanced composite loss function to optimize performance
while preserving biomechanical validity [56, 60, 61].

Model structure or architecture is another aspect for potential improvement. While a FNN was
used in this study, alternative architectures may better capture the temporal dynamics of movement.
Recurrent neural networks (RNNs), including LSTM models, are well-suited for time series data and
could enhance the prediction of joint kinetics during cyclic and non-cyclic tasks [62, 63]. Ensemble
learning strategies may also improve robustness and generalization across subjects and movement
tasks [27].

In addition, a broader and more diverse set of data is essential. Future studies should include a larger
cohort of participants, capture data across different phases of rehabilitation, and incorporate on-field
measurements. Lab-based assessments using OMC system remain important, particular for validation
purposes. Though, longitudinal, on-field measurements are essential for supporting RTS decision
making [21]. Additionally, expanding the range of movements beyond walking and SLH is necessary.
Exercises such as single-leg lateral hops, vertical drop jumps or squats offer additional insights during
rehabilitation [6, 8].

In the longer term, once robust and accurate estimation of knee joint kinetics have been achieved,
future research could expand toward asymmetry analysis. Previous studies have reported significant
differences in knee kinetics between the injured and contralateral limbs [8, 15, 16]. Assessing limb
asymmetry is of clinical importance in ACLR rehabilitation, as it provides insights into recovery,
compensatory strategies, and reinjury risk. However, this analysis requires high estimation accuracy
for each limb independently. Therefore, developing robust models across diverse cohorts is necessary
before extending the current approach to subject-specific, inter-limb comparison.
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5 Conclusion

This study showed the feasibility of estimating knee joint kinetics from IMUs using a physics-informed
approach, specifically during walking and SLH in the context of ACLR rehabilitation. A data pro-
cessing pipeline was developed to spatiotemporally align and generalize existing IMC and OMC data.
Kinematic data was translated and rotated to reflect anatomical coordinate frames, enabling com-
patibility with inverse dynamics analyses and meaningful inputs to neural network models.

The data processing pipeline allowed for the extraction of segment kinematics in a way that mimicked
the Xsens MVN biomechanical model, while simultaneously enabling application of three-dimensional
inverse dynamics. These kinematic variables were then implemented into as input to an adaptable
neural network framework, which incorporated a physical loss function. The physical loss, derived
from three-dimensional translational and rotational dynamics, utilized the input kinematics, estimated
output kinetics, and pre-defined scaling ratios. The training process employed a composite loss
function that satisfied both data-driven and physical constraints, which guided the model’s learning
process toward biomechanical interpretable estimations.

Although the PINN framework incorporated biomechanical constraints into the training process, it did
not lead to improved estimation performance over the baseline FNN. Both models showed predictive
challenges, which were particularly observed for kinetic components in the M-L direction. This is
likely due to their lower magnitudes and greater sensitivity to noise, consistent with prior literature.
Moreover, compared to other studies that employed estimation models, the overall performance of
both networks was relatively modest. These findings emphasize that incorporating physical con-
straints does not lead to improved predictive accuracy, particularly under conditions of limited data
or variability in subject movement patterns.

Despite these findings, this study provides an important basis toward physics-informed learning ap-
proaches in ACLR rehabilitation. The approach enabled biomechanical interpretation of kinetic esti-
mates while highlighting the important methodological challenges, including model architecture, loss
balancing, and data availability.

Together, these contributions answered the research question by showing that three-dimensional
inverse dynamics can be successfully incorporated into a PINN to estimate knee kinetics from IMU
data. However, this incorporation did not improve prediction accuracy over a baseline model under
the current conditions, disproving the initial hypothesis.

Further development should focus on enhancing model robustness through improvements on the
framework, adaptive loss balancing, and broader datasets. When sufficient estimation accuracy is
achieved, these models may be extended to clinically relevant applications, such as subject-specific
assessments of limb asymmetry. Such improvements have the potential to contribute to more objective
and individualized RTS decision-making and ultimately help reduce the risk of reinjury following ACLR.
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B Data processing pipeline

A detailed overview of the main steps applied within the data processing pipeline is given in Figure B.1.

Figure B.1. Detailed overview of data processing steps applied to each trial.
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A graphical user interface (GUI) was developed to give insight into the different spatial orientation
of the sensors and segments. With this GUI, the steps concerning spatiotemporal alignment and
segment motion could be checked. For instance, it was determined whether the heading reset was
applied correctly, such that the sensor orientation was coincident with the global coordinate frame of
the OMC system. This is presented in Figure B.2.

(a)

(b)

Figure B.2. Heading reset applied to the sensor data visualized in the developed GUI: oblique view at 45◦

(a) and transverse view (b).
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To determine whether the IMC and OMC systems were temporally aligned, the data corresponding
to the right thigh was used. A representative illustration is given in Figure B.3.

(a)

(b)

Figure B.3. Representative linear accelerations of the right thigh before (a) and after temporal alignment
(b) of the IMC (IMU) and OMC (VICON) systems.
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C Estimation performance per fold

Table C.1. Overview of Pearson’s r and rRMSE values for knee joint and ground reaction (GR) kinetics
during walking. The table summarizes the performance of the PINN and baseline FNN models, evaluated on
the test-subject used in the cross-validation folds for healthy and injured cohorts.

F ∗
AP F ∗

ML F ∗
V M∗

ML M∗
AP M∗

V

r rRMSE
[%BW]

r rRMSE
[%BW]

r rRMSE
[%BW]

r rRMSE
[%BW]

r rRMSE
[%BW]

r rRMSE
[%BW]

002

Knee
FNN 0.85 15.96 0.34 73.38 0.81 15.98 0.69 23.46 0.51 41.50 0.73 24.86

PINN 0.79 18.73 0.25 84.09 0.64 24.33 0.57 33.10 0.59 45.50 0.67 28.15

GR
FNN 0.67 26.49 0.96 9.96 0.79 17.25 0.82 43.09 0.70 23.67 0.90 12.63

PINN 0.70 23.26 0.95 14.83 0.67 23.10 0.78 54.42 0.32 38.03 0.91 13.49

003

Knee
FNN 0.78 18.01 0.54 48.92 0.80 17.51 0.54 37.61 0.49 43.94 0.62 28.08

PINN 0.86 15.84 0.57 59.78 0.79 19.05 0.52 31.25 0.64 42.64 0.87 19.76

GR
FNN 0.42 31.90 0.90 15.27 0.79 18.19 0.81 20.15 -0.04 66.67 0.78 25.30

PINN 0.64 22.71 0.89 18.88 0.80 18.47 0.91 24.60 0.49 51.75 0.90 24.50

004

Knee
FNN 0.85 17.61 0.34 79.44 0.80 19.66 0.66 25.22 0.12 81.25 0.58 40.20

PINN 0.81 19.22 0.24 76.51 0.78 19.51 0.59 28.69 0.28 84.35 0.53 43.98

GR
FNN 0.73 25.01 0.91 16.66 0.82 19.45 0.90 16.34 0.68 30.37 0.85 24.24

PINN 0.75 22.80 0.82 19.44 0.81 19.86 0.82 21.00 0.71 28.35 0.83 24.68

007

Knee
FNN 0.88 24.08 0.35 67.02 0.85 17.14 0.64 33.88 0.25 65.04 0.52 40.46

PINN 0.88 23.44 0.22 67.28 0.86 17.90 0.63 34.25 0.26 67.29 0.56 39.85

GR
FNN 0.83 39.48 0.89 16.27 0.82 18.26 0.67 44.11 0.85 50.52 0.77 27.48

PINN 0.85 40.13 0.90 16.96 0.85 18.20 0.66 43.05 0.79 49.51 0.78 28.37

008

Knee
FNN 0.66 22.13 0.34 59.23 0.73 19.17 0.64 27.44 0.41 49.11 0.82 29.14

PINN 0.69 21.07 0.33 50.85 0.77 17.78 0.68 26.07 0.45 44.36 0.82 30.04

GR
FNN 0.61 24.23 0.95 9.89 0.73 19.00 0.79 31.34 0.65 28.20 0.91 15.35

PINN 0.61 24.36 0.95 10.36 0.74 18.74 0.74 33.66 0.65 27.84 0.89 16.15

009

Knee
FNN 0.86 14.38 0.42 37.40 0.81 18.56 0.67 24.48 0.57 30.89 0.72 28.95

PINN 0.81 20.12 0.46 33.03 0.79 18.78 0.61 28.32 0.76 23.34 0.78 26.97

GR
FNN 0.73 32.71 0.89 14.60 0.81 17.63 0.75 35.90 -0.24 91.82 0.52 38.81

PINN 0.77 34.81 0.90 13.58 0.82 16.26 0.75 42.34 -0.15 82.50 0.57 31.60

P01

Knee
FNN 0.83 22.10 0.91 30.54 0.83 19.63 0.22 65.83 0.81 52.43 0.55 36.11

PINN 0.72 23.20 0.57 70.02 0.85 15.63 0.76 52.95 0.65 40.92 0.26 49.50

GR
FNN 0.86 34.09 0.83 29.55 0.84 20.29 0.45 43.69 0.76 51.77 0.84 50.84

PINN 0.85 18.95 0.60 35.14 0.86 15.28 -0.08 70.68 0.74 28.44 0.57 49.27

P03

Knee
FNN 0.69 28.67 0.72 28.18 0.73 24.41 0.61 35.28 0.76 33.17 0.64 39.17

PINN 0.77 38.68 0.26 39.08 0.74 23.28 0.63 23.98 0.69 25.93 0.64 39.65

GR
FNN 0.75 24.95 0.69 28.91 0.75 22.26 0.70 41.90 0.56 30.07 0.48 34.22

PINN 0.65 31.92 0.57 32.85 0.78 22.76 -0.46 69.77 0.44 37.72 0.40 37.51

P05

Knee
FNN 0.76 31.22 0.32 74.52 0.84 30.55 0.41 42.23 0.56 39.37 0.81 36.07

PINN 0.86 18.29 0.77 43.16 0.95 11.55 0.73 23.96 0.75 24.75 0.93 17.25

GR
FNN 0.51 43.56 0.86 32.00 0.78 30.95 0.65 57.58 0.67 40.01 0.83 31.00

PINN 0.85 17.73 0.88 17.04 0.95 10.34 0.58 51.18 0.94 13.36 0.86 21.42

P06

Knee
FNN 0.78 30.55 0.20 102.44 0.66 27.71 0.29 33.72 0.70 58.61 0.46 46.32

PINN 0.85 17.11 0.61 72.10 0.43 36.67 -0.35 51.71 0.24 53.49 0.57 31.00

GR
FNN 0.76 41.48 0.88 22.60 0.69 28.32 0.74 28.55 -0.44 236.28 0.44 32.20

PINN 0.59 32.15 0.76 20.64 0.56 31.76 -0.05 47.07 -0.45 99.63 0.37 44.03

P07

Knee
FNN 0.84 13.99 0.19 45.12 0.86 13.86 0.07 57.12 0.82 34.10 0.71 27.19

PINN 0.76 18.37 0.76 22.24 0.79 16.98 0.14 55.83 0.40 34.29 0.33 42.22

GR
FNN 0.58 23.91 0.92 14.52 0.89 12.30 0.39 99.37 0.32 36.85 0.88 14.95

PINN 0.73 22.36 0.84 20.77 0.78 17.22 0.18 81.80 0.52 28.61 0.78 19.98
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Table C.2. Overview of Pearson’s r and rRMSE values for knee joint and ground reaction (GR) kinetics
during SLH. The table summarizes the performance of the PINN and baseline FNN models, evaluated on the
test-subject used in the cross-validation folds for healthy and injured cohorts.

F ∗
AP F ∗

ML F ∗
V M∗

ML M∗
AP M∗

V

r rRMSE
[%BW]

r rRMSE
[%BW]

r rRMSE
[%BW]

r rRMSE
[%BW]

r rRMSE
[%BW]

r rRMSE
[%BW]

002

Knee
FNN 0.94 6.52 0.28 42.98 0.95 6.64 0.83 9.67 0.16 30.96 0.41 36.11

PINN 0.96 5.66 0.28 45.33 0.94 6.66 0.88 9.39 0.23 35.45 0.70 35.22

GR
FNN 0.36 16.52 0.89 8.01 0.96 5.41 0.48 22.86 0.20 42.56 0.22 37.28

PINN 0.55 17.14 0.87 9.61 0.96 5.20 0.47 23.30 0.55 47.97 0.58 40.68

003

Knee
FNN 0.87 10.66 0.69 28.03 0.90 9.42 0.80 12.57 0.73 23.97 0.49 22.85

PINN 0.88 9.40 0.54 28.54 0.91 9.10 0.84 11.52 0.54 23.46 0.51 21.32

GR
FNN 0.47 17.16 0.78 12.40 0.91 9.32 0.48 26.97 0.35 43.11 0.24 20.75

PINN 0.51 17.70 0.76 13.50 0.92 8.67 0.38 32.24 0.32 40.82 0.35 19.80

004

Knee
FNN 0.85 14.05 0.37 44.04 0.84 11.80 0.69 17.36 0.23 46.58 0.20 50.65

PINN 0.80 15.06 0.35 48.62 0.77 13.45 0.66 18.12 0.10 50.85 0.05 57.75

GR
FNN 0.45 22.61 0.78 13.69 0.85 11.24 0.65 29.76 0.26 63.54 0.10 33.08

PINN 0.39 23.51 0.69 15.58 0.81 12.54 0.64 32.02 0.21 59.10 0.20 32.06

005

Knee
FNN 0.48 20.13 0.52 32.67 0.57 17.60 0.39 19.27 0.46 27.18 0.19 34.38

PINN 0.40 21.17 0.35 29.73 0.43 19.82 0.34 19.50 0.36 25.39 0.03 33.54

GR
FNN 0.26 24.89 0.68 16.14 0.55 18.42 0.28 36.45 0.25 36.01 0.40 31.21

PINN 0.21 23.25 0.59 16.23 0.44 19.76 0.25 33.88 0.13 43.63 0.37 30.02

006

Knee
FNN 0.89 8.75 0.75 24.30 0.92 7.44 0.76 14.33 0.69 28.62 0.40 29.66

PINN 0.89 8.66 0.70 25.75 0.90 8.33 0.75 13.85 0.60 30.39 0.44 29.24

GR
FNN 0.54 18.35 0.87 8.21 0.94 6.13 0.64 26.24 0.34 29.62 0.36 18.83

PINN 0.52 19.29 0.85 9.07 0.93 6.95 0.72 23.85 0.27 34.95 0.28 18.14

007

Knee
FNN 0.83 12.73 0.57 23.68 0.89 8.45 0.66 19.55 0.58 22.73 0.47 30.87

PINN 0.83 12.34 0.56 25.92 0.88 8.97 0.64 19.83 0.61 23.58 0.55 35.37

GR
FNN 0.59 28.94 0.83 10.08 0.90 8.21 0.61 30.90 0.12 54.94 -0.05 26.70

PINN 0.57 28.99 0.84 10.30 0.89 8.51 0.63 32.91 0.19 53.89 -0.07 27.79

008

Knee
FNN 0.86 9.13 0.55 20.53 0.89 8.79 0.66 16.26 0.48 25.24 0.27 45.53

PINN 0.86 9.23 0.57 20.51 0.90 8.45 0.64 17.81 0.49 23.94 0.24 56.48

GR
FNN 0.49 18.30 0.76 10.37 0.90 8.08 0.23 23.48 0.41 54.60 0.25 29.20

PINN 0.45 19.20 0.76 11.41 0.90 8.03 0.29 24.45 0.35 52.11 0.19 32.96

009

Knee
FNN 0.85 9.82 0.61 16.25 0.84 10.76 0.76 12.43 0.51 20.17 0.27 23.63

PINN 0.82 11.73 0.70 15.06 0.74 14.27 0.78 13.22 0.61 19.45 0.27 28.60

GR
FNN 0.24 28.17 0.83 10.90 0.86 9.59 0.27 24.05 0.07 35.47 0.30 23.46

PINN 0.26 31.09 0.83 12.26 0.78 12.82 0.33 25.00 0.09 43.28 0.11 27.19

P01

Knee
FNN 0.61 21.85 0.47 25.20 0.63 15.99 0.32 28.12 0.25 27.77 0.25 28.62

PINN 0.64 21.39 0.59 24.05 0.66 14.42 0.36 28.26 0.29 26.87 0.21 28.55

GR
FNN -0.10 28.72 0.04 25.44 0.66 16.37 0.48 31.15 0.15 53.76 -0.07 37.48

PINN -0.06 28.87 -0.01 26.69 0.67 15.53 0.40 30.78 0.18 54.13 -0.09 37.65

P03

Knee
FNN 0.69 17.10 0.65 16.41 0.85 13.31 0.63 17.02 0.59 19.47 0.25 30.41

PINN 0.75 15.17 -0.07 21.60 0.86 10.84 0.63 17.60 0.18 24.76 0.33 24.06

GR
FNN 0.27 24.64 0.33 27.27 0.85 11.57 0.35 45.72 0.42 49.60 0.24 26.33

PINN 0.30 17.06 -0.59 29.38 0.85 11.49 0.22 29.36 0.30 23.79 -0.39 26.19

P05

Knee
FNN 0.65 21.01 0.82 33.27 0.78 12.79 0.64 24.51 0.77 27.97 0.41 22.10

PINN 0.68 20.71 0.76 36.09 0.76 14.12 0.70 21.88 0.74 27.38 0.53 20.81

GR
FNN 0.43 17.72 0.45 17.58 0.80 12.81 0.37 32.57 0.51 30.98 0.26 20.95

PINN 0.34 19.05 0.40 21.24 0.76 14.60 0.32 33.27 0.33 30.07 0.11 22.93

P06

Knee
FNN 0.81 13.49 -0.40 62.53 0.89 12.04 0.69 16.44 -0.14 51.67 0.53 35.47

PINN 0.80 13.94 -0.54 66.85 0.87 10.30 0.73 15.71 -0.07 48.31 0.51 32.45

GR
FNN 0.05 41.93 0.09 24.78 0.89 11.28 0.32 61.16 0.10 79.76 -0.28 51.95

PINN 0.34 43.25 0.63 19.77 0.93 9.96 0.31 59.68 -0.08 75.72 -0.32 51.38

P07

Knee
FNN 0.75 13.74 0.64 27.74 0.85 11.63 0.18 44.66 0.57 19.01 0.40 30.55

PINN 0.73 12.73 0.58 43.02 0.84 12.08 0.11 39.82 0.57 20.01 0.38 27.46

GR
FNN 0.27 29.19 -0.09 30.08 0.85 11.26 0.05 50.87 0.38 46.90 -0.19 49.17

PINN 0.09 27.05 -0.28 29.28 0.84 10.49 0.16 43.41 0.33 64.46 -0.18 51.39
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D Target knee kinetics

(a)

(b)

Figure D.4. Individual KJM trajectories corresponding to subjects (subject number) and mean across subjects
during walking for the healthy cohort (a) and injured cohort (b). Individual trajectories (colored lines), and
cohort mean (black line) and SD (black shaded area).

(a)

(b)

Figure D.5. Individual KJM trajectories corresponding to subjects (subject number) and mean across subjects
during SLH for the healthy cohort (a) and injured cohort (b). Individual mean (colored line) and SD (shaded
area), as well as cohort mean (black line) are shown.
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(a)

(b)

Figure D.6. Knee joint kinetic trajectories across trials during walking (a) and SLH (b) for healthy (blue)
and injured (orange) cohort. Individual trials (thin line), cohort mean (bold line) and SD (shaded area) are
shown.
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(a)

(b)

Figure D.7. Ground reaction kinetic trajectories across trials during walking (a) and SLH (b) for healthy
(blue) and injured (orange) cohort. Individual trials (thin line), cohort mean (bold line) and SD (shaded area)
are shown.
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E Evaluation of input variables

Figure E.8 and Figure E.9 show the contribution of the kinematic input variables in both healthy and
injured cohorts during walking and SLH, respectively.

(a)

(b)

Figure E.8. Kinematic feature importance during walking for healthy (a) and injured (b) cohorts. Mean and
SD across cross-validation folds are shown.

43



(a)

(b)

Figure E.9. Kinematic feature importance during SLH for healthy (a) and injured (b) cohorts. Mean and
SD across cross-validation folds are shown.
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