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ABSTRACT
Despite the growing maturity of language workbenches (LWBs)
— environments for creating domain-specific languages (DSLs) —
there remains a lack of systematic implementation-focused studies
comparing them. This gap hinders informed decision-making for
DSL development, often leading developers to fall back on tradi-
tional, less suitable tools. To address this, the paper will contribute
to the limited body of empirical research by comparing two of the
most popular and feature-rich graphical language workbenches —
Rascal and JetBrains MPS — using a minimal, graph-based DSL
in the DOT language. The study leverages established benchmark
problems and evaluation criteria to research the practical similari-
ties, differences, capabilities, and trade-offs, thus supporting more
informed workbench selection and DSL design.

1 INTRODUCTION

1.1 Motivation and context
A language workbench (LWB) is a tool that facilitates the assembly
of development and domain experts together, supplying streamlined
means and reducing the costs of implementing new user-friendly
language ecosystems [4]. Unlike a general-purpose language (GPL),
a domain-specific language (DSL) is designed to aid those with
minimal programming knowledge in their field, lending increased
production efficiency over traditional implements. To this end, de-
velopers restrict the notation, features, and support in each DSL
according to custom requirements [10].

Despite approaching two decades since the now widely regarded
term for language-creation platforms was coined, empirical research
analyzing developer experience and comparing DSL implementa-
tions across different LWBs is quite sparse. While a series of com-
parison methodologies have been compiled and published [2] [10],
most solutions are delegated to inexperienced students on a short
time budget [9].

According to Kelly [9], a realistic project entails a minimal exper-
imental language — in our case, a subset of the DOT language —
focused on few LWBs, to prevent pervasive bugs and suboptimal
design by minimizing the time spent learning tools. Regarding the
choice of comparison, Rascal and JetBrains MPS stand out as two
of the most widely used and feature-complete workbenches [2],
making them especially relevant to the purpose of such a study.

Importantly, this study does not focus on end-user interaction, but
on a developer’s perspective, aiming to measure and compare the
effort and complexity of implementing a minimal but representative
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subset of the DOT graph language and a like manner selection of
LWB features, as recommended by Kosar et al. [10]. Both feature
sets are detailed in section 4. Subsequently, if this work benefits
researchers, future studies could analyze the missing features.

Given how scarce implementation-oriented studies are, this work
addresses a significant gap in LWB research by conducting a repro-
ducible benchmark-driven methodology to evaluate practical LWB
capabilities.

1.2 Problem statement
There are too few LWB comparison case studies to provide a com-
prehensive guide on which to choose and why. Kelly [9] identifies
two main sources: companies — which produce different, incompa-
rable DSLs, and inexperienced students — who often prioritize ease
over scientific scrutiny: they can have incomplete results, present
ungeneralizable results — which may not be replicated, or compare
the proverbial "apples to oranges." Researchers should avoid these
pitfalls or, at worst, find reasonable alternatives. Our goal is then
defined as follows:

• Goal: To empirically compare the implementation of a min-
imal graph-based domain-specific language, derived from
the DOT subset, in Rascal and JetBrains MPS, by analyzing
grammar understandability, developer effort, and support for
language workbench features.

1.3 Research questions
To realize this objective, we structure the study around the following
research questions (RQ):

• RQ1: What is the structural complexity of a minimal DOT
language subset in Rascal and JetBrains MPS?

• RQ2: What effort is required to implement the mandatory
DOT language features in Rascal and JetBrains MPS across
the mandatory language workbench components within the
project time frame?

• RQ3: To what extent do Rascal and JetBrains MPS support
implementing individual language workbench features, based
on a minimal graph-based DSL, as evaluated through bench-
mark problems derived from proposed criteria?

2 BACKGROUND
To understand the implementation of domain-specific languages
in Rascal and JetBrains MPS, several foundational concepts in the
design and tooling of programming languages need to be clarified.
Syntax refers to the structure or form of programs, defined by

rules that determine how symbols may be combined. Semantics de-
fine the meaning of syntactically correct programs. The DOT-based
DSLs only handle static semantics, which define how constructs
behave and are interpreted before execution [18].
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Lexing (lexical analysis) and parsing (syntactic analysis) are the
processes that translate textual code into structured representations.
Lexing converts a sequence of characters into a sequence of tokens.
Parsing then analyzes these tokens according to a grammar, building
a hierarchical representation called a parse tree or abstract syntax
tree (AST). An editor provides an interface for writing and inter-
acting with programs. Text-based editors, such as Rascal’s, rely on
single-step parsing to interpret their input into a tree [19], while pro-
jectional editing, used in tools like MPS, allows users to manipulate
the AST directly [7].
Tree-walking refers to the traversal of trees to analyze or trans-

form programs. This is a common technique for implementing se-
mantics, optimizations, or code generation. When traversing a tree
in Rascal, instead of creating a pattern matching switch case for
each grammar rule, and manually entering deeper structures recur-
sively, a visitor requires only cases that include identifiers at the
current level, and to be prescribed a navigation method: top-down
or bottom-up, among other variations [17]. This latter traversal
method is recommended to accumulators such as condition check-
ers, as they reduce effort and human error, while the former befits
translational transformers of the entire tree.

3 RELATED WORK
We did not find any scientific state of the art with a focus on DOT-
based DSLs, but there are external graphical plugins on both Jet-
Brains MPS and Rascal, with an official DOT grammar implementa-
tion in the latter [14]. To keep a novel and comparable experience of
the workbenches, we did not draw inspiration from this source when
designing or developing the DSLs. However, many implementation
research guidelines, covering all proposed research questions, con-
tain quantitative and qualitative benchmarks that allow repeatable
and reproducible results [2] [10].

Power and Malloy [13] have defined a list of grammar complexity
metrics that Kosar et al. [10] supplemented and interpreted. Kelly
[9] concisely adapted two empirical comparisons: one of a represen-
tative amount of different LWBs by an example implementation’s
size, and another of the time spent on each implementation (on a
different set of LWBs), by Erdweg et al. [2] and El Kouhen et al.
[1], respectively. Finally, Erdweg et al. [2] have created a feature
model of LWB language features and compiled a list of "well-defined
and established" benchmark problem characteristics and evaluation
criteria. Section 4 lists all of these metrics and criteria under their
respective research questions.
This study will contribute to the current research body by sup-

plementing empirical data on LWB comparisons, specifically, on
DOT-based DSLs between Rascal and MPS, which should be gener-
alizable to other simple graph DSLs, under the combined analysis
protocols of the referenced articles.

4 RESEARCH METHOD
This section outlines the chosen features to implement for the DOT
language subset and LWBs, and the steps to answer the three re-
search questions.

Both DSLs are available in our public repositories.1 We oscillated
between implementing the same component in one LWB and the
other before moving on to the next.

DOT subset features:
(1) Graph type specification
(2) Nodes
(3) Edges
(4) Attribute lists
(5) Identifiers
(6) Comments
We only keep the essential features to make a graph from the

original language [5], and the optional ones are selected based on
the significant benefits we believe they may offer, as time permits.
Note that every unspecified feature is excluded.

Graphs can be directed or undirected, where edges are represented
as "->" or "–", respectively, and a "strict" keyword can alter their
graphical representation.

LWB language features:
(1) Notation: textual
(2) Semantics: translational as model-to-text
(3) Editor: free-form in Rascal and projectional in MPS
(4) Validation: structural, as lexical syntax in Rascal and semantic

naming in MPS
We prioritize the mandatory language features required to build

a DSL, according to the feature model by Erdweg et al. [2]. Each
LWB will pursue its strengths so they’re compared at their best.

RQ1: Structural complexity of the DOT subset:
(1) Define the DOT subset grammars
(2) Compute and collect grammar metrics
(3) Analyze complexity data
We collect and analyze the following list of quantitative DSL

grammar size metrics, as compiled by Kosar et al. [10]: number of
terminals (TERM) and non-terminals (VAR), McCabe cyclomatic
complexity (MCC), Halstead effort (HAL), average of right-hand
side size (AVS), and the number of productions (PROD).
With a background in GPL creation, to combat learning effects

from first-time DSL implementations [9], we only apply conven-
tional DSL implementation approaches given by Mernik et al. [11]
and established evaluation frameworks [2] [10] for the replicability
of results. We also update our work during development so that both
implementations are ultimately comparable and of equal quality.

RQ2: Implementation effort of selected features:
(1) Implement DOT features
(2) Analyze time spent
(3) Compare SLOC
We compare the Source Lines of Code (SLOC) — identical to

Lines of Code (LOC), except it excludes comments and empty lines
— between language features by language workbench, similar to
the studies by Erdweg et al. [2] and Kosar et al. [10], but more
fine-grained.

1Source code available at: https://github.com/PanaMariusTwente/Rascal_MiniDOT.git
and https://github.com/PanaMariusTwente/MPS_MiniDOT.git

https://github.com/PanaMariusTwente/Rascal_MiniDOT.git
https://github.com/PanaMariusTwente/MPS_MiniDOT.git
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Erdweg et al. [2] and Kosar et al. [10] agree with Kelly [9] that
LOC is unreliable under certain conditions: even if the same team
replicates the same DSL across workbenches and uses SLOC, it is a
weak comparison metric. SLOC is not accurate between different
features — especially of varying complexity — or sets thereof, and
rewritten or deleted LOC is also ignored by this metric.
Due to this being our first experience working with language

workbenches, we resort to a qualitative comparison of the time
spent through a rough estimate in hours of each implementation,
split by syntax and semantics. This removes the learning effect and
complements the latter weaknesses of SLOC.

RQ3: Benchmark-based evaluation:

(1) Design benchmark problems per DOT feature
(2) Implement benchmarks
(3) Evaluate based on criteria
(4) Compare findings

We analyze one benchmark problem per LWB language feature.
That is four total problems, where each implementation is analyzed
sequentially per criterion. With more time, we would have tack-
led additional problems to cover all DOT-based DSL features. This
approach allowed for more fine-grained conclusions per feature,
without detracting from the quality and depth of each analysis.

Erdweg et al. [2] defined the qualitative benchmark problem and
evaluation criteria we will use, and Kosar et al. [10] contributed
with a quantitative metric for analyzing the solutions.

The benchmark problem criteria are: self-contained, implementable,
feasible, indicative, and state of the art.
The benchmark evaluation criteria are: assumptions, implemen-

tation, variants, usability, impact, composability, limitations, uses
and examples, and DSL performance (such as overall run time, com-
pilation, verification, and optimization).

Although we assume full responsibility for the quality of DSL im-
plementations and results, we did not seek support from workbench
developers to ensure consistency — a decision that would likely
disappoint advocates such as Kelly [9]. A peer review by expert
developers would certainly strengthen the validity of this paper
and its components, but there are no concrete plans following its
publication.

5 STRUCTURAL COMPLEXITY OF THE DOT SUBSET

5.1 Analyzing Rascal complexity metrics
In this subsection, we analyze six quantitative metrics for the com-
plexity of the DSL grammars: the number of terminals (TERM) and
non-terminals (VAR), McCabe cyclomatic complexity (MCC), Hal-
stead effort (HAL), average of right-hand side size (AVS), and the
number of productions (PROD) [10]. The approach to computing
them is well-adapted to context-free grammars like Rascal’s, but
equivalent alternatives were used for MPS models. Finally, we will
analyze and compare the values in Table 1 between the implemen-
tations.

Table 1. Grammar complexity metrics.

The number of Rascal terminals (TERM) and non-terminals (VAR)
can be easily calculated by considering the unique lexical, keyword,
and layout rules from the right-hand side as terminals, and the
unique syntax types from the left-hand side as non-terminals of the
grammar. For MPS, we count non-abstract concepts from the struc-
ture aspect that aren’t subtypes (e.g., “Statement”, but not “Node” or
“Edge”) as non-terminals, and constant values, editor literals, and
primitive properties as terminals.
The values of VAR suggest that MPS requires marginally lower

maintenance effort than Rascal. The difference between TERM val-
ues arises fromMPS comments being a part of the syntax, and helper
literals that prompt the graph definition and separators. Both ter-
minal values also include six implicit keywords from post-parsing
filtering.

The McCabe cyclomatic complexity (MCC) is computed through
the grammar’s control flow: number of conditional statements plus
one, where each “choice point” is an alternative (“|”), optional (“?”),
loop (“*”/“+”), or a derivative thereof [20]. In MPS, these are present
in the structure and editor, where they affect the syntax. Multiple
concepts extending a super concept are equivalent to alternative
syntax rules in Rascal.

The MCC values indicate that testing an MPS grammar requires
more effort, with increased risk for parsing conflicts, than Rascal.
The Halstead effort metric (HAL) is measurable for a grammar

via its operations, terminals, and non-terminals [13]. We use the
formula from IBM [6]. The distinct and total operators (n1 & N1)
are operators, specifically, conditionals, sequences, and groups [3].
The distinct and total operands (n2 & N2) are terminals and non-
terminals, as defined for TERM and VAR, except that they don’t
only target unique elements for N2.

The HAL numbers provide a directly proportional estimate to the
effort required to understand each grammar. From the computed
values, we find that the Rascal grammar requires 77% of the effort
to understand the one in MPS.
The average of right-hand side size (AVS) is easily calculated

by taking the average number of symbols — terminals and non-
terminals — per production RHS. AVS is formed by their average
over the value of TERM. The terminals and non-terminals of each
MPS editor concept — which may come from their structure and
behavior — are considered a part of a production’s RHS.
The much greater AVS value for MPS denotes a less readable

grammar. This is consistent with the fact that super concepts can’t
reference themselves in editors, causing the concepts extending
them to repeat common elements. Another effect of increased sym-
bol count is decreased performance for parsers with a parse stack,
but since projectional editors manipulate the AST directly, the im-
pact on MPS is minimal.
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For the number of productions (PROD), each Rascal syntax rule
or MPS editor concept takes the place of a production.
Rascal has a higher PROD value than MPS, which generally sig-

nifyies greater expressiveness at the cost of a higher learning curve,
but the difference only comes from the separation of graph and
edge operand types for the sake of checker visits. This metric alone
is therefore insubstantial to determine the current grammatical
differences.

6 IMPLEMENTATION EFFORT OF MANDATORY
FEATURES

6.1 General overview of spent effort
The following approximate times were recorded during active work
periods on a workbench, spent reading documentation, implement-
ing, and debugging. It took 34 work hours to set up the project,
write the language grammar’s syntax and layout, and test example
trees in Rascal, and 24 hours for that, through concepts, constraints,
editors, and the sandbox, in MPS. Semantics and graphical exporting
to a ".dot" file took 27 hours for Rascal and 9 hours for MPS.

For Rascal, previous knowledge of grammar andAST construction
in ANTLR and Haskell was used, which helped build the general
structure, but was detrimental to solving the differences. MPS felt
more approachable with its decoupled concept-based architecture
and did not require prior insights, yet its abstract design missed
some expected utilities.
Most of the time spent on workbench documentation was on

the expected parsing of syntactic structures on syntax and layout
in Rascal and the editor in MPS, which roughly tripled the time
spent on each. The remaining difference from Rascal to MPS is
formed by a combination of rewritten or deleted code and additional
time perusing the documentation. We used ChatGPT, attempting
to reduce time spent on each of these areas, but it was in all cases
unfruitful and incorrect, and therefore did not include this wasted
time in the metrics above.

6.2 Line of code analysis
This subsection compares the spent effort through the total SLOC of
each DSL.While subjective, this metric should offer a rough estimate
of language expressiveness and implementation complexity [10] [2].
Structurally, the syntax and semantics in Rascal are divided between
the grammar and everything else: the “main()” method, checkers,
utility methods, and translations. In MPS, they are split between
structure and editor concepts, and constraints, behaviors, and text
generators, respectively.
Table 2 presents the compiled SLOC of each LWB implementa-

tion. The numbers include manually written definitions for the files
or concepts handling the task. From the sharp distinction, we can
clearly conclude that DSL design inMPS tends to equalize the syntac-
tic and semantic workload, while Rascal condenses the structure of
language features, and elaborates the tree after parsing, during trans-
formation. The result would suggest a developer is more likely to
get runtime errors when working with Rascal, and parse errors with
MPS, yet their corresponding syntax- and model-based designs are
predicated towards the opposite. Despite this, the analyses for the

third research question illustrate examples where counter-intuitive
issues were present in either workbench.

Table 2. DSL implementation SLOC.

6.3 Effects of DOT design on DSLs
The decision to match the DOT language’s design for the selected
features slightly increased LOC across both workbenches for the
sake of code quality.
Rascal’s grammar is extended to multiple syntax constructors

than what could otherwise be achieved for the same functionality
in fewer lines. The reason is that Rascal is designed to optimize the
produced tree at parse time, where constructors are removed, and
their content inlined, if they don’t provide any structural difference.
Though well-intended, in the case of post-parsing tree-walking
traversals — through a switch or visit, the need to preserve grammar
rules through non-trivial structural complexity proves unreliable to
the developer. They may be unsure which constructors remain, and
there is no direct way to disable parse tree optimizations. This is only
made worse by debugging printers that automatically transform
the abstract syntax tree into its textual representation, preventing
developers from seeing which structures are optimized away.

The absence of list comprehension and limited custom behavior
in MPS editors substantially increased LOC. For purely stylistic
purposes, additional concepts — “AttributeList” and “EdgeTarget”
— and conditional properties were necessary for separators. These
slight variations may confuse and slow down junior developers, per-
ceiving them as one-sided exclusions in design procedures between
editors and text generators.

7 BENCHMARK-BASED EVALUATION
This section presents qualitative benchmark problems with solu-
tions, adhering to the characteristics from Erdweg et al. [2], except
for "Uses and Examples", as there is no state of the art for equivalent
graph-based DSLs. For each problem and its evaluation criteria, the
Rascal and MPS DSLs will be analyzed in parallel for each one’s
strengths and weaknesses.
We omit quantitative measures, as both DSLs and their pre-

compilation steps perform equally well in tests. The integrated
frameworks for building a simple graph language required no refac-
toring to achieve good performance. Expanding the feature set,
especially involving custom (static or dynamic) graphical output,
may yield more pronounced differences.

7.1 Classification
The requirements of a good benchmark problem were defined by
Erdweg et al. [2]. They must be: self-contained, featuring a distinct
language feature each. Implementable, proven by the successful
integration of each feature in both LWBs. Feasible, as they fit the
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chosen minimal subset. Indicative, where the problems are formu-
lated unambiguously so their solutions form clear answers. Finally,
they should be state of the art, as the chosen problems target core
workbench features, and not editor (syntactic or semantic) services.

The propositions are derived from the most contrasting struc-
tural designs of the two DSLs, induced by their LWB counterparts’
workflow. We create one problem for each LWB feature subcategory,
with negligible overlap: notation, semantics, validation, and editing.

7.2 Defined benchmark problems for LWB
7.2.1 Notation. Optional annotation: Test how well non-semantic,
layout-insensitive annotations (e.g., single-line comments) are sup-
ported through graph parsing.

Relevance: While annotations are generally not preserved in tex-
tual or graphical read-only output, comments carry design intent,
debugging notes, and documentation for manually-written input
graphs.
Assignment: Parse a graph with comments before its definition,

as an independent statement, and at the end of one.

7.2.2 Semantics. Structural supertype resolution: Evaluate the pro-
cess where the type of parent graph for semantic edges is determined
in hierarchical structures.
Relevance: Listener logic is the foundation of semantic inheri-

tance, such as type checking or child overriding. Failures in this
area permit incorrect or inconsistent behavior.
Example: A directed and undirected graph.

Assignment: Given a graph type, have an incorrect edge throw a
parsing error, or disallow such an edge in the first place.

7.2.3 Validation. Identifier validation: Test the language work-
bench’s ability to constrain identifiers lexically and through case-
insensitive keyword exclusion.
Relevance: Identifier restrictions are essential to the language’s

usability and correctness. Such constraints shouldn’t be lax enough
to overlook keywords, or overly rigid to reject legitimate names.
Assignment: Implement an identifier construct that accepts any

non-keyword identifier. Demonstrate validation at compile and
runtime.

7.2.4 Editing. End-user-defined formatting: Examine the ability
of the language workbench to preserve user formatting choices
that don’t impact the language structure (e.g., separator placement)
during editing and translation.

Relevance: Users can have personal preferences, so one presenta-
tion style may not befit all, and would decrease the satisfaction of
using the DSL.

Example: An element with a comma separator for attributes and
a semicolon at the end.

Assignment: Add a new element to a comma- or semicolon-
separated list while maintaining the language structure. The trans-
lated output must match user preferences exactly.

7.3 Solutions to challenges
This section analyzes pairs of LWB solutions to the identified bench-
mark problems in a fine-grained comparison. They follow the pre-
cise, standardized criteria for results, established by Erdweg et al.
[2], to create repeatable and reproducible experiments.

7.3.1 A solution to optional annotation. Assumptions: Assumptions:
We assume the implementations follow a context-free grammar for
Rascal, and have a structure concept for MPS.
Implementation: In Rascal, comments are explicitly handled in

the grammar layout, as lexical tokens (Fig. 1), while in MPS, they
are saved as properties in a dedicated concept (Fig. 2).

Fig. 1. Rascal comments are layout characters between syntax tokens. They
end before a new line or comment would be parsed.

Fig. 2. MPS comments are saved as a concept property in the AST.

Variants: Since the output file is meant to be read-only, there is no
purpose in maintaining comments through translations. A potential
extension to the problem would be keeping this user formatting,
especially for use in an additional processing step, like graphical
output. In Rascal, comments could be interleaved between the graph
data after traversing the parse tree once for each, by their location
in the tree. This would modify each switch case and traversal output
to carry their position. MPS only requires outputting each comment
concept’s text generator data, starting with the graph property, and
inlining each statement property.

Another variation would be the inclusion of multi-line comments.
It would imply an additional lexical item, included in the Rascal
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Fig. 3. Rascal edges are checked with the graph type during a tree descent.

layout, and another MPS concept, with adjacent properties to those
of single-line comments in the editors.

Usability: Comments improve the readability of complex graphs
and decrease the time and effort required by other end-users to
understand graph design.

Impact: According to the Rascal documentation [16], the “$” char-
acter symbolizes the end of a line or file, but fails to mention exclu-
sivity. When transitioning from a successful hard-coded string to
reading the same graph from a file, parsing suddenly gives an error.
The solution to either circumstance is that the symbol, to consume
the last character of a comment line, has to be replaced with the
manual return characters: "[\n\r]". The MPS implementation does
not present such an impact, since comments are contained akin to a
syntax element, rather than part of a lexical layout.

Composability: Comments are non-semantic, producing no func-
tional interactions, and are either phased out through the layout in
Rascal or contained within independent concept properties in MPS.
Limitations: The current MPS implementation can only have a

comment precede the graph. It must explicitly be stated there or
at the end of a statement, unlike the natural behavior of (indepen-
dent) comments, as extending the statement type. Rascal’s layout
automatically covers all graph areas: before, inside, or after.

7.3.2 A solution to structural supertype resolution. Assumptions:
We assume that the Rascal grammar is context-free and has an edge
declaration. The MPS grammar must also have a structure, editor,
and behavior concept for edges. Edges have one source node and
one or more target nodes, where a node can either be another rule
or concept, or just an identifier. Each target edge has to support the
parsing or display of a string literal before it, to then check or set
its edge type.
Implementation: In Rascal, a semantic checker can be achieved

through graph traversal. In MPS, model structure is defined and
accessible through parent-child containment, forming the AST.
Following a similar design decision to Rascal’s identifier valida-

tion, a top-down visitor is the most efficient means to get the type of
a graph definition and check each succeeding edge notation with it
(Fig. 3). For MPS structure hierarchies, each edge instance semanti-
cally gets the type of the first “Graph” concept ancestor in a custom
behavior method, which can be displayed in the editor through a
“read-only model access” (Fig. 4).

Fig. 4. MPS projects the correct edge type based on its graph ancestor.

Variants: The problem could be extended to semantically check
nested structures. Nested graphs through “subgraphs”, where each
graph parent has a different “directional” type than the last. To
achieve this, the Rascal implementation would stay the same, as
the “directionality” would update when descending across each
graph. MPS can remain unchanged, as each edge instance would
keep getting the type of its closest graph parent.
However, this is not valid DOT functionality, as subgraphs also

inherit the parent graph’s type. In this case, the DSLs would have
to keep the type of the first or “root” graph parent.
Usability: The MPS projectional editor enables the user to auto-

matically infer the edge style, directed or not, based on the graph
type set from its definition. This relieves the user of the need to write
each edge correctly themselves. Conversely, the Rascal DSL must
assume the user knows the grammatical structure when writing the
graph as plain text.
Impact: Unlike text generators, MPS editors do not support list

comprehension, so is it not possible to display edge operands before
an edge in the sandbox. As a result, the combined concept has to be
split in source and target edges, introducing an additional concept —
“EdgeTarget” — to manage editor instances. Similarly, the potential
operands in the Rascal grammar were extracted into conditional
rules from the edge statement declaration, to directly retrieve the
accessed rule during edge checking for semantic validation.
Composability: Maintainability is worse in Rascal than in MPS,

because trees do not have access to the model hierarchy to (dynam-
ically) utilize parent-and-child nodes for inherited or synthesized
attributes. This requires bloat, which risks human error and breaks
most of the system until it is adapted to support modifications to
input or output parameters throughout the traversal.
Limitations: Analogously to keyword filtering for Rascal identi-

fiers, an exception must be manually thrown and caught for incor-
rect edge types.

7.3.3 A solution to identifier validation. Assumptions: We assume
that the parsed language is a context-free grammar for the Rascal
implementation, and tested in a sandbox Graph for MPS.
Implementation: In Rascal, lexical types and post-parsing key-

word filters are applied generically, and in MPS, via a concept con-
straint.
In addition to the case-insensitive letters from “A” to “Z”, the

digits and underscores, the DOT language’s alphanumeric identifiers
support characters from the escape sequence range “\\200” to
“\\377”. For modern tools like Rascal and MPS, we convert these
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legacy byte-level encodings from the octal numeral system into
Unicode as “\\u0080” to “\\u00FF” [15] (Fig. 5).

Since MPS does not use (greedy) lexical scanning like Rascal, but
directly manipulates the tree, its ID constraint doesn’t require a
“follow restriction” to prevent the parser from consuming partial
matches (Fig. 6).
Both implementations exclude the DOT language’s keywords

from IDs, even those not used in this simplified subset, to avoid pars-
ing issues when exporting to a visual representation software, like
Graphviz. However, despite their differences in parsing identifiers,
Rascal also does not support case-insensitive keyword exclusion
during scanning [12], and delays it to semantic checking. In this
phase, MPS automatically limits each ID concept instance through
constraints. Comparatively, Rascal requires a manual indication of
which grammar rules contain an identifier. Therefore, developers
are forced to resort to the workaround of filtering out incorrect trees
[12].

Fig. 5. Rascal restricts a lexical identifier to the allowed characters.

Fig. 6. MPS checks identifiers for characters and keywords post-parsing.

Variants: The problem explicitly concerns case-insensitive key-
word exclusion. If keywordswere case-specific, Rascal could subtract
any keywords in the same line as its definition after a “\\” sym-
bol, instead of visiting the entire parse tree to check each identifier
instance. MPS would only have the “.equalsIgnoreCase()” method
removed from its concept constraint.
Usability: The implementation complexities are invisible to the

end-user, who may use identifiers intuitively, given they know the
character type limitations.

Impact: Rascal identifiers, being lexical constructs, are optimized
during parsing, transformed into string literals that cannot be pat-
tern matched, unlike grammar rules, during a tree visit. As a result,
most rules — all that may contain an identifier — must be traversed.
Due to constructor inlining, they enforce a grammatical structure
and workflow through foreign “best practices” to the new developer.
For example, the edge declaration had to be divided into a new rule —
“EdgeRHS” — to extract target node identifiers from the non-empty
list of edges to surface-level syntax, making them accessible through
visitors. This chain reaction can drastically increase effort, through
rewritten and deleted LOC, spiking beyond what can be expected
of a novice developer’s learning curve of the workbench toolset.
The “brute force” alternative to extending the grammar is to

recursively match the pattern over the entire tree, inside a switch

instead of a visitor. However, this defies the purpose of using a
visitor, which is simplicity and efficiency. Using a switch also doesn’t
prevent constructor inlining, but it helps identify which rules were
optimized away, that is, those that aren’t processed. We chose a
top-down visitor to catch and flag the first misused ID, rather than
the deepest one.

MPS does not use such optimization techniques over its concepts,
which, while user-friendly, may decrease performance for large,
poorly designed languages.
Composability: We avoid converting IDs from a “lexical” to a

“syntax” rule because the former are processed at the scanner level,
making them more efficient by matching tokens greedily and inde-
pendently of a syntactical parsing context. This leverages negative
token boundary control (“!»”, “!«”) to prevent lexing identifiers
incorrectly.
MPS identifiers, just like comments, are modularly contained

within independent concept property instances held by their parent
concept. Then, they can be referenced by custom behavior methods,
or read-only editors and text generators.

Limitations: The absent built-in support for case-insensitive key-
word filtering was the catalyst to the impact on Rascal, with its
implementation inefficiencies and additional required effort. Defin-
ing identifiers directly as syntax rules also precipitates inlining
optimizations, to the detriment of keyword exclusion.

Instead, grammar granularity and refactoring optimizations can
be circumvented by creating a wrapper syntax rule for IDs, or any
other lexical token, to signal their syntactical importance. However,
the issues still apply to similar circumstances, whenever one needs
to access the entire or most of the tree in a consistent manner to the
grammar definition, through accumulation and/or transformation
[17].
The source of this unpredictability is the thought and discov-

ery process behind DSL design, as the mismatch between a devel-
oper’s mental model and Rascal’s behavior decreases work efficiency.
Comparably, MPS disallows custom upper and lower bounds to the
amount of children allowed of a concept type beyond zero or one.
However, as an intentional design choice, as Rascal’s “?”, “*”, and
“+” symbols, they intuitively suggest the developer to redesign their
grammar.
Because constraints are applied after parsing, MPS initially ac-

cepts any string format for identifiers, yet they immediately show
up as invalid in the projectional editor, so no practical differences
apply. The potential benefit — or drawback, depending on prefer-
ences — is that the editor does not stop execution until the mistake
is resolved. This maintains sandbox alteration and error-checking at
the cost of allowing the end-user to postpone and forget about the
issue. While Rascal stops parsing at the first improperly-formatted
character, since whole keywords are filtered out semantically, an
exception must then be thrown to halt the process.

The final drawback to Rascal is the unavoidable code duplication
that arises when repeating defined keywords in semantic checkers.
These are purely syntactic constructs, and are not accessible as
variables or runtime values. A separate set of hard-coded strings
must be defined to blacklist incorrect identifiers with, which is
popularly considered a bad programming practice.
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7.3.4 A solution to end-user-defined formatting. Assumptions: We
assume the existence of a parsed context-free Rascal grammar and
one or more structure and editor concepts that contain optional
separator literals.
Implementation: In Rascal, formatting is explicitly preserved

through concrete parse tree walks. In MPS, text generation rules
must respect file-level model semantics — the persistent alternative
to editor hints [8]. As the end-user only makes edits within the
Graph file, the MPS projectional editor asks for “showCommas” and
“showSemicolons” boolean condition properties before a graph’s
definition to prompt the user on how to (dynamically) complete
statements and attributes. Rascal’s free-form editor supports inter-
leaved styling, which prevents parsing errors from any separator
end-users may have forgotten.
Variants: The solutions change when the problem imposes a

certain formatting method they’re ill-suited for, as the two LWBs
switch their design strengths. Rascal could centralize its separator
choices between commas and semicolons before the graph definition
through a pseudo-projectional semantic styling during translation,
and appropriate MPS concepts, like “Statement” and “Attribute,”
gain one or a list of properties, and a constraint that the number of
separators must (roughly) match the number of concept elements.
Usability: Concerning the display format of user data, the two

workbenches have different strengths and weaknesses, and appro-
priate means have been chosen to support each one. Rascal offers
more flexibility at the cost of effort, while the sandbox of JetBrains
MPS automates styling, to which the end-user is constrained.

Impact: Due to the projectional nature of MPS, where separators
are automatically written for the user, the predisposition to consis-
tency for statements and attributes would be to impose commas and
semicolons. In so doing, enabling workbench comparison through
equivalent language features would require making them manda-
tory in Rascal too, or preclude them entirely from both, which would
either be an extension of the DOT language, instead of a subset, or
an exclusion of a basic (styling) feature.
The goal, shared between Rascal and MPS, is for the end-user’s

chosen style to be maintained throughout translation. The difference
lies in editing mode: free-form vs projectional, which implies a
different level of tailored flexibility; a primary factor that end-users
and developers must consider when choosing their workbench.
The workbenches can achieve the same feature set, but through a
counter-intuitive workflow, opposing their strengths.
Composability: The only exception to the modularity of state-

ments is in MPS editors concerning statement semicolons, as it’s
not possible to refer to the current concept instance inside its editor,
to be able to place the separator after its content.
Limitations: The Rascal solution limits translation traversal to

concrete parse trees over ASTs, to maintain access to the layout and
string literals at the cost of manually handling optional elements,
but this generally is the preferred approach anyway [2].

8 CONCLUSION
This study records a detailed comparative analysis of creating a
minimal DOT language subset in two prominent language work-
benches — Rascal and JetBrains MPS. Focusing on developer effort

and preference over end-user experience revealed practical chal-
lenges encountered during the implementation of each graph-based
DSL. The findings provide valuable insights into the strengths and
trade-offs of free-form textual editing versus projectional editing,
and the impact these approaches have on language feature integra-
tion, complexity, and developer productivity.

To answer RQ1, we have looked at six pre-defined language met-
rics for understandability and maintainability. The structural com-
plexity analysis reveals that both Rascal andMPS handle theminimal
DOT grammar with distinct trade-offs. Rascal’s textual grammar
features more productions with smaller right-hand sides, making it
slightly more expressive and easier to maintain. In contrast, MPS
consolidates grammar elements into fewer but larger editor con-
cepts, resulting in greater cyclomatic complexity and Halstead val-
ues, which point to an increase in complexity and comprehension
effort. Overall, Rascal’s grammar can be easier to comprehend, as
MPS requires more effort with its semantic modeling, as demon-
strated by the differing designs of the two LWBs.

RQ2 concerned the required developmental effort, measured through
time spent and lines of code. Implementing mandatory DOT lan-
guage features requires varying levels of effort and different work-
flows across the workbenches. Rascal took more total work hours
due to its complex integrated grammar, while the modular concept-
based architecture of MPS led to faster development, despite an
initially steeper learning curve of abstract editor concepts and some
missing utilities. Source lines of code (SLOC) analysis showed that
Rascal is predisposed to a leaner syntax, leading to denser transfor-
mation code as the MPS design balances workload across syntactic
and semantic concepts. Therefore, developer familiarity and tooling
features can substantially decrease implementation effort.

Four qualitative benchmark analyses for RQ3 contrast how both
Rascal and MPS can support core language workbench features
effectively, namely notation, semantics, validation, and editing, by
their inherent strengths. Rascal’s grammar-based, free-form textual
approach offers greater flexibility through explicit control, particu-
larly in preserving user formatting. Conversely, MPS’s projectional
editing and structured concept models provide a robust framework
for semantic behavior and intuitive user guidance, at the cost of
some freedom in formatting and grammar expressiveness. While
both LWBs can implement the benchmark problems successfully,
the differences in workflow, usability, and extensibility reveal trade-
offs developers must consider when choosing a platform for DSL
design. Future expansions involving more dynamic graphical output
or advanced editing features may further accentuate these distinc-
tions.
Future research could extend this comparative framework to in-

clude additional language workbenches and a broader set of graph-
based DSL features, such as the remaining ones from the DOT
language, and beyond. Investigating end-user experience alongside
developer effort would provide a more comprehensive understand-
ing of language workbench trade-offs. Furthermore, empirical stud-
ies with a larger pool of developers could validate these findings
in real-world contexts, refining best practices for DSL design and
implementation in both textual and projectional environments.
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