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ABSTRACT
Bluetooth devices require bandwidth to allow data transmissions

in a timely manner. When interference is present or the devices

are not timed correctly, retransmissions can happen. This can be

exacerbated during the discovery phase of Bluetooth when devices

are not synchronized yet. This paper researches the behavior of

the Bluetooth discovery phase by producing a simplified Bluetooth

model that makes use of physical waves to communicate. By using

Model-Based Testing as our framework, a simulation can be formed

by which the correctness of this system can be further verified.

Results can also be gathered surrounding its performance and to

gain insight into its implementation. This will be done within the

Matlab Simulink environment, where the protocol will be simulated.
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1 INTRODUCTION
As more Internet of Things devices become integrated with our

daily lives, interference becomes commonplace due to the limited

bandwidth available. Because these WLAN devices can belong to

separate networks, agreements in frequency channel usage behav-

ior are required tomitigate collisions and interference during packet

transmissions. For short-range devices running Bluetooth, this im-

plies running both FDMA (Frequency Division Multiple Access)

and TDMA (Time Division Multiple Access) [27]. TDMA specifies

the time interval in which devices are allowed to transmit, while

FDMA dictates which channel frequency to use. This combination

helps sustain multiple different Bluetooth networks on a given

bandwidth by minimizing the chance of using the same channel.

This is then enhanced with frequency hopping, whereby the pack-

ets are transmitted on alternating channels in a pseudo-random

manner [1]. This helps prevent interference as the numerous net-

works that share the 2.4 GHz bandwidth range are less likely to

broadcast on the same channel at a given moment. In addition to

this, AFH (Adaptive Frequency Hopping) tries to further record the

presence of noisy channels [17]. These channels are then excluded,

which can reduce interference from potentially frequency-locked

networks [26].
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While Adaptive Frequency Hopping does assist with noise, its

usage is only after a connection has already been formed between

the master device and one or more slave devices. Before such a con-

nection has been formed, the discovery phase has to take place so

that both devices are aware of each other’s presence. A study from

2006 [7] replicated a simplified version of the protocol (according

to Bluetooth 1.2 specification) without noise present and quantified

the time required for a device to inquire and receive a response

from a listening device. They discovered that this time can vary

with an expected reply duration going from 625 𝜇s to a maximum

of 2.5716 s [7]. As the current Bluetooth 6 specification has not seen

any alterations related to this particular protocol [1], this range is

still applicable.

Due to the long channel hopping sequences both the inquiring

and listening devices have to make, failure to successfully trans-

mit a packet at the right moment can delay the discovery phase.

This, in turn, can be detrimental to time-critical applications, for

example, mobile devices that frequently need to switch networks.

As such, this paper researches the Bluetooth discovery phase by

modeling it in the form of a simplified state machine and comparing

it to a system running under an environment capable of simulating

packets. To aid development, Model-Based Testing will be applied

to increase certainty of the system’s behavior by checking if the

implementation abides by the Bluetooth specification. Since the

model abstracts from the implemented system, it will be possible

to verify desired behaviors without needing to pay attention to

the low-level implementation [25]. The creation of a simple yet

functional model also allows for the automatic generation of test

cases to test the system and produce traces of its behavior, upon

which can be reasoned, providing insight into its properties.

The novel contributions provided by this paper are thus:

(1) The modeling of the Bluetooth discovery protocol as an

extended finite state machine.

(2) The subsequent application of Model-Based Testing using

this state machine on an implemented system of Bluetooth

discovery.

(3) The results gathered from experimental data provided by

running the system under test, additionally compared to the

initial model.

2 RESEARCH QUESTIONS
Bluetooth discovery modeling has been done in numerous ways,

though in most papers, the research has beenmore analytical. These

models are too abstract from the implemented variants of this proto-

col and lack lower-level details. As such, a system has to be formed

that is suited for simulating the discovery phase in a realistic way.

To do this, Model-Based Testing will be used as it is highly suited



for conformance checking. By using a simplified model and an im-

plemented system, behavior during physical transmission can be

checked and compared to the specification given by Bluetooth.

As such, the following research questions can be derived:

• RQ1: How can the Bluetooth discovery protocol be modeled

within the MBT framework?

• RQ2: How do low-level implementations affect Bluetooth

discovery behavior concerning inquiry time duration?

This paper begins with section 3, discussing the research already

done on the topic of Bluetooth modeling and how it differs from

what is desired for our research. Section 4 provides background

information surrounding the Model-Based Testing framework. Sec-

tion 5 continues from this and explains the process of developing a

model suitable for Bluetooth discovery and transforming it to allow

for MBT. Section 6 examines the results produced by the model

and the system that have been implemented within Matlab, while

section 7 discusses these results. In addition, section 8 provides

possible room for improvements for both the produced models and

the testing environment used, as section 9 gives the general conclu-

sion of the paper. A complementary appendix has also been added

to further showcase the system and the ways it interacts with its

environment.

3 RELATED WORK - BLUETOOTH MODELING
Multiple studies have already been performed which analyze Blue-

tooth’s transmission when interference is present from IEEE802.11

(WiFi) [5, 12, 13, 14, 16], different Bluetooth networks [5, 8, 9, 15],

and other short-range protocols like Zigbee [5]. However, these do

not focus on the discovery phase as desired and limit themselves

to expected throughput and or general packet loss present within

the network.

Duflot et al [7] have modeled the Bluetooth discovery phase

while making use of a probabilistic model checker called Prism.

Their model is capable of checking the many possible states in

which both the inquiring and listening devices can be, though

it lacks features such as interference or multiple listeners. This

minimizes the probabilistic behavior present, such as exponential

backoff, which helps mitigate multiple listeners replying to a re-

ceived inquiry simultaneously [2]. Other non-deterministic actions

can occur when a packet is dropped, requiring either an inquiry or

reply packet to be retransmitted.

Chakraborty et al [4] have modeled the Bluetooth discovery

phase similarly to Duflot et al, but did include the backoff behavior

present in the original Bluetooth specification [1]. Their research

has produced similar results, focusing primarily on computing the

average time required for an inquiry to be performed. However,

their results aremore experimental inmethodology as they run their

simulation with given values for the offset between the inquirer

and listener before reasoning on the probabilistic results gathered.

Cordeiro et al [6] have modeled Bluetooth transmission, com-

puting the average packet success probability with the presence of

interference from other nearby pico networks. Though not focusing

on the discovery phase of Bluetooth, their paper does illustrate the

importance of distance and decibels with regard to interference

influence.

4 BACKGROUND - MODEL-BASED TESTING
To test the behavior of a system, testingwould be necessary. Though

a software engineer could hypothetically write individual unit tests

for each component, additional integration testing and system tests

as a whole, the process could potentially diverge in correctness as

specification requirements are not taken into account properly. The

use of formalmethods, such asModel-Based Testing, can help derive

tests systematically [3]. Model-based testing entails the generation

of test cases and subsequent execution of test cases to evaluate a

system’s compliance with its requirements-abiding model [10]. The

model acts as an oracle system; given any input to it, the model

compares the expected output with the one given by the system.

Using this setup, a wide range of test cases can be generated on-

the-fly as the system is traversed for all possible behaviors.

The primary advantage of Model-Based Testing compared to

other testing methods is the separation of internal workings from

the instructed behavior. The model only provides inputs and out-

puts onwhich the systemwill be tested; as such, the implementation

of the system can be inaccessible and could be a more elaborate

and detailed variant of the model or only a slight modification [24].

The main focus lies on whether or not the behavior of this imple-

mentation abides by the requirements present within the model.

Similarly, the formal model produced can also be simplistic. In most

cases, the model only describes high-level processes. This allows

for abstraction as the lower-level details can be largely omitted.

To summarize, the execution of Model-Based Testing would then

consists of: creating a requirement complying model, classifying

the input and output actions, mirroring those to derive the model

to compose with the system, and finally parallel composing this

mirrored model (with use of an adapter if need be) to the imple-

mented system. When formulating a formal model, the use of state

machines is not necessary, although examining its execution path

could be easier compared to regular code. Additionally, as coverage

is regularly a metric for the completeness of a test, with finite state

machines in particular, full coverage can be achieved by continuing

test case generation until all possible states and edges have been

reached by the model. For extended finite state machines as used in

this paper, this might be more difficult to achieve as data variables

increase the state space and subsequently the duration of testing.

The composed system forms an implementation under test. This

system is assumed to have an implementation relationship with the

formal model it conforms to, though whether this is the case or not

can only be made known through conformance testing [22]. As the

system interacts with the composed model, it will produce a set of

observable actions called a trace [24]. If the implementation under

test produces a trace that ends in a failing state, then it will have

failed that respective test case and can be assumed to not comply

with the requirements specification [11]. After sufficient test cases

have been run without failure, the possibility that the system does

not conform becomes improbable.

5 METHODOLOGY
5.1 MBT approach
To verify that a system meets the requirements laid upon it, Model-

Based Testing will be used. By producing a simplified Bluetooth

model that integrates all the specified requirements, the model is
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capable of showcasing the expected behavior of the system under

test. As the model allows for the generation of test cases, the sys-

tem will be driven by these inputs and outputs to derive as many

different responses and interactions as possible. Given that there

is an implementation relationship between the model and system,

if these tests all pass, the system can be seen as conforming to the

model.

Since only the visible behavior is checked, the inner workings

of the system can remain a black-box for the tester; only the inputs

and outputs will be connected. Within the Bluetooth discovery

model context, these would consist of inquiry and reply packets,

which can be represented as simple events happening at discrete

points in time. This allows for abstraction when it comes to the

processes that take place within the Bluetooth system, such as

the timing mechanisms, the wave generation, and the frequency

hopping scheme. The same applies to the actions of sending and

receiving packets, as the model does not need to receive the actual

packets. Only the fact that a packet has been sent or has been

received is needed for it to function.

To produce a testing model, an initial formal model of the speci-

fied requirements will need to be created. As input-output confor-

mance will be the main focus, the interactions the model makes

with the outside world will be represented as specially indicated

transitions to allow for such behaviors to be visible. For this paper’s

Model-Based Testing, inputs are marked ending with a question

mark, while outputs end with an exclamation point. Other transi-

tions could be seen as internal processes and should not be made

accessible for checking the system’s behavior. By subsequently

mirroring the visible actions as visible in Figure 2, the model now

checks whether an expected action has occurred or moves to a state,

such as to get to such a point. During testing, both the test model

and system will be traversed as actions are passed to and from one

another. Depending on the strictness of the testing, actions which

are not classified as possible transitions at a given state could either

lead to failure or be ignored [23]. Further considerations have to

be made when it comes to quiescence, 𝛿 , when no visible actions

take place. Tretman formalizes that the event of not seeing any

output could be considered a type of output itself [24], traces which

contain these actions are suspension traces and can be modeled

directly by providing a dedicated transition and respective state

for quiescence, turning the model into a suspension automaton.

Classifying this inactivity can cause issues as it forces the model

to wait indefinitely to conclude the lack of an output action. A

more practical approach mentioned by Tretman is the inclusion of

time-outs, which need to be long enough as not to falsely return a

quiescence transition. For our model, this method will be applied.

Though Model-Based Testing is not limited to state machines,

their use helps showcase the expected input and outputs given by a

model, as transitions can highlight when a model expects an outside

event to take place, in this case, a packet to be sent or received. The

events originating from the system can be logged and checked for

their consistency with regard to the model. This would produce a

trace of actions that can be reasoned on further using input-output

conformance.

The resulting model and adapter combination (see Figure 1) will

be capable of providing inputs and receiving outputs to and from

the system to check its correctness. Additionally, the model can be

Figure 1: Setup of Model-Based Testing environment

(a) Initial (b) Mirrored

Figure 2: Example of mirroring

used to verify that the system meets the requirements given by the

Bluetooth discovery protocol and can provide measurements that

can be reasoned with.

5.2 Environment and Tools
The Model-Based Testing framework is implemented within Mat-

lab, which possesses both Simulink, a package capable of modeling

extended finite state machines, and the Bluetooth Toolbox, which

can be used to generate Bluetooth packets and waves. These com-

ponents allow for the simulation of lower-level physical signals

that would otherwise overcomplicate the adapter’s and system’s

code. Because of this, the system and its respective model will be

simulated within this toolbox. Furthermore, Matlab possesses nu-

merous functionalities and tools such as signal multiplexers, sample

time generators to set execution interval of the model, and apps to

display results in the form of diagrams. Since the model and system

need to follow strict time intervals, these will be vital for checking

correctness.

5.3 Modeling the Bluetooth discovery protocol
The formal model produced follows a similar formation to the la-

beled transition system given by Duflot et al [7]. Although the

researchers end up implementing their model using Prism. This

environment is well-suited for modeling systems and protocols that

possess probabilism [21], though it lacks features to simulate less

abstract and more physical concepts. Our paper intends to make

use of their formal model by refactoring it to an extended finite

state machine. This is required due to the need to maintain the

values of variables such as the current and subsequent channel

frequencies, but also to calculate the random number of time slots

the listener needs to sleep for the backoff state. As specified by the
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Bluetooth specification, the discovery phase consists of two specific

components, an inquiring device and a listening device [2]. The

purpose of the protocol is for the inquiring device to discover all

listening devices in range for a given amount of time. This is done

by transmitting inquiry packets to dedicated channels within the

2.4 GHz band range. Each inquiry packet can be transmitted to one

of 32 specified frequency channels, which are separated from one

another by 2 MHz. The transmission of these packets happens on a

controlled basis using time slots lasting 0.3125 milliseconds each.

The frequency channel to which these packets are transmitted re-

lies on the frequency hopping scheme described by Bluetooth. The

pattern consists of two channel frequency sets, which are iterated

from 1 to 16, defined as track A, and 17 to 32, called track B. Track

A is repeated 256 times, at which point track B is followed for the

same number of iterations. As soon as a given track has iterated 128

times, its first non-swapped value will be swapped with its equally

indexed value on the opposite track. This way, both tracks will have

fully swapped after 4096 iterations and returned to their original

values after 8192 iterations. After a packet has been transmitted on

a given time slot, the inquirer listens to the same frequency it has

transmitted to after 2 time units. This means that an inquirer (see

Figure 3) can transmit to two different channels sequentially and

afterwards listen to those two respective channels for reply packets

from any nearby listeners. As soon as a reply has been received, the

central inquirer can finish the discovery phase and start paging the

peripheral listener to initiate a connection using its newly received

address and clock offset [1], or it can continue scanning for other

listening devices in the vicinity.

Figure 3: Labeled Transition System inquiring device

The listener (see Figure 4) follows a similar process to search for

inquiring devices. However, instead of actively searching for in-

quiring devices, it spends the majority of the time sleeping. The

device wakes up periodically and listens to transmitting devices

using the same frequency hopping scheme as inquiring devices. As

the listener is not continuously hopping sequences, the inquiring

device will eventually catch up to the listening device and be ca-

pable of transmitting a packet to the same channel the listener is

scanning for. At this point, the listener will wait 2 time slots such

that it can return a reply packet as the inquirer is scanning the

frequency channel. As multiple Bluetooth listeners can be present

within a given area, listeners will need to showcase probabilism

to mitigate interference from simultaneous inquiry replies. Within

Bluetooth discovery, this entails having a random backoff period

after a reply has been sent to an inquiring device. The waiting time

can be simplified to a random number between [0, 128] multiplied

by twice the average time slot.

Figure 4: Labeled Transition System listening device

The extended finite state machine of the Bluetooth discovery

protocol showcases these requirements and allows inquiring de-

vices to establish inquiries towards listening devices. The listener

model is similar to the one retrieved from Duflot et al [7], though

the implementation of this model within Matlab will need minor

alterations as transitions will need to be marked for when a state

runs out of time. The same applies to the inquirer who will only

remain in a given state for a limited amount of time, listening to

incoming actions before moving on to the next state.

5.4 Transformation Model-Based Testing
Although this model would be capable of running stand-alone and

deriving results, the main interest is to compare it to a system under

test while simulating low-level physical interactions in the form of

waves and packets. To accommodate providing inputs and outputs

this way, an adapter is needed between the model and the system.

The Bluetooth Toolbox of Matlab contains functions that allow

for the generation of Bluetooth packets in the form of waves, and

subsequent receiving of these waves to transform them back into

packets. Decoding capabilities are also present to indicate what

type of packet has been received. This signal can be fed into the

model to indicate that a given action has taken place.

For Bluetooth discovery, Model-Based Testing can be applied in

two distinct ways: focusing on the discovery process as a holistic

whole or testing the individual components (the inquirer and the

listener) for their behavior. Testing the system as a whole increases

complexity as synchronization becomes difficult to maintain. Addi-

tional issues can occur when probabilistic actions happen when the

model becomes unsure how long a backoff period should last. The

presence of quiescence implies the lack of visible output actions;

in this case, the mirrored model would have to send an inquiry

packet at an unknown amount of time, as the listener system is

outputting no actions for a randomized amount of time. Without

breaking encapsulation and finding out directly if the listener is

done with its backoff, the model could wait indefinitely or fail the

test due to prematurely detecting quiescence incorrectly.

Instead, by simulating the system piecewise as independent com-

ponents, the results gathered can be more accurate and less prone

to failure due to these factors. Furthermore, the structure itself

becomes more comprehensible, which assists with the goal of re-

quirements checking. To test the inquirer, the model will need its

transitions to be mirrored. That way, when the behaviors match,
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an output from the system will feed directly into the respective

input of the transition in the model. The modeling of the listener

follows a similar pattern. Since the component under testing needs

to eventually finish execution, it will be limited to a certain number

of iterations before finishing automatically. The listener can exhibit

quiescence at some points of execution for unknown amounts of

time, which makes accurately testing it in the same manner difficult.

Because of this, its Model-Based Testing will be left out, though it

would not be impossible to achieve in future adaptations (possibly

breaking encapsulation to speed up testing runtime).

6 RESULTS
6.1 Results RQ1: Bluetooth Discovery Modeling
The setup as described in Figure 1 within the methodology has

been implemented inside the Matlab Simulink environment. There,

the inquirer component (see appendix - Figure 7) runs using the

Model-Based Testing framework as events are given and read from

it while being indirectly compared to its respective inquirer model

(see appendix - Figure 10). These actions are used to call functions,

which correlate to the adapter, where their respective packets are

made and transformed into waves using a Bluetooth wave generator

function. The Bluetooth Toolbox is limited in how the waves can be

generated. Bluetooth requirements state that Bluetooth packets are

transmitted using Gaussian Frequency Shift Keying, which modu-

lates the Bluetooth packet to be sent to a specified carrier frequency

[1]. As the given functions only allow for general packet wave gen-

eration, this requirement cannot be met using the wave’s frequency

properties. Instead, an indirect method was used whereby the re-

ceiver checks the frequency at which the packet was supposed to

be sent and compares it to the frequency of the channel it is cur-

rently scanning. Possible adaptations could be made to manually

create, transmit, receive, and decode Bluetooth packets; however,

this would naturally increase complexity and processing time as

signal processing would modify the transmit time of a packet and

require modifications to the time intervals for each state. Another

option would be to decode the packets generated from the Blue-

tooth toolbox back to bits before remodulating them to a specified

frequency. This would naturally produce excess noise, consequently

requiring filtering stages, which can be computationally heavy. Al-

though the current method of generating general Bluetooth waves

lacks the capabilities to set the carrier frequency directly, it is still

capable of producing semi-randomized packet waves. In the case

of a reply packet, these waves will differ the most as they usually

carry payload describing the listener device’s properties, such as

address and access codes. Further differences between waves are

present due to noise generated during their transmission. Noise

levels can be tweaked, although for Model-Based Testing purposes,

this would most likely prevent actions from being accurately de-

coded back into signals and would be detrimental to generating and

feeding test cases. The signals are then fed back into the extended

finite state machines to allow for conditional transitions to take

place, such as changing the current state after an inquiry packet

has arrived.

6.2 Results RQ2: Inquiry time duration
The original model, as described in the methodology, has also been

implemented within the Matlab Simulink environment (see appen-

dix - Figure 7). On each iteration, the inquirer and the listener

attempt to perform the inquiry protocol before resetting and ran-

domizing their initial variables. This mimics the randomness of the

algorithm as its real-world implementation relies on the current

time for initialization. After continuously running the model, a

set of sample times was collected with differing amounts of ele-

ments. These results are displayed in Figure 5. During the best-case

scenario, the listener scans while the inquirer is transmitting, allow-

ing a minimal time of 2 time slots (0.625ms), while the worst-case

scenario gives a time range of 5.75s. Duflot et al [7] provide a maxi-

mum of 2.57s, which is way lower than this supposed worst-case

scenario.

On the topic of average inquiry time duration, the samples col-

lected produce a mean value of around 1.45s. Chakraborty et al [4]

results differ depending on the number of devices present and the

backoff period present within the listener, for our current setup of

2 devices (1 inquirer and 1 listener) and a backoff limit of 255, their

estimate ranges around the 2.1s mark.

The possibility of synchronization issues within the Matlab envi-

ronment or even glitched states that prevent correct transitioning

of the model should not be excluded. Although Matlab attempts to

discretely model its simulation, the possibility exists of concurrent

writes or reads overlapping in non-deterministic manners. This is

especially the case when working with multiple individual models

that run simultaneously.
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Figure 5: Inquiry success model (n=13820)

For the physical-simulating system (see appendix - Figure 8),

tests are run similarly to the original model by using an adapter

that forces it to transform inquiry and reply actions into their

respective wave packets. These are subsequently decoded before

being passed to any listening components. This necessitated minor
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modifications to the runtime configurations due to the strict loop-

avoidance measures Matlab takes to prevent recursive event calls

[18]. In the case of event broadcasts, which can be seen as the inputs

and outputs being passed to and from the models, these can feed

into themselves or accidentally update themselves within the same

tick, causing a recursion loop to occur [19, 20]. To return the system

to a time-based system instead of an event-based one, the inclusion

of a periodic function call generator was needed. This function

regularly passes events to the system, causing it to wake up every

0.3125 milliseconds to check its current processes and transition to

a new state if allowed. A major side effect of using a more detailed

system is the increase in the runtime duration. Although the model

can execute multiple seconds of simulation time within a single

runtime second, the system requires multiple seconds of real time

for a single simulation second. This considerably limits the number

of samples that can be gathered within a reasonable time span. The

results for the system are displayed in Figure 6.
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Figure 6: Inquiry success system (n=210)

7 DISCUSSION
Using the results gathered from the previous sections, the previ-

ously declared research questions can be answered.

RQ1: How can the Bluetooth discovery protocol be modeled within
the MBT framework?

Using the Matlab Simulink environment, the Bluetooth discov-

ery protocol can be partially modeled by way of extended finite

state machines. As stated before within the related works section,

this way of modeling assists with the translation of the require-

ments needed and further helps with classifying the inputs and

outputs as they match with the transitions between states. This

model can then be implemented in more detail as a system before

being mirrored to use as a test case generator. By linking both

parts using an adapter, the model maintains high abstraction as

the details are taken care of by the coupling between it and the

system. Additional inclusions, such as unexpected inputs that re-

sult in a fail state or long periods of inaction, may also be added

to detect incorrect behavior. At this point, the model and system

are composed, and as long as the environment has been configured

correctly by way of sampling time and execution order, they will

continue testing until an error occurs.

The use of a divide and conquer approach is recommended for

larger and complex systems or those that rely heavily on synchro-

nization. As Bluetooth discovery requires both systems to be in

sync with one another during execution, splitting up the individual

components and testing them individually becomes a necessity.

Within Bluetooth discovery, the presence of probabilistic behav-

ior in internal process durations heavily restricted the modeling

process. The only way to efficiently model would then be by break-

ing the encapsulation of the system, though in non-transparent

systems, this could be difficult to achieve.

RQ2: How do low-level implementations affect Bluetooth discovery
behavior concerning inquiry time duration?

As shown by the graphs, the results differ slightly, though this

could be due to the smaller sample size produced by the imple-

mented system. Changes within the implementation to account

for lower-level interactions have led to differences in results as

the system suffers from delays in packet arrival and starts missing

key events. Although both implementations suffer from deviations

compared to the other Bluetooth discovery papers, the order of mag-

nitude is the same and would indicate the presence of exceptions

taking place within the code or Matlab environment.

8 LIMITATIONS
Numerous modifications were made during the modeling and im-

plementation of the system due to limitations within the Matlab

environment or circumstantial constraints. Limitations more spe-

cific to the methodology of this paper would be the reuse of the

model for the system’s implementation. Although both the model

and system are alike in functionalities and behavior, the system is

expected to be less abstract and more fine-grained in its processes.

Within this paper’s context, using the initial model as the system

would not be incorrect, as the requirements are still being met.

Though one major concern is the performance of the produced sys-

tem, as the underlying code consists primarily of a state machine,

which should be translated to a more efficient code base. Fortu-

nately, the environment depends on sample time and not real time,

as Matlab can spend as much time as needed to execute the system

while the simulation time is kept to a frame of microsecond-long

time units.

Another missed factor would be the lack of drift inside the envi-

ronment, as both model and system follow the same sample rate

with the same phase. As a result, there is no direct concern for out-

of-time packet transmissions or interruption during transmission,

though this does reduce the accuracy of the findings. Other lapses

in realism are the presence of only one listener and inquirer. It is

not unusual for multiple Bluetooth devices to be present within

range and ready to reply to incoming inquiry packets. As such, any

given inquiry could lead to multiple wave packets being returned
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and resulting in interference. Although the backoff protocol to min-

imize the effect of this has been implemented within the listener

component, simulating multiple listeners has not been done due

to time constraints, and further increases in complexity it would

cause.

Finally, the state machines provided byMatlab lack granularity to

adjust the waiting times of transitions. Adding a transition to every

possible state to leave under the usual time slot duration length of

628.75ms or 11.25ms in the case of a listener would potentially fix

this, although performance-wise and clarity-wise, this is not ideal.

As a result, this limits the randomness of the initial states, as it is not

possible to be in a continuous state where it is already partially done

waiting. This skews the collected measurements to the right, as the

inquiry process always starts with the listener waiting patiently in

the waiting state. This means the minimum inquiry time is at least

628.75ms larger than expected when compared with the results

from Duflot et al [7].

9 CONCLUSION
In summary, this paper has investigated the Bluetooth discovery

protocol with regard to simulating it and using Model-Based Test-

ing to verify its behavior. By following the requirements given by

the Bluetooth specification and subsequently translating them into

a model, we produced an extended finite state machine capable of

generating test cases for a Bluetooth system to follow. The model

itself has been compared with other similar Bluetooth discovery pa-

pers’ results and has shown differences, due to the lower precision

of the model and more likely differences in the implementation

and environment. The Matlab environment has showcased the pos-

sibility of modeling lower-level physical Bluetooth waves for use

between a system and its respective formal model. The inclusion,

however, has led to increased complexity and a worsening runtime

as a result. This trade-off might not be worth it for analytical re-

search, though, for more accurate and realistic testing, it could be

of use. The further inclusion of Model-Based Testing has assisted

with requirements checking and system verification.

10 FUTUREWORK
The research performed in this paper has provided insight into the

modeling of the Bluetooth discovery and the subsequent testing

thereof. Future works that intend to follow this paper’s method-

ology should keep in mind the limitations mentioned as possible

points of improvement. More general alterations could be made

to the wave generation itself, as given in the results section of

research question 1. Transmitting packets according to Gaussian

Frequency Shift Keying would produce more true-to-reality waves

and could help with system realism. Another point to focus on

would be the timing between the model and the system. As this

paper worked within a discrete Simulink environment, changes in

phase and timing were nonexistent. As such, more research should

be done while variations in time are present. Finally, during the de-

velopment of the model and system, extended finite state machines

were heavily used in combination with the Simulink environment.

These helped with producing an interface in synchronization with

both the model and the system. If the system implemented were

not a state machine nor accessible during development, connecting

it this way would have been difficult to achieve. Further research

on the topic of synchronizing and adapter modeling with regard to

non-timed systems could be of use.
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11 APPENDIX
This section contains supplementary images that showcase the

system and the environment where it is used.

Figure 7 displays the extended finite state machine as modeled

within the Matlab Simulink environment. The model consists of the

two Bluetooth discovery protocol components and an additional

component used to set up the testing sequence. All three portions

of the finite state machine run in an and-relationship (shown by

the dotted line surrounding them), indicating that they run concur-

rently. Due to the timed nature of the protocol, each phase has only

a limited amount to run before being transitioned out by "[after()]"

conditions. These are checked every tick (0.3125 milliseconds) and

record the amount of time that has elapsed within a given state.

Further features which are important to understand the model

are the presence of events within some of the transitions (these

are indicated in yellow). These events match with actions that are

input/output concerning the model. The send() function implies

that the event is outgoing.

Figure 8 displays the physical modeling of the system.Within the

yellow block called "SystemUnder Test" sits the extended finite state

machine as described in Figure 7. The outgoing event calls are used

as inputs, as they are hooked up to code blocks capable of generating

Bluetooth packet waves. These are subsequently decoded and fed

back into the system, forming a loop. In this Simulink configuration,

loop avoidance is not seen as an issue due to there being only a

single model to reference.

Figure 7: Extended finite state machine used by both system and model

Figure 8: Matlab setup system (System Under Test block contains Figure 7)9



Figure 9 displays the Simulink environment where Model-Based

Testing takes place. Its appearance is similar to the setup provided

in Figure 8, though the results of transmitting a packet of the system

are fed to the model instead of looping back into the system. The

model also transmits to the system, which is used to both test if

the inquirer is capable of accepting reply packets and to indicate

the end of testing. Some decoding signals are not fed back into the

model or system, as they do not make use of them.

Figure 10 displays the mirrored implemented version of the

inquirer model as prescribed in the methodology (see Figure 3). Its

input and output actions are swapped such that it expects an inquiry

twice before progressing with either transmitting a reply packet or

doing nothing. Since the system finishes executing when it receives

a reply packet, this branch happens only after a given number of

iterations has occurred, which can be set using a variable.

Figure 9: Model-Based Testing setup inquirer

Figure 10: Mirrored model of inquirer
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