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Construction vehicles are both central to construction site workflows and

major contributors to local air pollution. This paper develops a 3-stage ma-

chine learning pipeline that uses sparse on-site surveillance imagery to

detect and classify construction vehicle activity and quantify its relationship

to ambient air quality. The pipeline comprises a detection model based on

the YOLOv9 architecture, a construction vehicle activity classification model

(for which two contrasting architectures are tested, including a ViT-based

method and an SVM-based model) and a linear regression analysis between

detected vehicle activities and local air quality indicators. Despite operating

on low-frequency (5-minute interval) imagery under real-world conditions,

the proposed models achieve state-of-the-art performance in both detection

and activity inference. Regression analysis reveals a statistically significant

but limited correlation between vehicle activity and local pollutant con-

centrations, suggesting the presence of dominant external sources. These

findings demonstrate the feasibility of passive, vision-based environmen-

tal sensing in constrained urban deployments and open new avenues for

integrating ubiquitous computing with sustainable construction monitoring.

1 INTRODUCTION
Construction sites are hidden hotspots of urban pollution, yet their

dynamic operations remain poorly captured by traditional moni-

toring systems. In urban areas, they are one of the most important

contributors to particulate matter (PM) pollution [22] as well as

significant contributors to NO𝑥 and greenhouse gases (GHG) pollu-

tion [32].

Monitoring air pollution on construction sites is important for

assessing its impact on the population, monitoring regulatory com-

pliance, and deploying countermeasures in a timely manner [34].

However, the task of monitoring air pollution is complex. Accurate

monitoring typically requires expensive sensors, which limits their

wide-scale deployment [34]. In recent years, low-cost sensors have

become more widely available; however, they are often associated

with lower accuracies and are more prone to interference caused by

environmental conditions [5].

To address the limited scalability of sensor-based monitoring,

this work explores whether surveillance imagery, already captured

by many sites, can offer reliable pollution indicators. One possible

way of using such imagery is to monitor the activity of construc-

tion vehicles (e.g. dump trucks, excavators, mobile cranes) on the

site. Construction vehicle activity may serve as a predictor of air

pollution, since these vehicles are not only a significant source of

pollution in themselves (mainly due to their heavy-duty diesel en-

gines), but their use can also be indicative of construction activities

that generate pollution (such as excavations or movement across

unpaved roads) [2]. However, for construction vehicle activities to
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be used as a predictor of air pollution levels, it must first be estab-

lished if there exists a clear link between air pollutant levels and

construction vehicle activity and whether that link can reliably be

observed using computer vision techniques.

Existing literature on computer vision techniques for the identifi-

cation of construction vehicle activities has predominantly concen-

trated on video data, as shown by Sherafat et al. in their review of

activity recognition techniques [27] and by the more recent work of

Kim et al. [18] and Küpers et al. [19] which have focused on enabling

real-time analysis of video data. Nonetheless, common camera in-

frastructure deployed on construction sites is typically configured to

capture images at substantial time intervals (e.g., every 5 minutes),

instead of videos, thereby leading to suboptimal performance of ex-

isting computer vision algorithms when integrated with real-world

systems.

The goal of this paper is therefore to investigate whether construc-

tion vehicle activity detected in camera images taken at substantial

time intervals can be correlated with changes in air pollutant levels,

as measured by nearby sensors. This goal motivates the following

research question:

"To what extent can construction vehicle activity, detected
via computer vision in images captured at set time intervals,
be used to model variations in local air quality near construc-
tion sites?"

To better answer this research question, it can be further subdi-

vided into four smaller sub-questions:

(1) To what extent are state-of-the-art computer vision model

architectures suitable for detecting and tracking construction

vehicles in temporally sparse surveillance camera images?

(2) What computer vision approaches can reliably classify con-

struction vehicle activity (stationary, operating, moving) from

temporally sparse image pairs?

(3) Which detected construction vehicle activities show statis-

tically significant relationships with measured air quality

metrics, under a linear modelling assumption?

To answer these questions, a 3-stage machine learning pipeline

that detects and classifies construction vehicle activity from low-

frequency surveillance imagery and statistically relates this activity

to local air quality metrics will be developed. The remainder of

this paper is structured as follows. In Section 2, a literature review

which covers the state of the art related to these tasks is presented.

Section 3 then explains the methodology of this study in detail.

Section 4 presents the results. Section 5 interprets the results of this

research, comparing them with existing literature, and discussing

the limitations of the proposed methodology. Finally, Section 6

concludes the paper by concisely stating the answers to the posed

research questions.
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2 BACKGROUND AND RELATED WORKS
Tomitigate the issues associated with traditional sensing techniques,

machine learning (ML) has been used to predict air pollution levels

from camera images [29, 16, 39, 38]. Camera images are an attractive

way of monitoring construction site pollution because many sites

already have surveillance cameras installed to prevent trespassing

and remotely monitor construction activities. These studies em-

ploy deep neural networks to extract information about pollutant

levels from images, combining that information with data on at-

mospheric conditions obtained from local sensors. Although these

studies demonstrate that computer vision can provide a reliable al-

ternative to traditional pollution sensors, the techniques used offer

no insight into the causes of the pollution that is being recorded.

The problem of construction vehicle detection is discussed in

literature as early as 2016, with one of the first approaches being

based on foreground detection [14]. However, newer studies almost

exclusively use deep learning models, thanks to their superior per-

formance in complex environments. For instance, Arabi et al. [3]

applied a MobileNet-based [10] single-shot detector to identify con-

struction vehicles with over 90% mean average precision. Küpers

et al. [19] employed the single-shot YOLOv8 (You Only Look Once)

model [31] to optimise the detection of construction vehicles on de-

vices with limited resources, achieving 80% precision and real-time

video processing. Zhang et al. [41] further extended this paradigm by

using a self-supervised training approach to improve the accuracy

of a YOLOv4 model beyond that achieved with classical supervised

training. These models share a common anchor-based structure,

where predefined regions (anchor boxes) are used to localise and

classify objects [4]. In contrast, anchor-free methods (e.g., Guo et

al. [9]) offer faster inference while maintaining comparable accuracy,

which is particularly relevant for embedded edge deployment. A

review of the various detection models available in early 2024 was

conducted by Chen et al. [4], which lists the advantages and disad-

vantages of all detection model architectures available then, though

it is not specifically focused on detecting construction vehicles.

Object tracking (i.e., the task ofmaintaining identity across frames)

has typically been tackled using algorithms designed for high fre-

quency video. ByteTrack [40] and BoT-SORT [1] are state-of-the-art

methods, which both rely on differences in an object’s bounding

box coordinates, with the latter also integrating visual appearance

for robust re-identification. However, since both assume video-like

continuity, they may not generalise well to low-frame-rate imagery,

such as the 5-minute interval images commonly captured on con-

struction sites.

Activity recognition, in contrast, is less explored in the context of

construction equipment. Küpers et al. [19] applied logistic regression

on bounding box centroid and area differences to classify activity

as idle or non-idle. More expressive temporal models like Bi-LSTMs

were used by Kim et al. [18] to classify excavator states from video,

while Slaton et al. [28] used LSTMs to classify accelerometer data

from sensors mounted on an excavator and a roller.

The current study aims to supplement this existing literature

by evaluating a new model architecture for construction vehicle

detection and two novel approaches for classifying construction

vehicle activity, which are adapted to images taken at significant

Fig. 1. Simplified overview of the project methodology

time intervals instead of video data. Furthermore, we extend this by

linking detected activities with air quality sensor data, providing

insight into the environmental footprint of machine operation, an

aspect underrepresented in prior work.

3 METHODOLOGY
A high-level overview of the methodology is presented in Figure 1.

The study begins with pictures taken every 5 minutes by surveil-

lance cameras positioned on a construction site. These images are

first processed by the detection model, which is responsible for

drawing bounding boxes around each construction vehicle and for

identifying its type. Two consecutive images, along with the infor-

mation produced by the detection model for these images, form the

input of the activity classification model. Two different architec-

tures of activity classification models are tested; for one of these

two architectures, tracking information is also passed to the activity

classification model along with the information produced by the

detection model. The activity classification model is responsible for

determining what activity a construction vehicle undertook in the

interval between two images. There are three possible activities:

moving (the vehicle has changed its location considerably between

pictures), operating (the vehicle remained in roughly the same lo-

cation, but part of the vehicle was moved, such as an excavator’s

bucket) and stationary (the vehicle was not in use). In the final stage

of the study, the information about vehicle activity over time is com-

bined with air quality sensor readings and data about atmospheric

conditions to analyse the relationship between vehicle activity and

air quality. The following subsections will explain each of these

stages in greater detail and describe the data that is used for each

stage.

3.1 Datasets
3.1.1 The Amsterdam Dataset. All stages of this study require data,

either for training or as input for inference. The first dataset em-

ployed by this study is a dataset of 47850 images taken every 5 min-

utes by surveillance cameras from a construction site in Amsterdam,

the Netherlands (which will be referred to as the The Amsterdam
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Dataset). The surveillance camera images come from 4 different

cameras, positioned around the perimeter of the site, on poles at

a height of 6.2m. The construction site is lit up in green at night,

and the cameras are subject to varying natural light conditions,

which can lead to colour distortions in some images (images turning

greyscale, or having a pink or green hue). This dataset is confidential

due to privacy concerns, and no images from it will be displayed in

this paper.

3.1.2 ACID & MOCS Datasets. To aid in training the detection

model, two additional open datasets are used. These are the Alberta
Construction Image Dataset (ACID) [35] and the Moving Objects in
Construction Sites (MOCS) dataset [36]. These datasets contain a

varied and numerous collection of images taken on construction

sites around the world, along with manually verified bounding box

annotations meant for construction vehicle detection. Of the vehi-

cle classes present in these two datasets, only excavators, trucks,

concrete mixers, and mobile cranes are present in the Amsterdam

dataset, so only these will be used for training. In total, after select-

ing only these classes, the combined ACID-MOCS detection training

dataset is made up of 22369 images containing 47575 instances of

construction vehicles. The combined dataset exhibits a moderate

class imbalance, with excavators being the largest class and bulldoz-

ers the smallest. The full class distribution is available in Figure 3 of

Appendix C.

3.1.3 Air Quality Dataset. The final dataset that is used is a dataset
of air quality sensor readingsmeasured on the same construction site

and at the same times as the pictures in the AmsterdamDataset. This

dataset contains readings for the concentrations of the following air

quality metrics/pollutant levels measured every five minutes: NO2,

CO2, O3, PM1, PM2.5, PM10. In addition, the dataset also records

the values of the following atmospheric conditions: temperature,

relative humidity, and pressure.

3.2 Data Preprocessing
The Amsterdam dataset was first anonymised to protect the privacy

of the workers on the construction site by using a detection model

similar to the one described in Subsection 3.3 to mask people and

license plates (see Appendix D for an example). A low confidence

threshold (0.08) was chosen to ensure that no sensitive informa-

tion would remain after anonymisation. The anonymised pictures

were manually checked by a reviewer to validate the results of the

detection model.

After anonymisation, some of the images in the Amsterdam

dataset are annotated using the online computer vision annotation

tool Roboflow [26] for future use in model training and validation.

To aid in training the detection model, 300 images, chosen to in-

clude a diverse selection of vehicles in various lighting conditions,

are manually annotated with bounding boxes. The resulting anno-

tations contain a moderate class imbalance, with excavators and

trucks again being the largest classes. The full class distribution of

these annotations is available in Appendix C, Figure 4 (note that

many images contain more than one vehicle, so the total number of

annotated vehicles is greater than the number of images).

Similarly, for activity classification, 2861 randomly selected pseudo-

bounding box pairs are annotated. A pseudo-bounding box pair is

the association between a bounding box in one image and the same

coordinates in the following image of the same camera, regardless

of whether the detection model would have still identified a vehicle

at the same coordinates in that image. This annotation process re-

sulted in an imbalanced dataset, with the following activity class

distribution: 57.7% stationary, 21.7% moving and 20.6% operating.

Another preprocessing step that has to be taken is converting

the annotations of the ACID and MOCS datasets into the YOLO

format that the detection model will require. The ACID dataset is

provided in the COCO format [6], while the MOCS dataset uses a

third annotation format: PASCAL VOC [7]. Converting both types

of annotations to the YOLO format is done using a Python script

which makes use of the pylabel library [8].

Both the Amsterdam dataset and the combined ACID-MOCS

dataset are split into train, validation and test sets, at a ratio of 7:2:1,

using a stratified random split. In small data datasets with class

imbalance, such as those of this study, a stratified random split is

preferable to a simple random split as it prevents random chance

from affecting the class distribution across dataset splits, thereby

ensuring more reliable model training and evaluation.

All values of air pollution metrics in the air quality dataset are

cleaned by removing outliers (values beyond three standard devia-

tions of the mean). Finally, to allow them to be used for statistical

inference, each observation’s time of day in the air quality dataset

must be encoded. While timestamps are initially provided for each

observation, only the hour and minute are retained. Adopting the

naive approach of encoding each 5-minute interval as a dummy

variable would lose the ordering and cyclicity of the times of day. In-

stead, time is first converted to a decimal value (hour + minutes/60)

to preserve ordering. To capture cyclicity, a trigonometric transfor-

mation is then applied, representing each time as two features:

sin

(
2𝜋𝑡

24

)
and cos

(
2𝜋𝑡

24

)
,

where 𝑡 is the decimal time.

3.3 Detection Model
3.3.1 Model Selection. The detection model’s task is to identify the

position (bounding box coordinates) and class of a construction vehi-

cle in a picture. A YOLOmodel is chosen thanks to the architecture’s

proven performance in detecting construction vehicles [19, 41]. The

architecture’s latest version is YOLOv12 [30]; however, a recent re-

view conducted by Jegham et al. [13] shows that this version largely

underperforms previous YOLO iterations. Furthermore, this review

indicates that YOLOv9 [33] outperforms all other YOLO versions for

detecting large objects, using small training datasets and in complex

situations where there are multiple overlapping objects. This makes

YOLOv9 a promising candidate for this study, since many images

in the Amsterdam dataset exhibit these characteristics. There are

five versions of the YOLOv9 model available, with parameter counts

ranging from 2M (YOLOv9t) to 58.1M (YOLOv9e), which present

a trade-off between inference speed and higher accuracy. For this

study, the largest and most accurate version (YOLOv9e) is chosen,

since real-time inference is outside the scope of the current study,
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Table 1. Detection Model Training Hyper-parameters

Hyperparameter First Round Fine-tuning

Epochs 100 50

Patience 15 10

Batch size 12 2

Optimiser SGD AdamW

Learning rate 10
−2

10
−4

Momentum 0.9 0.9

Image size 640 640

and even if the model were deployed for real-time inference, the

long interval between pictures taken by cameras such as the ones

used for the Amsterdam dataset (5 minutes) affords ample time for

inference, even in resource-constrained environments.

3.3.2 Model Training. The YOLOv9 model is trained using the Ultr-

alytics Python library [15]. Themodel is first initialised with weights

pre-trained on the MS COCO dataset [21]. This has the advantage

of reducing model training time and improving its performance,

since the model is already capable of recognising basic shapes and

patterns before it starts training on the specialised task needed for

this project.

Training the model is done in two rounds. During the first round,

the model is trained on the combined ACID-MOCS dataset. For this

round, the model is trained using the hyperparameters specified in

Table 1. All hyperparameters not specified in Table 1 retain their

default values from the Ultralytics model training function.

After the initial round of training, the model is fine-tuned during

a second round of training, on the 300 labelled pictures from the

Amsterdam dataset. This is necessary because the angle from which

pictures in the Amsterdam dataset are taken is unusual, being nei-

ther from ground level nor from high above (as would be the case

for images taken using a UAV). Because of this unusual angle, the

model trained only on the ACID-MOCS dataset does not generalise

well to the Amsterdam dataset without further fine-tuning. The hy-

perparameters used in this second round of training are also shown

in Table 1.

To address potential model bias caused by the class imbalance of

both training sets, the YOLO Ultralytics implementation offers two

solutions, which are used in this study. The first is the use of a custom

loss function: distributed focal loss (DFL). DFL is a loss function

which aims to address class imbalance by assigning higher weights

to challenging instances and therefore penalising models that are

biased against the minority classes [20]. The second measure taken

to address the imbalanced class distribution is to make use of the

on-the-go data augmentation techniques built into the Ultralytics

library. All images are augmented in every training epoch, before

being used as input to the model, by randomly changing their hue,

saturation, brightness or scale, by making mosaics of crops from 4

different images and by horizontally flipping the images. The default

probabilities for these augmentations are used. Data augmentation

helps combat class imbalance by artificially creating more variability

for the under-represented classes and therefore helping the model

better generalise for examples of these classes.

Table 2. Modified Tracker parameters

Parameter Value

track_buffer 7

match_thresh 0.9

proximity_thresh 0.3

appearance_thresh 0.6

with_reid True

3.3.3 Vehicle Tracking. To calculate features to be used by the ve-

hicle activity classification model described in Section 3.4.1, it is

important that detected vehicles can also be tracked. This can be

achieved through a small addition to the detection model. The Ultr-

alytics library allows a tracking model to be seamlessly integrated

into the detection phase. The BoT-SORT-ReID tracker [1] was cho-

sen for this purpose. The tracking model associates detections in

different images based on two characteristics: similarity in bound-

ing box location and, if the ReID (Re-Identification) mechanism is

enabled, similarity in appearance, determined based on the features

extracted by the YOLO detection model. The presence of the ReID

mechanism is the reason the BoT-SORT tracker was chosen over

its alternatives, such as the Byte-Track algorithm [40]. All tracking

algorithms are designed to track objects across video frames, where

differences in position between two instances of the same object are

much more subtle than in the case of pictures taken at a significant

time interval; therefore, object appearance is likely to be a signif-

icantly more reliable method of associating detected objects than

their position. To better adjust the Bot-SORT algorithm to pictures

taken at a significant time interval, instead of video frames, some

of its configuration parameters were adjusted. Table 2 shows the

values of the modified parameters; any parameters not shown in

the table have the default values specified in the botsort.yaml file of
the Ultralytics library.

3.4 Activity Classification Model
Two different construction vehicle activity classification models are

developed and tested. The first uses manually extracted features

and a support vector machine (SVM), while the second uses a vision

transformer (ViT) backbone — a type of deep learning model — to

automatically extract features.

3.4.1 SVM Model. The SVM model relies on four different features

to represent the transition between an image and the next image

of the same camera and to link that transition to each construction

vehicle’s activity. For each detection, the extracted features are:

(1) Bounding box centroid difference: The euclidean distance

between the centroid of a vehicle’s bounding box and the

centroid of that same vehicle’s bounding box in the next

image.

(2) Absolute bounding box area difference: The absolute

value of the difference in area between a vehicle’s bounding

box and the corresponding bounding box in the next image.

(3) Bounding box intersection over union (IoU): The inter-
section over union of a vehicle’s bounding box and its corre-

sponding bounding box in the next image.
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Table 3. Evaluated SVM hyperparameters

Hyper-parameter Evaluated Values

Kernel {‘linear’, ‘rbf’}

C {0.1, 0.2, ... , 10}

Gamma {0.05, 0.1, 0.2, ... , 2.5}

(4) Absolute per-pixel difference mean: The region of the

vehicle’s bounding box is cropped out of the first image. The

region with the same coordinates is cropped out of the second

image, regardless of whether the vehicle’s bounding box is

still determined to be at those coordinates. The per-pixel ab-

solute difference is computed between these cropped regions

(see the OpenCV documentation [24] for all implementation

details). The mean of all per-pixel differences is used as the

feature.

For features 1 and 2, if there is no corresponding bounding box

in the second image (which can happen, for instance, if the vehicle

leaves the camera’s field of view), the feature’s value is assumed

to be the maximum of all recorded values for that feature, since a

movement outside of the frame is likely to be at least as large as

any movement inside the camera’s frame. In this case, the bounding

box IoU (feature 3) is also assumed to be 0.

Features 1 and 2 are chosen because the previous study by Küpers

et al. [19] shows they have the potential to accurately distinguish

between idle and active construction vehicles. Feature 3 is intro-

duced to better account for small changes in the vehicle’s position

or orientation (which would likely be common especially for "oper-

ating" vehicles), while feature 4 is introduced to account not only

for vehicle movement, but also for vehicle appearance, which if the

vehicle is operating, may be the only feature that shows any change.

Detailed information about the distribution of all features used for

the SVM model is available in Appendix E.

The extracted features are standardised using their Z-score to

prevent features with larger variance from dominating the model.

The standardised features are then reduced to only 2 dimensions by

applying principal component analysis (PCA). This step is taken to

eliminate noise in the data, prevent multicollinearity from affecting

the model and to speed up the model’s training time.

The activity-annotated version of the Amsterdam dataset is used

for training and evaluation of the model. The training and validation

splits are merged for this model’s training process. To tune the

model’s hyperparameters, an exhaustive grid search is performed

on the parameter values shown in Table 3.

Each hyperparameter combination is evaluated by performing

a 5-fold cross-validation on the merged train and validation splits.

The model with the highest cross-validation F1 score is selected and

re-evaluated on the test split to produce an unbiased estimation of

the model’s real-world performance.

3.4.2 Vision Transformer (ViT) Model. Manually extracted features

are unlikely to be capable of fully representing the range of possible

changes in an image that can be described as a vehicle "operating"

or "moving". Therefore, deep learning is a promising solution to ac-

curately classify even these more complex situations. Deep learning

Fig. 2. Image pre-processing for transformer model

image classifiers usually consist of two main parts: a feature extrac-

tor (traditionally, a convolutional neural network or, more recently,

a vision transformer) and a classification head. Vision Transformers

(ViT) are a type of deep learning model that applies the transformer

architecture, originally designed for natural language processing,

to computer vision tasks. They split images into patches, treat each

patch like a token, and process them using self-attention mecha-

nisms to capture global relationships.

The DINOv2 pre-trained ViT [25] is used as the feature extractor

in this study because it has shown very good generalisation abil-

ities without additional fine-tuning [25]. Furthermore, it has also

been successfully applied to classifying non-natural images, outper-

forming the well-known convolutional feature extractor ResNet50

in a study examining medical image classification [11]. Features

extracted by the DINO backbone will be classified using a single

linear layer.

While the vision transformer model does not require any tracking

information (unlike the SVM model), the results of the detection

model require a different pre-processing step before they can be

used as input to the transformer. Figure 2 shows a graphical repre-

sentation of this process. For any detected construction vehicle, the

area of its bounding box is cropped from the picture. The area with

the same coordinates is also cropped from the next picture taken by

the same camera, regardless of whether the vehicle is still detected

at those coordinates. The two cropped areas are overlaid on each

other, with each crop being set to 50% transparency, resulting in a

non-natural-looking hybrid of the two images, which is what makes

DINOv2’s performance with non-natural images important.

The linear layer is the only part of the model that has to be trained.

Its training is done on the training split of the activity-annotated

images of the Amsterdam dataset, pre-processed according to the

procedure described above. The Hugging Face Transformers Python

library [12] is used for this training process. The validation split

is used to check model performance on each epoch and to adjust

model hyperparameters. The best-performing hyperparameters are
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Table 4. ViT Model Hyperparameters

Hyperparameter Value

Epochs 100

Image size 512

Batch size 12

Optimiser AdamW

Learning rate 10
−5

Momentum 0.9

recorded in Table 4. After training is complete, the test split is used

for the final model evaluation.

3.5 Air Quality Data Analysis
The output of the activity classification model is, for every detected

vehicle, what its activity is over each interval of 5 minutes. If there

are multiple vehicles detected in the same time interval, either by

the same camera or by different cameras, these outputs must first be

aggregated. For each 5 minute time interval, a variable 𝐴𝑥𝐶𝑦 (with

x∈{0/"moving", 1/"operating", 2/"stationary"} and y∈{0/"cement_-

truck", 1/"excavator", 2/"mobile_crane", 3/"truck"}) is computed, rep-

resenting the number of vehicles of type y doing activity x during

that time interval summed across all cameras.

To examine the relation between vehicle activities and local air

quality, ordinary least squares (OLS) linear regressions are per-

formed using the 𝐴𝑥𝐶𝑦 variables as independent variables and the

𝑁𝑂2, 𝐶𝑂2, 𝑂3, 𝑃𝑀1, 𝑃𝑀2.5, 𝑃𝑀10 air quality metrics as dependent

variables. Ambient temperature, relative humidity, atmospheric pres-

sure and (trigonometrically transformed) time of day are also intro-

duced as independent variables in the regressions, since they are

possible confounds that need to be controlled for in the analysis.

Finally, the significance of the impact of each 𝐴𝑥𝐶𝑦 variable on

the regression line is quantified using a t-test to determine which

construction vehicle activities have a significant relationship with

air quality metrics.

Exploratory data analysis has revealed that the air quality metrics

time series show strong, long-lasting autocorrelations, likely due to

physical factors—pollutant levels cannot change drastically within

five minutes, so closely spaced measurements are highly correlated.

As a result, regression residuals for all air quality metrics are also

autocorrelated (Ljung-Box p < 0.001) and heteroscedastic (Breusch-

Pagan p < 0.001). This violates the assumptions of standard OLS

regression and increases the risk of type I errors, especially with

large sample sizes such as those used in this study [37]. To address

this, we use the Newey-West HAC estimator [23] to calculate robust

covariance matrices. The estimator requires selecting a maximum

lag parameter (m), which we determine individually for each regres-

sion. The value chosen is the number of lags past which the residual

autocorrelations become statistically nonsignificant, as shown in

their respective ACF plots (all plots available in Appendix F).

Table 5. Detection Model Performance

Metric First round Fine-tuned

mAP50 74.8% 95.3%

mAP50-95 60.5% 74.4%

Precision 69.8% 94.9%

Recall 66.7% 82.8%

F1 68.2% 88.4%

4 RESULTS
This section begins by presenting the performance of the proposed

detection model. Following that, the performance of the two con-

struction vehicle activity classification models is outlined and com-

pared. Finally, this section shows the results of the linear regression

analysis of vehicle activity and air quality data.

4.1 Detection Model Performance
Table 5 presents the performance of the detection model on the

Amsterdam dataset test split, both after initial training on the ACID-

MOCS dataset and after fine-tuning on the Amsterdam training

split. The results show that fine-tuning significantly improved the

model’s ability to detect construction vehicles in the Amsterdam

dataset images, confirming that the process was effective in adapting

the model to the target dataset.

The model seems to perform similarly for all vehicle classes (see

Appendix G, Figure 19 for per-class precision-recall curves and mAP

metrics). The measures taken to address class imbalance appear

effective, as the minority classes (cement trucks and mobile cranes)

achieved higher mAP scores than the more common excavators

and trucks. The lower performance for excavators may stem from

frequent occlusion by dirt or other vehicles, while the high intra-

class variance of trucks (due to differing cargo and viewing angles)

likely contributed to reduced accuracy in their case. The normalised

confusion matrix is made available for further analysis in Appendix

G, Figure 20.

4.2 Activity Classification Performance
Table 6 shows the performance metrics of both the SVM and the

ViT activity classification models on the test split of the Amster-

dam dataset. The ViT model outperforms the SVM in all but one

of the evaluated metrics. The "operating" class appears to be the

most difficult activity class to accurately predict for both models,

though the ViT model offers the most significant improvement com-

pared to the SVM in this class, with a 16 p.p. increase in F1. The

challenge associated with the "operating" class can be attributed to

its considerable intra-class variability. For instance, the operation

of an excavator can entail moving its component parts in many

different ways, each of which being substantially different from the

operation of a cement truck. Additionally, the class exhibits relative

semantic ambiguity, as even human observers may find it difficult

to determine clear boundaries between a vehicle operating, mov-

ing, or remaining stationary. Although these categories are treated

as discrete in this study, they appear to constitute a continuum in

reality.
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Table 6. Activity Classification Models Performance

Metric SVM Model ViT Model

Overall Accuracy 82.1% 87.1%

Overall Precision 81.8% 87.2%

Overall Recall 82.1% 87.1%

Overall F1 Score 81.8% 87.0%

"Moving" Precision 73.9% 75.0%

"Moving" Recall 85.7% 84.9%

"Moving" F1 Score 79.4% 79.6%

"Operating" Precision 62.7% 77.6%

"Operating" Recall 52.5% 69.1%

"Operating" F1 Score 57.1% 73.1%

"Stationary" Precision 90.8% 93.8%

"Stationary" Recall 90.8% 93.3%

"Stationary" F1 Score 90.8% 93.5%

4.3 Relation between Vehicle Activity and Air Quality
Full tables of results for the regressions conducted to test the rela-

tionship between construction vehicle activity and air quality are

available in Appendix H.

Regressions for all six air quality metrics indicate a relatively

poor fit, with 𝑅2 values between 0.076 (for NO2) and 0.484 (for

CO2). However, all regression models nonetheless indicate that the

included independent variables are jointly statistically significant

predictors of air quality metrics (F-statistic p<0.001), despite the low

explanatory power indicated by the 𝑅2 value.

In predictingNO2, statistically significant predictors are operating

(p=0.032; 𝛽 = 2.72) and stationary cement trucks (p=0.019; 𝛽 = 2.58),

air temperature (p=0.039; 𝛽 = 0.61), air pressure (p=0.014; 𝛽 = 0.24)

and cosine-transformed time of day (p=0.003; 𝛽 = 3.14).

In predicting O3, statistically significant variables are relative

humidity (p<0.001; 𝛽 = −0.63), air pressure (p=0.001; 𝛽 = −0.41),
and cosine-transformed time of day (p=0.006; 𝛽 = −3.68). No vehicle
activities have a statistically significant relation with 𝑂3 levels.

In predicting CO2, statistically significant vehicle activity vari-

ables are operating (p=0.008; 𝛽 = 15.32) and moving excavators

(p=0.012; 𝛽 = 9.48), and stationary cement trucks (p=0.037; 𝛽 = 6.64).

Among environmental variables, air pressure (p=0.000; 𝛽 = 2.87)

was positively associated with 𝐶𝑂2 levels, while air temperature

(p=0.009; 𝛽 = −3.84) showed a negative association.

In predicting PM1 concentrations, significant predictors were the

number of operating trucks (p=0.001; 𝛽 = 6.02), operating mobile

cranes (p=0.001; 𝛽 = −6.29), stationary mobile cranes (p=0.001;

𝛽 = −6.20), and moving mobile cranes (p=0.006; 𝛽 = −5.02). Envi-
ronmental factors (temperature, relative humidity, or air pressure)

and the time of day were not statistically significant in this model.

The significant predictors of PM2.5 concentration are the same as

those of PM1 concentrations: operating trucks (𝑝 = 0.001; 𝛽 = 8.12),

operating mobile cranes (p=0.002; 𝛽 = −6.97), stationary mobile

cranes (p=0.001; 𝛽 = −7.15), and moving mobile cranes (p=0.006; 𝛽 =

−5.48). As with PM1, environmental factors (temperature, relative

humidity, and air pressure) and the time of day were not statistically

significant.

The pattern seen with smaller particulate matter sizes repeats

itself in the case of PM10 concentrations. Significant predictors of

PM10 are, once again, the number of operating trucks (𝑝 = 0.012;

𝛽 = 6.33), operating mobile cranes (p = 0.021; 𝛽 = −6.91), stationary
mobile cranes (p = 0.010; 𝛽 = −7.66), and moving mobile cranes (p

= 0.026; 𝛽 = −5.84). As with PM1 and PM2.5, environmental factors

and the time of day were not statistically significant in this model.

5 DISCUSSION
This section will first provide an interpretation of the key results

and discuss their probable causes. Then, it will compare the results

obtained in this paper with those of related works introduced in

Section 2. Finally, it will examine the limitations of this study’s

methodology and it will propose directions for future work to ad-

dress these limitations.

5.1 Interpretation of Key Findings
The performance results of the detection and activity classifica-

tion models indicate that, under the tested conditions, 5-minute

interval imagery is sufficient for reasonably accurate construction

vehicle activity classification. The main implication for industry is

that existing data and camera configurations can be used directly

to analyse vehicle activities on their sites, not only for air quality

monitoring, but also for other applications, such as productivity esti-

mation or safety monitoring. An important implication for research

is that real-time model inference is not as crucial as previously be-

lieved for construction site monitoring, since accurate inferences

can be performed even when there is a large time interval between

frames. Furthermore, the ViT overlay method of recognising tran-

sitions/activity between two images introduced in this study is a

promising development for many other low-frame-rate computer

vision tasks, since it has been shown to provide largely accurate

results on temporally sparse imagery, in a complex environment,

with little annotated training data.

Analysis of air quality data shows some link between vehicle

activity and pollutant levels, though low 𝑅2 values suggest major

influences beyond vehicles and weather. Ozone (O3) levels are un-

affected by vehicle activity, with atmospheric conditions being the

highest observed influence. Other pollutants show varying relation-

ships: cement truck presence correlates with higher NO2, though

the cause is unclear. CO2 levels rise with excavator use, as expected

given the previously attested emissions of their diesel engines [17],

but also with stationary cement truck presence—likely reflecting

overlap with other pollution-heavy activities rather than a direct

effect. Particulate matter (PM) levels correlate positively, across all

PM sizes, with operating trucks (likely due to the trucks raising

dust when being loaded or unloaded), while mobile crane presence

consistently shows a negative correlation. This is likely because

cranes appear mainly during wall assembly, not during dustier earth-

moving phases.

TScIT 43, July 4, 2025, Enschede, The Netherlands.



8 • Dan-Cristian Ploesteanu

Table 7. Detection Model Comparison

Study Model Architecture mAP50

Arabi et al. (2020) [3] MobileNet 91.2%

Küpers et al. (2025) [19] YOLOv8 70.4%

Zhang et al. (2022) [41] Self-supervised YOLOv4 92.9%

Guo et al. (2023) [9] Anchor-free network 71.0%

Current study YOLOv9 95.3%

5.2 Comparison with Related Works
Although not directly comparable due to dataset differences, Table

7 shows that the mAP50 score of the proposed detection model

exceeds those reported in the literature discussed in Section 2. Met-

rics shown in the table are those reported in the original studies.

The performance improvement can be explained by several factors.

One is the use of the newer and more powerful YOLOv9 architec-

ture. Another is the use of the high-quality and relatively sizeable

ACID and MOCS datasets. Additionally, most other models for de-

tecting construction vehicles are optimised for inference on edge

devices, whereas the model developed in this study was under no

such constraints.

A quantitative comparison of the activity classification model

with other works would be meaningless, since each study discussed

in Section 2 uses different activity classes and deals with different

vehicles. However, a key point of novelty is that the model proposed

in the current paper only requires two frames for inference, while

being able to distinguish between different types of non-idle activity

(moving and operating). A table highlighting key qualitative differ-

ences between the current model and other works is available in

Appendix G, Table 6.

5.3 Limitations and Future Work
The 3-stage (detection, activity classification, pollution analysis) de-

sign of the study is inherently liable to cascading errors. Neither the

detection model nor the activity classification models are perfect,

and any errors made by a previous pipeline stage are likely to de-

grade the performance of all stages that follow after it. Furthermore,

since the evaluation of the activity classification models and the OLS

regressions is performed using data coming from previous stages of

the pipeline, the reported performance metrics may also be affected

by such cascading errors. Since the extent to which the reported

performance metrics are affected by cascading errors is currently

unknown, future work could aim to quantify it by isolating activity

classification and regression performance evaluation from previous

stages through the use of ground truth labels created independently

of previous stage results.

The 5-minute time interval between pictures in the Amsterdam

dataset limits the precision of the air quality data analysis. A vehicle

may perform multiple different activities within 5 minutes, but only

one of them can be detected and considered in the analysis. Future

work should aim to validate the relations between air quality and

vehicle activities described in this paper using video data, which

offers higher granularity.

The method of aggregating activity classification results coming

from different cameras in the same time interval (by simply sum-

ming all results together) is also prone to introducing errors in the

analysis. Some vehicles may be visible by multiple cameras (and

counted twice), while others may sometimes not be visible by any

cameras (and not counted, even though they are still influencing

the pollution metrics). Future work should aim to prevent errors

caused by camera fields of view by ensuring full camera coverage

of the construction site, accurately documenting camera placement,

and treating detections in overlapping camera angles separately.

Techniques for combining results from overlapping camera angles

(by, for instance, using confidence levels or confidence-weighted

majority voting) should also be developed and evaluated.

A linear regression analysis was performed between construction

vehicle activity and air quality, yet potential non-linear relations

have not been investigated. Future work could examine whether

vehicle activity levels can serve as useful features in a non-linear

model, such as a neural network or a non-linear regression.

Finally, the relationships described in this study between vehicle

activity and air quality may only be interpreted as correlational, but

not as causational. A causal link may be established in future studies

by controlling for any possible external influences on the measured

pollution levels (such as the background pollution in the area) and

by employing statistical techniques such as Granger causality tests

or instrumental variables. Controlling for the level of background

pollution was also initially considered for this study by examining

the difference between pollution sensors positioned upwind of the

construction site and those positioned downwind. However, this

was found to be infeasible due to a lack of data on inter-sensor

calibration and wind speed and direction, as well as due to a lack

of specialised knowledge in atmospheric modelling. This limitation

highlights a need for increased multi-disciplinary cooperation and

early researcher involvement in data gathering for future studies of

this topic.

6 CONCLUSION
This study highlighted that while construction activity is a visible

and detectable phenomenon in computer vision pipelines, its contri-

bution to localised air quality variance may be secondary to broader

environmental and operational factors. The YOLOv9 architecture

was found to be highly capable of reliably identifying and track-

ing construction vehicles in sparse surveillance camera imagery. A

novel approach combining overlaid image crops with a deep neural

network powered by a DINOv2 backbone was identified as the su-

perior option for classifying vehicle activities in temporally sparse

image pairs. However, most construction vehicle activities were

found to have no linear relationship with local air quality metrics;

of those activities that were found to be linearly related to local air

quality, some revealed surprising and likely non-causal links. There-

fore, effective air quality modelling will likely require multi-modal

sensing and tighter integration with site-level operational data.
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D AMSTERDAM DATASET ANONYMISATION

Fig. 5. Example of anonymised picture (source of original image:
https://www.greenwheels.nl/en-us/rent-a-car/amsterdam)

E SVM FEATURES DISTRIBUTION KERNEL DENSITY
ESTIMATES (KDE)

Fig. 6. Global KDE feature distribution plots

Fig. 7. KDE feature distribution plots for cement trucks

Fig. 8. KDE feature distribution plots for excavators

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Fig. 9. KDE feature distribution plots for excavators

Fig. 10. KDE feature distribution plots for trucks

F ACF PLOTS OF THE REGRESSION RESIDUALS

Fig. 11. NO2 Regression Residuals ACF Plot

Fig. 12. O3 Regression Residuals ACF Plot

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Fig. 13. CO2 Regression Residuals ACF Plot

Fig. 14. PM1 Regression Residuals ACF Plot

Fig. 15. PM2P5 Regression Residuals ACF Plot

Fig. 16. PM10 Regression Residuals ACF Plot

G DETECTION MODEL PERFORMANCE

Fig. 17. Detection model performance during training on the ACID-MOCS
dataset

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Fig. 18. Detection model performance during fine-tuning on Amsterdam
dataset

Fig. 19. Precision-recall curve of the fine-tuned detection model

Fig. 20. Detection model normalised confusion matrix

H AIR QUALITY REGRESSION RESULTS

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Table 8. Activity Classification Model Comparison

Study Model Vehicle Types Activities Frames Required Real-time

Küpers et al.

(2020) [19]

Logistic regression

on bounding-box fea-

tures

Excavators, Dump

trucks, Concrete

mixers

Idle/Non-idle 15 Yes

Kim et al. (2023) [18] CNN feature extrac-

tor + Bi-LSTM

Excavators Dumping, Excava-

tion, Hauling, Swing

400 No

Current study DINOv2 ViT on over-

laid image crops

Concrete mixers,

Excavators, Trucks,

Mobile Cranes

Stationary, Operat-

ing, Moving

2 No

Table 9. NO2 Regression Results

Dep. Variable: NO2 R-squared: 0.076

Model: OLS Adj. R-squared: 0.076

Method: Least Squares F-statistic: 3.660

Date: Thu, 19 Jun 2025 Prob (F-statistic): 4.62e-07

Time: 12:50:22 Log-Likelihood: -79783.

No. Observations: 19973 AIC: 1.596e+05

Df Residuals: 19955 BIC: 1.597e+05

Df Model: 17 Max. lags (m): 400

Covariance Type: HAC

coef std err t P> |t| [0.025 0.975]

Intercept -242.6032 100.796 -2.407 0.016* -440.172 -45.034

a_1_c_0 2.7222 1.268 2.146 0.032* 0.236 5.208

a_1_c_1 1.7894 1.057 1.693 0.090 -0.282 3.861

a_1_c_3 1.3934 1.179 1.182 0.237 -0.918 3.704

a_1_c_2 -0.2883 2.075 -0.139 0.890 -4.356 3.780

a_2_c_0 2.5754 1.101 2.339 0.019* 0.417 4.734

a_2_c_1 -0.7620 0.647 -1.177 0.239 -2.031 0.507

a_2_c_3 0.2954 0.651 0.454 0.650 -0.980 1.571

a_2_c_2 -0.2558 1.524 -0.168 0.867 -3.242 2.731

a_0_c_0 2.2043 1.611 1.368 0.171 -0.954 5.362

a_0_c_1 1.4997 0.900 1.666 0.096 -0.264 3.264

a_0_c_3 0.8239 1.069 0.770 0.441 -1.272 2.920

a_0_c_2 -1.1451 1.703 -0.672 0.501 -4.483 2.193

temperature 0.6138 0.297 2.068 0.039* 0.032 1.196

relativeHumidity 0.1435 0.078 1.851 0.064 -0.008 0.295

pressure 0.2386 0.097 2.448 0.014* 0.048 0.430

sin_time_of_day -0.7800 1.071 -0.729 0.466 -2.878 1.318

cos_time_of_day 3.1405 1.066 2.946 0.003* 1.051 5.230

Omnibus: 1938.696 Durbin-Watson: 0.054

Prob(Omnibus): 0.000 Jarque-Bera (JB): 2546.114

Skew: 0.851 Prob(JB): 0.00

Kurtosis: 3.401 Cond. No. 1.01e+05

Note: * p-value significant at 95% confidence level

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Table 10. O3 Regression Results

Dep. Variable: O3 R-squared: 0.400

Model: OLS Adj. R-squared: 0.400

Method: Least Squares F-statistic: 20.10

Date: Thu, 19 Jun 2025 Prob (F-statistic): 1.01e-61

Time: 13:22:33 Log-Likelihood: -82335.

No. Observations: 19973 AIC: 1.647e+05

Df Residuals: 19955 BIC: 1.648e+05

Df Model: 17 Max. lags (m): 350

Covariance Type: HAC

coef std err t P> |t| [0.025 0.975]

Intercept 501.4584 128.681 3.897 0.000 249.234 753.683

a_1_c_0 -3.3008 2.157 -1.530 0.126 -7.529 0.927

a_1_c_1 -1.6188 1.172 -1.381 0.167 -3.916 0.678

a_1_c_3 -1.3463 1.307 -1.030 0.303 -3.908 1.215

a_1_c_2 1.9017 2.036 0.934 0.350 -2.089 5.893

a_2_c_0 -2.2736 1.207 -1.884 0.060 -4.640 0.092

a_2_c_1 -0.1585 0.902 -0.176 0.860 -1.926 1.609

a_2_c_3 -0.4119 0.757 -0.544 0.586 -1.896 1.072

a_2_c_2 1.7100 1.477 1.157 0.247 -1.186 4.606

a_0_c_0 -1.7210 1.727 -0.997 0.319 -5.105 1.663

a_0_c_1 -1.4092 1.127 -1.250 0.211 -3.619 0.800

a_0_c_3 -0.2768 1.218 -0.227 0.820 -2.663 2.110

a_0_c_2 2.3159 2.200 1.053 0.293 -1.997 6.629

temperature 0.1054 0.329 0.321 0.748 -0.539 0.749

relativeHumidity -0.6272 0.090 -6.950 0.000* -0.804 -0.450

pressure -0.4146 0.124 -3.335 0.001* -0.658 -0.171

sin_time_of_day -2.3716 1.266 -1.873 0.061 -4.853 0.110

cos_time_of_day -3.6795 1.338 -2.751 0.006* -6.302 -1.057

Omnibus: 311.017 Durbin-Watson: 0.049

Prob(Omnibus): 0.000 Jarque-Bera (JB): 183.980

Skew: -0.052 Prob(JB): 1.12e-40

Kurtosis: 2.542 Cond. No. 1.01e+05

Note: * p-value significant at 95% confidence level

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Table 11. CO2 Regression Results

Dep. Variable: CO2 R-squared: 0.484

Model: OLS Adj. R-squared: 0.484

Method: Least Squares F-statistic: 11.48

Date: Thu, 19 Jun 2025 Prob (F-statistic): 3.96e-32

Time: 13:26:35 Log-Likelihood: -1.0472e+05

No. Observations: 19973 AIC: 2.095e+05

Df Residuals: 19955 BIC: 2.096e+05

Df Model: 17 Max. lags (m): 750

Covariance Type: HAC

coef std err t P> |t| [0.025 0.975]

Intercept -1823.9422 387.977 -4.701 0.000* -2584.409 -1063.476

a_1_c_0 7.4094 3.913 1.893 0.058 -0.261 15.080

a_1_c_1 15.3200 5.820 2.632 0.008* 3.913 26.727

a_1_c_3 7.6626 4.575 1.675 0.094 -1.305 16.630

a_1_c_2 -8.4943 5.356 -1.586 0.113 -18.993 2.004

a_2_c_0 6.6421 3.186 2.085 0.037* 0.397 12.887

a_2_c_1 1.7357 2.633 0.659 0.510 -3.425 6.896

a_2_c_3 -2.5306 2.519 -1.005 0.315 -7.467 2.406

a_2_c_2 -5.5149 4.515 -1.221 0.222 -14.365 3.335

a_0_c_0 3.1876 4.408 0.723 0.470 -5.453 11.828

a_0_c_1 9.4812 3.764 2.519 0.012* 2.104 16.859

a_0_c_3 1.8572 3.862 0.481 0.631 -5.713 9.427

a_0_c_2 -8.7555 5.523 -1.585 0.113 -19.582 2.071

temperature -3.8372 1.473 -2.605 0.009* -6.724 -0.950

relativeHumidity 0.2502 0.341 0.734 0.463 -0.418 0.918

pressure 2.8719 0.371 7.739 0.000* 2.145 3.599

sin_time_of_day 2.3384 4.196 0.557 0.577 -5.886 10.563

cos_time_of_day 3.6062 3.149 1.145 0.252 -2.567 9.779

Omnibus: 2551.893 Durbin-Watson: 0.055

Prob(Omnibus): 0.000 Jarque-Bera (JB): 4019.333

Skew: 0.905 Prob(JB): 0.00

Kurtosis: 4.246 Cond. No. 1.01e+05

Note: * p-value significant at 95% confidence level

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Table 12. PM1 Regression Results

Dep. Variable: PM1 R-squared: 0.102

Model: OLS Adj. R-squared: 0.102

Method: Least Squares F-statistic: 3.396

Date: Thu, 19 Jun 2025 Prob (F-statistic): 2.53e-06

Time: 13:31:54 Log-Likelihood: -85425.

No. Observations: 19973 AIC: 1.709e+05

Df Residuals: 19955 BIC: 1.710e+05

Df Model: 17 Max. lags (m): 425

Covariance Type: HAC

coef std err t P> |t| [0.025 0.975]

Intercept -263.2162 195.428 -1.347 0.178 -646.271 119.839

a_1_c_0 -0.0452 1.441 -0.031 0.975 -2.869 2.779

a_1_c_1 2.1435 1.643 1.305 0.192 -1.077 5.364

a_1_c_3 6.0193 1.868 3.222 0.001* 2.358 9.681

a_1_c_2 -6.2899 1.940 -3.242 0.001* -10.092 -2.488

a_2_c_0 0.0183 0.908 0.020 0.984 -1.762 1.798

a_2_c_1 1.2942 1.426 0.908 0.364 -1.501 4.089

a_2_c_3 1.6919 1.345 1.258 0.208 -0.944 4.328

a_2_c_2 -6.1976 1.856 -3.338 0.001* -9.836 -2.559

a_0_c_0 -1.4145 1.470 -0.963 0.336 -4.295 1.466

a_0_c_1 -0.7023 1.423 -0.494 0.622 -3.491 2.086

a_0_c_3 3.1106 1.822 1.707 0.088 -0.460 6.682

a_0_c_2 -5.0238 1.820 -2.761 0.006* -8.591 -1.457

temperature -0.3386 0.416 -0.814 0.416 -1.154 0.477

relativeHumidity 0.0991 0.120 0.825 0.409 -0.136 0.335

pressure 0.2754 0.188 1.467 0.142 -0.093 0.643

sin_time_of_day 1.8811 1.274 1.476 0.140 -0.617 4.379

cos_time_of_day -0.1435 1.377 -0.104 0.917 -2.843 2.556

Omnibus: 1967.327 Durbin-Watson: 0.019

Prob(Omnibus): 0.000 Jarque-Bera (JB): 2602.142

Skew: 0.877 Prob(JB): 0.00

Kurtosis: 3.226 Cond. No. 1.01e+05

Note: * p-value significant at 95% confidence level

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Table 13. PM2P5 Regression Results

Dep. Variable: PM2P5 R-squared: 0.121

Model: OLS Adj. R-squared: 0.121

Method: Least Squares F-statistic: 3.306

Date: Thu, 19 Jun 2025 Prob (F-statistic): 4.49e-06

Time: 13:34:44 Log-Likelihood: -88245.

No. Observations: 19973 AIC: 1.765e+05

Df Residuals: 19955 BIC: 1.767e+05

Df Model: 17 Max. lags (m): 425

Covariance Type: HAC

coef std err t P> |t| [0.025 0.975]

Intercept -297.3664 223.286 -1.332 0.183 -735.026 140.293

a_1_c_0 -0.5369 1.627 -0.330 0.741 -3.726 2.652

a_1_c_1 2.7909 1.961 1.423 0.155 -1.052 6.634

a_1_c_3 8.1241 2.479 3.277 0.001* 3.265 12.983

a_1_c_2 -6.9711 2.258 -3.088 0.002* -11.397 -2.546

a_2_c_0 -0.2377 0.998 -0.238 0.812 -2.195 1.719

a_2_c_1 1.4779 1.613 0.916 0.359 -1.683 4.639

a_2_c_3 2.0568 1.518 1.355 0.175 -0.919 5.032

a_2_c_2 -7.1524 2.114 -3.383 0.001* -11.297 -3.008

a_0_c_0 -1.7283 1.600 -1.080 0.280 -4.865 1.409

a_0_c_1 -0.4251 1.674 -0.254 0.799 -3.705 2.855

a_0_c_3 4.4185 2.301 1.920 0.055 -0.092 8.929

a_0_c_2 -5.4824 1.990 -2.756 0.006* -9.382 -1.583

temperature -0.5198 0.496 -1.048 0.295 -1.492 0.453

relativeHumidity 0.1560 0.136 1.147 0.251 -0.111 0.423

pressure 0.3093 0.215 1.442 0.149 -0.111 0.730

sin_time_of_day 1.8053 1.496 1.207 0.228 -1.127 4.737

cos_time_of_day -0.4930 1.565 -0.315 0.753 -3.561 2.575

Omnibus: 1866.334 Durbin-Watson: 0.021

Prob(Omnibus): 0.000 Jarque-Bera (JB): 2445.476

Skew: 0.856 Prob(JB): 0.00

Kurtosis: 3.084 Cond. No. 1.01e+05

Note: * p-value significant at 95% confidence level

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Table 14. PM10 Regression Results

Dep. Variable: PM10 R-squared: 0.091

Model: OLS Adj. R-squared: 0.090

Method: Least Squares F-statistic: 3.356

Date: Thu, 19 Jun 2025 Prob (F-statistic): 3.26e-06

Time: 13:37:53 Log-Likelihood: -88312.

No. Observations: 19973 AIC: 1.767e+05

Df Residuals: 19955 BIC: 1.768e+05

Df Model: 17 Max. lags (m): 500

Covariance Type: HAC

coef std err t P> |t| [0.025 0.975]

Intercept -253.6808 235.257 -1.078 0.281 -714.805 207.443

a_1_c_0 -0.2270 1.689 -0.134 0.893 -3.537 3.083

a_1_c_1 3.3164 2.068 1.604 0.109 -0.736 7.369

a_1_c_3 6.3333 2.533 2.500 0.012* 1.369 11.298

a_1_c_2 -6.9112 2.999 -2.305 0.021* -12.789 -1.033

a_2_c_0 0.9177 1.419 0.647 0.518 -1.863 3.698

a_2_c_1 2.5069 1.733 1.446 0.148 -0.890 5.904

a_2_c_3 1.3379 1.477 0.906 0.365 -1.558 4.234

a_2_c_2 -7.6565 2.962 -2.584 0.010* -13.463 -1.850

a_0_c_0 -0.9193 1.995 -0.461 0.645 -4.830 2.992

a_0_c_1 0.7850 1.748 0.449 0.653 -2.642 4.212

a_0_c_3 3.5512 2.138 1.661 0.097 -0.640 7.743

a_0_c_2 -5.8369 2.630 -2.220 0.026* -10.991 -0.683

temperature -0.2491 0.605 -0.411 0.681 -1.436 0.938

relativeHumidity -0.3273 0.185 -1.770 0.077 -0.690 0.035

pressure 0.3093 0.225 1.374 0.170 -0.132 0.751

sin_time_of_day 2.0389 1.531 1.332 0.183 -0.963 5.040

cos_time_of_day 0.8364 1.727 0.484 0.628 -2.549 4.222

Omnibus: 1000.379 Durbin-Watson: 0.022

Prob(Omnibus): 0.000 Jarque-Bera (JB): 973.134

Skew: 0.494 Prob(JB): 4.86e-212

Kurtosis: 2.560 Cond. No. 1.01e+05

Note: * p-value significant at 95% confidence level

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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