
Grading Student Solutions for Automata
RUBEN HANNINK, University of Twente, The Netherlands

Even though multiple solutions exist for grading automata, these solutions
have some limitations which can negatively impact the grade of students.
This is because most algorithms either check whether a solution given
by a student is entirely correct, or entirely incorrect. There are already
existing solutions for grading automata with partial grades, however these
are extremely limited in which actions can be executed on an automaton. The
goal of this study is to determine correction rules that are fairer to the student
and does not punish a student for continuingwith the samemistake. Together
with creating a new algorithm to grade the student solutions, which provides
transparency about how the algorithm determined the grade. This would
allow teachers to start using automated grading of automata, significantly
decreasing the workload. In this paper 11 corrections are proposed, which
can be used to transform an automaton until it is a correct solution. For these
rules, fairness towards the student was kept in mind. Together with these
corrections a specification for an algorithm to apply these corrections and
use that to grade solutions has been given. Unfortunately, it became apparent
that the given algorithm in its current form is not very performant and not
feasible to be used on a lot of solutions, this results from the substantial
number of branches that the algorithm has to traverse. However, with more
research it can be expected to achieve a better performance. With this, the
paper provides a valuable first step into making a more general algorithm
for grading student solutions using partial grades.

Additional Key Words and Phrases: Grading, Automata, Distance-based
Algorithms

1 INTRODUCTION
As part of the curriculum for Technical Computer Science at the
University of Twente there is a module which has a subject called
"Languages and Machines" (L&M). This module focuses on Lan-
guages, Regular Expressions, and Automata. For this research we
will only be focusing on the automata section. During L&M students
learn how to create an automaton representing a language, usually
from a regular expression, and how to write a regular expression
that represents the same language as an automaton.
During the test for Languages and Machines students will be

asked various kinds of questions related to automata. In most of the
exams the same kind of questions are asked, testing whether the
student has specific knowledge about automata and can apply that
knowledge. Below are a couple of examples of what knowledge or
skills the questions try to assess.
• (Q1) The student can be presented with an automaton and
needs to answer several questions on whether certain words
would result in an accepting state.
• (Q2) The student can be given an automaton for which the
student will need to write down the regular expression for.
• (Q3) The student can be presentedwith an automate for which
only the language, transition arrows and states are given. The

TScIT 43, July 4, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Fig. 1. Example test question, automata with transition arrows and states
only for the language L(E), with regular expression E = (ab)*.

student will need to fill out what the goes in the blank squares
(Figure 1).

The goal of these questions is to evaluate the student’s under-
standing of automata by testing whether they can read and change
any automaton they are given. To ensure the answer is not a lucky
guess, the student also needs to show how they arrived at the answer
for all questions. The way students need to show their steps ranges
from giving the sequence of states that were passed to get to an ac-
cepting state, to showing intermediary steps when transforming an
automaton into a regular expression. However, this focuses mostly
on whether students can read automata, there is less of a focus on
whether students can draw automata. Q3 has the most of focus on
drawing automata of all types of questions, however the student is
helped by the fact they are already given the states and transition
arrows (Figure 1) instead of needing to start from nothing.
This is because there are some difficulties with asking students

to draw these automata. The university already has a tool which
can be used during digital examinations in which students can draw
automata: UTML [8]. The difficulty does not come from how to
draw the automata during an exam. The problem is grading these
solutions. For a small automaton it is easy, but as the automaton
gets bigger it becomes a very time-consuming task to grade them
all manually, especially when partial grades should be given for
solutions that are close to being correct.

2 PROBLEM
Checking whether a solution is correct is already possible, even
if the drawn automaton differs, which will be discussed in more
detail in Section 3. However, as discussed in the introduction, the
difficulty comes from the need for partial grades. For this we need to
be able to find the minimal number of fixes that need to be applied
to an automaton to get it to a correct solution. Before we can do
this, the different fixes that can be made will need to be established
first. After this we can figure out a procedural way of checking the
minimal amount of these previously defined corrections to get to a
correct solution.

1



TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben Hannink

Fig. 2. Correct automaton for L(E)
with E = (ab)*

Fig. 3. Incorrect automaton for L(E)
with E = (ab)*, with the 2 transitions
swapped.

2.1 ResearchQuestion
To achieve this goal the following research question (RQ) will need
to be answered:
How to systematically determine the minimum number of fixes

required by a student solution for automata to arrive at a correct
solution for the purposes of grading.
This can be split into 2 sub research questions (SRQ):

(SRQ.1) What is the set of corrections needed to convert any incor-
rect solution into a correct solution, considering the types of
mistakes students make?

(SRQ.2) How to systematically apply these corrections and deter-
mine the minimal number of corrections needed to achieve
a correct solution?

3 RELATED WORKS
In the field of grading automata there are already some related works
solving these questions. However, our goal is slightly different and
each of the already existing works has some limitations when trying
to answer our research questions.

Firstly, there is already research done to check the correctness of
an automata with the ability to give simple feedback [7], however
this does not give enough information to grade the solution using
partial grades.

The second solution found is from 2013 [1]. This research focused
on deterministic finite automata (DFA), which used several rules
to determine a "distance" between two automata. This distance is
equal to the minimum number of corrections that needed to be
made according to the rules, which can then be used to grade the
solution. This has a lot of similarities to this research. However,
there will be a significant difference between the rules that were
considered during their research, and which rules will be considered
during our research. The rules proposed in this paper do not account
for mistakes being related to each other. An example of this is
mistakenly swapping two transitions around, this can be seen as
a single mistake, however with the rules from this paper, they are
counted as 2 separate mistakes. Using the same example language
as in Figure 1, from the regular expression E = (ab)*. The solution
in Figure 2 is correct, however the transitions are swapped in Figure
3. Where this solution would determine there to be 2 errors, 1 for
each of the arrows. A teacher may disagree and say that it is only 1
error in total. There is a need for more rules than in given in this
solution. Additionally, the algorithm described in this paper focuses
on automata written in the MOSEL language, not a general solution
to the problem.

To know whether 2 automata represent the language, we need to
have a way of systematically comparing the languages of 2 automata.
Hopcroft and Karp [5] have already made an algorithm that solves
this problem. There is, however, not an algorithm defined in the
paper where the empty word (𝜆) can be used in the automaton.
There is already an existing algorithm that can convert an NFA

with the empty word (NFA-𝜆) to a DFA. This algorithm was made
by KJai Salomaa and Sheng Yu [6]. The algorithm works by walking
over the NFA and constructing a new DFA representing the same
language as the original NFA-𝜆.

With this tool it would be possible to use the algorithm byHopcroft
and Karp [5] in the grading algorithm.

4 METHODOLOGY
The related works discussed in Section 3 will be used as a starting
point for answering the research question and both sub research
questions. The sub research questions have been written in such a
way that, when both are answered, the main research question is
also answered.

4.1 Answering SRQ1
To answer this question, the different corrections the algorithm can
execute need to be established. Rajeev Alur et al already established
a couple of these corrections [1]. The goal will be to expand this set
of rules to add new rules that make sure some actions are combined.
These rules will need to be in favor of the students, making sure it
will reduce the number of corrections needed. Using the example in
Figure 3 again, these rules will need to make sure it only counts one
correction, not the 2 corrections which would be required when us-
ing the algorithm by Rajeev Alur et al [1]. For this, existing exercises
from L&M will be used, where we will reason on which mistakes
students can make and why certain actions should be combined.

4.2 Answering SRQ2
Like the algorithm by Rajeev Alur et al [1], a distance-based algo-
rithm will be made to answer the second research question. Here the
focus lies on making sure the new algorithm is a general solution
to the problem, and transparent about what changes are needed in
the minimal solution, so the teacher can still determine some rules
that should be combined or ignored. This transparency is important
from an ethical point of view [3], as this makes it possible to detect
mistakes the algorithm made in grading the solution.
As part of the goal for answering this sub research question, a

small demo using this algorithm will be implemented.

5 IMPLEMENTATION

5.1 Correction rules
When receiving a student solution, we can, in this case, only assume
it is an NFA-𝜆. Any invalid transitions should be dropped when
loading in the automaton.
Below are the different corrections which can be applied to an

automaton:
(C.1) State insertion: Create a new state 𝑞.
(C.2) State deletion: Delete a state 𝑞 and all transitions associated

with it.

2



Grading Student Solutions for Automata TScIT 43, July 4, 2025, Enschede, The Netherlands

(C.3) Relabel state: For a state, add it to, or remove it from the list
of accepting states.

(C.4) Relabel all states: For all accepting states, make them non-
accepting, and for all non-accepting states, make them ac-
cepting.

(C.5) Transition redirection: Redirect a state transition to a new
target. (Change a transition 𝛿 (𝑞, 𝑎) = 𝑞′ to 𝛿 (𝑞, 𝑎) = 𝑞′′ with
𝑞′ ≠ 𝑞′′)

(C.6) Transition flip: Flip a single transition around. (Given a
transition 𝛿 (𝑞, 𝑎) = 𝑞′) change it to 𝛿 (𝑞′, 𝑎) = 𝑞)

(C.7) State transitions flip: Flip the transition between two states.
(For the states 𝑞, 𝑞′ ∈ Σ, for all 𝑎 ∈ Σ, change 𝛿 (𝑞, 𝑎) = 𝑞′ to
𝛿 (𝑞′, 𝑎) = 𝑞 and/or 𝛿 (𝑞′, 𝑎) = 𝑞 to 𝛿 (𝑞, 𝑎) = 𝑞′, if they exist)

(C.8) Transition insertion: Insert a new transition.
(C.9) Transition removal: Remove a transition.

(C.10) Relabel transition: Change a transition 𝛿 (𝑞, 𝑎) = 𝑞′ to
𝛿 (𝑞,𝑏) = 𝑞′ where 𝑎 ≠ 𝑏.

(C.11) Change start transition: Change the start transition to
indicate a different entry point of the automaton.

Within this list C.1, C.3, and C.5 were taken from the proposed
differences between automata in Alur et al [1]. The state insertion
(C.1) was defined as "insert a new disconnected state𝑞, with 𝛿 (𝑞, 𝑎) =
𝑞 for every 𝑎 ∈ Σ" [1] in the original paper. However, C.1, as stated
above, does not add these transitions, as in our case redirecting a
transition in order to point it to the correct destination has the same
impact on the grade as inserting a new transition at a later point.

5.1.1 State corrections. The first step is to let the algorithm create
and delete states (C.1, C.2), allowing the student to forget a state,
or write unnecessary states. The state deletion will also delete any
incoming and outgoing transitions in the same action to prevent
transitions that go nowhere.

States within an automaton have the following properties: Label
and IsAccepting. The label is the text displayed on the state, which
we will ignore for the corrections, as the goal is to make sure the
automaton accepts the right language.

For the IsAccepting property some corrections might be needed.
This property indicateswhether this is an accepting or non-accepting
state within the automaton. Changing this property for a single state
(C.3) will be needed if the student mistakenly puts an additional
accepting state or forgets to make a state accepting. On the other
hand, the student may mistakenly place accepting states where they
intended to place non-accepting states, and vice versa. Because of
this a correction is added for changing the property for all states
(C.4), meaning the algorithm will only need a singular correction to
correct it.

5.1.2 Transition corrections. Similar to the states, creating and re-
moving transitions is necessary (C.8, C.9). Unlike with states, these
corrections have no side effects.

Transitions have the following properties: StartState, EndState,
AcceptingSymbol. For correcting the transitions, it should be pos-
sible to change small mistakes, but the transition should not be
disconnected from both states and moved to an entirely different
part of the automaton, it should always stay connected to at least
one of the two states. In order to achieve a transition away from

both states two operations should be necessary (C.8 and C.9) as this
indicates a bigger error in the automaton.
The first transition correction (C.5) focuses on changing the

EndState of the transition. A student may make a mistake in cre-
ating the automaton, causing an incorrect path when a transition
is pointed to the wrong state. Similarly flipping transitions (C.6)
focuses on transitions that have been drawn the wrong way. How-
ever, a transition can only be flipped if the automaton remains a
valid DFA. This same rule applies to the flipping of all transitions
between two states (C.7), this ensures that if both transitions have
been drawn the wrong way, a single correction can fix it.

The last correction that can be applied to transitions is changing
the symbol it consumes (C.10).

With all these corrections combined the algorithm has full control
over changing the transitions and some of the smaller mistakes can
be corrected in a single correction.

5.1.3 Start transition correction. The last property the algorithm
needs to be able to change is which symbol is the starting symbol
(C.11). This will ensure that an automaton where the student acci-
dentally misplaced the start transition does not need to be morphed
entirely to fit the language.

5.2 Algorithm
This section focuses on the implementation details of the algorithm
and the design considerations that were made.
The algorithm described is a distance algorithm, attempting to

find the smallest distance between two automata. Dijkstra’s algo-
rithm [2] was considered as an approach. The problem with taking
Dijkstra’s algorithm is twofold.

Firstly, the algorithm would need to store all traversed automata.
Although each automaton is relatively small, the tree that needs to
be searched can become enormous, especially for bigger automata or
questions that have the possibility of a higher score. For students that
receive partial grades the impact may be minimal, but for students
who receive 0 points the algorithm has to traverse all possibilities.

Secondly Dijkstra’s algorithm would require the algorithm to
detect when 2 automata are equal. This is not detecting when the
languages of 2 automata are equal, as described in Section 5.2.2, but
needs to verify that 2 automata are the same graphs. This requires
an additional comparison algorithm to be written and researched,
together with the performance impact of checking each automaton
against all the other, already discovered, automata, which gets more
resource intensive as more options are explored.

For these reasons, the decision was made against using Dijkstra’s
algorithm, instead using a custom solution as described in this
section. For the algorithm, a Python 3.12 implementation was made
[4].

5.2.1 Automaton Representation. For the automata representation
Python classes were used. The following classes were created:

• Automaton -> Represents the automaton with all its states
and transitions
• Transition -> Represents a transition within an automaton
• State -> Represents a state within an automaton

3



TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben Hannink

• Symbol -> Represents a symbol that can be added to a transi-
tion

The symbol class was created out of necessity for the empty
word. The symbol class can either be given a character or None
when created, when given a character it represents the symbol of
that character, when given None it represents the empty word.
In the Python representation of the automaton multiple transi-

tions with the same start and end node can be combined. For this
reason, the Transition class has a list of Symbols instead of just
one. Whenever a transition is created, it will first need to check if a
transition from the start to the end node already exists, if it does it
will need to combine the two transitions by adding the symbol to
the existing transition. Only if no transition exists yet does it create
a new one.
If a transition with a symbol already exists from the start to the

given end node, no changes will be made, and the method should
indicate this in its return (in the example implementation this is
done by returning None instead of the Transition). Corrections will
need to take this into account, most corrections related to transitions
will need to remove the created transitions afterwards, however if
no transition was created it should not remove a transition (this
would cause side-effects to the undoing of the correction otherwise).
In most cases this will make the correction invalid (Section 5.2.3).

The automaton should keep track of a list of "initial states". These
starting transitions should not be represented by actual transitions,
instead the node a starting transition points to, should be included
in the initial states list.

5.2.2 NFA-𝜆 to DFA and Equivalence. In order to know whether the
algorithm has reached a point where the automaton, with correc-
tions applied, represents the same language as a correct solution we
will be using Hopcroft and Karp’s algorithm for comparing DFAs [5]
combined with Salomaa and Yu’s algorithm for converting NFA-𝜆
into DFAs [6].

We only want to run the NFA-𝜆 to DFA converter when either of
the 2 automata that needs to be checked is a DFA. For this a simple
checker needs to be added, to see whether an automaton is a DFA
or not. This can be done by checking if the empty word is not part
of the symbols within the automaton and that for each state in the
automaton, there exists at most 1 transition for each symbol.
As the algorithm has to repeatedly compare against the same

correct automaton, it would waste resources if we had to change the
correct automaton from an NFA-𝜆 to DFA each time the 2 automata
are compared. Because of this a Validator class was made. This
class stores a reference to the correct automaton if it is a DFA, or to
the converted automaton if it is not a DFA. This way the conversion
only has to only happen once for the correct solution.

5.2.3 Corrections. In Section 5.1 we laid out the different correc-
tions that are needed to transform an automaton into one represent-
ing the same language. To apply these, we will need to implement
their functionality. For each of the corrections we will need to make
2 functions, an application function, and an undo function.
Alternatively, a clone of the automaton can be kept from before

the correction is applied, reverting to this clone will be the same as
undoing. The decision for the approach including an undo function,

instead of using clones, was made as most of the corrections can
be undone relatively quickly compared to creating an entire copy
of the automaton. This also means that the speed of undoing the
correction is not dependent on the size, as most references can be
directly gotten using list indices or dictionaries in the automaton.
To help with keeping track of which corrections are applied on

an automaton in the future, we will be needing to store each of
the corrections as a class to ensure some metadata can be stored.
This also doubles as a way to provide transparency, as when a final
solution has been found, the teacher will be able to check whether
the applied corrections are right.
We assume that the application of corrections works as a stack.

When applying a correction, it is added to the top of the stack and can
only be undone (and removed) once all elements that were placed
above it are undone (and removed). Taking the State insertion (C.1)
as an example, when trying to undo the correction, we assume any
corrections applied after the application have already been undone,
therefore there cannot be any transitions attached to the state and
the state can easily be removed by removing it from the state list of
the automaton.

Below is a list detailing the implementation of each of the correc-
tions. All the correctors require the automaton as an input, which
has been left out in the arguments listed below to prevent repetition,
the other arguments are listed with their types. Beside the argu-
ments, and the application and undo instructions, there is also a
determination for when a correction is "Valid". When a correction
is not valid it indicates it was not possible to apply the correction,
it is therefore also not needed to undo invalid corrections.

The arguments for the provided Python implementation [4] may
differ slightly as states are gotten by their state ID instead of a direct
reference.

State insertion (C.1):
Arguments: accepting (boolean).
Application: Adds a new state to the automaton. The "accept-

ing" parameter determines whether the newly created state is an
accepting state.

Undo: Removes the state from the state list of the automaton.
Valid: Always valid.

State deletion (C.2):
Arguments: state (State).
Application: Remove the State from the states list of the Automaton.

Remove all transitions from the transition list of the Automaton,
and all references that are kept to these transitions in other States.
Undo: Will place the State back into the state list, also placing

back all transitions into the transition list of the Automaton. Addi-
tionally, all references that were kept in other states are added back
in.

Valid: Always valid.

Relabel state (C.3):
Arguments: state (State).
Application: Change whether the State is accepting or not, this

will toggle the IsAccepting boolean.

4



Grading Student Solutions for Automata TScIT 43, July 4, 2025, Enschede, The Netherlands

Undo: Same as application, flipping the IsAccepting boolean
back to the value it had before application.
Valid: Always valid.

Relabel all states (C.4):
Arguments: no additional arguments.
Application: For each state in the automaton, toggle the IsAccepting

value. This is the same as applying C.3 to all states.
Undo: Same as application, changing all the IsAccepting values

back to the value it had before the application.
Valid: Always valid.

Transition redirection (C.5):
Arguments: start (State), old end (State), new end (State), sym-

bol (Symbol).
Application: Find the transition that goes from the start to the end,

using the given symbol. Then change the end node of this transition
to be the new end state.

Undo: Change the end state of the transition back to the old end
state.

Valid: Valid if a transition using the given symbol exists from the
start to the end state, and the end state of this transition is not the
new end state.

Transition flip (C.6):
Arguments: start (State), end (State), symbol (Symbol).
Application: Find an outgoing transition from the start state to

the end state, using the given symbol. Then swap the start and end
states of the transition.

Undo: Flip the transition back, switching the start and end states
back around.

Valid: Valid if a transition using the given symbol exists from the
start state to the end state, and the flipped transition does not exist
yet (as we cannot have the same transition twice).

State transition flip (C.7):
Arguments: state a (State), state b (State).
Application: For all transitions between the given state a and b,

it will swap the start and end nodes. So, for each state starting at a
and ending at b, it will start at b and end at a, and vice versa.

Undo: Flip the transition back, switching the start and end states
back around.
Valid: Valid if there are any transitions between the two given

states.

Transition insertion (C.8):
Arguments: start (State), end (State), symbol (Symbol).
Application: Create a new transition going from the given start

to the given end with the given symbol.
Undo: Remove the transition created in the application.
Valid: Valid if no transition going from the state to the end state

already exists with the given symbol.

Transition removal (C.9):
Arguments: start (State), end (State), symbol (Symbol).
Application: Find and remove the transition going from the start

state to the end state, using the given symbol.

Undo: Insert the transition again by creating a new transition
from the start state, to the end state, using the given symbol.
Valid: Valid if the transition that needs to be removed could be

found.

Relabel transition (C.10):
Arguments: start (State), end (State), old (Symbol), new (Symbol).
Application: Find and remove the transition going from the start

state to the end state, using the given symbol. Then create a new
transition with the new symbol, going from the start state to the
end state.

Undo: Remove the newly created transition using the new symbol
and insert the transition with the old symbol again by creating a
new transition from the start state to the end state.
Valid: Valid if an outgoing transition with the given old symbol

exists for the start and end states, and no transition going from the
start state to the end state, already exists using the new symbol.

Change start transition (C.11):
Arguments: state (State).
Application: Copy and store the list of current start states. After

which the list will get cleared and the given state will be added into
the list, making it the only start state.

Undo: Replace the current start states of the automaton with the
stored list, placing the start states from before the application back.

Valid: Valid if the given state is not already the only start state.

5.2.4 Correctors. To check how much corrections are needed the
corrector algorithm will need to go over all possibilities for each of
the corrections and check whether it can find a correct automaton.
For this the algorithm requires 3 arguments.

• A correct automaton for the language.
• The student solution (incorrect automaton).
• The maximum number of points that can be awarded.

For each of the corrections from Section 5.2.3 a corrector will be
made. Each of these correctors will apply all possible corrections
for their type, after which they will try and continue to the next
application. When referring to applying all possible corrections,
we mean applying all possibilities of all the single corrections, not
applying multiple corrections to the automaton.

The algorithm works by brute forcing all combinations of correc-
tions. First it will check if the given solution is already correct, if it
is full points will be awarded. Otherwise, it will start with a depth
of 1, meaning it will try all possible corrections, and for each check
whether the automaton is correct after applying. If it is, that will be
the solution, otherwise the correction is undone, and the algorithm
continues to the next.

After checking all possibilities for a depth of 1, all possibilities for
a depth of 2 are checked. Here the algorithm will go over all possible
corrections and attempt to add a second correction, by going over
all possible corrections again, this attempts all combinations of 2
corrections. This depth will be increased until it has reached the
𝑚𝑎𝑥_𝑝𝑜𝑖𝑛𝑡𝑠 , for which it will not run. This is done as running for a
depth of𝑚𝑎𝑥_𝑝𝑜𝑖𝑛𝑡𝑠 will result in a score of 0, which will also be
the result if the algorithm could not find a solution, so there is no
need to run this depth.

5



TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben Hannink

This is comparable to brute forcing a set of numbers. First attempt-
ing all possibilities for the first number (e.g. 0000, 1000 ... 9000). Then,
for each possibility of the second number, we try all the possibilities
of the first again (e.g. 0100, 1100 ... 9100, 0200, 1200 ... 9900) and
continue to increase the depth for the length of the desired number.
For the implementation of the algorithm this depth can be seen

as a chain of actions. Here we create the following 2 actions:
• CheckAnswer -> Check whether the current automaton is
correct, if it is, the solution has been found.
• RunAllCorrectors -> Run all possible corrections, after each
it will call the next action (Algorithm 1).

Algorithm 1 RunAllCorrectors action
1: 𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛 ← the action to run after this
2: 𝑓 𝑖𝑟𝑠𝑡 ← whether this is the first action in the chain
3: for 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟 ∈ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟𝑠 do
4: if 𝑓 𝑖𝑟𝑠𝑡 is 𝐹𝑎𝑙𝑠𝑒 and 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟 is𝑅𝑒𝑙𝑎𝑏𝑒𝑙𝐴𝑙𝑙𝑆𝑡𝑎𝑡𝑒𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟

then
5: continue ⊲ Skip the RelabelAllStatesCorrector if we are

not the outermost action
6: end if
7: run corrector, giving the 𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛 as its next action
8: end for

Here the RunAllCorrectors will form a chain of instances, with
a CheckAnswer instance at the back. When running over all the
correctors, each of the correctors follows Algorithm 2, attempting
all possibilities and then running the next action. In bothAlgorithm 1
and Algorithm 2, the next_action is either an RunAllCorrectors
or CheckAnswer instance, this way a chain of RunAllCorrectors
instances can be formed with a CheckAnswer instance at the end.
The length of the RunAllCorrectors chain will represent the depth,
each time when increasing the depth, the chain will be extended
with another RunAllCorrectors instance (Algorithm 3).

Algorithm 2 Corrector
1: 𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛 ← action given in arguments
2: for each possible correction, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 do
3: Try to apply 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
4: if 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is valid then
5: run the 𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛, marking it as not the first in the

chain
6: if a valid solution has been found then
7: break ⊲ Stop execution if a solution was found
8: end if
9: Undo 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
10: end if
11: end for

The Corrector for relabeling all states should only be run once
on an automaton, applying it a second time will always undo its
previous application. Because of this Algorithm 1 has a check, when
it is not the outermost the RelabelAllStatesCorrector will not
be run, this means it can only be called once in the first action of
the chain.

Algorithm 3 Main algorithm
1: 𝑚𝑎𝑥_𝑝𝑜𝑖𝑛𝑡𝑠 ← the maximum amount of points that can be

awarded
2: if automaton is correct then
3: return𝑚𝑎𝑥_𝑝𝑜𝑖𝑛𝑡𝑠
4: end if
5: 𝑎𝑐𝑡𝑖𝑜𝑛 ← new CheckAnswer instance
6: 𝑎𝑐𝑡𝑖𝑜𝑛 ← new RunAllCorrectors instance, using 𝑎𝑐𝑡𝑖𝑜𝑛 as the

𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛
7: 𝑑𝑒𝑝𝑡ℎ ← 1
8: /*We now have a chain of length 1 , where after the RunAllCor-

rectors action the next action is a CheckAnswer action*/
9: while 𝑑𝑒𝑝𝑡ℎ < 𝑚𝑎𝑥_𝑝𝑜𝑖𝑛𝑡𝑠 do
10: run the 𝑎𝑐𝑡𝑖𝑜𝑛, marking it as the first in the chain
11: if correct solution was found then
12: break ⊲ Quit the while loop early
13: end if
14: 𝑎𝑐𝑡𝑖𝑜𝑛 ← new RunAllCorrectors instance, using 𝑎𝑐𝑡𝑖𝑜𝑛

as the 𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛
15: 𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ + 1
16: end while
17: return𝑚𝑎𝑥_𝑝𝑜𝑖𝑛𝑡𝑠 − 𝑑𝑒𝑝𝑡ℎ

6 RESULTS AND VALIDATION
To validate whether the implemented algorithms, test cases are
provided in the Python implementation [4].

The first set of test cases focuses on running the algorithm where
only 1 correction is necessary to make the languages of the automata
the same. This is intended to show the algorithm can apply all
the corrections and check for possible side effects of applying and
undoing the corrections. As these tests only need to explore a depth
of 1 before finding the correct solution, they all complete quickly
(>0.01 seconds).

The second set of test cases focuses on evaluating the performance
of the algorithm. These test cases are created such that the student
solution will result in 0 points, showing the time it takes to explore
all the possibilities up to a certain depth. For this, 4 different pairs
of automata were created (a correct automaton and an incorrect
automaton), with different sizes. Each of the pairs is being run
through the algorithm 3 times, every time with a different number
of max points, running the algorithms to different depths. Here
the max points of 1 is skipped, as this would only check whether
the initially given automaton is correct, not attempt to apply a
correction as any solution found after applying a correction would
also result in 0.

The results of these timed tests are shown in Table 1. Here the size
columns contain a tuple (state count, transition count) for
the correct and incorrect solutions. In the automaton representation
proposed in Section 5.2.1 the transitions were combined, here for
the transition count, all individual symbols of each transition in
the automaton are counted as a transition. Each of the test cases
was given a limit of 10 minutes after which it would be marked as
"Timed out".

6



Grading Student Solutions for Automata TScIT 43, July 4, 2025, Enschede, The Netherlands

Table 1. Table of time results of the timing tests

Test case Correct
size

Incorrect
size

Max
points

Time (s)

Case 1 (5, 9) (4, 9)
2 0.12
3 0.98
4 108.42

Case 2 (7, 15) (6, 15)
2 0.13
3 3.52
4 Timed out

Case 3 (7, 18) (6, 18)
2 0.14
3 8.53
4 Timed out

Case 4 (8, 21) (8, 21)
2 0.16
3 32.58
4 Timed out

When looking at the results in Table 1 we can look at the differ-
ent times gotten for each of the cases, depending on the maximum
amount of points, or we can look at the difference in time for the
same amount of points, but between the different cases and automa-
ton sizes.
First, looking at the difference in time depending on the max

points of a run, it becomes clear that the time taken by the algorithm
greatly increases when the depth increases. Taking the example of
brute-forcing a 4 digit code again, we can show that attempting
everything for only the first digit (depth of 1) only gives us 10
possibilities, however once we also need to check a depth of 2
we need to check all possible first digits, for each of the possible
second digits, so we are already up to 10 ∗ 10 = 100 possibilities. A
similar things happens while running the algorithm, at first only
the possibilities for one correction are applied, but after that for
each of the possible corrections, we need to go over all possible
correction again in order to test all possibilities of 2 corrections,
already significantly increasing the amount of possibilities.
Looking at the various times between the test cases, we can

compare the time for a given depth, to the given depth of the other
cases. This means we are only comparing the impact the size of the
automaton has on the time it takes. Here the increase in time is
most notable when taking the results for the max points of 3. With
only a couple of additional states or transition the time is more than
doubled when comparing each test case with the next.
Case 2 and 3 were also specifically made to only change the

number of transitions between the cases. Here we can see that
even a slight increase in transitions can already lead to a significant
increase in time.

This increase in time also only depended on the size of the incor-
rect solution, as the list of corrections which can be applied is based
on the contents of the incorrect solution.
With this stark difference in time between the automata, and

several test cases exceeding 10 minutes with the max points set to
4, it is not viable to use this algorithm, in its current state, on many
students.

Fig. 4. Incorrect automaton for the language L(E) with E = (a)

6.1 Performance improvements
The algorithm was made with a few performance improvements in
mind. Unfortunately, due to time constraints, it was not possible to
add these improvements to the implementation of the algorithm.
The first improvement that can be made is by choosing which

corrections get applied. Currently the algorithm for each of the
corrections loops over all possibilities, even if they result in invalid
corrections. The performance impact of an invalid correction is
not remarkably high, however in some cases the number of invalid
corrections can be exceptionally large, even the small impact of
checking if it is correct will impact performance. An alternative
would be to already include some rules on which corrections are
attempted. As there still needs to be some checks, the performance
increase of this improvement will most likely be small.
An improvement which could be a significant performance in-

crease is reducing the number of branches that need to be explored.
Similarly to how the RelabelAllStatesCorrector can only be ap-
plied once to an automaton, as calling it multiple times undoes its
effect, the branches could be further reduced if such rules were
applied to all corrections. In these cases, it should still run the cor-
rector, but the corrector should make sure no corrections are applied
that undo the work of any previous corrections. The information
about corrections that are applied is already stored in a list, in the
Python implementation, this could then be used to determine which
corrections should not be applied later.

As an example, take Figure 4, which shows an incorrect automa-
ton for the language only accepting the word "a". When applying
corrections, we can first change the transition to end at "s_2", after
which we can change it again to end at "s_final", making it a correct
solution. This means 2 corrections must be applied. However, we
can also change the transition to end at "s_final", only needing 1
correction to get to a correct solution. Redirecting the same tran-
sition twice does not make sense, as that could have been a single
correction, however with the current algorithm this happens a lot.
Removing these can greatly reduce the number of branches, thus
creating a significant performance improvement.
Additionally, there will be added value in making an implemen-

tation based on Dijkstra’s algorithm [2]. In Section 5.2 the decision
was made to not use Dijkstra’s algorithm due to the performance
impact of needing to check an automaton against all, already dis-
covered, automata when applying a new correction. However, this
combining will also have the effect of merging branches with each
other. The question that remains is, will this reduce the number of
branches enough, so with the extra processing required to check
against all discovered automata, it is still more performant.

7



TScIT 43, July 4, 2025, Enschede, The Netherlands Ruben Hannink

7 CONCLUSIONS
Within this paper we presented an algorithm that can be used for
grading student solutions for automata and provided a Python im-
plementation. The 2 sub-research questions asked in the paper have
both been answered, therefore the research question itself has been
answered.
The first question, (SRQ.1) What is the set of corrections needed

to convert any incorrect solution, into a correct solution, considering
the types of mistakes students make? It has been answered using a
list of 11 corrections that can be applied to transform any DFA into
any other DFA. For the corrections in this list fairness towards the
student has been considered, making sure the student does not get
unnecessarily punished for mistakes when a student continues with
a previously made mistake (e.g. swapping transitions around).
Answering the second question was more difficult, (SRQ.2) How

to systematically apply these corrections and determine the mini-
mal number of corrections needed to achieve a correct solution? The
algorithm described in this paper can grade student solutions by
determining the minimal number of corrections, thus answering the
second question. Unfortunately, the algorithm in its current state
is extremely limited by its performance, it is not feasible to use the
algorithm on a large number of solutions or on larger automata.
Although, with additional research into the proposed performance

improvements, or other performance improvements, the solution
may become viable.

In the end, this paper has provided a valuable first step into mak-
ing a more general algorithm for grading automata by determining
the corrections that can be applied and giving an initial algorithm
which can grade automata.

REFERENCES
[1] R. Alur, L. D’Antoni, S. Gulwani, and D. Kini. 2013. Automated Grading of DFA

constructions. IJCAI ’13 Proceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence (2013), 1976–1982. https://www.microsoft.com/en-
us/research/publication/automated-grading-dfa-constructions/

[2] E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Springer
Nature Switzerland, Cham, 269––271. https://doi.org/10.1007/BF01386390

[3] A. Farazouli. 2024. Automation andAssessment: Exploring Ethical Issues of Automated
Grading Systems from a Relational Ethics Approach. Springer Nature Switzerland,
209–226. https://doi.org/10.1007/978-3-031-58622-4_12

[4] R. Hannink. 2025. Python implementation for grading student solutions for au-
tomata. https://github.com/RHannink01/AutomataGrader. (Last accessed 29 june
2025).

[5] J. E. Hopcroft and R. M. Karp. 1971. A linear algorithm for testing equivalence of
finite automata. Technical Report 114 (1971).

[6] S. Kai and Y. Sheng. 1997. NFA to DFA transformation for finite languages. In
Automata Implementation. Springer Berlin Heidelberg, 149–158. https://doi.org/10.
1007/3-540-63174-7_12

[7] A. Kumar, A. Walter, and P. Manolios. 2023. Automated Grading of Automata with
ACL2s. Vol. 375. Open Publishing Association, 77–91. https://doi.org/10.4204/
eptcs.375.7

[8] Utwente UML 2021. UTML. https://labs.apps.utwente.nl/apps/utml.html. Public
live version: https://utml-staging.apps.utwente.nl/ (Last accessed 26 june 2025).

8

https://www.microsoft.com/en-us/research/publication/automated-grading-dfa-constructions/
https://www.microsoft.com/en-us/research/publication/automated-grading-dfa-constructions/
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-031-58622-4_12
https://github.com/RHannink01/AutomataGrader
https://doi.org/10.1007/3-540-63174-7_12
https://doi.org/10.1007/3-540-63174-7_12
https://doi.org/10.4204/eptcs.375.7
https://doi.org/10.4204/eptcs.375.7
https://labs.apps.utwente.nl/apps/utml.html
https://utml-staging.apps.utwente.nl/

	Abstract
	1 Introduction
	2 Problem
	2.1 Research Question

	3 Related Works
	4 Methodology
	4.1 Answering SRQ1
	4.2 Answering SRQ2

	5 Implementation
	5.1 Correction rules
	5.2 Algorithm

	6 Results and Validation
	6.1 Performance improvements

	7 Conclusions
	References

