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As small, camera-equipped devices become increasingly common, they of-
ten capture images containing faces and other personal details. This raises
significant privacy concerns, especially under regulations such as the Euro-
pean Union’s General Data Protection Regulation (GDPR), which require
that such sensitive data be anonymized. However, implementing strong pri-
vacy safeguards directly on these devices is challenging due to their limited
computing power.

In our research, we explore the trade-off between computational efficiency
and privacy protection by implementing three lightweight anonymization
techniques, namely masking, pixelation, and blurring, directly on a resource-
constrained embedded platform, the ESP32-P4. Each method is evaluated
for its execution time and its effectiveness at protecting identity, the lat-
ter measured using cosine similarity scores derived from the DeepFace
Python library. By analyzing the performance and privacy impact of these
techniques, our work aims to uncover practical strategies for real-time, on-
device anonymization. This enables privacy-preserving image capture at the
edge, without the need for potentially insecure cloud processing.

Our findings show that all three anonymization techniques can be exe-
cuted in under 2 microseconds on the ESP32-P4, making them highly suitable
for real-time processing. The full anonymization pipeline, including face
detection, operates at 20 milliseconds per frame, enabling throughput up
to 50 FPS. While detection accuracy reached 59.2% across a diverse dataset
of 200 images, the main performance bottleneck lies in the face detection
model, not in the anonymization methods themselves. These results confirm
the viability of real-time, edge-based visual anonymization on constrained
embedded systems
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1 INTRODUCTION

The growing use of embedded devices such as Arduino-based cam-
eras raise critical concerns about privacy. The captured raw images
may contain personally identifiable information, including faces
or other personal details. Under regulations such as the European
Union’s General Data Protection Regulation (GDPR), such data must
be protected before storage, transmission, or analysis, as unautho-
rized use of such images can lead to identity theft, surveillance, or
discrimination [3] [6].

Given the computational and memory constraints of embedded
systems, implementing a privacy preserving mechanism on the
device is challenging [2], while cloud-based systems offers high-
performance processing, it poses additional privacy threats during
data transmission, increases latency and may conflict with regula-
tions that require sensitive data to be processed locally.
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This research addresses the gap by developing and evaluating
lightweight, on-device anonymization methods, suitable for em-
bedded systems. By benchmarking masking, pixelation, and blur-
ring methods directly on the ESP32-P4, this study aims to provide
practical, regulatory-compliant solutions that enhance user privacy
without affecting system performance.

2 PROBLEM STATEMENT

This research proposes to explore and evaluate simple anonymiza-
tion algorithms that can be efficiently executed on low-power em-
bedded devices such as ESP32-P4. The goal is to protect user privacy
by ensuring that images captured by cameras no longer reveal iden-
tifiable information, while still keeping the body posture and rest
of the image unchanged.

2.1 Research Question

The main research question that will lead the research is:

Which simple anonymization techniques (e.g. blurring, masking,
pixelation) provide an optimal balance between privacy protection
and computational efficiency for usage on resource-constrained
embedded devices such as Arduino-based cameras?

This can be answered with the following sub questions:

(1) How does each anonymization technique impact execution
time on the ESP32-P4?

(2) How effectively does each anonymization technique prevent
visual identification of individuals?

In the spirit of open source and reproducible research, all code
used in this project is available on GitHub.!.

3 RELATED WORK

While there has not been much previous research on directly build-
ing anonymization strategies on embedded devices, there is a sub-
stantial body of work focused on anonymization techniques in gen-
eral. These range from traditional image processing methods to
advanced neural networks, each with a different ratio of anonymiza-
tion and computational load.

Pixelation is one of the most widely used anonymization tech-
niques due to its simplicity and the ability to preserve the general fa-
cial structure and motion cues in video. [12] It is commonly applied
in both consumer products and surveillance contexts to provide
visual context without compromising identity.

However, recent advances in deep learning have exposed critical
flaws in this method. Research introduces a neural framework ca-
pable of reconstructing high-resolution face images from pixelated
video. [12] This system is able to reverse coarse pixelation (as low as
16x16 or 8x8), recovering facial expressions and identifying features
with accuracy. This work demonstrates that even heavily pixelated
video does not guarantee anonymity and that pixelation alone is
insufficient as a privacy-preserving method.

Uhttps://github.com/olinpin/image-anonymization-on-ES
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Blurring is another commonly used anonymization strategy that
reduces image detail by applying a Gaussian blur to facial regions.
It balances privacy and visual context better than masking, as some
facial layout and expressions remain partially visible, making it use-
ful in surveillance footage, journalism, or broadcast media where
identity suppression is needed without entirely obscuring the sub-
ject. However as with pixelation, blurred faces can be partially
reconstructed using modern neural deblurring models [8], so blur
alone may not provide sufficient protection against identification,
particularly if the blur kernel is weak or small [8].

And last but not least, masking is one of the most straightforward
anonymization techniques, typically implemented by overlaying
a solid color (black in our case) rectangle over the detected face.
Its simplicity makes it extremely efficient, especially on resource-
constrained platforms, and unlike pixelation or blurring, it does not
rely on visual transformation but rather on full occlusion of sensi-
tive regions. As such, it offers strong guarantees against identity
reconstruction attacks, since no facial information is preserved. This
method has been widely used in privacy-sensitive applications such
as pedestrian detection datasets [10]. User studies have shown that
while masking provides the highest level of privacy protection, it is
often perceived as visually intrusive and less informative compared
to other techniques such as pixelation and blurring [1]. Despite this,
masking remains the most secure among the lightweight anonymiza-
tion methods, particularly when privacy is prioritized over visual
fidelity.

On the other end of the spectrum, DeepPrivacy2 [5], a full-body
anonymization framework using generative adversarial networks.
DeepPrivacy2 achieves anonymization using high visual realism
through multiple specialized generative models, ensuring strong
privacy even against re-identification attacks. While DeepPrivacy2
sets a good benchmark in realistic anonymization, its computational
requirements make it unsuitable for low-power embedded platforms
like ESP32-P4.

These contrasting approaches highlight the need for a middle
ground: anonymization methods that are secure, yet feasible to de-
ploy on resource-limited embedded systems. This thesis aims to
evaluate such methods systematically on an Arduino-based plat-
form.

Furthermore, privacy-preserving techniques on resource con-
strained hardware have been studied in the context of lightweight
cryptography, which shares similar challenges with image anonymiza-
tion on embedded devices.

While no standard exist for image anonymization on embedded
devices, we aim to address this gap by comparing different methods.
Recent benchmarking of lightweight cryptographic algorithms on
microcontrollers, such as AES-128, SPECK, and ASCON, shows that
authenticated encryption techniques can achieve security with low
latency, minimal memory usage, and energy efficiency on resource
constrained hardware like Arduino Nano and Micro [9]. The results
highlight that SPECK and ASCON represent strong candidates for
securing data on low-cost, low-power hardware. At the same time,
NIST’s selected ASCON as the official standard for lightweight
cryptography, confirming its suitability for resource constrained
hardware [7].
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4 METHODOLOGY

The goal of this research is to evaluate the feasibility and effective-
ness of simple, lightweight image anonymization techniques on
resource-constrained embedded platforms. Namely, the ESP32-P4
environment is targeted, where memory and processing capabilities
are limited, making real-time anonymization challenging.

4.1 Evaluation Framework

Success will be evaluated based on these criteria:

(1) Privacy Effectiveness: Assess how well each anonymization
method prevents identity recognition using Identity Similarity
(IS) from the DeepFace Python library [11]

(2) Time Feasibility: Measure execution time on the ESP32-P4
platform.

These criteria are used to determine whether a given method has
a balance between preserving privacy and running on the system.

4.1.1 Dataset Selection. In order to evaluate the face detection and
anonymization under realistic conditions, we use the Face Detection
Framework (FDF) dataset [4]. The FDF dataset is widely used in
the research community, publicly available, and free for academic
purposes. It contains a diverse set of real-world face images across
varying lighting conditions, skin tones, poses, and backgrounds,
making it well-suited for stress-testing detection and anonymization
techniques on embedded hardware. Furthermore, using a standard
and openly accessible dataset enhances the reproducibility and com-
parability of the results, in line with the open-source goals of this
project.

From the FDF dataset [4], 50 images were randomly selected for
evaluation. To ensure meaningful evaluation, images where faces
were completely unrecognizable, such as those turned away from
the camera or heavily obscured by objects like scuba gear, were
manually excluded and replaced with new randomly selected sam-
ples. This filtering ensured that the benchmark focused on images
where a human observer would reasonably expect face detection
and anonymization to be applicable.

4.2 Lightweight Techniques on Arduino

Three traditional anonymization techniques will be implemented
directly on the ESP32-P4 platform:

e Masking: Replacing detected face regions with a solid black
rectangle.

o Pixelation: Using different pixelation grid sizes (3x3, 5x5,
7x7), for each grid in the face, apply the center pixel’s color
over the rest of the grid.

o Blurring: Applying a simple Gaussian to obscure facial fea-
tures. [13]

These techniques were chosen specifically for their combina-
tion of computational efficiency and real-time feasibility. Unlike
advanced deep learning-based anonymization systems, which re-
quire GPUs or cloud processing, these methods are simple enough
to be executed within milliseconds on the ESP32-P4 and feasible in
the scope of this paper, yet still capable of substantially reducing
face identifiability. Their use in prior work and public applications
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further supports their relevance as benchmark techniques for em-
bedded anonymization.

4.3 Measurements and Analysis

Each method will be evaluated based on the following metrics:

e Execution Time: Average time taken to detect a face and
apply anonymization on a single frame.

o Privacy Effectiveness: DeepFace Python library [11] is used
to compute identity similarity scores between original and
anonymized images. DeepFace extracts facial embeddings and
computes cosine similarity. Lower similarity values indicate
stronger anonymization.

All anonymized images generated and recorded on ESP32-P4 will
be saved and analyzed offline on a laptop for identity similarity using
DeepFace. This provides a consistent privacy benchmark across all
methods while remaining computationally feasible.

4.4 Hardware constraints

Given the computational constraints, the ESP32-P4 implementation
is limited to frame-by-frame anonymization, without any temporal
coherence or advanced synthesis. The ESP32-P4 is also constrained
by available resources. Furthermore, unlike DeepPrivacy2, we do not
attempt to protect against re-identification through body features,
or clothing.

4.5 System Overview

Figure 1 shows the complete processing pipeline used in this project.
It starts from the input image and proceeds through decoding, resiz-
ing, neural network inference, and ends with one of the anonymiza-
tion methods. This flowchart corresponds directly with the technical
implementation on the ESP32-P4 platform and provides context for
the execution time breakdowns and processing stages discussed in
the following sections.

5 RESULTS

This section presents the performance and privacy effectiveness
of the three above mentioned anonymization techniques (masking,
pixelation, and blurring) when deployed on the ESP32-P4 platform.
Each method was evaluated using the execution time and identity
similarity score as described in the methodology.

5.1 Face Detection Pipeline Breakdown

The face detection process on the ESP32-P4 consists of three stages:

e Preprocessing: The input image is resized and normalized
to 120x120 pixels, matching the expected input of the neural
network.

o Inference: The resized image is passed through a quantized
neural network that predicts face bounding boxes and key-
points.

e Postprocessing: the system sets scaling factors to map co-
ordinates back to the original image, filters out detections
below confidence threshold of 0.5, and returns the final list
of detected faces.
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A breakdown of the face detection pipeline reveals the proportion
of time spent in each stage. On average:

e Preprocessing took approximately 5,244 ps (25% of total)
o Model inference required 14,521 ps (74%)
e Postprocessing took just 174 ps (1%)

This shows that most of the execution time is spent running the
neural network itself, with preprocessing also contributing signifi-
cantly due to the need to resize and normalize the input to 120x120
pixels. Postprocessing overhead is negligible.

5.2 Face Detection Time

Before anonymization, a lightweight face detection model was exe-
cuted on the ESP32-P4 to locate the person’s face. The model was
evaluated on three different test images:

e Image 1: White male
o Image 2: Black male
e Image 3: Group photo with multiple faces

Each image was processed 50 times to obtain average execution
times and standard deviations. Results are summarized in Table 1.

Table 1. Face Detection Execution Time (us), Averaged over 50 Runs

Image Resolution Avg. Time (us)  Std. Dev. (us)
White male 522x526 20,091.41 11.92
Black male 433x350 19,939.98 11.16
Multiple faces 336%x300 22,301.62 7.92

Face detection performed consistently across the single-face im-
ages, with average execution times around 20 milliseconds and very
low variance. The group photo (336x300), despite containing four
visible faces, required slightly more time (22.3 ms) and exhibited
even lower variance. However, only two of the four faces were suc-
cessfully detected. This reduced accuracy is likely due to the low
resolution and small size of individual faces, which poses challenges
for lightweight detection models deployed on embedded systems.

5.3 Anonymization Execution Time

After face detection, each image was anonymized using one of three
techniques: masking, pixelation (grid sizes are chosen dynamically
based on face size), or blurring. All three methods were implemented
directly on the ESP32-P4 platform and executed immediately after
face detection.

Each anonymization technique was applied to all three test im-
ages. Execution times were measured in microseconds using the
built-in timing functionality on the ESP32-P4. The measurements
were repeated multiple times and showed no observable variation
across runs or image types. All anonymization algorithms were
written in-place and modified each pixel in the detected face area
once.

All three techniques completed in approximately 2 microseconds
per frame. This indicates that their computational cost is negligi-
ble relative to face detection, which had a much larger per-frame
processing time. The consistency across methods also suggests that
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Fig. 1. System pipeline from image input to anonymized output.

Table 2. Anonymization Execution Time (us)

Technique Avg. Time (us)  Std. Dev. (us)

Masking 2 0
Pixelation 2 0
Blurring 2 0

image size or content had little impact on performance in this con-
figuration.

5.4 Privacy Effectiveness

To find out how well each anonymization method protected iden-

tity, we employ face-level verification using the DeepFace library

with the Facenet model. Cosine similarity is computed between the

embeddings of faces in original and anonymized images. A face was

considered protected if its similarity was below a threshold of 0.4,

or if no corresponding face was detected in the anonymized image.
Three image categories were used:

e White male - 522x526 resolution, 1 face
e Black male - 433x350 resolution, 1 face
e Multiple faces — 336x300 resolution, 4 faces

Table 3 summarizes the protection rates for each technique:

Table 3. Percentage of Protected Faces per Anonymization Method

Image Masking (%) Pixelation (%) Blurring (%)
White male 100.0 100.0 100.0
Black male 100.0 100.0 100.0
Multiple faces 50.0 50.0 50.0

All three techniques achieved full protection (100%) in the

single-face images, with no faces successfully verified after anonymiza-

tion. In the group image, which contained four visible faces, only

two faces were protected, resulting in a 50% protection rate across
all methods.

This reduction was due to the failure of the embedded face detec-
tion model, that was running directly on the ESP32-P4. It detected
only two of the four faces in the original image. Then the anonymiza-
tion methods were applied to only those two detected faces, leaving
the remaining faces unmodified and recognizable. This highlights
a limitation: the overall effectiveness of privacy protection is con-
strained by the accuracy and completeness of the face detection
stage.

5.5 Batch Testing on FDF Dataset

To improve statistical robustness, the evaluation was expanded to a
larger dataset. Four batches of 50 images (300x300 px) were selected
from the public Face Detection Framework dataset (FDF) [4]. Each
image was passed through the full anonymization pipeline using
the ESP32-P4, and detailed timing metrics were recorded.

Table 4. Average Execution Time per Stage (ESP32-P4, 4x50 Images)

Stage Time (ms) Percentage
Preprocessing 4.88 24.4%
Inference 14.63 73.2%
Postprocessing 0.14 0.7%
Anonymization 0.30 1.6%
Total 19.97 100%

As Table 4 shows, the timing analysis over 4x50 (different) im-
ages confirms that the ESP32-P4 performs consistently across the
anonymization pipeline, with an average time of 19.97 millisec-
onds per image. The majority of this time, approximately 73.2%,
is spent on neural network inference, preprocessing steps such as
image resizing and RGB conversion take 24.4% of total time. Post-
processing is minimal at just 0.7%, and the anonymization step adds
only 1.6%. This shows that lightweight anonymization (masking,
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Fig. 2. Visual comparison of anonymization techniques applied to three test images. Top: White male; Middle: Black male; Bottom: group photo.

pixelation, blurring) is computationally inexpensive. Despite the
limited resources of the embedded platform, the system maintained
a throughput of 50 frames per second for the full batch, and 68 FPS
when considering inference alone. The variance in total execution
time across the 200 tests was only 2.1%, which indicatese stable and
reliable performance. In terms of detection accuracy, 59.2% of the
faces were successfully identified, resulting in a 59.2% detection rate.
This highlights that while the system is highly optimized for speed,
particularly on diverse or low-resolution images detection requires
further improvement.

As shown in Table 5, the batch evaluation across 200 anonymized
images reveals that masking achieved the highest privacy protection,
successfully anonymizing 75.0% of detected faces. Pixelation fol-
lowed closely with a protection rate of 65.0%, demonstrating moder-
ate effectiveness. Blurring, however, performed significantly worse,
protecting only 37.5% of faces, with over 60% still recognizable.

Table 5. Batch Privacy Protection Effectiveness (200 Images, ESP32-P4)

Method Protected Faces (%) Recognizable Faces (%)
Pixelation 65.0 35.0
Masking 75.0 25.0
Blurring 37.5 62.5

These results suggest that, despite its simplicity and visual intrusive-
ness, masking remains the most reliable lightweight anonymization
method on embedded systems. Full facial obfuscation offers stronger
resistance against identity recognition algorithms like DeepFace,
especially when compared to partial obfuscation techniques such
as pixelation or Gaussian blur.



TScIT 43, July 4, 2022, Enschede, The Netherlands

5.6 Total Processing Time and Real-Time Feasibility

Combining the face detection time (approximately 20,000 ps) with
the anonymization time (2 ps), the total per-frame processing time
is around 20 milliseconds. This shows that the system could theo-
retically process up to 50 frames per second, making it suitable for
real-time image anonymization on live camera input with frame
rates up to approximately 50 FPS.

6 DISCUSSION

This study set out to evaluate the trade-offs between privacy protec-
tion and computational feasibility for image anonymization tech-
niques on resource-constrained embedded systems. The results pro-
vide several key insights.

6.1 Anonymization Performance vs. Cost

This section will try to address the research question How does each
anonymization technique impact execution time on the ESP32-P4?

All three anonymization techniques, masking, pixelation, and
blurring, achieved nearly instantaneous execution on the ESP32-
P4, each taking approximately 2 microseconds per frame. Despite
differences in algorithmic complexity, their runtime was negligi-
ble compared to face detection, which required approximately 20
milliseconds per frame.

This finding confirms that basic anonymization methods are fea-
sible for real-time execution on low-power devices. With a total
processing time per frame of around 20 ms, the system can support
camera frame rates of up to 45-50 FPS, meeting real-time perfor-
mance standards for video streaming or live capture.

6.2 Privacy Effectiveness and Resolution Dependence

The following section will try to answer the research question How
effectively does each anonymization technique prevent visual identifi-
cation of individuals?

In the 200 test images, masking prevented identity recognition
by the DeepFace model 75% of the time, which was the best out
of all three methods, pixelation was closely behind with 65% and
blurring performed the worst with only masking 37.5% of the faces.
This highlights the effectiveness of using masking as a lightweight
technique for on-device anonymization.

In the multiple-face image, only 50% of faces were protected
across all methods. Importantly, this was not due to failures in the
anonymization algorithms themselves. Instead, the embedded face
detection model detected only 2 out of 4 faces in the group photo.
Since anonymization was applied only to detected regions, the other
faces remained untouched and were successfully recognized.

This highlights a critical finding: the overall effectiveness of pri-
vacy protection is highly dependent on the quality of face detection.
Even flawless anonymization is insufficient if it is not applied to all
sensitive regions.

6.3 Impact of Resolution and Face Size

Out of the 3 test images, the group image had the lowest resolu-
tion (336x300), and the undetected faces were notably smaller. This
suggests that small or distant faces may not be reliably detected
by lightweight models under constrained hardware settings. Thus,
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while anonymization performance was excellent in isolated cases,
its robustness in complex, real-world scenes remains limited by face
detection capability. Additionally, the face detection model requires
all input images to be 120120 pixels. So the images are scaled down
during preprocessing. This downscaling is necessary but can se-
verely reduce detail, especially for small or distant faces, making
them harder to detect accurately.

6.4 Limitations

Several limitations influenced the validity and scope of this study.
First of all a key limitation of the current implementation is the
fixed input resolution of 120x120 pixels for the face detection model.
All images must be downscaled to fit this input size before inference,
which can result in loss of detail. This loss may affect the model’s
ability to extract facial features for accurate detection, especially
when faces are not centered or occupy only a small portion of the
image. So the preprocessing step may reduce detection reliability,
affecting the overall success of anonymization.

Secondly, the face detection model for the ESP32-P4 is intention-
ally small to fit within the resource constraints. While this allows the
system to operate without any outside (cloud) interactions, it also
limits the face detection abilities. This constraint shows a larger limi-
tation in Al in embedded systems: the balance between performance
and resource efficiency.

Lastly, although the DeepFace framework [11] was used to grade
the identity protection, the analysis was conducted using a single
model (Facenet), without comparison to other identity verification
systems. While Facenet is widely used, different recognition mod-
els vary in sensitivity to anonymization. It is possible that some
anonymized faces deemed "protected” in this study may still be
partially identifiable by more advanced or differently trained rec-
ognizers (such as specifically trained machine learning models [8]
[12]. This limitation suggests that privacy protection results should
be interpreted as a lower bound, and future work should consider
multiple verification models to better estimate the strength of each
anonymization technique.

6.5 Future Work

For future research there are several interesting areas to explore.
This includes integrating more advanced or cascaded face detection
models that offer better detection accuracy while maintaining low
latency. The current model is highly optimized for speed, so it may
miss subtle or less prominent faces, especially when they appear un-
der challenging conditions or at varying scales. More sophisticated
models could improve coverage without significantly increasing
computational cost. This would help to ensure that all sensitive
regions are identified and anonymized, enhancing overall system
reliability.

Another area involves testing the anonymization pipeline on
a wider range of image conditions. The current study used the
FDF dataset [4], which provides a strong baseline for facial diver-
sity, but future evaluations should include more complex scenarios
such as surveillance footage, traffic camera data, protests or group
gatherings. These conditions are more representative of real-world
deployments and would help uncover limitations or failure modes
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that are not evident in controlled testing. Expanding the evaluation
scope would also inform how the system performs across domains
with varying resolution, lighting, and movement patterns.

Finally, deploying and testing the anonymization system in real-
time conditions—such as continuous camera streams or interactive
embedded applications—would be a critical next step. While current
evaluations simulate real-time performance through static image
processing, actual deployment scenarios may introduce additional
challenges, including buffer management, power constraints, and
interaction with other system components. Testing the anonymiza-
tion pipeline under these operational conditions would validate its
robustness, guide hardware-specific optimizations, and potentially
highlight integration issues not visible during offline benchmarking.

o Integrating more advanced or cascaded face detectors that
maintain low latency but improve detection coverage.

o Testing anonymization under more diverse image conditions
(e.g., surveillance, traffic, group events, occlusions).

e Testing anonymization in real-time conditions

6.6 Conclusion

The study demonstrates that lightweight anonymization methods
such as masking, pixelation, and blurring are computationally viable
for real-time use on embedded platforms. When face detection is
accurate, these methods are capable of offering strong privacy pro-
tection. However, the overall system effectiveness is fundamentally
limited by the quality of face detection.

Furthermore, prior research suggests that pixelation and blurring,
although visually anonymized, may still be vulnerable to machine
learning-based reconstruction attacks [12]. Masking, despite being
visually more intrusive, offers a stronger privacy guarantee in high-
risk scenarios.
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