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This thesis explores the use of genetic algorithms (GAs) to automatically
generate understandable agent controllers for the game Bomberman using
guarded command programs (GCPs). This approach evolves agents repre-
sented by a fixed-size set of human-readable, condition-action rules within
the Pommerman environment. Experiments analyzing various mutation
and crossover strategies confirmed that the GCP structure is effective at
producing interpretable agent logic. The results demonstrate that the GA
successfully evolved agents capable of basic survival tactics, primarily by
learning to avoid self-destructive behaviors. However, the key finding of
this research is that agent performance was fundamentally constrained by
the fitness function, which failed to adequately reward complex strategic
and tactical maneuvers. This work concludes that while GAs combined with
GCPs provide a viable framework for generating understandable AI, achiev-
ing high-level strategic competence is critically dependent on the design
of a more sophisticated fitness function that can guide evolution beyond
simple behaviors.
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1 INTRODUCTION
Bomberman is a game in which players navigate a grid-based world
and strategically place bombs to eliminate opponents while avoid-
ing explosions. Developing intelligent agents for dynamic environ-
ments such as Bomberman requires algorithms that balance offen-
sive strategies, such as placing bombs and collecting power-ups,
with defensive tactics, like avoiding bombs and efficiently navigat-
ing the environment. Agents are generally made with hand-crafted
rule-based systems, finite state machines (FSM), and more recently,
complex machine learning models. Although hand-crafted rule-
based systems and FSMs are easy to interpret, they lack scalability
for complex and dynamic environments. On the other hand, ma-
chine learning models scale well but behave as "black-boxes". Their
decision-making is hard to understand, and debugging undesired
behavior can be complicated [3, 8]. Genetic algorithms, combined
with guarded commands, offer a middle ground by enabling auto-
matic rule generation while keeping the resulting behavior easy to
understand.

Guarded command programs are a set of simple condition-action
rules which define the agents’ behavior. Each rule consists of a guard,
a boolean expression consisting of a number of logical conditions,
and a command to execute if the conditions are true. In the context
of Bomberman, a simple example of this could be enemyInRange ∧
hasBomb → dropBomb. As long as the number of conditions is
limited, these rules are inherently easy to understand, making them
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well suited for designing interpretable agent behavior in complex
dynamic environments like Bomberman.
This thesis investigates how genetic algorithms can be used to

automatically generate guarded command programs that control
agents in the Bomberman environment. The main objective is to
create agent behavior that is both effective in the game and inter-
pretable. To guide this, the following research question is posed:

How can genetic algorithms be used to automatically gen-
erate understandable guarded command programs for agents
in a Bomberman environment?
This question is broken down into the following sub-research

questions:
• SRQ1: How do different mutation and crossover strategies
affect the evolution of rule complexity and game-playing
effectiveness in guarded command Bomberman controllers?

• SRQ2: What gameplay metrics (e.g., survival time, opponents
eliminated) should be used to evaluate the performance of a
controller in the Bomberman environment?

• SRQ3: What structure and constraints on guarded command
programs balance interpretability and gameplay performance?

The complete source code for the genetic algorithm implemen-
tation, including the Bomberman environment, agent controllers,
and data analysis and visualization scripts, is publicly available on
Github. 1

2 RELATED WORK

2.1 Genetic Algorithms
Genetic Algorithms (GA) are optimization algorithms inspired by
the process of natural selection and biological evolution. They are
widely used for solving complex optimization and search problems
across various domains.
The core components and steps involved in a typical genetic

algorithm can be conceptualized as an iterative loop, as illustrated
in Figure 1, and include:

• Population Initialization: A starting population of candi-
date solutions is randomly generated. Each individual repre-
sents a potential solution to the problem, encoded in a specific
genetic representation.

• Fitness Evaluation: Each individual in the population is
evaluated based on a predefined fitness function. This func-
tion quantifies the quality or performance of a given solution,
guiding the evolutionary process towards better solutions.

• Selection: Individuals are selected from the current popula-
tion to form a ’mating pool’ for the next generation. Selection
methods (e.g., roulette wheel selection, tournament selection,
rank selection) are designed to give preference to individuals
with higher fitness, simulating ’survival of the fittest’.

1https://github.com/TimWijma/genetic-bomberman
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• Crossover (Recombination): Selected individuals (parents)
are combined to produce new offspring. Crossover operators
(e.g., single-point, two-point, uniform) exchange genetic ma-
terial between parents, allowing for the exploration of new
areas in the search space by recombining beneficial traits.

• Mutation: Small, random changes are introduced into the
offspring’s genetic material. Mutation operators (e.g., bit-flip,
inversion) maintain genetic diversity within the population,
helping the algorithm escape local optima and explore entirely
new solutions.

• Elitism (Optional): To ensure that the best-performing indi-
viduals found so far are not lost due to the stochastic nature
of crossover and mutation, a small number of the fittest indi-
viduals from the current generation may be directly copied
into the next generation.

Fig. 1. General Flow of a Genetic Algorithm

These steps (evaluation, selection, crossover, mutation, and op-
tionally elitism) are repeated for a set number of generations or until
a termination condition is met, at which point the best solution(s)
from the final population can be extracted.
One application of this is EvolvingBehavior, a tool developed by

Partlan et al. [4] that uses a genetic algorithm to evolve behav-
ior trees for non-player characters in a game environment. The
developer initializes a simple decision tree and sets the evolution
parameters, and the genetic algorithm then evolves the behavior
into a complex decision tree. These evolved decision trees were
tested in a 3D survival game, and the evolved trees were found to
perform similarly to manually crafted trees made by researchers
with experience in game AI. While the evolved decision trees were
not perfectly efficient, they all used a manageable number of nodes,
making their behavior easy to understand. This demonstrates the
potential of genetic algorithms to evolve agents with complex but
understandable behavior.
One of the strengths of GAs is their flexibility in encoding deci-

sion logic, allowing them to optimize not just for performance, but
also for properties like simplicity and interpretability. Wang et al.
[7] demonstrate this with a system where multiple agents worked

together to create simple, human-readable rules from data. This
system was tested on the Iris dataset, where the algorithm resulted
in simple rules such as "If 𝑥4 is small, then class 1;" (where 𝑥4 is a
feature in the dataset).
This simple, human-readable format of the rules generated by

the genetic algorithm in Wang et al.’s work is very similar to the
structure of guarded command programs. Both consist of a con-
dition and a corresponding action or classification. This suggests
that genetic algorithms could be well-suited for evolving guarded
command programs to control agent behavior.

2.2 Guarded Command Programs
As mentioned above, guarded command programs are programs
which are simply a list of rules. Each rule consists of a guard and
a command. A guard is a boolean expression, which contains a
number of conditions in combination with logical operators (such
as AND, OR). In the context of Bomberman, this would result in
rules such as enemyInRange∧ hasBomb, or bombUp∧ (leftEmpty∨
rightEmpty). A command is an action that the agent should take if
the guard is true. Examples of these actions in Bomberman would be
dropBomb, or moveLeft. At every step during the game, the agent
evaluates the state of the game and decides which guards are satis-
fied. In case there are multiple satisfied guards, the agent can choose
any rule that is applicable. This clear, rule-based structure makes the
agent’s decision-making process easier for humans to understand
compared to more complex AI models.

A related approach by Kim and Kim (2013) uses genetic algorithms
to optimize rule-based systems in the game Geometry Friends, a
simple 2D platformer with 2 agents. [2]. Their system relied on
manually defined rules, such as logic for stopping movement, with
the genetic algorithm only tuning numeric parameters within these
rules. Their system had better performance than a purely man-made
rule-based approach, but did not evolve the structure or logic of the
rules themselves. In contrast, this thesis explores evolving both the
logical conditions (guards) and actions (commands), which enables
the generation of new rules and more adaptive agent behavior.

2.3 Bomberman
Bomberman is a maze-based action game where players navigate
an arena, strategically placing bombs to destroy blocks and defeat
enemies. The core objective involves using timed explosions to clear
a path, uncover power-ups, and eliminate all opponents before the
time runs out.

Previous work on agents for Bomberman environments explored
a variety of rule-based and planning approaches. A popular tool
for running these agents is Pommerman, an implementation of the
Bomberman game which allows the user to run tournaments of AI
agents against each other to compare their performance [5, 6]. Zhou
et al. [9] implemented two agents in the Pommerman environment:
one based on a Finite State Machine (FSM) and another using Monte
Carlo Tree Search (MCTS).
The FSM agent was built with a set of hand-crafted states and

transitions, which allowed it to make quick and understandable
decisions. It performed significantly better than Pommerman’s pro-
vided SimpleAgent, and always met the 100ms time limit per step.
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The MCTS agent used a more complicated approach by simulating
future states to plan ahead. Although this allows for better reason-
ing, it was often too slow to be effective with the time constraints,
making it less practical than simpler approaches.
These two examples show that there is a trade-off to be made

between performance and interpretability. Planning methods like
MCTS can theoretically perform really well, but they struggle with
a strict time limit. Although conceptually simple, planning methods
can quickly become difficult to understand as the depth of their
lookahead increases. Hand-crafted rule-based approaches like FSMs
offer fast execution and are simple to understand, but their mainte-
nance becomes tiresome in more dynamic environments.

This performance-interpretability trade-off in game agents moti-
vates the use of genetic algorithms to automatically generate under-
standable guarded command programs. This approach aims for effec-
tive gameplay performance with more transparent decision-making
than planning, and easier maintenance than a manual rule-based
approach.

3 METHODOLOGY
This research explores the implementation of genetic algorithms
to automatically create intelligent but interpretable agents for the
Bomberman game. The approach models agents as a set of guarded
command programs, which consist of a number of condition-action
rules designed for human readability. The following sections detail
the specific design of the genetic algorithm, individual representa-
tion, and the game environment.

3.1 Genetic Algorithm Design
To enable agents to incrementally improve their performance over
generations, a genetic algorithm was implemented. This section
details the specific implementation of each step in the genetic algo-
rithm as detailed in section 2.1.

The genetic algorithm is implemented using DEAP (Distributed
Evolutionary Algorithms in Python) [1], a Python library that
provides helper functions for building and running genetic algo-
rithms.

3.1.1 Individual representation. Each agent (or individual) is repre-
sented as a fixed-size, ordered list of ten guarded command programs.
These programs, or rules, form the basis of an agent’s behavior in
the Pommerman environment, with each rule being an instance of
the Rule class, containing the following components:

• Conditions: Each rule contains one to three conditions from
the ConditionType enumeration, which are boolean checks
within the game (e.g., CAN_MOVE_LEFT, HAS_BOMB).

• Operators: When a rule contains more than one condition,
these conditions are chained together using AND and OR from
the OperatorType enumeration.

• Actions: Each rule specifies a single action from the Action-
Type enumeration (e.g., MOVE_UP, PLACE_BOMB), which will
be executed if the rule’s conditions are satisfied.

The order of these rules is critical to the agents’ performance, as
they are evaluated from top to bottom, executing the first satisfied
rule. Therefore, the evolutionary process must not only discover

effective rules but also optimize their ordering, as rules at the top
of the list are most frequently executed.

3.1.2 Population Initialization. The initial population for the ge-
netic algorithm is created by generating a set of agents, each initial-
ized with a list of ten rules. For each rule, the number of conditions,
𝑁 , is randomly chosen from 1, 2, or 3, with weights of 1, 3, and
1 respectively. These weights prioritize conditions with 2 condi-
tions, as these conditions were found to be expressive enough for
intelligent behavior, while remaining interpretable. Next, 𝑁 − 1
operators (either AND or OR) are randomly selected to chain these
conditions together. Finally, an action is randomly chosen from the
ActionType enumeration. This random initialization of conditions,
operators, and actions ensures that the initial population is diverse
and unbiased to certain conditions or actions.

These rules are initialized with prioritization for two conditions.
Three conditions were found to be too complicated and executed
too infrequently to be beneficial to an agent’s performance, espe-
cially when initialized with random conditions and operators. In
contrast, rules with only a single condition do not provide enough
information and guards for a rule to be useful. These rules would
get executed too frequently and prevented better rules from being
executed.

To give agents a starting point and prevent them from dying im-
mediately, a number of predetermined ’seed’ rules are added during
initialization. These rules consist mainly of bomb evasion behavior
(e.g., "If IS_BOMB_ON_PLAYER and CAN_MOVE_UP then MOVE_UP", or
"If IS_BOMB_DOWN and CAN_MOVE_LEFT then MOVE_LEFT"). For each
agent, between one and six of these rules are randomly selected and
inserted into their initial ruleset. These rules are fully subject to
mutation during the evolutionary process, allowing the algorithm
to refine or adapt them to find more optimized strategies.

3.1.3 Fitness Evaluation. The fitness function is one of the most cru-
cial components of the genetic algorithm, as it directly determines
which agent behaviors are rewarded. The agents aim to maximize
and exploit this function, thereby shaping their behavior.

In Bomberman, the agent should learn to strategically place bombs,
trapping and killing its opponents. To stimulate this behavior, agents
receive points for actions such as placing bombs, breaking wood,
and eliminating opponents. To prevent undesired behavior such
as passiveness and self-kills, these behaviors are heavily penalized.
Table 1 details the specific metrics and their associated rewards and
penalties used in the fitness calculation.
Per generation, agents are randomly selected to participate in

five rounds of games. Each round consists of 10 episodes, with
four agents starting in each corner of the game environment. The
same four agents play together throughout all episodes within a
single game round, ensuring consistent comparison among them.
During these episodes, agents internally track various metrics, such
as number of bombs placed, kills, and unique tiles visited. At the end
of each episode, agents receive points according to Table 1. These
accumulated points are then averaged by the number of episodes
played, which determines the final fitness of an agent.

Although the metrics outlined in Table 1 appear straightforward,
designing an effective fitness function proved to be one of the most
challenging aspects of this research. For instance, early versions of
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Table 1. Reward and Penalty Values for Fitness Metrics

Metric Reward

Steps 0.1 (per game step)
Unique tiles visited 15 (per tile)
Bombs placed 75 (per bomb)
Wood destroyed 150 (per wood)
Kills 750 (per kill)
Winning with kills 1000
Winning without kills 200
Dying -500
Self-kill -1000
Alive at end but not winning -150
Less than 10 tiles visited -50 (per tile away from 10)
Less than 4 bombs placed -100 (per bomb away from 4)
Tiles visited more than 3 times -5 (per tile per count above 3)

this fitness function heavily rewarded bomb placement but lightly
penalized self-kills. This resulted in agents evolving to place bombs
haphazardly, earning them some points, but almost always ended in
self-kills. The logical solution for this would have been to apply a
harsher penalty for self-kills; however, this led agents to learn not to
place any bombs, as it yielded a higher score than risking self-kills.

3.1.4 Selection. For the creation of the next generation’s offspring,
parents were selected using DEAP’s selTournament method. This
method operates by creating tournaments of seven randomly cho-
sen individuals; the individual with the highest fitness from each
tournament is then selected as a parent. This process is repeated
until a sufficient number of parents are chosen to generate the new
population. Elitism, as described in Section 2.1, is implemented for
the top 5% of individuals to prevent the loss of optimal solutions
across generations.

3.1.5 Crossover. After parents for the new generation have been
selected, their genetic material is combined to create offspring. The
selected parent population is iterated over in pairs. Each pair has a
crossover rate, defined by CROSSOVER_RATE (0.75), meaning there is
a 75% probability that they will undergo recombination. When a pair
is selected for crossover, the two-point crossover method is applied:
two indices are randomly chosen between 1 and the maximum
number of rules an agent can have. The rules between these two
indices are swapped between the two agents, resulting in two new
rulesets (offspring).

3.1.6 Mutation. To prevent offspring behavior from becoming stag-
nant and to introduce new genetic material, mutation is applied to
the population. Each individual in the offspring population has a
MUTATION_RATE (0.4) chance to undergo a mutation operation.
For each rule within an individual, there is a MUTATION_RATE_-

RULE (0.15) probability that it will be altered. First, a rule has a
MUTATION_RATE_REPLACE (0.075) probability of being replaced in
its entirety by a newly generated random rule to introduce entirely
new strategic behaviors. If a rule is not replaced, its components
can undergo various mutations:

• Number of Conditions: If a rule has fewer than three con-
ditions, there is a MUTATION_RATE_ADD_COND (0.05) chance of
adding a randomly selected condition and a corresponding
random logical operator (AND or OR) to it. Alternatively, if
a rule has more than one condition, there is a MUTATION_-
RATE_REMOVE_COND (0.05) chance that one of them will be
removed.

• Condition Replacement: For each condition within a rule,
there is a MUTATION_RATE_REPLACE_COND (0.3) chance of be-
ing replaced by a different random condition.

• Operator Replacement: For each operator in a rule, there
is a MUTATION_RATE_REPLACE_OPERATOR (0.15) chance of it
being swapped to a different operator (e.g., AND becomes OR).

• Action Replacement: The action associated with a rule has
a MUTATION_RATE_REPLACE_ACTION (0.15) chance of being
replaced by a different random action.

After the rule mutations, the entire list of rules within an in-
dividual has a MUTATION_RATE_SHUFFLE (0.10) chance of having a
random subset of its rules reordered. This operation is particularly
important given that the order of rules is critical to an agent’s be-
havior, since they are evaluated from top to bottom. Therefore, rule
shuffling helps an agent explore the optimal ordering of their rules.

3.2 Environment
For a genetic agent to effectively execute its rules, it requires real-
time access to the game state and the ability to quickly evaluate this
information to determine its next action. This section details how
the Pommerman environment works and how these genetic agents
observe and evaluate it.

3.2.1 Pommerman. The Pommerman environment provides a game
class that initializes the game for the agents to play with a number
of customizable parameters. For all the games that were played in
this study, the following parameters were used:

• Board size: The default board size of 11x11 was used, small
enough for agents to find each other, but not too big that the
games would take too long.

• Game type: PommeFFACompetitionFast-v0, a fast-paced
free-for-all game.

• Powerups: Powerups have been disabled for the games, as
they complicated the behavior too much and made an agents’
performance too noisy.

• Max steps: To minimize training time, the number of game
steps has been limited to 600.

At each game step, the environment provides the current game state
to each agent in the form of a dictionary containing components
such as the board layout, bomb positions, and agent positions.

3.2.2 Decision making. To determine the next action an agent
should take for the current game state, the agent’s list of 10 rules is
evaluated sequentially from top to bottom. For each rule, the agent
checks if its conditions are met. Each condition corresponds to a
helper function that evaluates against the current game state (e.g.,
the condition CAN_MOVE_UP checks if the tile above is safe). When
a rule comprises multiple conditions, these are combined using
logical operators (AND or OR), with AND taking precedence. When a
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rule is satisfied, the associated action is immediately returned and
executed.

3.3 Experimental Protocol
All experiments used a population size of 200 individuals over 150
generations, with 5% elitism. Genetic operators were applied with
parameters as detailed in sections above. Each experimental run
was repeated 10 times to ensure that the observed trends were not
due to random fluctuations and to provide statistically significant
data.

3.3.1 Experimental Variations. To explore the impact of genetic
algorithm parameters and the agent configurations on the resulting
agents, a number of experiments were conducted.

Baseline Configuration. The baseline for agent performance was
established using an overall MUTATION_RATE of 0.4 and two-point
crossover as the crossover method. All other parameters for the
baseline run were as specified in their respective sections.

Mutation Rate Experiments. To observe the effect of the overall
mutation rate on agent performance, two extreme MUTATION_RATEs
were tested: 0.1 and 0.75. All other parameters for these experiments
were kept at their baseline values.

CrossoverMethod Experiments. To assess how different recombina-
tion methods influence performance and convergence, the following
crossover strategies were evaluated:

• Single-point Crossover: Similar to two-point crossover, but
the list of rules gets split on a single point, preserving larger
chunks of consecutive rules.

• Uniform Crossover: Each rule within a parent agent has a
50% chance of being swapped with the other parent.

For these experiments, the overall MUTATION_RATE was set to 0.4
(baseline).

Agent Configuration Experiments. To assess how playing against
fixed-strategy agents influences the genetic agents’ behavior, the
baseline experiment was repeated with two of the agents being
replaced by Pommerman’s SimpleAgents

4 RESULTS

4.1 Baseline Performance and Initial Observations
Figure 2 shows the progression of fitness metrics across generations
in the baseline setup. The blue, orange, and green lines correspond
to the maximum, mean, and minimum fitness values in each gener-
ation, respectively. The shaded regions around each line indicate
the standard deviation across independent runs.

As observed in Figure 2, there is a rapid increase in fitness within
the first 20-30 generations, indicating a rapid adaptation to the
fitness function and efficient identification of basic viable strategies.
This initial spike in fitness likely reflects agents quickly learning to
avoid self-kills, which are heavily penalized.
It is likely that during these initial generations, agents that re-

ceived a low number of ’seeded’ rules during their initialization had
a lower starting fitness than agents who received the maximum (six)
number of seeded rules. While this implies that agents might not

Fig. 2. Min, Max, and Mean Fitness over Generations for Baseline Experi-
ment

be discovering complex strategies by themselves, but rather using
the predetermined rules, this observation further supports the idea
that the fitness rapidly improves due to agents ’learning’ to avoid
self-kills, and bombs in general.
Following this initial spike, the fitness shows a gradual conver-

gence over the next 100 generations. This suggests that while agents
are discovering incrementally improved strategies, they may be
struggling to find novel and effective rules that lead to a significant
further increase in fitness, potentially indicating convergence to a
local optimum.

Furthermore, the variability across the 10 runs, as indicated by the
shaded regions around the fitness curves, is notable. Specifically, the
relatively large standard deviation for the maximum fitness shows
that independent runs are heavily influenced by the stochasticity of
genetic algorithms; some runs coincidentally find a highly efficient
rule, while other runs struggle to improve.

4.2 Impact of Low Mutation Rate
Figure 3 shows the fitness curves of the experiment with a mutation
rate of 0.1.

Fig. 3. Min, Max, and Mean Fitness over Generations for Low Mutation
Rate Experiment

This experiment yielded curious results compared to the baseline
experiment. While an initial spike in fitness was still observed,
convergence occurred significantly earlier, around generation 10, in
contrast to the baseline’s more gradual convergence after generation
20-30. Furthermore, the variance of maximum fitness across runs
was notably higher, at times even overlapping with the variance of
mean fitness.
This behavior can be explained by the combination of reduced

mutation rate, the rule shuffling mechanic, and the impact of the
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initial seeded rules. As detailed in Section 3.1.2, agents are initialized
with one to six pre-determined ’seed’ rules, primarily for bomb
evasion. The top-to-bottom evaluation of an agent’s rules means
that the initial position of these seeded rules is critical for an agents
immediate performance.
A lower overall mutation rate (0.1) reduces the probability that

an agent will undergo any form of mutation, including the rule
shuffling mutation. Consequently, agents with suboptimal initial
rule ordering, where effective seeded rules are positioned lower
in its ruleset, are less frequently mutated through shuffling. This
allows agents with unfavorable initial rule placements to remain in
the population, leading to lower average fitness. In contrast, agents
that, purely by chance, receive well-positioned seeded rules perform
well and keep this advantage due to the reduced rate of shuffling.
This preservation of favorable and unfavorable rule orderings could
contribute to the larger variance and earlier convergence observed
in the maximum fitness.

4.3 Impact of High Mutation Rate

Fig. 4. Min, Max, and Mean Fitness over Generations for High Mutation
Rate Experiment

The results of this high mutation rate (0.75) experiment can be
found in Figure 4. The curves for minimum, maximum, and mean
fitness closely resemble those observed in the baseline experiment
(Figure 2). There is still an initial rapid increase in fitness, followed
by a gradual convergence over the next generations.

This outcome suggests that within the tested range, increasing the
mutation rate beyond the baseline does not significantly change the
algorithm’s ability to discover novel strategies and high-performing
agents for this problem. This implies that the baseline mutation
rate of 0.4 is sufficient to introduce enough genetic diversity for
exploration without hindering convergence by "over-mutating" the
population.

4.4 Impact of Crossover Methods
Figures 5 and 6 show the fitness graphs of single-point and uniform
crossover, respectively.
When comparing the fitness curves of single-point crossover

(Figure 5 and uniform crossover (Figure 6) to the baseline two-point
crossover (Figure 2), distinct patterns in early generation variance
emerge, highlighting their impact on the early exploration of the
solution space.

Fig. 5. Min, Max, and Mean Fitness over Generations for Single-Point
Crossover Experiment

Fig. 6. Min, Max, and Mean Fitness over Generations for Uniform Crossover
Experiment

Single-Point Crossover. This method shows a notable low variance
in fitness across runs during the initial generations, roughly up to
generation 40-50. This behavior can be attributed to single-point
crossover’s conservative recombination strategy, which preserves
large chunks of rules and provided only nine possible crossover
points for a 10-rule agent. Unlike the two-point crossover used in
the baseline, this limited genetic mixing can cause agents to de-
velop similar rule structures more quickly, reducing population
diversity. The sudden increase in variance after generation 50 sug-
gests that accumulated mutations finally created sufficient diversity
for the evolution of more advanced strategies. This pattern demon-
strates that while conservative crossover methods may lead to stable
convergence, they can delay the discovery of novel and effective
strategies.

Uniform Crossover. The uniform crossover experiment produces
fitness curves that are quite similar to the baseline two-point crossover
experiment, as evidenced by comparing Figures 6 and 2. Both ex-
periments exhibit the rapid initial improvement within the first
20-30 generations, followed by gradual convergence. The uniform
crossover experiment however has a larger variance in these early
generations. This is likely because uniform crossover is a more ag-
gressive crossover method, with each rule having a 50% chance
of being swapped between parents. This causes a quicker initial
exploration of the search space, leading to larger variance in early
generations compared to two-point crossover.

4.5 Impact of Agent Configurations
Figure 7 shows the results of the agent configuration experiment.
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Fig. 7. Min, Max, andMean Fitness over Generations for Two GeneticAgents
and Two SimpleAgents Experiment

As shown in Figure 7, this experiment yielded significantly dif-
ferent and unusual results compared to the previous experiments.
In particular, maximum fitness starts at a high value before decreas-
ing and immediately converging within the first 10 generations.
Simultaneously, the mean fitness still shows the initial spike in early
generations, albeit slower than before, but still converges rather
quickly after these initial generations.

These trends in fitness can likely be attributed to the vagueness of
the path to success within the current fitness function when agents
face more aggressive opponents such as the SimpleAgents.
When GeneticAgents play against other evolving GeneticA-

gents, the main path to success lies in survival, cautious bomb
placement to avoid self-kills, and occasionally getting a kill. The
"best" an agent can achieve is generally a balance of survival and
minimal offensive action, as strategic kills are rare and difficult to
consistently achieve against equally unsophisticated agents.

In contrast, SimpleAgents actively seek to kill opponents. While
GeneticAgents receive points for eliminating opponents, the actual
probability of a kill occurring due to strategic behavior is extremely
low, especially for agents early in their evolution. When a kill does
happen, it is often a matter of chance or circumstance rather than
the direct result of a strategic, evolved play. This can result in lucky
agents being selected for future generations, propagating its rules to
its offspring, while not necessarily being a high-performing agent.

5 DISCUSSION
This section interprets the findings presented in Section 4, evalu-
ating their implications in the context of the overarching research
question: How can genetic algorithms be used to automati-
cally generate understandable guarded command programs
for agents in a Bomberman environment? The influence of the
chosen program structure, mutation, and crossover strategies on the
evolution of controller performance and interpretability will be dis-
cussed, drawing insights from the various experiments conducted.

5.1 Influence of Genetic Operators on Evolution
The experiments on mutation rates and crossover methods directly
address SRQ1: How do different mutation and crossover strate-
gies affect the evolution of rule complexity and game-playing
effectiveness in guarded command Bomberman controllers?
The baseline experiment, with an overall mutation rate of 0.4

and two-point crossover, showed a rapid initial increase in fitness,

followed by gradual convergence. This initial spike is likely primar-
ily caused by agents quickly learning self-preservation techniques,
either by finding optimal rule ordering for the seeded rules or by
learning to be cautious with their bomb placements. The subsequent
gradual convergence suggests that while the algorithm continued
to iteratively improve its strategies, it reached a local optimum,
struggling to discover novel rules and strategies to significantly
increase the agents’ performance. The observed variance across
runs shows the stochastic nature of genetic algorithms across runs,
where chance plays a large role in the discovery of new rules.

The low mutation rate experiment (Section 4.2) yielded partic-
ularly insightful results. The earlier convergence and the higher
variance in maximum fitness can be explained by the reduced rule-
shuffling mutation. This mechanism allows an agent to find the
optimal execution order of its rules and plays a significant role in its
performance. With fewer mutations, and thus, fewer rules shuffled,
agents that coincidentally began with suboptimal rule orderings
(where effective seeded rules were positioned lower in the ruleset)
had a lower probability of having its rules reordered to favor these
seeded rules. When a large portion of the population is initialized
with these suboptimal agents, the resulting maximum fitness will
be significantly lower compared to populations with more favor-
able rule orderings. This suggests that for these complex rule-based
agents, a sufficient mutation rate, especially one that mutates the
ordering/prioritization of these rules, is critical for effective explo-
ration.
In contrast, increasing the mutation rate to 0.75 did not signifi-

cantly alter the fitness curves compared to the baseline. This indi-
cates that the baseline mutation rate of 0.4 was already sufficient to
introduce enough genetic diversity for exploration in this environ-
ment. Beyond this point, further increases in mutation might lead
to "over-mutating" the population, potentially disrupting beneficial
traits faster than they can be propagated.
Regarding crossover methods, single-point crossover showed a

lower variance in early generations and delayed the discovery of
more effective rules. This conservative crossover method preserves
larger chunks of rules, which limits the rate at which the popu-
lation diversity increases, and slows the initial exploration of the
solution space. In contrast, uniform crossover, being a more aggres-
sive crossover method, led to a larger variance in early generations,
likely indicative of a quicker and more thorough initial exploration.
Despite this, its overall fitness curves closely resembled the baseline
experiment, suggesting that for this specific problem, two-point
and uniform crossover provide sufficient and comparable levels of
genetic mixing for convergence.
Collectively, these findings show that the choice of genetic op-

erators significantly influences the evolutionary dynamics of these
guarded command programs. A balanced mutation rate, especially
one that allows for internal rule restructuring (like shuffling), is
crucial for escaping local optima and exploring the search space.
Similarly, more aggressive crossover methods (two-point or uni-
form) cause a quicker initial exploration of the search space.
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5.2 Performance against Fixed-Strategy Agents
The experiment pitting GeneticAgents against Pommerman’s Sim-
pleAgents provided essential insights into the fitness function’s
effectiveness. Section 3.1.3 outlines the rewards and penalties given
to agents within this study, but this experiment has shown the
weakness of these metrics.

This leads to SRQ2: What gameplay metrics (e.g., survival
time, opponents eliminated) should be used to evaluate the
performance of a controller in the Bomberman environment?
In this study, the performance of a controller is primarily evaluated
through a fitness function that rewards survival time, avoiding
self-kills, eliminating opponents, and destroying wood or items.
However, observed unusual fitness curve: a high initial maximum
fitness that quickly decreased and converged, alongside a quickly
stagnating mean fitness, is a strong indicator of a fundamental
mismatch between the fitness function’s rewards, and the desired
strategic behavior against predictable, but aggressive, opponents.

In the baseline experiment (GeneticAgents playing against each
other), the path to success for the agents primarily focused on sur-
vival and avoiding self-kills. Agents are quickly considered the "best"
agent, simply by not exploding themselves and surviving till the end
of the game. Strategic kills were rare and difficult to achieve consis-
tently against equally unsophisticated agents. However, when faced
against agents with a strategy, the shortcomings become visible
very quickly. Playing defensive is no longer a viable strategy as your
opponents are actively seeking you out, trying to trap and eliminate
you. The provided fitness function is not exhaustive enough for
the GeneticAgents to learn from this. There are no direct rewards
for escaping an opponent’s bomb blast, placing a bomb near an
opponent, trapping an opponent, etc. Without these rewards, an
agent does not have the ability to evolve strategic plays.
To truly evaluate a controller’s performance in a dynamic envi-

ronment like Bomberman, gameplay metrics should extend beyond
survival and include rewards for offensive actions and defensive
maneuvers against opponents, such as direct engagement, evasive
actions, and tactical use of bombs to influence opponent movement.

5.3 Interpretability of Guarded Command Programs
Addressing SRQ3: What structure and constraints on guarded
command programs balance interpretability and gameplay
performance? The main reason for using Guarded Command Pro-
grams (GCPs) as the agent representation in this study is their
inherent interpretability. Each rule in a GCP is composed of a guard
(a logical expression) and a corresponding action. This structure
is similar to human reasoning: "if this, then that." Because of this
structure, these rules are practical for understandability.
The population initialization strategy discussed in Section 3.1.2

reflects an intentional design trade-off between rule expressiveness
and interpretability. Rules were most frequently initialized with
two conditions, based on empirical observations: rules with a single
condition were too simplistic to capture meaningful decision logic,
leading to overly general behaviors that executed too often and
interfered with more specific rules. On the other hand, rules with
three conditions were rarely useful when initialized randomly. They
required a more precise match in the environment to be triggered,

and their complexity made them less likely to evolve into effective
behaviors early in the search process.
This bias toward two-condition rules aligns well with the goal

of maintaining interpretability. Rules of this complexity are still
easily comprehensible by humans, while being expressive enough to
encode non-trivial behavior. However, due to the poor performance
of the agents, these results are not conclusive. It is possible that more
complex rules could be necessary for sophisticated decision-making,
especially in more dynamic or complicated environments.

Despite this, the guarded command structure remains interpretable
even as the number of conditions increases. Logical expressions with
up to three conditions are generally still readable and understand-
able by humans, particularly if operators and condition names are
semantically meaningful. Therefore, while increasing rule complex-
ity may improve agent performance, it does not inherently com-
promise interpretability. This balance between expressiveness and
human readability makes GCPs a suitable choice for applications
where transparency and performance are required.

6 CONCLUSION
This thesis investigated using genetic algorithms (GAs) to auto-
matically generate understandable guarded command programs
(GCPs) for Bomberman agents. The research demonstrated the via-
bility of this approach, showing that GAs can produce transparent,
rule-based controllers. The findings also confirmed that genetic op-
erators, particularly a balanced mutation rate with a rule-shuffling
mechanism, are essential for exploration and optimizing rule order.
The GCP structure itself, favoring simple "if-then" rules, successfully
balanced gameplay expressiveness with human interpretability.
However, the most significant limitation and key finding of this

study lies in the design of the fitness function. While the imple-
mented metrics were sufficient to guide agents toward basic survival
and avoiding self-destructive behavior, they failed to encourage the
development of sophisticated, strategic play. When faced against
fixed-strategy opponents, the genetically evolved agents were un-
able to adapt beyond passive tactics because the fitness function did
not adequately reward complex offensive or defensive maneuvers.
This highlights a fundamental challenge: for genetic algorithms to
produce effective controllers, the gameplay metrics used for eval-
uation must be nuanced enough to recognize and reward tactical
depth, such as trapping opponents or executing strategic evasions.

In conclusion, GAs can successfully generate understandable con-
trollers for Bomberman agents, but their ability to produce strategi-
cally intelligent behavior is fundamentally limited by the sophisti-
cation of the evaluation metrics.

7 FUTURE WORK
Future work should mainly focus on improving the fitness function
to reward more strategic behaviors beyond simple survival. This
could involve incorporating metrics for tactical bomb placement,
such as trapping opponents or controlling territory, and rewarding
successful evasive maneuvers. Future research could investigate dy-
namic agent structures where the number of rules or their complex-
ity can evolve, potentially allowing for more sophisticated strategies
to emerge.
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