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ABSTRACT

Uncertainty management is a fundamental challenge in data quality
problems and imperfect data integration tasks. Traditional relational
databases rely on expert validations or manual workarounds to ad-
dress data issues; however, this approach is inefficient and does
not scale well for large or dynamic datasets. Probabilistic databases
extend classic database semantics by associating data points with
probabilities that indicate their correctness. One such system is
DuBio, developed at the University of Twente, which provides a
framework for representing and querying uncertain data in Post-
greSQL. However, the current DuBio query interface requires users
to explicitly deal with the complexity of uncertainty structures, thus
degrading usability.

This research builds on DuBio by introducing DuoSQL, a high-
level query language, and its corresponding compiler algorithm. The
goal is to simplify querying over uncertain data while preserving the
expressiveness of DuBio. Experiments show that DuoSQL reduces
user effort by significantly decreasing query length and complexity
compared to manually written DuBio SQL queries. Although syntac-
tic overhead from translation is introduced, runtime performance
remains similar to manual queries. These results demonstrate that
DuoSQL enhances usability without compromising efficiency or
correctness, making probabilistic querying more accessible.
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1 INTRODUCTION

In many real-world applications, data is rarely clean or complete.
Data integration tasks often involve inconsistencies, missing values,
duplicates, and conflicting information from multiple sources. These
problems are typically grouped under the broader challenge of data
quality. Addressing data quality issues often relies on expert rules
and validations, data cleaning pipelines, or discarding uncertain
records - strategies that become unmanageable as datasets grow in
size and complexity [1]. Moreover, such practices hold the risk of
removing vital data, leading to negative impacts such as business
losses and introductions of bias.

An alternative approach is to explicitly model uncertainty rather
than resolving or ignoring it. This is the core of probabilistic data-
bases, which extend the relational model by associating data entries
with probabilities. Probabilistic databases allow users to store, query,
and reason over data that is uncertain, incomplete, or conflicting
without being forced to resolve all issues immediately [2]. Moreover,
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probabilistic databases have been seen as a way to "turn dirt into
diamonds" by treating uncertainty as a core feature rather than a
problem to be eliminated [3].

DuBio [7] is a probabilistic extension of PostgreSQL [8] devel-
oped at the University of Twente. Although DuBio provides the
foundations for managing uncertain data, its current query inter-
face is not user-friendly. Users must explicitly manipulate low-level
probabilistic structures (such as ‘sentences’ and ‘dictionaries’) using
DuBio-specific functions like agg_or (), array_agg().

To illustrate a real-world case, let us consider the example of
semantic duplicates given by Van Keulen [2]. We have two columns
- "Car brand" and "Sales" (see Appendix A for visualization). We
can see that a single real-world object - the car brand "BMW" - is
represented in 3 different forms - "BMW", "B.M.W!, and "Bayerische
Motoren Werke". Consequently, when implemented in DuBio, each
representation is assigned a distinct random variable value (for
example, bmw=1, bmw=2, and bmw=3, respectively). These random
variables form the entries in the _sentence column. For instance,
the row with "BMW" would be assigned Bdd (bmw=1). Each sentence
is linked to a probability value in the _dict table; thus, bmw=1 would
be the key linking to its value of 0.6, forming the entry bmw=1:0.6
in the dictionary.

Furthermore, when querying uncertain data, the _sentence co-
lumns in the relevant tables must be traversed and logically com-
bined to capture all meaningful combinations of possible records.
Probabilistic databases operate under the "possible worlds" seman-
tics, treating data as a probability space over all these potential
worlds [2]. The final probabilities are derived from the constructed
logical sentences (BDDs), as demonstrated in Appendix B.

This research addresses the gap between expressiveness and us-
ability in probabilistic data querying. The project introduces two
key contributions: a high-level language and a translation algorithm.
These artifacts aim to make probabilistic data systems more acces-
sible to practitioners without sacrificing expressive power and by
eliminating the need to be familiar with the underlying theory and
functions. The proposed domain-specific language DuoSQL [10],
its automatic mapping to DuBio SQL, and its manually written al-
ternative are compared and analyzed in several experiments. The
translation process is formalized as a generalized algorithm designed
to be implementable in any programming language.

Lastly, the name ‘DuoSQL’ reflects both the language’s dual appli-
cability to certain and uncertain data and its connection to DuBio,
the underlying system.

2 PROBLEM STATEMENT

This research builds on DuBio to address the challenge of usability
in querying uncertain data. A new abstraction layer is needed to
make DuBio more accessible and intuitive to users. Hence, the aim
is to design a user-friendly language that allows interaction with
uncertain data without requiring users to manually manage under-
lying probabilistic structures. Therefore, this research addresses the
following questions:
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e RQ1: How can a high-level abstraction layer be designed
to improve the usability of querying uncertain data while
preserving DuBio’s expressiveness of its translated queries?

e RQ2: To what extent does the proposed language reduce
query technicality compared to manually written DuBio SQL
queries?

e RQ3: What is the syntactic and computational overhead intro-
duced by automated translation from the high-level language
to executable DuBio queries compared to manually written
DuBio SQL queries?

e RQ4: How does the performance of automatically translated
DuoSQL queries compare to their manually written counter-
parts in terms of execution time?

3 RELATED WORK

Dalvi et al. [3] provided a broad overview of probabilistic databases.
Their research highlighted key theoretical challenges in query eval-
uation and addressed the potential of probabilistic databases to
manage "dirt" - uncertainty, inconsistency, and incompleteness - in
large-scale data. However, they also pointed out the lack of intuitive
query interfaces as a critical barrier to real-world applications.

Van Keulen [2] introduced a probabilistic approach to data inte-
gration, where uncertainty is explicitly modeled instead of being
resolved upfront. Magnani and Montesi [1] further surveyed the
uncertainty in integration systems. They noted that while many
representation models exist, there is a gap in user-facing tools that
abstract away probabilistic complexity.

Antova et al. [4] addressed the usability challenge of querying
uncertain data without requiring users to understand the under-
lying probabilistic semantics. They introduced MayBMS, a system
based on the U-relations model, which enabled SQL-style querying
over uncertain data using compact relational representations. By
extending SQL with minimal constructs, MayBMS allowed users
to express queries intuitively while the underlying system handled
probabilistic reasoning. This demonstrates that language-level ab-
stractions can improve usability and efficiency - a principle central
to DuoSQL’s design.

Other influential systems include Trio[6] and MCDB-R[5]. The
Trio system addressed data uncertainty and lineage by extending
standard SQL and introducing its own data model (ULDB), query
language (TriQL), query API, and graphical user interface. MCDB-R
applied the Monte Carlo-based approach of MCDB to uncertain data
by supporting "efficient risk analysis" through repeated simulations
over parameterized databases. Although these systems are powerful,
they still require explicit reasoning about uncertainty, as they expose
the user directly to their technical details, which limits usability for
broader audiences.

A closely related predecessor to this work is inSQeLto [11], a
domain-specific language designed for DuBio. inSQeLto focused
on syntactic familiarity and conducted user testing to validate its
design. However, it only supported basic SELECT queries with op-
tional probability display. It did not implement more complex SQL
functionality and did not evaluate the cost of translation or simplifi-
cation.
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Algorithm 1: Translation of DuoSQL to DuBio SQL

Input: A DuoSQL query Q over a PostgreSQL database
schema

Output: Translated DuBio SQL query Q’

Sanitize Q (e.g., strip spaces, trailing semicolons)

-

N

Define SQL clause-bounding and clause-capturing regular
expressions

Extract SELECT and FROM clauses from Q

4+ Parse WHERE, ORDER BY, LIMIT, GROUP BY, HAVING,
SHOW clauses (if present)

Extract all tables and aliases used in Q

@

[

o

Determine whether DISTINCT, aggregates, sentences, or
probability are involved
7 Define sentence expression sentence_expr:

o

if data is entirely certain then
‘ sentence_expr := "certain’

©

10 else

1 sentence_expr := combination of all _sentence columns

using logical AND on all probabilistic tables

12 end

13

14 if sentence_expr == certain’ then

15 if ’probability’ is present in the HAVING clause then
16 return Error informing the user that queried data is

entirely certain

17 return deterministic query Q" without probabilistic
constructs and special clauses

18 else if Q is an aggregate query over all **’ rows then

19 Build view agg_all_view using probabilistic BDD logic
(see Section 5.6)

20 else if Q is a grouped aggregate query then

21 Build view agg_view using probabilistic BDD logic (see
Section 5.7)

22 else

23 Build join_view using FROM, WHERE, and optional
DISTINCT

24 end

25 Optionally build prob_view if probability is needed

26 Compose final SELECT query over the relevant view,
applying filters, order, and limits

27 return Q’

4 THE ALGORITHM

This section outlines Algorithm 1, which forms the basis of DuoSQL.
The translation process is modular and language-agnostic, meaning
that it can be implemented in any programming language that can
connect to PostgreSQL and DuBio. The algorithm treats a DuoSQL
query as a string, utilizing regular expressions to identify standard
SQL clauses and any probabilistic extensions. It constructs a log-
ical sentence expression (_sentence) by combining the sentence
columns of all involved probabilistic tables.
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If all data is deterministic, the query is returned as-is without in-
cluding any probabilistic constructs, even if requested to be shown.
However, there is an exception: if the user attempts to filter entirely
certain data by probability, an error message is shown, inform-
ing the user to reconsider their query logic. That is crucial when
a probability less than 1.00 is requested. Otherwise, the transla-
tor generates modular intermediate views that separate join logic,
probabilistic reasoning, and aggregation. This modular view-based
structure makes the translation both explainable and composable,
while preserving the underlying semantics of DuBio. Probabilistic
evaluation occurs only when explicitly requested or when queries
include probabilistic filters.

5 THE LANGUAGE

This section presents the DuoSQL language documented like Post-
greSQL’s synopsis [9]. DuoSQL is a high-level query language for
probabilistic databases, built as an abstraction layer over DuBio.
The implementation is primarily in Python [12], with supporting
aggregate functions written in DuBio SQL. Its syntax closely resem-
bles standard SQL but extends it with probabilistic constructs like
SHOW PROBABILITY, SHOW SENTENCE, and support for probabilistic
filtering. DuoSQL is case-insensitive and can also be applied to
entirely certain data (see Appendix C.2 for a certain table example).
Its implementation is accessible here [10].

5.1 Language Grammar

SELECT [ DISTINCT ] field [ [ AS ] field_alias 1 [, ...]
[, AGG(x) [ [ AS ] agg_alias ] 1]

ROM table [ table_alias ] [, ...]

JOIN table [ table_alias ] ON conditions ] [...]

WHERE conditions ]

GROUP BY field [, ...1 1

HAVING conditions ]

ORDER BY field [ ASC | DESC 1 [, ...]1 1

LIMIT count ]

SHOW [ SENTENCE | PROBABILITY 1 [, ...]1 1;

L I e N e T s O s A s B e M |

5.2 Example DuoSQL Query

SELECT w.witness, p.companion AS suspect,
c.caretaker, count(w.color) AS color_count

FROM witnessed w

JOIN plays p ON w.cat_name = p.cat_name

JOIN cares ¢ ON w.cat_name = c.cat_name

WHERE w.cat_name = 'max'

GROUP BY w.witness, p.companion, c.caretaker

HAVING probability >= 0.5 AND color_count > 1

ORDER BY w.witness DESC, probability ASC

LIMIT 10

SHOW SENTENCE, PROBABILITY

5.3 Description

The following subsections list specifications for some of the clauses.
If a clause is not present, then the Grammar in Section 5.1 is sufficient
for understanding its functionality.
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5.3.1 SELECT

o Currently, the aggregation field must appear last in the SELECT
clause for correct parsing.

o It supports all aggregation functions (COUNT, SUM, AVG, MIN,
MAX) on single fields. For example:

AVG(age)

Additionally, COUNT (*) is supported, which counts rows. It
still requires one GROUP BY field, which is not included in the
result, but is required when querying multiple probabilistic
tables due to overlapping column names (see Appendix C.1).
The specific grammar would be as follows:

SELECT field, COUNT(*)

GROUP BY field

The following functionalities are currently unsupported
within a single query:

— Combination of DISTINCT and aggregation.

— Multiple aggregation functions.

5.3.2 FROM

e As many tables as needed can be included and later joined
with WHERE conditions.
e Aliases are optional even if there is more than 1 table present.

5.3.3 JOIN

e All JOIN combinations using these keywords - FULL, LEFT,
RIGHT, OUTER, INNER, CROSS - are supported.
e Multiple joins are possible, and aliases are optional.

5.3.4 HAVING

o It is used not only for filtering by the used aggregation, but
also to filter by the probability value, which is in the range
[0, 11].For example:

HAVING avg > 3 AND probability <= 0.75

5.3.5 SHOW

e SHOW PROBABILITY: Appends a computed probability column
to the result.

e SHOW SENTENCE: Appends the underlying logical sentence
(BDD) used for probabilistic computation.

o Sentence and probability computations are based solely on
uncertain data. Certain data does not have any influence.

e Users can include either or both options in the SHOW clause.
For example:

SHOW SENTENCE, PROBABILITY

5.4 Mapping

Appendix F presents example DuoSQL queries alongside their corre-
sponding translated DuBio SQL queries. Each example highlights a
different language feature, stated in the comments on the first lines
of the DuoSQL queries.
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5.5 DuBio Aggregation Functions

This section focuses on the DuBio functions utilized in all aggre-
gation queries. The functions prob_Bdd and prob_Bdd_count are
presented in Appendix D.1. The additional functions prob_Bdd_sum,
prob_Bdd_avg, prob_Bdd_min, and prob_Bdd_max are not shown,
as they follow the same pattern as prob_Bdd_count.

Together, prob_Bdd and the aggregate-specific functions allow
DuBio to compute aggregations across the possible worlds defined
by the uncertainty in the sentence BDDs.

5.5.1 prob_Bdd: World Construction

The function prob_Bdd is responsible for synthesizing a Boolean
sentence (BDD) that represents a possible world under evaluation. It
takes an array of BDD expressions and a bitmask as input. Each bit
in the mask indicates whether the corresponding BDD in the array
should be taken as is (if the bit is 1) or negated (if the bit is 0). The
function iteratively builds a conjunction of these terms, resulting
in a single BDD representing the logical sentence for a specific
possible subset of tuples. This function is central to all probabilistic
aggregation as it defines the precise world under which an aggregate
is evaluated.

5.5.2 prob_Bdd_count: Aggregation over Masked Values

The function prob_Bdd_count operates over an array of values (for
example, the cat colors in the column color of type text) and a
bitmask, returning the number of selected elements. It iterates over
the array and checks the corresponding bit in the mask, where for
every bit set to 1, the associated value is counted. This function
computes the size of a subset (i.e., how many tuples are active)
in a given world. It also serves as the structural template for the
other aggregate functions, which differ only in how they reduce the
masked values (e.g., summing them or averaging them instead of
counting).

5.6 DuBio Aggregation Queries

This section describes how probabilistic aggregation is implemented
using DuBio SQL. The underlying logic combines per-group value
arrays and sentence arrays, iterates over all possible subset masks,
and computes aggregate results using the DuBio aggregate functions
introduced earlier in Section 5.5.

A representative example is shown in Appendix D.2. For each
group (cat_name), arrays of values (age) and BDDs (_sentence)
are constructed. The generate_series function generates all bit
masks for subset enumeration. The relevant aggregate function
prob_Bdd_avg is applied per mask and combined using agg_or
over all worlds.

5.7 DuBio COUNT(*) Aggregation Queries

COUNT (*) queries perform aggregation over the entire dataset. This
is why other aggregate functions are not applicable in this context,
mainly because of data type mismatches and more specifically, hav-
ing data types different than numerical. Although the query counts
all rows regardless of specific columns, the GROUP BY is required due
to the overlapping column names across tables. Hence, the given
column is actually counted rather than grouped by.
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The corresponding implementation is shown in Appendix D.3.
Instead of grouping, a single set of values and sentence expressions
is aggregated across all rows. The result is computed by apply-
ing prob_Bdd_count over all possible worlds, with the resulting
probability derived from the union of contributing sentences using
agg_or.

5.8 DuBio DISTINCT Queries

When a DuoSQL query uses the DISTINCT keyword, deduplication
is performed probabilistically using sentence logic. Each distinct
value (e.g., a unique color) is associated with a disjunction of all
possible worlds in which it occurs.

Appendix D.4 shows how this is implemented using a GROUP BY
on the distinct field and an agg_or over all associated sentence
values. The resulting probability reflects the likelihood that the
value appears in at least one possible world.

6 EXPERIMENTAL SETUP

To evaluate the cost and benefits of DuoSQL (also referred to as
"High-level"), two automated experiment pipelines were imple-
mented in Python (accessible here [10]) - one for Experiments 7.1
and 7.2, and one for Experiment 7.3. This setup ensures that results
are reproducible and extensible.

6.1 Setup for Experiments 7.1 and 7.2
6.1.1 Metrics

e Code Lines (CL): Represents the count of (non-empty) lines

of code in a given query.

Characters: Represents the character count in a given query.

Counts more than one subsequent semicolon or whitespace

as one character.

Level of Complexity (LoC): Evaluates the complexity of a

given query using a method that fits this project:

— Base complexity: 1;

— Joins: +1 for each JOIN clause. It is unable to count joins
through the FROM clause as it is much more complex to
automate. All test queries use joins only through JOIN
clauses;

— Where: +1 for each WHERE clause;

— View: +1 for each CREATE OR REPLACE VIEW,

— Nested from-selects: +1 for each "FROM ( SELECT" (with
flexible spaces).

Probabilistic Constructs: Represents the count of prob-

abilistic constructs in a given query. Only DuBio-specific

keywords are counted, as they require a more advanced un-
derstanding of the underlying concepts and structures. Those
are, namely: ‘prob’, ‘agg_or’, ‘prob_Bdd’, ‘&', ‘_sentence’,

‘_dict’. Where ‘prob‘ is bounded, hence ‘probability‘ that

can only be queried when using DuoSQL is not counted.

6.1.2 Setup

o 3 test types of 2 queries each (the second more complex than
the first) are observed. The same queries are used in both
experiments. The test types shown in Table 1 highlight the
technical focus of each query they contain. The MIXED DATA
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Table 1. Reduction Summary: Manual vs High-level

Type CL% Chars% LoC%  Prob Constr. #
1. SIMPLE 0% 0% 0% 0
2. JOIN + PROB 23% 40% 25% 22
3. MIXED DATA 50% 53% 55% 11
4. DISTINCT 64% 69% 73% 14
5. AGGREGATION 70% 80% 76% 35
6. COUNT(*) 75% 78% 76% 37
7. FILTERS 62% 66% 71% 25
8. LARGE 56% 62% 52% 36
Overall 50% 56% 54% 23
Overall excl. 1-2 63% 68% 67% 26
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Fig. 2. Characters Comparison: Manual vs High-level

queries combine data from both certain (see Appendix C.2)
and uncertain tables (see Appendix C.1).

e The manual queries were written as short as possible. For
each of them, only one query (with subqueries when needed)
was used.

o There are summary tables with relative reduction data, shown

per experiment (for example, Table 1). The results are ex-
pressed as percentages for code lines (CL), character count,
and level of complexity (LoC), and as counts for probabilistic

constructs.
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— The applied percentage measurement is based on the dif-
ference between the manual M and the high-level H or au-
tomatic A data, divided by the manual M and multiplied by
100 for any criterion: (M-H) /Mx100 for Experiment 7.1 and
(M-A) /M*100 for Experiment 7.2. The result may be @ or
negative, implying no reduction or additional overhead,
which will be observed in Experiment 7.2.

— The probabilistic constructs use summary counts instead of
percentages, since there are none in the high-level DuoSQL
queries (for instance, in Figure 4), as this is DuoSQL’s goal.

— The Overall rolls are calculated by taking the average of
all values within a column. The Overall excl. 1-2 takes all
rows except for the first and the second ones that contain
the simplest queries.

o Regarding the implementation, the only constraint is that all
compared test sets (e.g., Manual vs. Automatic, or Manual vs.
High-level) must share the same test types (also referred to
as "query types") and number of queries per type.

6.2 Setup for Experiment 7.3

6.2.1 Metrics

e Limit: This metric addresses data volume. It shows the num-
ber of queried rows in the LIMIT clause in the innermost
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Table 2. Reduction Summary: Manual vs Automatic

Type CL% Chars% LoC%  Prob Constr. #
1. SIMPLE -167% -115% -50% 0
2. JOIN + PROB -100% -71% -50% 3
3. MIXED DATA -15% -25% 9% 1
4. DISTINCT -16% -46% 0% 0
5. AGGREGATION -21% -24% -12% 0
6. COUNT(*) -8% -17% 0% 2
7. FILTERS -10% -16% 0% 2
8. LARGE -9% -9% 0% 2
Overall -43% -40% -13% 1
Overall excl. 1-2 -13% -23% -1% 1
I Manual [l Automatic
ol ; . . . -
8 20— |
g
-
2
© 10| B

Fig. 5. Code Lines (CL) Comparison: Manual vs Automatic

subquery of the complex query. Appendix E shows a complex
query. However, in this example, the LIMIT clause is in the
main query, whereas for Experiment 7.3, the LIMIT clause is
placed in the innermost subquery.

o Tables Joined: The count of queried tables in the innermost
subquery of the complex query. In this experiment, each query
involves one to four joined tables to address complexity.

e Execution Time (sec): Measures the time in seconds from
sending the query to PostgreSQL to retrieving a result.

6.2.2 Setup

To evaluate the runtime performance of DuoSQL, we compared the
execution times of 4 automatically translated queries against 4 of
their manual equivalents. Each query is of type COUNT (*) (with 1
table), Aggregation (with 2 tables), Filter (with 3 tables), or Large
(with 4 tables), following almost the same format of the four most
complex query types shown in Appendix F. We executed each query
using LIMIT values of 5, 10, and stopped at 20, as the execution time
increased significantly and took too long to measure after LIMIT
20.

7 RESULTS
7.1 High-level Technicality Reduction

This experiment compares the manual DuBio SQL queries with
DuoSQL queries. The goal is to quantify the reduction of technical
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burden, measured in terms of code lines (CL), character count, level
of complexity (LoC), and probabilistic constructs count.

The bar charts in Figures 1, 2, 3, and 4 visualize the comparative
metrics for each query type. As expected, the results of the first
two simplest query types do not differ much. However, as queries
become more complex and technical, manual results surge, reach-
ing approximately three times the high-level measurements. As
we mentioned earlier, DuoSQL is designed to abstract low-level
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(probabilistic) structures, explaining all the @ measurements for the
probabilistic constructs in Figure 4.

On average, DuoSQL reduces code lines by 50%, character count
by 56%, complexity by 54%, and probabilistic constructs by an aver-
age count of 23. It can be observed that the more complex the query
becomes, the higher the reduction is. Simple queries, points 1 and
2 in Table 1, showcase minimal reduction, implying that DuoSQL
variants are directly in valid DuBio format and as short as possible;
thus, they are taken literally in the manually translated queries.

Furthermore, when we exclude these basic cases, the reduction
reaches 67% on average for the three percentage criteria, as evalu-
ated from the bar charts earlier. Hence, these measurements demon-
strate DuoSQL’s capabilities in offering more effortless probabilistic
data management compared to writing manual queries.

7.2 Automatic Translation Overhead

This experiment highlights the syntactic overhead introduced by the
translation logic. To assess the amount of generated overhead by the
algorithm, we compare manual DuBio queries with automatically
generated ones.

Figures 5, 6, 7, and 8 illustrate the results of this experiment.
We can observe that manual queries perform better in keeping
lower code lines and character counts. Furthermore, the LoC and
the probabilistic construct measurements display fluctuations from
both sides with simpler queries, but equalize with lengthier and
more complex queries.

Table 2 shows the summary with relative values. The negative
values indicate negative reduction, in other words, overhead gen-
eration. Although automatic translations introduce code lines and
characters of 40% more on average, they become almost similar in
length to manual queries as they become more complex. On the
other hand, the automatic level of complexity is much closer to
the manual’s, differing only by 13% and averaging to 0%-1% if we
exclude the first 2 simple test types.

As mentioned in Section 6.1.2, the aim when creating manual
queries was to make them as short as possible. However, shorter code
does not always imply improved clarity and reduced complexity. By
comparing a manual alternative, shown in Appendix E, of the last
query in Appendix F, we can argue that the manually written code
is more cluttered and less readable because it is more nested and
not as clear as the automatically translated code which provides
more modularity using dedicated views.

7.3 Runtime Performance Evaluation

Table 3 presents all measured execution times. We can observe that
for most configurations, automatic queries perform similarly to
manual ones, with only marginal differences. A notable exception is
the aggregation, where both manual and automatic queries exhibit
a large jump in execution time at LIMIT = 20. This suggests that
data volume, rather than translation, is the primary contributor to
execution time.

Furthermore, the surge is likely based on the number of joins.
Since the queries with 3 and 4 tables connect only on the chosen
overlapping fields, having 2 and 3 ON conditions, respectively, leads
to fewer matching rows. However, the aggregation has 2 tables, with

TSclT 43, July 4, 2025, Enschede, The Netherlands

Table 3. Performance Testing Results: Manual vs Automatic

Type Tables Joined Limit Execution Time (sec)
Manual COUNT(*) 1 5 3.1062
Manual Aggregation 2 5 0.0472
Manual Filters 3 5 0.0442
Manual Large 4 5 0.0431
Auto COUNT(*) 1 5 4.1126
Auto Aggregation 2 5 0.0491
Auto Filters 3 5 0.0456
Auto Large 4 5 0.0458
Manual COUNT(*) 1 10 70.4552
Manual Aggregation 2 10 0.4706
Manual Filters 3 10 0.0914
Manual Large 4 10 0.0441
Auto COUNT(*) 1 10 67.7769
Auto Aggregation 2 10 0.2345
Auto Filters 3 10 0.0750
Auto Large 4 10 0.0521
Manual COUNT(*) 1 20 69.3214
Manual Aggregation 2 20 413.9993
Manual Filters 3 20 0.0964
Manual Large 4 20 0.0509
Auto COUNT(*) 1 20 65.4577
Auto Aggregation 2 20 413.7770
Auto Filters 3 20 0.0889
Auto Large 4 20 0.0565

only 1 ON condition, implying easier pairing and more rows. For
COUNT (*), although it involves just one table, the complex structure
of possible worlds means the sentence computations are more
involved.

It should be noted that DuBio applies internal query optimizations,
which may have influenced these results. Additionally, due to long
runtimes and time constraints, we could not run the planned tests
with LIMIT = 50 and LIMIT = 100.

This evaluation demonstrates that the translation algorithm in-
troduces negligible to no performance overhead.

8 ANSWERING THE RESEARCH QUESTIONS

RQ1: High-Level Design for Usability and Expressiveness. DuoSQL
was successfully designed to preserve the expressiveness of DuBio
and offer a more concise and user-friendly query interface. DuoSQL
supports all core probabilistic features and uses natural SQL-style
syntax. The translation process is fully automated and produces
executable DuBio SQL without requiring manual intervention. This
shows that expressiveness is preserved while usability is signifi-
cantly improved.

RQ2: Reduction in Query Technicality. As observed in Section 7.1,
DuoSQL provides a significant reduction in technical complexity
compared to manually written queries in DuBio SQL. The reduction
increases as the queries become more complex, proving DuoSQL’s
capabilities in simplifying sophisticated query logic. These results
provide clear evidence that DuoSQL reduces query technicality.

RQ3: Translation Overhead. As described in Section 7.2, automatic
translation from DuoSQL to DuBio SQL introduces some syntactic
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overhead due to additional view definitions, explicit aliasing, and
modularization. This overhead results in approximately 40% more
code lines and characters on average in simpler queries. However, as
query complexity increases, this difference decreases substantially.
The level of complexity remains within a small margin on average
and converges to (almost) zero in more complex queries. The over-
head is thus considered acceptable, as it trades minor verbosity for
a more structured and explainable query format. Therefore, while
overhead exists, it does not compromise clarity or correctness.

RQ4: Performance Evaluation. In all experiments, DuoSQL transla-
tions perform similarly to manual DuBio SQL. Execution time scales
primarily with complexity and data size, rather than with the use
of automatic translation.

9 CONCLUSION

This research introduced the user-friendly DuoSQL, a domain-specific
query language, and a corresponding compiler algorithm that can
improve the usability of probabilistic databases. By abstracting away
the low-level structures of DuBio, DuoSQL serves users in writing
queries over uncertain data without requiring deep knowledge of
probabilistic semantics or internal constructs.

Through a series of experiments, the DuoSQL language demon-
strated substantial technical simplification, reducing verbosity and
complexity in comparison to manually written DuBio SQL. At the
same time, the compiler algorithm preserves semantic correctness
and modularity, while introducing only minor syntactic overhead,
which does not negatively impact performance. The translation
process was formalized into a generic and reusable algorithm that
can be embedded in any language with PostgreSQL and DuBio
connectivity.

Together, these contributions offer a step forward in making
uncertain data management accessible to a broader range of users.

10 FUTURE WORK AND DISCUSSION
10.1  Support for Advanced SQL Constructs

While DuoSQL currently supports a broad subset of SQL constructs,
several advanced features remain to be implemented or improved:

e Expression support in SELECT: The current SELECT clause
parsing relies on simple comma-separated fields and does not
support function-based expressions such as CONCAT (color,
breed). Refactoring the underlying regular expressions will
allow support for such expressions and other nested function
calls.

o User-defined views: Currently, DuoSQL-generated queries
rely on compiler-defined intermediate views (e.g., join_view,
agg_view). Supporting user-defined views could enhance
modularity and allow users to express reusable logic. The
implementation of this feature would be analogous to the
handling of ordinary queries.

e Subqueries: Full support for subqueries would likely be one
of the most complex challenges. However, introducing user-
defined views may reduce the need for inline subqueries and
serve as a practical alternative.

Martin Demirev

Multiple aggregations: Currently, DuoSQL supports only
a single aggregate function per query. Support for multiple ag-
gregates (e.g., SELECT cat_name, COUNT(color), AVG(age))
would require complex nested logic. Perhaps a better alterna-
tive could be a rewriting strategy that separates aggregations
into individual views and joins the results afterwards by a
common (group-by) key.

e Combination of DISTINCT and aggregation: Supporting
queries that combine DISTINCT with aggregate functions is
another challenge that has not been addressed in this project.
Data modification support: Supporting INSERT, DELETE,
UPDATE, and conditioning (incorporating new evidence) in
probabilistic tables, as well as the creation of probabilistic ta-
bles. These capabilities would broaden DuoSQL’s applicability
from querying to full data lifecycle management.
Advanced probabilistic data integration tasks: Introduc-
ing direct commands for probabilistic deduplication of a table,
for joining or merging tables based on a similarity function,
and others would support common data integration tasks and
facilitate more intelligent data cleaning pipelines.

10.2 Built-in DuoSQL Execution Mode in DuBio

Currently, DuoSQL queries must be translated externally into DuBio
SQL before execution in PostgreSQL. A promising direction for
future development is to integrate DuoSQL natively into DuBio as
a preprocessing layer.

This could be implemented by introducing a new query clause,
such as MODE, that allows users to specify the intended syntax:

MODE DuoSQL;
-- or
MODE DuBio;

Under this model, the database engine would detect the mode
and automatically preprocess DuoSQL queries into their DuBio SQL
equivalents before execution. This would eliminate the need for
external translation scripts.
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APPENDIX
A SEMANTIC DUPLICATES EXAMPLE [2]

Source data g integration

Car brand Sales
B.M.W. 25
Mercedes 32
Renault 10 Real world

Carbrand Salos Integrated database (of car brands)
BMW -2 Car brand Sales
Y dy| B.MW. 25| -

lercedes-Benz 39 Bayerische 5] -
Renault 20 d2 | Motoren Werke

d3 | Merced 67| ~

Car brand Sales da sl
Bayerische 4 | Renault B =
Motoren Werke 6 ds| BMW 72|
Mercedes 35 ds Mercedes-Benz 39| -
Renault 15

B PROBABILISTIC QUERY RESULT

companion | witness | color | breed probability | _sentence

henry cathy white | persian 1.0000 Bdd((w3=1 & p3=1))
frank alice gray tabby 0.2500 Bdd((w1=2 & p1=2))
frank alice white | siamese 0.2500 Bdd((w1=1 & p1=1))
grace ben black mainecoon | 0.2800 Bdd((w2=1 & p2=1))
grace ben gray mainecoon | 0.1800 Bdd((w2=2 & p2=2))

C TABLE DESIGNS
CA1

This section shows the design of the 4 uncertain tables. Their struc-
tures are almost identical except for one field - the person in dif-
ferent scenarios. The { } notation matches the tables with their
corresponding field name - witnessed with witness, plays with
companion, cares with caretaker, owns with owner.

Uncertain Tables

CREATE TABLE { witnessed | plays | cares | owns } (
id integer,
{ witness | companion | caretaker | owner } text,
cat_name text,
breed text,
color text,
age integer,
_sentence Bdd
);

C.2 Certain Table

CREATE TABLE profile_certain (
cat_id integer,
cat_name text

D8

D AGGREGATION

This section presents the underlying DuBio logic for performing
aggregation queries over uncertain data using BDDs. It includes the
custom-defined aggregate functions, standard aggregation queries
with GROUP BY, support for COUNT (*), and distinct value computa-
tion.

10
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D.1 DuBio Helper Functions

CREATE or REPLACE FUNCTION prob_Bdd(a_s Bdd[], mask bit)
RETURNS Bdd
LANGUAGE plpgsql AS $$

DECLARE
result Bdd = Bdd('1');
mask_len integer = array_length(a_s, 1);
mask_start integer = length(mask) - mask_len - 1;
n_bdd Bdd;
BEGIN
FOR i IN 1 .. mask_len LOOP
IF get_bit(mask,mask_start+i) = 1 THEN
n_bdd = a_s[i];
ELSE
n_bdd = la_s[i];
END IF;
result := result & n_bdd;
END LOOP;
RETURN result;
END;
$$;

CREATE or REPLACE FUNCTION prob_Bdd_count(a_b anyarray, mask bit)
RETURNS int
LANGUAGE plpgsql AS $$

DECLARE
result integer = 0;
mask_len integer = array_length(a_b, 1);
mask_start integer = length(mask) - mask_len - 1;
BEGIN
FOR i IN 1 .. mask_len LOOP
IF get_bit(mask,mask_start+i) = 1 THEN
result := result + 1;
END IF;
END LOOP;
RETURN result;
END;
$$;

D.2 DuBio Aggregation Query

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_view CASCADE;

CREATE OR REPLACE VIEW agg_view AS
SELECT cat_name, avg, agg_or(_sentence) AS _sentence
FROM (
SELECT cat_name, prob_Bdd_avg(arr,mask) AS avg, prob_Bdd(
arr_sentence,mask) AS _sentence, arr, arr_sentence, mask
FROM (
SELECT cat_name, arr, arr_sentence,
generate_series(@, (pow(2, array_length(arr_sentence,1))-1)::
bigint)::bit(64) AS mask
FROM (
SELECT cat_name, array_agg(age) arr, array_agg(_sentence)
arr_sentence
FROM (
SELECT cat_name, age, agg_or(_sentence) AS _sentence
FROM witnessed
GROUP BY cat_name, age
) AS first
GROUP BY cat_name
) AS second
) AS third
) AS forth
GROUP BY cat_name, avg;

CREATE OR REPLACE VIEW prob_view AS

SELECT v.x, round(prob(d.dict, v._sentence)::numeric, 4) AS
probability

FROM agg_view v

JOIN _dict d ON d.name = 'cats_short';

SELECT cat_name, avg, probability, _sentence
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FROM prob_view
WHERE avg > 2
ORDER BY cat_name
LIMIT 10;
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E MANUAL QUERY EXAMPLE

The given query is the manual alternative to the last query in Ap-
pendix F.

D.3 DuBio Aggregation All * Query

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_all_view CASCADE;

CREATE OR REPLACE VIEW agg_all_view AS
SELECT count_rows, agg_or(_sentence) AS _sentence
FROM (
SELECT prob_Bdd_count(arr,mask) AS count_rows, prob_Bdd(
arr_sentence,mask) AS _sentence, arr, arr_sentence, mask
FROM (
SELECT arr, arr_sentence,
generate_series(@, (pow(2, array_length(arr_sentence,1))-1)::
bigint)::bit(64) AS mask
FROM (
SELECT array_agg(cat_name) arr, array_agg(_sentence) AS
arr_sentence
FROM (
SELECT cat_name, agg_or(_sentence) AS _sentence
FROM witnessed
WHERE cat_name = 'max'
GROUP BY cat_name
) AS first
GROUP BY TRUE
) AS second
) AS third
) AS forth
GROUP BY count_rows;

CREATE OR REPLACE VIEW prob_view AS

SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS
probability

FROM agg_all_view v

JOIN _dict d ON d.name = 'cats_short';

SELECT count_rows, probability, _sentence
FROM prob_view
WHERE probability > @ AND count_rows > 0;

D.4 DuBio DISTINCT Query

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS join_view CASCADE;

CREATE OR REPLACE VIEW join_view AS

SELECT color, agg_or(plays._sentence) AS _sentence
FROM plays

GROUP BY color;

CREATE OR REPLACE VIEW prob_view AS

SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS
probability

FROM join_view v

JOIN _dict d ON d.name = 'cats_short';

SELECT color

FROM prob_view

WHERE probability > 0.5
ORDER BY color;
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SELECT witness, companion, caretaker, owner, cat_name, color_count,
probability, _sentence
FROM (
SELECT witness, companion, caretaker, owner, cat_name, color_count,
round(prob(d.dict, _sentence)::numeric, 4) AS probability,
_sentence
FROM (
SELECT witness, companion, caretaker, owner, cat_name,
color_count, agg_or(_sentence) AS _sentence
FROM (

SELECT witness, companion, caretaker, owner, cat_name,
prob_Bdd_count(arr,mask) AS color_count, prob_Bdd(
arr_sentence,mask) AS _sentence, arr, arr_sentence, mask

FROM (

SELECT witness, companion, caretaker, owner, cat_name, arr,
arr_sentence, generate_series(9, (pow(2,array_length(
arr_sentence,1))-1)::bigint)::bit(64) AS mask

FROM (

SELECT witness, companion, caretaker, owner, cat_name,
array_agg(color) arr, array_agg(_sentence)
arr_sentence

FROM (

SELECT w.witness, p.companion, c.caretaker, o.owner, w.
cat_name, w.color, w._sentence & p._sentence & c.
_sentence & o._sentence AS _sentence

FROM witnessed w

JOIN plays p ON w.cat_name = p.cat_name

JOIN cares c ON w.cat_name = c.cat_name

JOIN owns o ON w.cat_name = o.cat_name

WHERE w.cat_name = 'max'

) AS first

GROUP BY witness, companion, caretaker, owner, cat_name

) AS second

) AS third

) AS forth
GROUP BY witness, companion, caretaker, owner, cat_name,
color_count
) AS fifth
JOIN _dict d ON d.name = 'cats_short
) AS sixth
WHERE color_count > @ AND probability > @
ORDER BY witness DESC, probability ASC
LIMIT 10;
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F  TRANSLATION MAPPING OF DUOSQL TO DUBIO SQL
This section shows 1 query for each test type. There are comments, noting the test name and number, at the beginning of every DuoSQL
query.

DuoSQL Query Translated DuBio SQL

-- 1. Simple Query DROP VIEW IF EXISTS prob_view CASCADE;

SELECT p.companion, w.witness, w.cat_name, w.color, DROP VIEW IF EXISTS join_view CASCADE;
w.breed, w.age

FROM witnessed w CREATE OR REPLACE VIEW join_view AS

JOIN plays p ON w.cat_name = p.cat_name AND w.color SELECT p.companion, w.witness, w.cat_name, w.color, w.breed, w.age
= p.color FROM witnessed w

JOIN plays p ON w.cat_name = p.cat_name AND w.color = p.color;

SELECT companion, witness, cat_name, color, breed, age
FROM join_view;

-- 2. JOIN + Probability DROP VIEW IF EXISTS prob_view CASCADE;
SELECT w.witness, p.companion AS player, c.caretaker DROP VIEW IF EXISTS join_view CASCADE;
, 0.owner, w.cat_name

FROM witnessed w CREATE OR REPLACE VIEW join_view AS

JOIN plays p ON w.cat_name = p.cat_name SELECT w.witness, p.companion AS player, c.caretaker, o.owner, w.cat_name, w._sentence
JOIN cares c ON w.cat_name = c.cat_name & p._sentence & c._sentence & o._sentence AS _sentence

JOIN owns o ON w.cat_name = o.cat_name FROM witnessed w

SHOW SENTENCE, PROBABILITY JOIN plays p ON w.cat_name = p.cat_name

JOIN cares c ON w.cat_name = c.cat_name
JOIN owns o ON w.cat_name = o.cat_name;

CREATE OR REPLACE VIEW prob_view AS

SELECT v.x, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM join_view v

JOIN _dict d ON d.name = 'cats_short';

SELECT witness, player, caretaker, owner, cat_name, probability, _sentence
FROM prob_view;

-- 3. Mixed Data DROP VIEW IF EXISTS prob_view CASCADE;
SELECT c.caretaker, pc.cat_id, c.cat_name, c.breed, DROP VIEW IF EXISTS join_view CASCADE;
c.age
FROM cares c CREATE OR REPLACE VIEW join_view AS
JOIN profile_certain pc ON c.cat_name = pc.cat_name SELECT c.caretaker, pc.cat_id, c.cat_name, c.breed, c.age, c._sentence & o._sentence AS
JOIN owns o ON c.cat_name = o.cat_name _sentence
SHOW SENTENCE; FROM cares c¢

JOIN profile_certain pc ON c.cat_name = pc.cat_name
JOIN owns o ON c.cat_name = o.cat_name;

SELECT caretaker, cat_id, cat_name, breed, age
FROM join_view;

sentence

) =

12
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DuoSQL Query

Translated DuBio SQL

-- 4. DISTINCT

SELECT DISTINCT p.age

FROM plays p

JOIN witnessed w ON w.cat_name = p.cat_name
HAVING probability > 0.5

ORDER BY p.age;

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS join_view CASCADE;

CREATE OR REPLACE VIEW join_view AS

SELECT p.age, agg_or(p._sentence & w._sentence) AS _sentence
FROM plays p

JOIN witnessed w ON w.cat_name = p.cat_name

GROUP BY p.age;

CREATE OR REPLACE VIEW prob_view AS

SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM join_view v

JOIN _dict d ON d.name = 'cats_short';

SELECT age

FROM prob_view

WHERE probability > 0.5
ORDER BY age;

-- 5. Aggregation

SELECT w.cat_name, count(companion)

FROM plays p

JOIN witnessed w ON w.cat_name = p.cat_name
WHERE w.color = p.color

GROUP BY w.cat_name

ORDER BY w.cat_name

SHOW SENTENCE, PROBABILITY

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_view CASCADE;

CREATE OR REPLACE VIEW agg_view AS
SELECT cat_name, count, agg_or(_sentence) AS _sentence
FROM (
SELECT cat_name, prob_Bdd_count(arr,mask) AS count, prob_Bdd(arr_sentence,mask) AS
_sentence, arr, arr_sentence, mask
FROM (
SELECT cat_name, arr, arr_sentence, generate_series(0, (pow(2,array_length(arr_sentence
,1))-1)::bigint)::bit(64) AS mask
FROM (
SELECT cat_name, array_agg(companion) arr, array_agg(_sentence) arr_sentence
FROM (
SELECT w.cat_name, companion, p._sentence & w._sentence AS _sentence
FROM plays p
JOIN witnessed w ON w.cat_name = p.cat_name
WHERE w.color = p.color
) AS first
GROUP BY cat_name
) AS second
) AS third
) AS forth
GROUP BY cat_name, count;

CREATE OR REPLACE VIEW prob_view AS

SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM agg_view v

JOIN _dict d ON d.name = 'cats_short';

SELECT cat_name, count, probability, _sentence
FROM prob_view
ORDER BY cat_name;
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FROM witnessed w

JOIN plays p ON w.cat_name = p.
cat_name

WHERE p.color IN ('gray', 'black')

GROUP BY w.cat_name

HAVING count_rows > @

SHOW PROBABILITY

DuoSQL Query Translated DuBio SQL

-= 6. COUNT(*) DROP VIEW IF EXISTS prob_view CASCADE;

SELECT w.cat_name, COUNT(*) as DROP VIEW IF EXISTS agg_all_view CASCADE;
count_rows

CREATE OR REPLACE VIEW agg_all_view AS
SELECT count_rows, agg_or(_sentence) AS _sentence
FROM (

SELECT prob_Bdd_count(arr,mask) AS count_rows, prob_Bdd(arr_sentence,mask) AS _sentence, arr,

arr_sentence, mask
FROM (

SELECT arr, arr_sentence, generate_series(@, (pow(2,array_length(arr_sentence,1))-1)::bigint)::bit

(64) AS mask
FROM (
SELECT array_agg(cat_name) arr, array_agg(_sentence) AS arr_sentence
FROM (
SELECT w.cat_name, w._sentence & p._sentence AS _sentence
FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name
WHERE p.color IN ('gray', 'black')
) AS first
GROUP BY TRUE
) AS second
) AS third
) AS forth
GROUP BY count_rows;

CREATE OR REPLACE VIEW prob_view AS

SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM agg_all_view v

JOIN _dict d ON d.name = 'cats_short';

SELECT count_rows, probability, _sentence
FROM prob_view
WHERE count_rows > 0;

-- 7. Filters

SELECT cat_name, COUNT(color)

FROM witnessed

WHERE color IN ('white', 'black')

GROUP BY cat_name

HAVING COUNT(color) > @ AND
probability > @

ORDER BY probability ASC

LIMIT 10

SHOW SENTENCE, PROBABILITY

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_view CASCADE;

CREATE OR REPLACE VIEW agg_view AS
SELECT cat_name, COUNT, agg_or(_sentence) AS _sentence
FROM (

SELECT cat_name, prob_Bdd_count(arr,mask) AS COUNT, prob_Bdd(arr_sentence,mask) AS _sentence, arr,

arr_sentence, mask
FROM (

SELECT cat_name, arr, arr_sentence, generate_series(0, (pow(2,array_length(arr_sentence,1))-1)::

bigint)::bit(64) AS mask
FROM (
SELECT cat_name, array_agg(color) arr, array_agg(_sentence) arr_sentence
FROM (
SELECT cat_name, color, agg_or(_sentence) AS _sentence
FROM witnessed
WHERE color IN ('white', 'black')
GROUP BY cat_name, color
) AS first
GROUP BY cat_name
) AS second
) AS third
) AS forth
GROUP BY cat_name, COUNT;

CREATE OR REPLACE VIEW prob_view AS

SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM agg_view v

JOIN _dict d ON d.name = 'cats_short';

SELECT cat_name, COUNT, probability, _sentence
FROM prob_view

WHERE COUNT > @ AND probability > @

ORDER BY probability ASC

LIMIT 10;
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DuoSQL Query

Translated DuBio SQL

-- 8. Large Query

SELECT w.witness, p.companion AS player, c.
caretaker, o.owner, count(w.color) AS
color_count

FROM witnessed w

JOIN plays p ON w.cat_name = p.cat_name

JOIN cares c ON w.cat_name = c.cat_name

JOIN owns o ON w.cat_name = o.cat_name

WHERE w.cat_name = 'max'

GROUP BY w.witness, p.companion, c.
caretaker, o.owner, w.cat_name
HAVING probability > @ AND color_count > @
ORDER BY w.witness DESC, probability ASC

LIMIT 10
SHOW SENTENCE, PROBABILITY

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_view CASCADE;

CREATE OR REPLACE VIEW agg_view AS
SELECT witness, companion, caretaker, owner, cat_name, color_count, agg_or(_sentence) AS
_sentence
FROM (
SELECT witness, companion, caretaker, owner, cat_name, prob_Bdd_count(arr,mask) AS color_count
, prob_Bdd(arr_sentence,mask) AS _sentence, arr, arr_sentence, mask
FROM (
SELECT witness, companion, caretaker, owner, cat_name, arr, arr_sentence, generate_series
(0, (pow(2,array_length(arr_sentence,1))-1)::bigint)::bit(64) AS mask
FROM (
SELECT witness, companion, caretaker, owner, cat_name, array_agg(color) arr, array_agg(
_sentence) arr_sentence
FROM (
SELECT w.witness, p.companion, c.caretaker, o.owner, w.cat_name, w.color, w._sentence & p
._sentence & c._sentence & o._sentence AS _sentence
FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name
JOIN cares ¢ ON w.cat_name = c.cat_name
JOIN owns o ON w.cat_name = o.cat_name
WHERE w.cat_name = 'max’
) AS first
GROUP BY witness, companion, caretaker, owner, cat_name
) AS second
) AS third
) AS forth
GROUP BY witness, companion, caretaker, owner, cat_name, color_count;

CREATE OR REPLACE VIEW prob_view AS

SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM agg_view v

JOIN _dict d ON d.name = 'cats_short';

SELECT witness, companion, caretaker, owner, cat_name, color_count, probability, _sentence
FROM prob_view

WHERE probability > @ AND color_count > @

ORDER BY witness DESC, probability ASC

LIMIT 10;
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