
DuoSQL: A High-Level Query Language for Probabilistic Databases
MARTIN DEMIREV, University of Twente, The Netherlands

ABSTRACT
Uncertainty management is a fundamental challenge in data quality
problems and imperfect data integration tasks. Traditional relational
databases rely on expert validations or manual workarounds to ad-
dress data issues; however, this approach is inefficient and does
not scale well for large or dynamic datasets. Probabilistic databases
extend classic database semantics by associating data points with
probabilities that indicate their correctness. One such system is
DuBio, developed at the University of Twente, which provides a
framework for representing and querying uncertain data in Post-
greSQL. However, the current DuBio query interface requires users
to explicitly deal with the complexity of uncertainty structures, thus
degrading usability.
This research builds on DuBio by introducing DuoSQL, a high-

level query language, and its corresponding compiler algorithm. The
goal is to simplify querying over uncertain data while preserving the
expressiveness of DuBio. Experiments show that DuoSQL reduces
user effort by significantly decreasing query length and complexity
compared to manually written DuBio SQL queries. Although syntac-
tic overhead from translation is introduced, runtime performance
remains similar to manual queries. These results demonstrate that
DuoSQL enhances usability without compromising efficiency or
correctness, making probabilistic querying more accessible.

KEYWORDS
Probabilistic Databases, Uncertain Data, Data Quality Management,
Structured Query Language, Domain-Specific Language

1 INTRODUCTION
In many real-world applications, data is rarely clean or complete.
Data integration tasks often involve inconsistencies, missing values,
duplicates, and conflicting information frommultiple sources. These
problems are typically grouped under the broader challenge of data
quality. Addressing data quality issues often relies on expert rules
and validations, data cleaning pipelines, or discarding uncertain
records - strategies that become unmanageable as datasets grow in
size and complexity [1]. Moreover, such practices hold the risk of
removing vital data, leading to negative impacts such as business
losses and introductions of bias.

An alternative approach is to explicitly model uncertainty rather
than resolving or ignoring it. This is the core of probabilistic data-
bases, which extend the relational model by associating data entries
with probabilities. Probabilistic databases allow users to store, query,
and reason over data that is uncertain, incomplete, or conflicting
without being forced to resolve all issues immediately [2]. Moreover,

TScIT 43, July 4, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

probabilistic databases have been seen as a way to "turn dirt into
diamonds" by treating uncertainty as a core feature rather than a
problem to be eliminated [3].
DuBio [7] is a probabilistic extension of PostgreSQL [8] devel-

oped at the University of Twente. Although DuBio provides the
foundations for managing uncertain data, its current query inter-
face is not user-friendly. Users must explicitly manipulate low-level
probabilistic structures (such as ‘sentences’ and ‘dictionaries’) using
DuBio-specific functions like agg_or(), array_agg().
To illustrate a real-world case, let us consider the example of

semantic duplicates given by Van Keulen [2]. We have two columns
- "Car brand" and "Sales" (see Appendix A for visualization). We
can see that a single real-world object - the car brand "BMW" - is
represented in 3 different forms - "BMW", "B.M.W.", and "Bayerische
Motoren Werke". Consequently, when implemented in DuBio, each
representation is assigned a distinct random variable value (for
example, bmw=1, bmw=2, and bmw=3, respectively). These random
variables form the entries in the _sentence column. For instance,
the row with "BMW" would be assigned Bdd(bmw=1). Each sentence
is linked to a probability value in the _dict table; thus, bmw=1would
be the key linking to its value of 0.6, forming the entry bmw=1:0.6
in the dictionary.
Furthermore, when querying uncertain data, the _sentence co-

lumns in the relevant tables must be traversed and logically com-
bined to capture all meaningful combinations of possible records.
Probabilistic databases operate under the "possible worlds" seman-
tics, treating data as a probability space over all these potential
worlds [2]. The final probabilities are derived from the constructed
logical sentences (BDDs), as demonstrated in Appendix B.
This research addresses the gap between expressiveness and us-

ability in probabilistic data querying. The project introduces two
key contributions: a high-level language and a translation algorithm.
These artifacts aim to make probabilistic data systems more acces-
sible to practitioners without sacrificing expressive power and by
eliminating the need to be familiar with the underlying theory and
functions. The proposed domain-specific language DuoSQL [10],
its automatic mapping to DuBio SQL, and its manually written al-
ternative are compared and analyzed in several experiments. The
translation process is formalized as a generalized algorithm designed
to be implementable in any programming language.

Lastly, the name ‘DuoSQL’ reflects both the language’s dual appli-
cability to certain and uncertain data and its connection to DuBio,
the underlying system.

2 PROBLEM STATEMENT
This research builds on DuBio to address the challenge of usability
in querying uncertain data. A new abstraction layer is needed to
make DuBio more accessible and intuitive to users. Hence, the aim
is to design a user-friendly language that allows interaction with
uncertain data without requiring users to manually manage under-
lying probabilistic structures. Therefore, this research addresses the
following questions:

1

TScIT 43, July 4, 2025, Enschede, The Netherlands Martin Demirev

• RQ1: How can a high-level abstraction layer be designed
to improve the usability of querying uncertain data while
preserving DuBio’s expressiveness of its translated queries?

• RQ2: To what extent does the proposed language reduce
query technicality compared to manually written DuBio SQL
queries?

• RQ3:What is the syntactic and computational overhead intro-
duced by automated translation from the high-level language
to executable DuBio queries compared to manually written
DuBio SQL queries?

• RQ4: How does the performance of automatically translated
DuoSQL queries compare to their manually written counter-
parts in terms of execution time?

3 RELATED WORK
Dalvi et al. [3] provided a broad overview of probabilistic databases.
Their research highlighted key theoretical challenges in query eval-
uation and addressed the potential of probabilistic databases to
manage "dirt" - uncertainty, inconsistency, and incompleteness - in
large-scale data. However, they also pointed out the lack of intuitive
query interfaces as a critical barrier to real-world applications.
Van Keulen [2] introduced a probabilistic approach to data inte-

gration, where uncertainty is explicitly modeled instead of being
resolved upfront. Magnani and Montesi [1] further surveyed the
uncertainty in integration systems. They noted that while many
representation models exist, there is a gap in user-facing tools that
abstract away probabilistic complexity.
Antova et al. [4] addressed the usability challenge of querying

uncertain data without requiring users to understand the under-
lying probabilistic semantics. They introduced MayBMS, a system
based on the U-relations model, which enabled SQL-style querying
over uncertain data using compact relational representations. By
extending SQL with minimal constructs, MayBMS allowed users
to express queries intuitively while the underlying system handled
probabilistic reasoning. This demonstrates that language-level ab-
stractions can improve usability and efficiency - a principle central
to DuoSQL’s design.
Other influential systems include Trio[6] and MCDB-R[5]. The

Trio system addressed data uncertainty and lineage by extending
standard SQL and introducing its own data model (ULDB), query
language (TriQL), query API, and graphical user interface. MCDB-R
applied the Monte Carlo-based approach of MCDB to uncertain data
by supporting "efficient risk analysis" through repeated simulations
over parameterized databases. Although these systems are powerful,
they still require explicit reasoning about uncertainty, as they expose
the user directly to their technical details, which limits usability for
broader audiences.
A closely related predecessor to this work is inSQeLto [11], a

domain-specific language designed for DuBio. inSQeLto focused
on syntactic familiarity and conducted user testing to validate its
design. However, it only supported basic SELECT queries with op-
tional probability display. It did not implement more complex SQL
functionality and did not evaluate the cost of translation or simplifi-
cation.

Algorithm 1: Translation of DuoSQL to DuBio SQL
Input: A DuoSQL query 𝑄 over a PostgreSQL database

schema
Output: Translated DuBio SQL query 𝑄 ′

1 Sanitize 𝑄 (e.g., strip spaces, trailing semicolons)
2 Define SQL clause-bounding and clause-capturing regular

expressions
3 Extract SELECT and FROM clauses from 𝑄

4 Parse WHERE, ORDER BY, LIMIT, GROUP BY, HAVING,
SHOW clauses (if present)

5 Extract all tables and aliases used in 𝑄

6 Determine whether DISTINCT, aggregates, sentences, or
probability are involved

7 Define sentence expression 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑒𝑥𝑝𝑟 :
8 if data is entirely certain then
9 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑒𝑥𝑝𝑟 := ’certain’

10 else
11 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑒𝑥𝑝𝑟 := combination of all _sentence columns

using logical AND on all probabilistic tables
12 end
13

14 if 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑒𝑥𝑝𝑟 == ’certain’ then
15 if ’𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦’ is present in the HAVING clause then
16 return Error informing the user that queried data is

entirely certain
17 return deterministic query 𝑄 ′ without probabilistic

constructs and special clauses
18 else if 𝑄 is an aggregate query over all ’*’ rows then
19 Build view agg_all_view using probabilistic BDD logic

(see Section 5.6)
20 else if 𝑄 is a grouped aggregate query then
21 Build view agg_view using probabilistic BDD logic (see

Section 5.7)
22 else
23 Build join_view using FROM, WHERE, and optional

DISTINCT
24 end
25 Optionally build prob_view if probability is needed
26 Compose final SELECT query over the relevant view,

applying filters, order, and limits
27 return 𝑄 ′

4 THE ALGORITHM
This section outlines Algorithm 1, which forms the basis of DuoSQL.
The translation process is modular and language-agnostic, meaning
that it can be implemented in any programming language that can
connect to PostgreSQL and DuBio. The algorithm treats a DuoSQL
query as a string, utilizing regular expressions to identify standard
SQL clauses and any probabilistic extensions. It constructs a log-
ical sentence expression (_sentence) by combining the sentence
columns of all involved probabilistic tables.

2

DuoSQL: A High-Level Query Language for Probabilistic Databases TScIT 43, July 4, 2025, Enschede, The Netherlands

If all data is deterministic, the query is returned as-is without in-
cluding any probabilistic constructs, even if requested to be shown.
However, there is an exception: if the user attempts to filter entirely
certain data by probability, an error message is shown, inform-
ing the user to reconsider their query logic. That is crucial when
a probability less than 1.00 is requested. Otherwise, the transla-
tor generates modular intermediate views that separate join logic,
probabilistic reasoning, and aggregation. This modular view-based
structure makes the translation both explainable and composable,
while preserving the underlying semantics of DuBio. Probabilistic
evaluation occurs only when explicitly requested or when queries
include probabilistic filters.

5 THE LANGUAGE
This section presents the DuoSQL language documented like Post-
greSQL’s synopsis [9]. DuoSQL is a high-level query language for
probabilistic databases, built as an abstraction layer over DuBio.
The implementation is primarily in Python [12], with supporting
aggregate functions written in DuBio SQL. Its syntax closely resem-
bles standard SQL but extends it with probabilistic constructs like
SHOW PROBABILITY, SHOW SENTENCE, and support for probabilistic
filtering. DuoSQL is case-insensitive and can also be applied to
entirely certain data (see Appendix C.2 for a certain table example).
Its implementation is accessible here [10].

5.1 Language Grammar
SELECT [DISTINCT] field [[AS] field_alias] [, ...]

[, AGG(x) [[AS] agg_alias]]
FROM table [table_alias] [, ...]
[JOIN table [table_alias] ON conditions] [...]
[WHERE conditions]
[GROUP BY field [, ...]]
[HAVING conditions]
[ORDER BY field [ASC | DESC] [, ...]]
[LIMIT count]
[SHOW [SENTENCE | PROBABILITY] [, ...]];

5.2 Example DuoSQLQuery

SELECT w.witness, p.companion AS suspect,
c.caretaker, count(w.color) AS color_count

FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name
JOIN cares c ON w.cat_name = c.cat_name
WHERE w.cat_name = 'max'
GROUP BY w.witness, p.companion, c.caretaker
HAVING probability >= 0.5 AND color_count > 1
ORDER BY w.witness DESC, probability ASC
LIMIT 10
SHOW SENTENCE, PROBABILITY

5.3 Description
The following subsections list specifications for some of the clauses.
If a clause is not present, then the Grammar in Section 5.1 is sufficient
for understanding its functionality.

5.3.1 SELECT

• Currently, the aggregation fieldmust appear last in the SELECT
clause for correct parsing.

• It supports all aggregation functions (COUNT, SUM, AVG, MIN,
MAX) on single fields. For example:

AVG(age)

• Additionally, COUNT(*) is supported, which counts rows. It
still requires one GROUP BY field, which is not included in the
result, but is required when querying multiple probabilistic
tables due to overlapping column names (see Appendix C.1).
The specific grammar would be as follows:

SELECT field, COUNT(*)
...
GROUP BY field

• The following functionalities are currently unsupported
within a single query:
– Combination of DISTINCT and aggregation.
– Multiple aggregation functions.

5.3.2 FROM

• As many tables as needed can be included and later joined
with WHERE conditions.

• Aliases are optional even if there is more than 1 table present.

5.3.3 JOIN

• All JOIN combinations using these keywords - FULL, LEFT,
RIGHT, OUTER, INNER, CROSS - are supported.

• Multiple joins are possible, and aliases are optional.

5.3.4 HAVING

• It is used not only for filtering by the used aggregation, but
also to filter by the probability value, which is in the range
[0, 1]. For example:

HAVING avg > 3 AND probability <= 0.75

5.3.5 SHOW

• SHOW PROBABILITY: Appends a computed probability column
to the result.

• SHOW SENTENCE: Appends the underlying logical sentence
(BDD) used for probabilistic computation.

• Sentence and probability computations are based solely on
uncertain data. Certain data does not have any influence.

• Users can include either or both options in the SHOW clause.
For example:

SHOW SENTENCE, PROBABILITY

5.4 Mapping
Appendix F presents example DuoSQL queries alongside their corre-
sponding translated DuBio SQL queries. Each example highlights a
different language feature, stated in the comments on the first lines
of the DuoSQL queries.

3

TScIT 43, July 4, 2025, Enschede, The Netherlands Martin Demirev

5.5 DuBio Aggregation Functions
This section focuses on the DuBio functions utilized in all aggre-
gation queries. The functions prob_Bdd and prob_Bdd_count are
presented in Appendix D.1. The additional functions prob_Bdd_sum,
prob_Bdd_avg, prob_Bdd_min, and prob_Bdd_max are not shown,
as they follow the same pattern as prob_Bdd_count.
Together, prob_Bdd and the aggregate-specific functions allow

DuBio to compute aggregations across the possible worlds defined
by the uncertainty in the sentence BDDs.

5.5.1 prob_Bdd: World Construction

The function prob_Bdd is responsible for synthesizing a Boolean
sentence (BDD) that represents a possible world under evaluation. It
takes an array of BDD expressions and a bitmask as input. Each bit
in the mask indicates whether the corresponding BDD in the array
should be taken as is (if the bit is 1) or negated (if the bit is 0). The
function iteratively builds a conjunction of these terms, resulting
in a single BDD representing the logical sentence for a specific
possible subset of tuples. This function is central to all probabilistic
aggregation as it defines the precise world under which an aggregate
is evaluated.

5.5.2 prob_Bdd_count: Aggregation over Masked Values

The function prob_Bdd_count operates over an array of values (for
example, the cat colors in the column color of type text) and a
bitmask, returning the number of selected elements. It iterates over
the array and checks the corresponding bit in the mask, where for
every bit set to 1, the associated value is counted. This function
computes the size of a subset (i.e., how many tuples are active)
in a given world. It also serves as the structural template for the
other aggregate functions, which differ only in how they reduce the
masked values (e.g., summing them or averaging them instead of
counting).

5.6 DuBio AggregationQueries
This section describes how probabilistic aggregation is implemented
using DuBio SQL. The underlying logic combines per-group value
arrays and sentence arrays, iterates over all possible subset masks,
and computes aggregate results using the DuBio aggregate functions
introduced earlier in Section 5.5.
A representative example is shown in Appendix D.2. For each

group (cat_name), arrays of values (age) and BDDs (_sentence)
are constructed. The generate_series function generates all bit
masks for subset enumeration. The relevant aggregate function
prob_Bdd_avg is applied per mask and combined using agg_or
over all worlds.

5.7 DuBio COUNT(*) AggregationQueries
COUNT(*) queries perform aggregation over the entire dataset. This
is why other aggregate functions are not applicable in this context,
mainly because of data type mismatches and more specifically, hav-
ing data types different than numerical. Although the query counts
all rows regardless of specific columns, the GROUP BY is required due
to the overlapping column names across tables. Hence, the given
column is actually counted rather than grouped by.

The corresponding implementation is shown in Appendix D.3.
Instead of grouping, a single set of values and sentence expressions
is aggregated across all rows. The result is computed by apply-
ing prob_Bdd_count over all possible worlds, with the resulting
probability derived from the union of contributing sentences using
agg_or.

5.8 DuBio DISTINCTQueries
When a DuoSQL query uses the DISTINCT keyword, deduplication
is performed probabilistically using sentence logic. Each distinct
value (e.g., a unique color) is associated with a disjunction of all
possible worlds in which it occurs.

Appendix D.4 shows how this is implemented using a GROUP BY
on the distinct field and an agg_or over all associated sentence
values. The resulting probability reflects the likelihood that the
value appears in at least one possible world.

6 EXPERIMENTAL SETUP
To evaluate the cost and benefits of DuoSQL (also referred to as
"High-level"), two automated experiment pipelines were imple-
mented in Python (accessible here [10]) - one for Experiments 7.1
and 7.2, and one for Experiment 7.3. This setup ensures that results
are reproducible and extensible.

6.1 Setup for Experiments 7.1 and 7.2
6.1.1 Metrics

• Code Lines (CL): Represents the count of (non-empty) lines
of code in a given query.

• Characters: Represents the character count in a given query.
Counts more than one subsequent semicolon or whitespace
as one character.

• Level of Complexity (LoC): Evaluates the complexity of a
given query using a method that fits this project:
– Base complexity: 1;
– Joins: +1 for each JOIN clause. It is unable to count joins
through the FROM clause as it is much more complex to
automate. All test queries use joins only through JOIN
clauses;

– Where: +1 for each WHERE clause;
– View: +1 for each CREATE OR REPLACE VIEW;
– Nested from-selects: +1 for each "FROM (SELECT" (with
flexible spaces).

• Probabilistic Constructs: Represents the count of prob-
abilistic constructs in a given query. Only DuBio-specific
keywords are counted, as they require a more advanced un-
derstanding of the underlying concepts and structures. Those
are, namely: ‘prob‘, ‘agg_or‘, ‘prob_Bdd‘, ‘&‘, ‘_sentence‘,
‘_dict‘. Where ‘prob‘ is bounded, hence ‘probability‘ that
can only be queried when using DuoSQL is not counted.

6.1.2 Setup

• 8 test types of 2 queries each (the second more complex than
the first) are observed. The same queries are used in both
experiments. The test types shown in Table 1 highlight the
technical focus of each query they contain. The MIXED DATA

4

DuoSQL: A High-Level Query Language for Probabilistic Databases TScIT 43, July 4, 2025, Enschede, The Netherlands

Table 1. Reduction Summary: Manual vs High-level

Type CL % Chars % LoC % Prob Constr. #

1. SIMPLE 0% 0% 0% 0
2. JOIN + PROB 23% 40% 25% 22
3. MIXED DATA 50% 53% 55% 11
4. DISTINCT 64% 69% 73% 14
5. AGGREGATION 70% 80% 76% 35
6. COUNT(*) 75% 78% 76% 37
7. FILTERS 62% 66% 71% 25
8. LARGE 56% 62% 52% 36

Overall 50% 56% 54% 23
Overall excl. 1-2 63% 68% 67% 26

SIM
PL
E

JO
IN
+P
RO
B

MI
XE
D
DA
TA

DI
ST
IN
CT

AG
GR
EG
.

CO
UN
T(*
)

FIL
TE
RS

LA
RG
E

0

10

20

3
6.5

10
12.5

23.5
26

21
22.5

3
5 5 4.5

7 6.5
8

10Co
de

Li
ne
s

Manual High-level

Fig. 1. Code Lines (CL) Comparison: Manual vs High-level

SIM
PL
E

JO
IN
+P
RO
B

MI
XE
D
DA
TA

DI
ST
IN
CT

AG
GR
EG
.

CO
UN
T(*
)

FIL
TE
RS

LA
RG
E

0

500

1,000

158

355.5 370.5
307.5

779 811
719

1,032.5

157.5 214.5 173.5
96 152.5 178

248
388.5Ch

ar
ac
te
rs

Manual High-level

Fig. 2. Characters Comparison: Manual vs High-level

queries combine data from both certain (see Appendix C.2)
and uncertain tables (see Appendix C.1).

• The manual queries were written as short as possible. For
each of them, only one query (with subqueries when needed)
was used.

• There are summary tables with relative reduction data, shown
per experiment (for example, Table 1). The results are ex-
pressed as percentages for code lines (CL), character count,
and level of complexity (LoC), and as counts for probabilistic
constructs.

SIM
PL
E

JO
IN
+P
RO
B

MI
XE
D
DA
TA

DI
ST
IN
CT

AG
GR
EG
.

CO
UN
T(*
)

FIL
TE
RS

LA
RG
E

0

5

10

2

4

5.5 5.5

8.5

10.5

8.5

10.5

2
3 2.5

1.5 2 2.5 2.5

5

Le
ve
lo

fC
om

pl
ex
ity

Manual High-level

Fig. 3. Level of Complexity (LoC) Comparison: Manual vs High-level

SIM
PL
E

JO
IN
+P
RO
B

MI
XE
D
DA
TA

DI
ST
IN
CT

AG
GR
EG
.

CO
UN
T(*
)

FIL
TE
RS

LA
RG
E

0

5

10

15

20

0

11

5.5
7

17.5 18.5

12.5

18

0 0 0 0 0 0 0 0

Pr
ob
ab
ili
st
ic
Co

ns
tr
uc
ts

Manual High-level

Fig. 4. Probabilistic Constructs Comparison: Manual vs High-level

– The applied percentage measurement is based on the dif-
ference between the manual M and the high-level H or au-
tomatic A data, divided by the manual M and multiplied by
100 for any criterion: (M-H)/M*100 for Experiment 7.1 and
(M-A)/M*100 for Experiment 7.2. The result may be 0 or
negative, implying no reduction or additional overhead,
which will be observed in Experiment 7.2.

– The probabilistic constructs use summary counts instead of
percentages, since there are none in the high-level DuoSQL
queries (for instance, in Figure 4), as this is DuoSQL’s goal.

– The Overall rolls are calculated by taking the average of
all values within a column. The Overall excl. 1-2 takes all
rows except for the first and the second ones that contain
the simplest queries.

• Regarding the implementation, the only constraint is that all
compared test sets (e.g., Manual vs. Automatic, or Manual vs.
High-level) must share the same test types (also referred to
as "query types") and number of queries per type.

6.2 Setup for Experiment 7.3
6.2.1 Metrics

• Limit: This metric addresses data volume. It shows the num-
ber of queried rows in the LIMIT clause in the innermost

5

TScIT 43, July 4, 2025, Enschede, The Netherlands Martin Demirev

Table 2. Reduction Summary: Manual vs Automatic

Type CL % Chars % LoC % Prob Constr. #

1. SIMPLE -167% -115% -50% 0
2. JOIN + PROB -100% -71% -50% 3
3. MIXED DATA -15% -25% 9% 1
4. DISTINCT -16% -46% 0% 0
5. AGGREGATION -21% -24% -12% 0
6. COUNT(*) -8% -17% 0% 2
7. FILTERS -10% -16% 0% 2
8. LARGE -9% -9% 0% 2

Overall -43% -40% -13% 1
Overall excl. 1-2 -13% -23% -1% 1

SIM
PL
E

JO
IN
+P
RO
B

MI
XE
D
DA
TA

DI
ST
IN
CT

AG
GR
EG
.

CO
UN
T(*
)

FIL
TE
RS

LA
RG
E

0

10

20

30

3
6.5

10
12.5

23.5
26

21 22.5

8

13 11.5
14.5

28.5 28

23 24.5

Co
de

Li
ne
s

Manual Automatic

Fig. 5. Code Lines (CL) Comparison: Manual vs Automatic

subquery of the complex query. Appendix E shows a complex
query. However, in this example, the LIMIT clause is in the
main query, whereas for Experiment 7.3, the LIMIT clause is
placed in the innermost subquery.

• Tables Joined: The count of queried tables in the innermost
subquery of the complex query. In this experiment, each query
involves one to four joined tables to address complexity.

• Execution Time (sec): Measures the time in seconds from
sending the query to PostgreSQL to retrieving a result.

6.2.2 Setup

To evaluate the runtime performance of DuoSQL, we compared the
execution times of 4 automatically translated queries against 4 of
their manual equivalents. Each query is of type COUNT(*) (with 1
table), Aggregation (with 2 tables), Filter (with 3 tables), or Large
(with 4 tables), following almost the same format of the four most
complex query types shown in Appendix F. We executed each query
using LIMIT values of 5, 10, and stopped at 20, as the execution time
increased significantly and took too long to measure after LIMIT
20.

7 RESULTS

7.1 High-level Technicality Reduction
This experiment compares the manual DuBio SQL queries with
DuoSQL queries. The goal is to quantify the reduction of technical

SIM
PL
E

JO
IN
+P
RO
B

MI
XE
D
DA
TA

DI
ST
IN
CT

AG
GR
EG
.

CO
UN
T(*
)

FIL
TE
RS

LA
RG
E

0

500

1,000

158

355.5 370.5 307.5

779 811
719

1,032.5

339.5

609
462 449

966 952
834.5

1,121.5

Ch
ar
ac
te
rs

Manual Automatic

Fig. 6. Characters Comparison: Manual vs Automatic

SIM
PL
E

JO
IN
+P
RO
B

MI
XE
D
DA
TA

DI
ST
IN
CT

AG
GR
EG
.

CO
UN
T(*
)

FIL
TE
RS

LA
RG
E

0

5

10

2

4

5.5 5.5

8.5

10.5

8.5

10.5

3

6
5 5.5

9.5
10.5

8.5

10.5

Le
ve
lo

fC
om

pl
ex
ity

Manual Automatic

Fig. 7. Level of Complexity (LoC) Comparison: Manual vs Automatic

SIM
PL
E

JO
IN
+P
RO
B

MI
XE
D
DA
TA

DI
ST
IN
CT

AG
GR
EG
.

CO
UN
T(*
)

FIL
TE
RS

LA
RG
E

0

5

10

15

20

0

11

5.5
7

17.5 18.5

12.5

18

0

9.5

5
7

17.5 17.5

11.5

17

Pr
ob
ab
ili
st
ic
Co

ns
tr
uc
ts

Manual Automatic

Fig. 8. Probabilistic Constructs Comparison: Manual vs Automatic

burden, measured in terms of code lines (CL), character count, level
of complexity (LoC), and probabilistic constructs count.

The bar charts in Figures 1, 2, 3, and 4 visualize the comparative
metrics for each query type. As expected, the results of the first
two simplest query types do not differ much. However, as queries
become more complex and technical, manual results surge, reach-
ing approximately three times the high-level measurements. As
we mentioned earlier, DuoSQL is designed to abstract low-level

6

DuoSQL: A High-Level Query Language for Probabilistic Databases TScIT 43, July 4, 2025, Enschede, The Netherlands

(probabilistic) structures, explaining all the 0 measurements for the
probabilistic constructs in Figure 4.

On average, DuoSQL reduces code lines by 50%, character count
by 56%, complexity by 54%, and probabilistic constructs by an aver-
age count of 23. It can be observed that the more complex the query
becomes, the higher the reduction is. Simple queries, points 1 and
2 in Table 1, showcase minimal reduction, implying that DuoSQL
variants are directly in valid DuBio format and as short as possible;
thus, they are taken literally in the manually translated queries.
Furthermore, when we exclude these basic cases, the reduction

reaches 67% on average for the three percentage criteria, as evalu-
ated from the bar charts earlier. Hence, these measurements demon-
strate DuoSQL’s capabilities in offering more effortless probabilistic
data management compared to writing manual queries.

7.2 Automatic Translation Overhead
This experiment highlights the syntactic overhead introduced by the
translation logic. To assess the amount of generated overhead by the
algorithm, we compare manual DuBio queries with automatically
generated ones.
Figures 5, 6, 7, and 8 illustrate the results of this experiment.

We can observe that manual queries perform better in keeping
lower code lines and character counts. Furthermore, the LoC and
the probabilistic construct measurements display fluctuations from
both sides with simpler queries, but equalize with lengthier and
more complex queries.
Table 2 shows the summary with relative values. The negative

values indicate negative reduction, in other words, overhead gen-
eration. Although automatic translations introduce code lines and
characters of 40% more on average, they become almost similar in
length to manual queries as they become more complex. On the
other hand, the automatic level of complexity is much closer to
the manual’s, differing only by 13% and averaging to 0%-1% if we
exclude the first 2 simple test types.
As mentioned in Section 6.1.2, the aim when creating manual

querieswas tomake them as short as possible. However, shorter code
does not always imply improved clarity and reduced complexity. By
comparing a manual alternative, shown in Appendix E, of the last
query in Appendix F, we can argue that the manually written code
is more cluttered and less readable because it is more nested and
not as clear as the automatically translated code which provides
more modularity using dedicated views.

7.3 Runtime Performance Evaluation
Table 3 presents all measured execution times. We can observe that
for most configurations, automatic queries perform similarly to
manual ones, with only marginal differences. A notable exception is
the aggregation, where both manual and automatic queries exhibit
a large jump in execution time at LIMIT = 20. This suggests that
data volume, rather than translation, is the primary contributor to
execution time.
Furthermore, the surge is likely based on the number of joins.

Since the queries with 3 and 4 tables connect only on the chosen
overlapping fields, having 2 and 3 ON conditions, respectively, leads
to fewer matching rows. However, the aggregation has 2 tables, with

Table 3. Performance Testing Results: Manual vs Automatic

Type Tables Joined Limit Execution Time (sec)

Manual COUNT(*) 1 5 3.1062
Manual Aggregation 2 5 0.0472
Manual Filters 3 5 0.0442
Manual Large 4 5 0.0431

Auto COUNT(*) 1 5 4.1126
Auto Aggregation 2 5 0.0491
Auto Filters 3 5 0.0456
Auto Large 4 5 0.0458

Manual COUNT(*) 1 10 70.4552
Manual Aggregation 2 10 0.4706
Manual Filters 3 10 0.0914
Manual Large 4 10 0.0441

Auto COUNT(*) 1 10 67.7769
Auto Aggregation 2 10 0.2345
Auto Filters 3 10 0.0750
Auto Large 4 10 0.0521

Manual COUNT(*) 1 20 69.3214
Manual Aggregation 2 20 413.9993
Manual Filters 3 20 0.0964
Manual Large 4 20 0.0509

Auto COUNT(*) 1 20 65.4577
Auto Aggregation 2 20 413.7770
Auto Filters 3 20 0.0889
Auto Large 4 20 0.0565

only 1 ON condition, implying easier pairing and more rows. For
COUNT(*), although it involves just one table, the complex structure
of possible worlds means the sentence computations are more
involved.

It should be noted that DuBio applies internal query optimizations,
which may have influenced these results. Additionally, due to long
runtimes and time constraints, we could not run the planned tests
with LIMIT = 50 and LIMIT = 100.

This evaluation demonstrates that the translation algorithm in-
troduces negligible to no performance overhead.

8 ANSWERING THE RESEARCH QUESTIONS
RQ1: High-Level Design for Usability and Expressiveness. DuoSQL

was successfully designed to preserve the expressiveness of DuBio
and offer a more concise and user-friendly query interface. DuoSQL
supports all core probabilistic features and uses natural SQL-style
syntax. The translation process is fully automated and produces
executable DuBio SQL without requiring manual intervention. This
shows that expressiveness is preserved while usability is signifi-
cantly improved.

RQ2: Reduction in Query Technicality. As observed in Section 7.1,
DuoSQL provides a significant reduction in technical complexity
compared to manually written queries in DuBio SQL. The reduction
increases as the queries become more complex, proving DuoSQL’s
capabilities in simplifying sophisticated query logic. These results
provide clear evidence that DuoSQL reduces query technicality.

RQ3: Translation Overhead. As described in Section 7.2, automatic
translation from DuoSQL to DuBio SQL introduces some syntactic

7

TScIT 43, July 4, 2025, Enschede, The Netherlands Martin Demirev

overhead due to additional view definitions, explicit aliasing, and
modularization. This overhead results in approximately 40% more
code lines and characters on average in simpler queries. However, as
query complexity increases, this difference decreases substantially.
The level of complexity remains within a small margin on average
and converges to (almost) zero in more complex queries. The over-
head is thus considered acceptable, as it trades minor verbosity for
a more structured and explainable query format. Therefore, while
overhead exists, it does not compromise clarity or correctness.

RQ4: Performance Evaluation. In all experiments, DuoSQL transla-
tions perform similarly to manual DuBio SQL. Execution time scales
primarily with complexity and data size, rather than with the use
of automatic translation.

9 CONCLUSION
This research introduced the user-friendlyDuoSQL, a domain-specific
query language, and a corresponding compiler algorithm that can
improve the usability of probabilistic databases. By abstracting away
the low-level structures of DuBio, DuoSQL serves users in writing
queries over uncertain data without requiring deep knowledge of
probabilistic semantics or internal constructs.
Through a series of experiments, the DuoSQL language demon-

strated substantial technical simplification, reducing verbosity and
complexity in comparison to manually written DuBio SQL. At the
same time, the compiler algorithm preserves semantic correctness
and modularity, while introducing only minor syntactic overhead,
which does not negatively impact performance. The translation
process was formalized into a generic and reusable algorithm that
can be embedded in any language with PostgreSQL and DuBio
connectivity.
Together, these contributions offer a step forward in making

uncertain data management accessible to a broader range of users.

10 FUTURE WORK AND DISCUSSION

10.1 Support for Advanced SQL Constructs
While DuoSQL currently supports a broad subset of SQL constructs,
several advanced features remain to be implemented or improved:

• Expression support in SELECT: The current SELECT clause
parsing relies on simple comma-separated fields and does not
support function-based expressions such as CONCAT(color,
breed). Refactoring the underlying regular expressions will
allow support for such expressions and other nested function
calls.

• User-defined views: Currently, DuoSQL-generated queries
rely on compiler-defined intermediate views (e.g., join_view,
agg_view). Supporting user-defined views could enhance
modularity and allow users to express reusable logic. The
implementation of this feature would be analogous to the
handling of ordinary queries.

• Subqueries: Full support for subqueries would likely be one
of the most complex challenges. However, introducing user-
defined views may reduce the need for inline subqueries and
serve as a practical alternative.

• Multiple aggregations: Currently, DuoSQL supports only
a single aggregate function per query. Support for multiple ag-
gregates (e.g., SELECT cat_name, COUNT(color), AVG(age))
would require complex nested logic. Perhaps a better alterna-
tive could be a rewriting strategy that separates aggregations
into individual views and joins the results afterwards by a
common (group-by) key.

• Combination of DISTINCT and aggregation: Supporting
queries that combine DISTINCT with aggregate functions is
another challenge that has not been addressed in this project.

• Data modification support: Supporting INSERT, DELETE,
UPDATE, and conditioning (incorporating new evidence) in
probabilistic tables, as well as the creation of probabilistic ta-
bles. These capabilities would broaden DuoSQL’s applicability
from querying to full data lifecycle management.

• Advanced probabilistic data integration tasks: Introduc-
ing direct commands for probabilistic deduplication of a table,
for joining or merging tables based on a similarity function,
and others would support common data integration tasks and
facilitate more intelligent data cleaning pipelines.

10.2 Built-in DuoSQL Execution Mode in DuBio
Currently, DuoSQL queries must be translated externally into DuBio
SQL before execution in PostgreSQL. A promising direction for
future development is to integrate DuoSQL natively into DuBio as
a preprocessing layer.
This could be implemented by introducing a new query clause,

such as MODE, that allows users to specify the intended syntax:

MODE DuoSQL;
-- or
MODE DuBio;

Under this model, the database engine would detect the mode
and automatically preprocess DuoSQL queries into their DuBio SQL
equivalents before execution. This would eliminate the need for
external translation scripts.

11 ACKNOWLEDGEMENTS
I would like to thank my supervisor, Prof.Dr.Ir. Maurice van Keulen,
for his guidance, commitment, and contagious excitement during
this research. I am also grateful to Mihail Stavrev for providing ideas
on more extensive real-world uncertain data cases.

12 AI STATEMENT
During this research project, I used ChatGPT to assist in trans-
forming notes and sentences to an academic style or to check their
correctness and provide feedback. I also used ChatGPT to find a
correct and efficient DuoSQL grammar extraction through code,
brainstorm programming principles and practices for the realization
of such a project, and to find and resolve bugs in my code.
All ideas, structures, and decisions in this research paper and

code were, at the bare minimum, noted in advance and carefully
redacted, reorganized, and reviewed after any AI suggestions and
before any incorporation into the project. I take full responsibility
for the content of this work.

8

DuoSQL: A High-Level Query Language for Probabilistic Databases TScIT 43, July 4, 2025, Enschede, The Netherlands

REFERENCES
[1] Maurizio Magnani and Danilo Montesi. 2010. A survey on uncertainty management

in data integration. Journal of Data and Information Quality (JDIQ) 2, 1 (2010), 5.
https://doi.org/10.1145/1805286.1805291

[2] Maurice van Keulen. 2018. Probabilistic data integration. In Encyclopedia of Big
Data Technologies, Sherif Sakr and Albert Zomaya (Eds.). Springer. https://doi.org/
10.1007/978-3-319-63962-8_18-1

[3] Nilesh Dalvi, Christopher Ré, and Dan Suciu. 2009. Probabilistic databases: Dia-
monds in the dirt. Communications of the ACM 52, 7 (2009), 86–94. https://doi.org/
10.1145/1538788.1538810

[4] Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu. 2008. Fast
and simple relational processing of uncertain data. In Proceedings of the IEEE 24th
International Conference on Data Engineering (ICDE). IEEE. https://doi.org/10.1109/
ICDE.2008.4497507

[5] Subi Arumugam, Fei Xu, Ravi Jampani, Christopher Jermaine, Luis L. Perez, and
Peter J. Haas. 2010. MCDB-R: Risk analysis in the database. Proceedings of the VLDB
Endowment 3, 1–2 (2010), 782–793. https://doi.org/10.14778/1920841.1920941

[6] Jennifer Widom. 2006. Trio: A System for Data, Uncertainty, and Lineage. In
Managing and Mining Uncertain Data, Charu C. Aggarwal (Ed.). Springer, 1–35.
https://doi.org/10.1007/978-0-387-09690-2_5

[7] Maurice van Keulen. DuBio Wiki. https://github.com/utwente-db/DuBio/wiki
Accessed: 10-05-2025

[8] The PostgreSQL Global Development Group. PostgreSQL. https://www.postgresql.
org/about/
Accessed: 16-06-2025

[9] The PostgreSQL Global Development Group. PostgreSQL Documentation. SELECT
Synopsis. https://www.postgresql.org/docs/current/sql-select.html
Accessed: 16-06-2025

[10] Martin Demirev. DuoSQL. https://github.com/DemirevMartin/DuoSQL
Accessed: 22-06-2025

[11] Jochem Groot Roessink. 2021. inSQeLto: a Query Language for Probabilistic
Databases. In 35th Twente Student Conference on IT, University of Twente. https:
//essay.utwente.nl/86906/

[12] Python Software Foundation. Python Programming Language. https://www.
python.org/.
Accessed: 10-05-2025

9

https://doi.org/10.1145/1805286.1805291
https://doi.org/10.1007/978-3-319-63962-8_18-1
https://doi.org/10.1007/978-3-319-63962-8_18-1
https://doi.org/10.1145/1538788.1538810
https://doi.org/10.1145/1538788.1538810
https://doi.org/10.1109/ICDE.2008.4497507
https://doi.org/10.1109/ICDE.2008.4497507
https://doi.org/10.14778/1920841.1920941
https://doi.org/10.1007/978-0-387-09690-2_5
https://github.com/utwente-db/DuBio/wiki
https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://www.postgresql.org/docs/current/sql-select.html
https://github.com/DemirevMartin/DuoSQL
https://essay.utwente.nl/86906/
https://essay.utwente.nl/86906/
https://www.python.org/
https://www.python.org/

TScIT 43, July 4, 2025, Enschede, The Netherlands Martin Demirev

APPENDIX

A SEMANTIC DUPLICATES EXAMPLE [2]

B PROBABILISTIC QUERY RESULT

companion witness color breed probability _sentence
henry cathy white persian 1.0000 Bdd((w3=1 & p3=1))
frank alice gray tabby 0.2500 Bdd((w1=2 & p1=2))
frank alice white siamese 0.2500 Bdd((w1=1 & p1=1))
grace ben black mainecoon 0.2800 Bdd((w2=1 & p2=1))
grace ben gray mainecoon 0.1800 Bdd((w2=2 & p2=2))

C TABLE DESIGNS

C.1 Uncertain Tables
This section shows the design of the 4 uncertain tables. Their struc-
tures are almost identical except for one field - the person in dif-
ferent scenarios. The { } notation matches the tables with their
corresponding field name - witnessed with witness, plays with
companion, cares with caretaker, owns with owner.

CREATE TABLE { witnessed | plays | cares | owns } (
id integer,
{ witness | companion | caretaker | owner } text,
cat_name text,
breed text,
color text,
age integer,
_sentence Bdd

);

C.2 Certain Table

CREATE TABLE profile_certain (
cat_id integer,
cat_name text

);

D AGGREGATION
This section presents the underlying DuBio logic for performing
aggregation queries over uncertain data using BDDs. It includes the
custom-defined aggregate functions, standard aggregation queries
with GROUP BY, support for COUNT(*), and distinct value computa-
tion.

D.1 DuBio Helper Functions

CREATE or REPLACE FUNCTION prob_Bdd(a_s Bdd[], mask bit)
RETURNS Bdd
LANGUAGE plpgsql AS $$
DECLARE
result Bdd = Bdd('1');
mask_len integer = array_length(a_s, 1);
mask_start integer = length(mask) - mask_len - 1;
n_bdd Bdd;

BEGIN
FOR i IN 1 .. mask_len LOOP
IF get_bit(mask,mask_start+i) = 1 THEN
n_bdd = a_s[i];

ELSE
n_bdd = !a_s[i];

END IF;
result := result & n_bdd;

END LOOP;
RETURN result;

END;
$$;

CREATE or REPLACE FUNCTION prob_Bdd_count(a_b anyarray, mask bit)
RETURNS int
LANGUAGE plpgsql AS $$
DECLARE
result integer = 0;
mask_len integer = array_length(a_b, 1);
mask_start integer = length(mask) - mask_len - 1;

BEGIN
FOR i IN 1 .. mask_len LOOP
IF get_bit(mask,mask_start+i) = 1 THEN
result := result + 1;

END IF;
END LOOP;
RETURN result;

END;
$$;

D.2 DuBio AggregationQuery

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_view CASCADE;

CREATE OR REPLACE VIEW agg_view AS
SELECT cat_name, avg, agg_or(_sentence) AS _sentence
FROM (
SELECT cat_name, prob_Bdd_avg(arr,mask) AS avg, prob_Bdd(

arr_sentence,mask) AS _sentence, arr, arr_sentence, mask
FROM (
SELECT cat_name, arr, arr_sentence,
generate_series(0, (pow(2, array_length(arr_sentence,1))-1)::

bigint)::bit(64) AS mask
FROM (
SELECT cat_name, array_agg(age) arr, array_agg(_sentence)

arr_sentence
FROM (
SELECT cat_name, age, agg_or(_sentence) AS _sentence
FROM witnessed
GROUP BY cat_name, age

) AS first
GROUP BY cat_name

) AS second
) AS third

) AS forth
GROUP BY cat_name, avg;

CREATE OR REPLACE VIEW prob_view AS
SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS

probability
FROM agg_view v
JOIN _dict d ON d.name = 'cats_short';

SELECT cat_name, avg, probability, _sentence

10

DuoSQL: A High-Level Query Language for Probabilistic Databases TScIT 43, July 4, 2025, Enschede, The Netherlands

FROM prob_view
WHERE avg > 2
ORDER BY cat_name
LIMIT 10;

D.3 DuBio Aggregation All * Query

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_all_view CASCADE;

CREATE OR REPLACE VIEW agg_all_view AS
SELECT count_rows, agg_or(_sentence) AS _sentence
FROM (
SELECT prob_Bdd_count(arr,mask) AS count_rows, prob_Bdd(

arr_sentence,mask) AS _sentence, arr, arr_sentence, mask
FROM (
SELECT arr, arr_sentence,
generate_series(0, (pow(2, array_length(arr_sentence,1))-1)::

bigint)::bit(64) AS mask
FROM (
SELECT array_agg(cat_name) arr, array_agg(_sentence) AS

arr_sentence
FROM (
SELECT cat_name, agg_or(_sentence) AS _sentence
FROM witnessed
WHERE cat_name = 'max'
GROUP BY cat_name

) AS first
GROUP BY TRUE

) AS second
) AS third

) AS forth
GROUP BY count_rows;

CREATE OR REPLACE VIEW prob_view AS
SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS

probability
FROM agg_all_view v
JOIN _dict d ON d.name = 'cats_short';

SELECT count_rows, probability, _sentence
FROM prob_view
WHERE probability > 0 AND count_rows > 0;

D.4 DuBio DISTINCTQuery

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS join_view CASCADE;

CREATE OR REPLACE VIEW join_view AS
SELECT color, agg_or(plays._sentence) AS _sentence
FROM plays
GROUP BY color;

CREATE OR REPLACE VIEW prob_view AS
SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS

probability
FROM join_view v
JOIN _dict d ON d.name = 'cats_short';

SELECT color
FROM prob_view
WHERE probability > 0.5
ORDER BY color;

E MANUAL QUERY EXAMPLE
The given query is the manual alternative to the last query in Ap-
pendix F.
SELECT witness, companion, caretaker, owner, cat_name, color_count,

probability, _sentence
FROM (
SELECT witness, companion, caretaker, owner, cat_name, color_count,

round(prob(d.dict, _sentence)::numeric, 4) AS probability,
_sentence

FROM (
SELECT witness, companion, caretaker, owner, cat_name,

color_count, agg_or(_sentence) AS _sentence
FROM (
SELECT witness, companion, caretaker, owner, cat_name,

prob_Bdd_count(arr,mask) AS color_count, prob_Bdd(
arr_sentence,mask) AS _sentence, arr, arr_sentence, mask

FROM (
SELECT witness, companion, caretaker, owner, cat_name, arr,

arr_sentence, generate_series(0,(pow(2,array_length(
arr_sentence,1))-1)::bigint)::bit(64) AS mask

FROM (
SELECT witness, companion, caretaker, owner, cat_name,

array_agg(color) arr, array_agg(_sentence)
arr_sentence

FROM (
SELECT w.witness, p.companion, c.caretaker, o.owner, w.

cat_name, w.color, w._sentence & p._sentence & c.
_sentence & o._sentence AS _sentence

FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name
JOIN cares c ON w.cat_name = c.cat_name
JOIN owns o ON w.cat_name = o.cat_name
WHERE w.cat_name = 'max'

) AS first
GROUP BY witness, companion, caretaker, owner, cat_name

) AS second
) AS third

) AS forth
GROUP BY witness, companion, caretaker, owner, cat_name,

color_count
) AS fifth
JOIN _dict d ON d.name = 'cats_short'

) AS sixth
WHERE color_count > 0 AND probability > 0
ORDER BY witness DESC, probability ASC
LIMIT 10;

11

TScIT 43, July 4, 2025, Enschede, The Netherlands Martin Demirev

F TRANSLATION MAPPING OF DUOSQL TO DUBIO SQL
This section shows 1 query for each test type. There are comments, noting the test name and number, at the beginning of every DuoSQL
query.

DuoSQL Query Translated DuBio SQL

-- 1. Simple Query
SELECT p.companion, w.witness, w.cat_name, w.color,

w.breed, w.age
FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name AND w.color

= p.color

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS join_view CASCADE;

CREATE OR REPLACE VIEW join_view AS
SELECT p.companion, w.witness, w.cat_name, w.color, w.breed, w.age
FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name AND w.color = p.color;

SELECT companion, witness, cat_name, color, breed, age
FROM join_view;

-- 2. JOIN + Probability
SELECT w.witness, p.companion AS player, c.caretaker

, o.owner, w.cat_name
FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name
JOIN cares c ON w.cat_name = c.cat_name
JOIN owns o ON w.cat_name = o.cat_name
SHOW SENTENCE, PROBABILITY

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS join_view CASCADE;

CREATE OR REPLACE VIEW join_view AS
SELECT w.witness, p.companion AS player, c.caretaker, o.owner, w.cat_name, w._sentence

& p._sentence & c._sentence & o._sentence AS _sentence
FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name
JOIN cares c ON w.cat_name = c.cat_name
JOIN owns o ON w.cat_name = o.cat_name;

CREATE OR REPLACE VIEW prob_view AS
SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM join_view v
JOIN _dict d ON d.name = 'cats_short';

SELECT witness, player, caretaker, owner, cat_name, probability, _sentence
FROM prob_view;

-- 3. Mixed Data
SELECT c.caretaker, pc.cat_id, c.cat_name, c.breed,

c.age
FROM cares c
JOIN profile_certain pc ON c.cat_name = pc.cat_name
JOIN owns o ON c.cat_name = o.cat_name
SHOW SENTENCE;

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS join_view CASCADE;

CREATE OR REPLACE VIEW join_view AS
SELECT c.caretaker, pc.cat_id, c.cat_name, c.breed, c.age, c._sentence & o._sentence AS

_sentence
FROM cares c
JOIN profile_certain pc ON c.cat_name = pc.cat_name
JOIN owns o ON c.cat_name = o.cat_name;

SELECT caretaker, cat_id, cat_name, breed, age, _sentence
FROM join_view;

12

DuoSQL: A High-Level Query Language for Probabilistic Databases TScIT 43, July 4, 2025, Enschede, The Netherlands

DuoSQL Query Translated DuBio SQL

-- 4. DISTINCT
SELECT DISTINCT p.age
FROM plays p
JOIN witnessed w ON w.cat_name = p.cat_name
HAVING probability > 0.5
ORDER BY p.age;

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS join_view CASCADE;

CREATE OR REPLACE VIEW join_view AS
SELECT p.age, agg_or(p._sentence & w._sentence) AS _sentence
FROM plays p
JOIN witnessed w ON w.cat_name = p.cat_name
GROUP BY p.age;

CREATE OR REPLACE VIEW prob_view AS
SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM join_view v
JOIN _dict d ON d.name = 'cats_short';

SELECT age
FROM prob_view
WHERE probability > 0.5
ORDER BY age;

-- 5. Aggregation
SELECT w.cat_name, count(companion)
FROM plays p
JOIN witnessed w ON w.cat_name = p.cat_name
WHERE w.color = p.color
GROUP BY w.cat_name
ORDER BY w.cat_name
SHOW SENTENCE, PROBABILITY

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_view CASCADE;

CREATE OR REPLACE VIEW agg_view AS
SELECT cat_name, count, agg_or(_sentence) AS _sentence
FROM (
SELECT cat_name, prob_Bdd_count(arr,mask) AS count, prob_Bdd(arr_sentence,mask) AS

_sentence, arr, arr_sentence, mask
FROM (
SELECT cat_name, arr, arr_sentence, generate_series(0,(pow(2,array_length(arr_sentence

,1))-1)::bigint)::bit(64) AS mask
FROM (
SELECT cat_name, array_agg(companion) arr, array_agg(_sentence) arr_sentence
FROM (
SELECT w.cat_name, companion, p._sentence & w._sentence AS _sentence
FROM plays p
JOIN witnessed w ON w.cat_name = p.cat_name
WHERE w.color = p.color

) AS first
GROUP BY cat_name

) AS second
) AS third

) AS forth
GROUP BY cat_name, count;

CREATE OR REPLACE VIEW prob_view AS
SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM agg_view v
JOIN _dict d ON d.name = 'cats_short';

SELECT cat_name, count, probability, _sentence
FROM prob_view
ORDER BY cat_name;

13

TScIT 43, July 4, 2025, Enschede, The Netherlands Martin Demirev

DuoSQL Query Translated DuBio SQL

-- 6. COUNT(*)
SELECT w.cat_name, COUNT(*) as

count_rows
FROM witnessed w
JOIN plays p ON w.cat_name = p.

cat_name
WHERE p.color IN ('gray', 'black')
GROUP BY w.cat_name
HAVING count_rows > 0
SHOW PROBABILITY

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_all_view CASCADE;

CREATE OR REPLACE VIEW agg_all_view AS
SELECT count_rows, agg_or(_sentence) AS _sentence
FROM (
SELECT prob_Bdd_count(arr,mask) AS count_rows, prob_Bdd(arr_sentence,mask) AS _sentence, arr,

arr_sentence, mask
FROM (
SELECT arr, arr_sentence, generate_series(0,(pow(2,array_length(arr_sentence,1))-1)::bigint)::bit

(64) AS mask
FROM (
SELECT array_agg(cat_name) arr, array_agg(_sentence) AS arr_sentence
FROM (
SELECT w.cat_name, w._sentence & p._sentence AS _sentence
FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name
WHERE p.color IN ('gray', 'black')

) AS first
GROUP BY TRUE

) AS second
) AS third

) AS forth
GROUP BY count_rows;

CREATE OR REPLACE VIEW prob_view AS
SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM agg_all_view v
JOIN _dict d ON d.name = 'cats_short';

SELECT count_rows, probability, _sentence
FROM prob_view
WHERE count_rows > 0;

-- 7. Filters
SELECT cat_name, COUNT(color)
FROM witnessed
WHERE color IN ('white', 'black')
GROUP BY cat_name
HAVING COUNT(color) > 0 AND

probability > 0
ORDER BY probability ASC
LIMIT 10
SHOW SENTENCE, PROBABILITY

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_view CASCADE;

CREATE OR REPLACE VIEW agg_view AS
SELECT cat_name, COUNT, agg_or(_sentence) AS _sentence
FROM (
SELECT cat_name, prob_Bdd_count(arr,mask) AS COUNT, prob_Bdd(arr_sentence,mask) AS _sentence, arr,

arr_sentence, mask
FROM (
SELECT cat_name, arr, arr_sentence, generate_series(0,(pow(2,array_length(arr_sentence,1))-1)::

bigint)::bit(64) AS mask
FROM (
SELECT cat_name, array_agg(color) arr, array_agg(_sentence) arr_sentence
FROM (
SELECT cat_name, color, agg_or(_sentence) AS _sentence
FROM witnessed
WHERE color IN ('white', 'black')
GROUP BY cat_name, color

) AS first
GROUP BY cat_name

) AS second
) AS third

) AS forth
GROUP BY cat_name, COUNT;

CREATE OR REPLACE VIEW prob_view AS
SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM agg_view v
JOIN _dict d ON d.name = 'cats_short';

SELECT cat_name, COUNT, probability, _sentence
FROM prob_view
WHERE COUNT > 0 AND probability > 0
ORDER BY probability ASC
LIMIT 10;

14

DuoSQL: A High-Level Query Language for Probabilistic Databases TScIT 43, July 4, 2025, Enschede, The Netherlands

DuoSQL Query Translated DuBio SQL

-- 8. Large Query
SELECT w.witness, p.companion AS player, c.

caretaker, o.owner, count(w.color) AS
color_count

FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name
JOIN cares c ON w.cat_name = c.cat_name
JOIN owns o ON w.cat_name = o.cat_name
WHERE w.cat_name = 'max'
GROUP BY w.witness, p.companion, c.

caretaker, o.owner, w.cat_name
HAVING probability > 0 AND color_count > 0
ORDER BY w.witness DESC, probability ASC
LIMIT 10
SHOW SENTENCE, PROBABILITY

DROP VIEW IF EXISTS prob_view CASCADE;
DROP VIEW IF EXISTS agg_view CASCADE;

CREATE OR REPLACE VIEW agg_view AS
SELECT witness, companion, caretaker, owner, cat_name, color_count, agg_or(_sentence) AS

_sentence
FROM (
SELECT witness, companion, caretaker, owner, cat_name, prob_Bdd_count(arr,mask) AS color_count

, prob_Bdd(arr_sentence,mask) AS _sentence, arr, arr_sentence, mask
FROM (
SELECT witness, companion, caretaker, owner, cat_name, arr, arr_sentence, generate_series

(0,(pow(2,array_length(arr_sentence,1))-1)::bigint)::bit(64) AS mask
FROM (
SELECT witness, companion, caretaker, owner, cat_name, array_agg(color) arr, array_agg(

_sentence) arr_sentence
FROM (
SELECT w.witness, p.companion, c.caretaker, o.owner, w.cat_name, w.color, w._sentence & p

._sentence & c._sentence & o._sentence AS _sentence
FROM witnessed w
JOIN plays p ON w.cat_name = p.cat_name
JOIN cares c ON w.cat_name = c.cat_name
JOIN owns o ON w.cat_name = o.cat_name
WHERE w.cat_name = 'max'

) AS first
GROUP BY witness, companion, caretaker, owner, cat_name

) AS second
) AS third

) AS forth
GROUP BY witness, companion, caretaker, owner, cat_name, color_count;

CREATE OR REPLACE VIEW prob_view AS
SELECT v.*, round(prob(d.dict, v._sentence)::numeric, 4) AS probability
FROM agg_view v
JOIN _dict d ON d.name = 'cats_short';

SELECT witness, companion, caretaker, owner, cat_name, color_count, probability, _sentence
FROM prob_view
WHERE probability > 0 AND color_count > 0
ORDER BY witness DESC, probability ASC
LIMIT 10;

15

	1 Introduction
	2 Problem Statement
	3 Related Work
	4 The Algorithm
	5 The Language
	5.1 Language Grammar
	5.2 Example DuoSQL Query
	5.3 Description
	5.4 Mapping
	5.5 DuBio Aggregation Functions
	5.6 DuBio Aggregation Queries
	5.7 DuBio COUNT(*) Aggregation Queries
	5.8 DuBio DISTINCT Queries

	6 Experimental Setup
	6.1 Setup for Experiments 7.1 and 7.2
	6.2 Setup for Experiment 7.3

	7 Results
	7.1 High-level Technicality Reduction
	7.2 Automatic Translation Overhead
	7.3 Runtime Performance Evaluation

	8 Answering the Research Questions
	9 Conclusion
	10 Future Work and Discussion
	10.1 Support for Advanced SQL Constructs
	10.2 Built-in DuoSQL Execution Mode in DuBio

	11 Acknowledgements
	12 AI Statement
	References
	A Semantic Duplicates Example keulen2018probabilistic
	B Probabilistic Query Result
	C Table Designs
	C.1 Uncertain Tables
	C.2 Certain Table

	D Aggregation
	D.1 DuBio Helper Functions
	D.2 DuBio Aggregation Query
	D.3 DuBio Aggregation All * Query
	D.4 DuBio DISTINCT Query

	E Manual Query Example
	F Translation Mapping of DuoSQL to DuBio SQL

