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Garbage collection is an important component of modern programming

languages. This paper explores the design trade-o�s of di�erent garbage

collection strategies such as mark-sweep and reference counting through

a comparative analysis of the garbage collectors of Go, Java, and Python.

Building on this research, a minimal, statically typed programming language

with a C++ mark-sweep garbage collector is implemented. The language is

compiled to LLVM intermediate representation using a front end written in

Go, using TinyGo’s LLVM bindings.
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1 INTRODUCTION

E�cient memory management is key to writing performant applica-

tions. Rust uses this fact by handing control of memorymanagement

to the programmer using its borrow checker, potentially increas-

ing application performance but also making the language more

di�cult to use [7]. Many popular programming languages instead

make use of a garbage collector (often referred to hereafter as GC),

which abstracts away memory management by automatically free-

ing unused objects in memory. Such languages include JavaScript,

Python, Java and Go, among others. This allows the programmer

to spend more time on their own application rather than mem-

ory management. However, there are many di�erent approaches to

implementing garbage collection and each comes with its own trade-

o�s in terms of performance, pause time (commonly referred to as

"stop-the-world"), memory overhead, and complexity. [17]

There are several garbage collection methods, most importantly

mark-sweep (tracing) and reference counting. In mark-sweep, the

program is halted while the GC work is performed. In the �rst

stage, mark, the GC starts from a set of roots, which are global and

local variables and function parameters. All objects reachable by

following pointers from the roots are recursively marked. In the

sweep stage, the heap is scanned and all objects that are not marked

are freed. On the other hand, a reference counting GC keeps track of

the number of references to an object. If an object’s counter becomes

zero, the object is freed. This way, memory is freed as soon as an

object becomes unused. [17]

These methods have shortcomings and advantages that need to

be considered when designing a GC. This paper identi�es these

trade-o�s.

Also in this paper, a minimal garbage-collected programming lan-

guage is implemented. To start, a simple custom language compiler
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(front end) is written in Go that compiles the language into LLVM

intermediate representation (IR). The IR is then handed to LLVM

which can provide optimization passes and compiles it to the native

code of any of the supported back ends such as x86. [11] The front

end supports basic language features like conditionals and variables.

Knowledge from the previous GC research part helps design the GC

implemented in the language. The Git repository for this front end

can be found on GitHub [20].

This leads to this paper’s research goals:

• RG1: Identifying trade-o�s between garbage collector imple-

mentations in various languages. The languages assessed here

are Go, Java and Python, as they cover a variety of GC features

and re�ect di�erent use cases which grant an additional insight

into those GC features.

• RG2: Creating a custom LLVM front end and implementing

a minimal garbage collector. Analysis of existing GCs in the

previous research goal helps decide the most simple way to

implement a working GCwhile still considering trade-o�s when

sacri�cing performance for simplicity.

2 RELATED WORK

This section will brie�y show related work in LLVM GCs and Go-

based LLVM front ends.

Go has its own compiler, a GCC compiler and also an LLVM compiler,

gollvm. However, the latter is still in development, does not have

any releases, and the language front end is written in C++, not in

Go. [8]

The 2022 master thesis by Ramberg [15] successfully used TinyGo’s

LLVM bindings to generate the LLVM IR. Another package was also

used, llir/llvm, but was later removed because it does not integrate

into the LLVM toolchain but rather only generates the IR. It has

better types, but is now unmaintained and they recommend using

TinyGo’s bindings [12].

Searching for ’tinygo.org/x/go-llvm language:"Go Module"’, the Go

import path used for TinyGo’s LLVM bindings combined with �l-

tering only for go.mod �les1, on GitHub, returns little results: 66

at time of writing. Most are forks of the TinyGo repository itself.

However, some results are similar to what this paper implements:

Candice[6] and Telia[18] are both compilers for custom languages

written in Go, but both do not feature a GC.

At the Go Conference 2017 Spring, an LLVM-based front end called

gocaml [16] was presented. This front end is a subset of the OCaml

language. The entire compiler is written in Go, except for the run-

time which is written in C. This is because the GC it uses is the

1go.mod is the �le that speci�es, among other things, the imports required by your
own module that are not part of the standard library.
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Boehm GC, a C mark-sweep GC [5]. Furthermore, gocaml uses the

o�cial Go LLVM bindings.

3 EXISTING GARBAGE COLLECTORS

To answer RG1, the GC implementations of Go, Java and Python will

be compared. The goal is to identify how di�erent language runtimes

approach GC, and the trade-o�s involved in terms of performance,

pause time, memory overhead, and complexity.

3.1 Go

Go’s GC is not speci�ed in the language speci�cation. It is up to the

language’s implementation to decide on a GC strategy.

The default Go compiler uses a tri-color mark-sweep GC that is

mostly concurrent. The tri-color marking runs concurrently in paral-

lel with the application and allows a write barrier to be implemented

that marks objects gray (to be scanned) when a pointer in the heap

is modi�ed during marking. This way, memory writes during the

scan are tracked by the GC and the scan is able to be performed

concurrently. [10] The aim of the GC is to make sure that applica-

tion pauses are as short as possible. Go is often used to write highly

concurrent applications such as web servers that expect low latency,

so it is designed to sacri�ce some throughput for lower latency by

running almost entirely concurrently. Only brief pauses are done

when necessary: to identify roots on the stack, and when marking is

complete. The sweep phase is also run concurrently. After sweeping,

the GC is turned o� until the next time it is run. [9]

The GC is non-moving: it does not copy memory [1]. There can be

heap fragmentation, but it is largely solved by using special heap

allocation methods detailed in the Go source code [3]:

The main allocator works in runs of pages. Small allocation

sizes (up to and including 32 kB) are rounded to one of about

70 size classes, each of which has its own free set of objects

of exactly that size. [...] Round the size up to one of the small

size classes and look in the corresponding mspan in this P’s

mcache. Scan the mspan’s free bitmap to �nd a free slot. If

there is a free slot, allocate it.

This helps keep the GC simpler and keep pause times low (no point-

ers need to be updated during a compacting phase), but can impact

memory usage.

A formula for target heap size is used to decide roughly how often

the GC will run. A compiler parameter GOGC is used to tune the GC.

It is a component of the target heap size formula:

Target heap size = Live heap + (Live heap + GC roots) ∗ăċăÿ/100

Clearly, a GOGC value of 100 will allow up to approximately twice

the current live heap size (size of objects with references to them)

before the GC should free memory. Doubling the GOGC doubles the

heap size overhead of the next target but decreases the amount of

times the GC is run, trading increased memory usage for less CPU

time.

3.2 Java

Since Java comes in di�erent distributions, this section will discuss

Oracle’s Java VM distribution. OpenJDK has a similar implementa-

tion, but only documentation from Oracle [13] will be used.

Java features four GC implementations: Serial, Parallel, G1, and ZGC,

all of which are generational and use a marking-based strategy. The

VM selects the best one for the hardware and operating system con-

�guration. G1 is selected by default on most con�gurations.

A generational GC performs its work incrementally in generations.

For example, G1 uses young and old generations. When an object

is allocated, it is allocated into a group of the youngest generation.

After surviving a GC cycle, it can be promoted to an older gener-

ation depending on internal and con�gurable parameters. Older

generations are scanned less often. Newer objects may be more

likely to need GC, while older, longer surviving objects do not. This

is called the weak generational hypothesis.

In addition to being generational, G1 is parallel, mostly concurrent

and performs heap compacting. It is designed to scale and provide a

balanced approach to garbage collection with small, uniform pauses

while still having high throughput. Most of the marking work is

done concurrently in parallel with the application that is being run,

however some stages like heap compacting (where object refer-

ences need to be updated) and memory reclaiming cause pauses.

G1 tries to keep these pauses short and uniform by doing the work

incrementally.

Concurrent marking and space reclamation of old generation re-

gions is only started once the old generation reaches a certain size:

the Initiating Heap Occupancy threshold. There are many parame-

ters for tuning the GC behaviour.

The newer ZGC is made to be more concurrent than G1, with sim-

ilar low pause times as Go’s GC. However, it is not the default

GC.

3.3 Python

Similar to Go, there is no o�cial language speci�cation for the

GC. The commonly used CPython compiler’s GC [2] will be dis-

cussed.

Python uses two garbage collection strategies at the same time:

reference counting and a cyclic GC. This is because the reference

counting strategy cannot resolve cycles, where a container object

contains a reference to itself. Most objects are still freed by ref-

erence counting however. It adds some overhead from managing

the counters and freeing the memory, but otherwise introduces no

pauses from running a GC function and on its own is cheaper than

traversing an object tree with mark-sweep.

To resolve cyclic references, a generational cyclic GC is also used.

The GC only handles container objects that can have cyclic refer-

ences, including lists, classes, and various other container objects.

It maintains a list of possibly cyclic objects and when the GC is run,

it performs multiple scanning passes to identify the unreachable ob-

jects. It resembles a mark-sweep GC, but uses the reference counter

�elds on objects to �nd unreachable objects instead. It maintains

2
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two lists: reachable and tentatively unreachable. By traversing all

objects in the reachable list, objects with no outside references are

moved to the tentatively unreachable list. Objects may be moved

back and forth in the two lists if an object is discovered that is reach-

able and references objects in the unreachable list. Objects that are

moved into the reachable list are again scanned. Once all objects

are scanned, the objects in the tentatively unreachable list can be

freed.

The cyclic GC is run when the number of allocations minus the

number of deallocations exceeds a con�gurable threshold. It is 700

by default. Since Python uses the global interpreter lock to only

execute bytecode on one thread at a time, the GC is not concurrent.

It blocks Python threads from executing.

3.4 Comparison

Go sacri�ces some memory e�ciency for speed by not using the

optimal but slower heap compacting to reduce heap fragmentation.

However, it makes the GC very concurrent as it has only a small

amount of very short pauses. Java’s default G1 GC works similarly

but has longer pauses to perform compacting. Python’s GC uses a

di�erent approach in the form of reference counting to attempt to

prevent pauses at all and provide a very simple GC system, but be-

cause of cyclic references becomes complicated and requires another

mark-sweep-like GC to prevent memory leaks.

Since mark-sweep does not have inherent issues, is widely used,

and can be extended to run concurrently, it is a good starting point

for garbage collection. However, it does have performance overhead

by taking away more CPU resources than plain reference counting

would.

The simplest form of a GC would be mark-sweep with no heap

compacting or concurrency. This means the GC will cause heap

fragmentation and always pause when it is run, but will reliably

collect unused objects.

4 LANGUAGE IMPLEMENTATION

The language compiler is written in Go. Go has good C integration,

which makes the bindings only a very small layer on top of the

LLVM C bindings. Most functions in the Go bindings directly call C

functions. As used in the work by Ramberg [15], the clearest choice

for Go LLVM bindings are TinyGo’s bindings. This is because the

o�cial LLVM bindings for Go were removed from the LLVM project

[14]. TinyGo’s bindings are a fork of the previously o�cial bindings

[19]. Another Go library llir/llvm exists, also used by Ramberg,

that provides better and more strict types for generating LLVM IR,

however that is now unmaintained and they also recommend using

TinyGo’s bindings [12].

The implementation consists of a lexer, a parser, and LLVM IR code

generation:

(1) The lexer is powered by the standard library text/scanner

package. This package reads the input token stream and han-

dles most complex tokenization: it handles identi�ers, strings,

comments, integers, and has options for �oats and characters.

When tokens are scanned, identi�ers are converted to keywords

if applicable but otherwise the scanner output is copied. The

lexer returns an array of tokens.

(2) The parser converts the array of tokens to an AST (Abstract

Syntax Tree). To better understand parsing and AST construc-

tion, a custom parser is implemented instead of using ANTLR

or yacc or another parser code generator. The parser is a pre-

dictive recursive descent parser. It bases its output only on the

current and next tokens, rather than backtracking, and uses

recursive functions based on the language grammar. Parsing

is done multiple times but appended to a single AST: �rst, for

garbage collection functions, then for standard linked functions,

and �nally for the program source code. This enables GC and

standard functions to already be accessible by the program that

is being compiled.

(3) Finally, the code generation is performed using the LLVM bind-

ings. The AST is walked depth-�rst to produce valid IR. This IR

is output to a �le which is then given as an input argument to

Clang++ (as the GC is written in C++) to link and compile the

binary.

4.1 Language design

As there is no speci�c goal for the syntax of the language, this

paper implements one that is easy and natural to read. You should

not require knowledge of the language to be able to understand

it. The language is statically typed. Keywords are not abbreviated

(function instead of func). There are no type aliases. The syntax

is inspired mostly by Go’s syntax, which in turn is C-like, at least in

style.

To support the GC, some features need to be implemented as a

language syntax feature or by the compiler:

• There must be a way to allocate memory on the heap. Some

languages decide stack or heap allocation automatically, while

some use a keyword such as new.

• The language must have the ability to call functions with argu-

ments.

• To call the GC’s functions, the language must support external

functions.

• Clang++ must be able to match function prototypes in order to

link external functions, therefore at least the types used by the

GC functions need to be able to be emitted by the compiler.

• The language must support pointers. For example, the program

roots need to be registered, which are pointers.

4.2 Comments

Comments are the same as in Go, which in turn are the same as in

C.

/ / S i ng l e − l i n e comment

u i n t 6 4 two = 2 / / Can be p l a c ed a t the end o f a

©→ l i n e

3



43rd Twente Student Conference on IT, July 4, 2025, Enschede, The Netherlands Lieuwe van den Berg

/ ∗ Mult i − l i n e comment

u i n t 6 4 two = 2 <− t h i s code i s not exe cu t ed

∗ /

4.3 Types

The following types are supported: int32, int64, uint64, string,

void. The void type is not strictly needed in the language, it is

used under the hood only and void is inferred from a missing func-

tion return type. However, it is available as a word and can be

used where appropriate. Strings are de�ned using double quotes

(") around the string. They automatically get null terminated. All

types can be de�ned as pointers by prepending a *, like *int32 and

**int32.

4.4 Expressions

Expressions produce a value. These are used any time a value is

expected and may be any combination of smaller expressions, such

as numbers, variables and function calls. The language supports ad-

dition (+), subtraction (-), multiplication (*), integer division (/), and

the remainder operation (%). Expressions wrapped in round brack-

ets are evaluated �rst before surrounding expressions. Otherwise,

normal mathematical order of operations is used.

Strings may be expressions but are not usable with mathematical

operators.

4.5 Equality

Two expressions can be compared for equality using a double =

operator. The boolean value that can be returned is an integer, 1 for

true and 0 for false. Equality is also an expression.

4 % 2 == 0 / / 1

5 % 2 == 0 / / 0

4.6 Variables

Variables are de�ned by starting a statement with a type, followed

by a variable name, an assignment operator (=) and an expres-

sion.

s t r i n g g r e e t i n g = " h i "

u i n t 6 4 two = 2

The language uses a stacked scope, which means variables can be

shadowed:

u i n t 6 4 two = 2

f un c t i o n main ( ) i n t 6 4 {

p r i n t f ( "% d \ n " , two ) / / 2

u i n t 6 4 two = 5

p r i n t f ( "% d \ n " , two ) / / 5

r e t u r n 0

}

4.6.1 Pointers. Addresses of variables can be obtained by prepend-

ing the & operator to its name. A pointer variable can be dereferenced

to get the value at the address that the pointer points to using the

* operator. Pointer types may point to other variables of a pointer

type.

i n t 6 4 two = 2

∗ i n t 3 2 p t r = &two

∗ ∗ i n t 3 2 doub l eP t r = &p t r

∗ ∗ ∗ i n t 3 2 t r i p l e P t r = &doub l eP t r

p r i n t f ( "% x \ n " , ∗ p t r ) / / 2

p r i n t f ( "% x \ n " , ∗ ∗ doub l eP t r ) / / 2

p r i n t f ( "% x \ n " , ∗ ∗ ∗ t r i p l e P t r ) / / 2

4.7 Structs

Custom struct types can be de�ned and used in place of regular

types. Structs �rst need to be de�ned, anonymous structs do not

exist. A struct is de�ned with the struct keyword followed by the

struct name. The �elds are then de�ned in the form of name type

separated by a comma.

s t r u c t Person {

Name s t r i n g ,

Age i n t 3 2

}

Once de�ned, a struct name can be used as a type.

A struct is instantiated as follows:

{ " dav id " , 2 5 }

No struct name or �eld names are required, this is inferred from the

context. For example, when creating a variable, the variable type is

the struct name. This gives the compiler the information it needs to

set the struct �elds.

Because of the way structs are implemented, it is not currently

possible to pass structs to functions.

A variable can be of type Person by using the struct’s name as the

type.

Person dav id = { " dav id " , 2 5 }

4.7.1 Field access. Values of �elds of an instance of a struct can be

accessed with a period, followed by the �eld name. Fields can not

be modi�ed this way, a new instance of the struct must be assigned

instead.

p r i n t f ( " He l l o %s (%d ) \ n " , dav id . Name , dav id . Age )

4.7.2 Example. This is an example of a full program combining the

previous elements.
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s t r u c t Person {

Name s t r i n g ,

Age i n t 3 2

}

f u n c t i o n main ( ) i n t 6 4 {

Person dav id = { " dav id " , 2 5 }

p r i n t f ( " He l l o %s (%d ) \ n " , dav id . Name , dav id .

©→ Age ) / / He l l o dav id ( 2 5 )

r e t u r n 0

}

4.8 Functions

Functions start with the keyword function followed by the function

name. Function parameters are comma separated in the form of name

type between the round brackets. The return type of the function is

given before the opening curly bracket andmay be omitted, in which

case the void type is inferred. The function body is then put between

curly brackets and is composed of statements.

f u n c t i o n add ( a i n t 6 4 , b i n t 6 4 ) i n t 6 4 {

r e t u r n a+b

}

The entry point for the program is a function called main. The exit

code for the program is the returned integer.

f u n c t i o n main ( ) u i n t 6 4 {

/ / S t a t emen t s

r e t u r n 0

}

Nested functions are syntactically allowed, but closures are not

supported. There is no access to any parent scope, only to the global

scope. If a global scope variable is shadowed, the nested function will

try to access the new variable from the parent scope. The compiler

does not currently support this.

4.8.1 Return. Functions must always end with a return statement,

even if the functions are of void type and even if all code paths

already have a return statement. There is no pass performed over

the AST to check if all paths return a value already, so the �nal

return statement might be unreachable.

4.8.2 Calling functions. Functions are called by name and then

listing all parameters between round brackets. A function call is a

statement and an expression and can be used as a parameter as long

as it returns a value.

p r i n t f ( " h e l l o ! 5+7=%d \ n " , add ( 5 , 7 ) ) / / h e l l o !

©→ 5+7=12

Variables are passed by value. The address operator can be used

to pass by reference. The value of a pointer variable is the address,

pointers are not automatically dereferenced based on the context

(e.g. for print statements).

4.8.3 External functions. External functions are functions not de-

�ned in the program itself, only the function prototype is given.

Clang++ will try to link the external function if it can �nd a function

(for example standard C functions) that matches the given proto-

type. The exact name, arguments and return type are important. A

function like printf can be linked this way.

e x t e r n a l f u n c t i o n p r i n t f ( fo rmat s t r i n g , a r g s

©→ . . . ) i n t 3 2

The ... type speci�es that the function is vararg (variable argu-

ments). format is a required parameter but after that any parameters

are allowed. Vararg arguments are named but do not have an un-

derlying type. They are not supported for use in functions and are

solely supposed to be used to link external functions that have a

vararg argument such as printf.

4.9 If-else conditions

Conditional logic is similar to any other language by using the if

and else keywords. However, a boolean type does not exist. Instead,

0 is used for false and any other integer value for true. The equality

operator (==) creates a 0 when the equality is false, and a 1 when the

equality is true, and can thus be used in if-statements. If an expres-

sion evaluates to 0, the body of the if statement is not evaluated

and instead an optional else statement will be evaluated. Like Go,

there are no brackets needed around the condition.

i n t 3 2 number = 5

i f number − ( number /2+ number / 2 ) {

p r i n t f ( " uneven \ n " )

} e l s e {

p r i n t f ( " even \ n " )

}

Else-statements can be chained directly into new if statements to

prevent deep nesting of if-else chains. There is no special keyword

for this, instead the else keyword is followed immediately by a

new if-statement.

i n t 6 4 number = 13

i f number % 3 == 0 {

p r i n t f ( " d i v i s i b l e by 3 \ n " )

} e l s e i f number % 3 == 1 {

p r i n t f ( " 1 too many ! \ n " ) / / 1 too many !

} e l s e {

p r i n t f ( " 1 too l i t t l e ! \ n " )

}
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5 GARBAGE COLLECTION

The garbage collector is implemented in C++. It is a very simple

mark-sweep collector, as per the conclusion of RG1. C++ is chosen

for being low level (fast and it has no GC) but still having advanced

data structures like maps and vectors.

The collector keeps a hash map of heap objects and a vector of root

pointers. Normally, languages add a small header to heap objects,

but for simplicity the map is used. This will add some overhead

for the hash map’s data structure and needing to access the value

through the map �rst rather than directly from memory. However,

its lookups are ċ (1) if there are no collisions, and should therefore

be fast enough for this minimal implementation.

In the mark stage, the root pointers are iterated over and the re-

spective entry in the heap object map is retrieved. The object is

marked, and based on its type information any struct �elds are re-

cursively marked. Otherwise, the address (without any �eld o�sets)

is recursively marked. In the sweep stage, the map of heap objects

is iterated over and any unmarked heap objects are deleted from

the map and their address freed.

5.1 GC interface

Various functions are exposed by the C++ code that are required

by the language code generation to implement the garbage collec-

tor.

5.1.1 gc_register_type. Registers a struct type (non-primitive, so

also arrays in case they are implemented in future work). Its param-

eters are the size in bytes to allocate on the heap, the number of

�elds the struct has and the �eld o�sets. It returns a pointer to a GC-

Type object. The language does not need to know about this object.

Only the pointer is used to later identify the type with gc_alloc

calls.

s t r u c t GCType {

u i n t 6 4 _ t s i z e _ b y t e s ;

u i n t 6 4 _ t num_ f i e l d s ;

u i n t 6 4 _ t ∗ f i e l d _ o f f s e t s ;

} ;

5.1.2 gc_alloc. Allocates memory on the heap. Its parameter is a

pointer to a GCType returned by gc_register_type and a boolean

is_pointer. The size passed to malloc is the size_bytes �eld of

the GCType that is passed. For non-struct values, 0 can be passed

as the type, in which case it 8 bytes will be allocated. The pointer

to the type �eld will also be a null pointer in this case. The is_-

pointer �eld is a quick way to identify pointers without making

explicit GCTypes for them as that is not supported. Similar types

for smaller byte sizes than 8 bytes are also not supported. It also

inserts a HeapObject value to the heap objects map, keyed by the

pointer returned by malloc.

s t r u c t HeapObject {

GCType ∗ type ;

boo l i s _ p o i n t e r ;

boo l marked ;

} ;

5.1.3 gc_add_root. Adds a new root to the vector of root pointers.

Its parameter is a pointer returned by gc_alloc. The root pointers

are global variables of a pointer type, local variables, and function

parameters.

5.1.4 gc_pop_roots. Removes roots. Since n amount of roots are

allocated in a function, n must also be popped from the roots vec-

tor. This call is inserted before the return statement of a func-

tion.

5.1.5 gc. Completes one mark-sweep cycle. A heuristic is added

to gc_alloc to run the garbage collection every 1000 calls. This is

arbitrary and in sophisticated languages is typically chosen based

on a formula or other metric. For example, Go’s target heap size or

Java’s Initiating Heap Occupancy.

5.2 Example with pointers

In the following example, a function returnTwo is created that

allocates a variable two. When the function returns, its roots (the

two variable) are popped. This means it is no longer reachable and

will be garbage collected. However, the return value, a pointer to

two, is stored in a variable called twoPointer. Now, two again has

a valid reference to it and will not be garbage collected. Running

the GC at this point will not free any heap objects.

Next, twoPointer is set to 0. Now two does not have any reference

to it and will be garbage collected.

f u n c t i o n returnTwo ( ) ∗ i n t 3 2 {

i n t 3 2 two = 2

r e t u r n &two

}

f u n c t i o n main ( ) i n t 6 4 {

∗ i n t 3 2 twoPo in t e r = returnTwo ( )

gc ( )

p r i n t f ( "% d \ n " , ∗ twoPo in t e r ) / / 2

twoPo in t e r = 0

gc ( )

r e t u r n 0

}

The program output is as follows. Lines starting with GC are emitted

from the GC. Comments are added with // but do not mean any-

thing in this textual console output. They are just for annotation

purposes.

GC : Root added 0 x5cb8b2945380 / / . . . 8 0 = two

6
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GC : Popping 1 roo t s , now : 1 / / returnTwo

©→ f u n c t i o n e x i t s

GC : Root added 0 x5cb8b2944eb0 / / . . . b0 =

©→ twoPo in t e r

GC : GC s t a r t i n g . Heap : 2 , r o o t s : 1

GC : 0 x5cb8b2945380 : 1 / / two i s found through

©→ twoPo in t e r and marked

GC : 0 x5cb8b2944eb0 : 1

GC : By te s f r e e d : 0

GC : GC done . Heap : 2

2 / / the p r i n t f c a l l

GC : GC s t a r t i n g . Heap : 2 , r o o t s : 1

GC : 0 x5cb8b2945380 : 0 / / two i s no l onge r marked

©→ as twoPo in t e r i s a n u l l p o i n t e r now

GC : 0 x5cb8b2944eb0 : 1

GC : By te s f r e e d : 8

GC : GC done . Heap : 1 / / 8 by t e s a r e f r e e d and 1

©→ o b j e c t remains on the heap , twoPo in t e r

The valgrind tool, used for memory leak detection, among other

things, indeed shows that only 8 bytes remain on the heap when

the program is done. This is because after main exits, there is not

another mark-sweep run and twoPointer remains on the heap. It is

cleared by the operating system.

i n use a t e x i t : 8 by t e s in 1 b l o c k s

6 DISCUSSION

The language currently has some drawbacks that need to be ad-

dressed in the future.

6.1 Type safety

Types are often not checked by the parser. There are two signi�cant

known type issues:

(1) Apart from some issues that are caught by the parser, the main

type checker is Clang++. This means most type errors in the

generated IR are found, but some can slip through, for example

with signed numbers. LLVM does not have unsigned integer

types. Instead, some operations have signed and unsigned ver-

sions, such as division and the remainder. Clang++ therefore

does not check for signed and unsigned mismatches.

(2) Pointers in LLVM are by default opaque as of version LLVM

15 and no option for typed pointers exists as of LLVM 17 [4].

This means LLVM does not carry information about underly-

ing types of pointer variables. Since the parser does not check

type correctness for assigning variables, the following code is

allowed and works but should not be allowed for a type safe

language.

i n t 6 4 two = 2

∗ i n t 3 2 p t r = &two

This example will work, however for numbers larger than 2
31

(int32) or for other types (such as structs) this can cause issues

with pointers pointing to memory that is not of the correct type.

This also suggests the removal of the void type as a word in the

language as *void-type variables do not have a known type. To

safely cast from *void or a special ’any’ type, the runtime would

need to support tracking the type of every variable.

6.2 Primitive data types

All primitive data types are allocated 8 bytes (64 bits) in memory.

That means variables of type int32 are allocated unnecessary space.

Smaller types that can be implemented in the future, such as 16-bit

or 8-bit integers, will have an even larger relative overhead. This can

be solved by generating standard GCType instances for standard

used byte sizes, such as 1, 2, 4, and 8, and passing those to gc_alloc

instead. This is not currently implemented. Pointers should also

get this treatment as it would make the is_pointer parameter of

gc_alloc obsolete.

6.3 Heap allocation

For simplicity, all variables are allocated on the heap. However, stack

allocations can be cheaper than heap allocations. The language com-

piler does not perform escape detection, which would be necessary

to identify variables that need to be allocated on the heap. All other

variables can be allocated on the stack. Additionally, there is more

work for the garbage collector as it needs to collect a large amount

of memory that would normally go to the stack from variables that

do not escape the function they were allocated in.

6.4 Heap fragmentation

When memory is freed, it leaves gaps in the heap which can be hard

to �ll (which Go attempts to do). That is why garbage collectors

typically move objects on the heap via various means such as copy-

ing them to new regions or compacting them into the same region.

The empty regions can then be reclaimed by the operating system

or reused more easily, especially when large objects are allocated.

This is an important feature of garbage collectors but this imple-

mentation does not perform any copying or compacting. This leads

to increased memory usage as a result of the gaps.

6.5 Object headers

Instead of keeping metadata (the type and mark) about objects in

the HeapObject map, it should be added as headers before the heap

objects themselves. This reduces any overhead from keeping this

data in the map instead.

7 CONCLUSION

This paper implemented a minimal programming language with

LLVM and a C++ mark-and-sweep garbage collector. First, three

GCs of existing programming languages were compared to answer

RG1. Then, a simple mark-sweep GC was identi�ed as a minimal

implementation for RG2. The GC successfully identi�es and frees

objects from the heap when they are no longer referenced by the

program.
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The implemented language is statically typed (with limited type

checking) and supports variables, functions, conditionals, and structs.

Various data types and basic mathematical operations are sup-

ported. The language also allows pointers and linking external

functions.

7.1 Future work

In addition to shortcomings mentioned in the discussion, future

work can include:

• Arrays. While a (doubly) linked list can be made in the language,

or even arrays themselves through pointer arithmetic (which the

language does not prevent), built-in arrays with index support

are a must for modern languages.

• Proper runtime string support. Currently strings can only be

static andmade at compile time. Allowing string operations such

as concatenation brings many more possibilities to programs,

while keeping a simple interface.

• Struct �eld modi�cation. Struct �elds cannot be modi�ed but

this is an essential feature of working with structs and should

be added.

8 AI STATEMENT

ChatGPTwas used for helping debug LLVM issues with the bindings.

Although it understood the bindings extremely poorly, it still had

a general idea of LLVM to an extend. For example, it helped �nd

how to initialize and access struct �elds and what certain function

parameters had to be (everything in the bindings is just a generic

Value struct). ChatGPT or other AI was not used for writing this

paper or actually doing programmingwork. No code has been copied

from ChatGPT.
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