
Extending Digital Clocks to Support Diagonal Constraints in
Probabilistic Timed Automata
MELANIA VARTIC, University of Twente, The Netherlands

Model-checking is a method used for verifying the temporal behaviour of a
system and whether a model achieves its desired properties. This approach is
often fully automated and is applied, among other areas, within the context
of timed automata. Timed automata are a formalism that captures properties
related to quantitative time, facilitating the modelling of real-time systems
where time is a significant aspect. Probabilistic timed automata are an exten-
sion of classical timed automata, with the capacity to model the uncertainty
of events along with timing constraints. The digital clock method in prob-
abilistic timed automata abstracts real-valued clock variables into integer
representations, resulting in a finite-state model that preserves the timing
properties required in formal verification. This abstraction is typically sound
for diagonal-free clocks, where the constraints of a clock can be only in
relation to a constant, not to another clock. We analyse the behaviour of a
digital clock abstraction algorithm developed in the Modest Toolset when
presented with diagonal constraints and modify it to accommodate them.
We used extended semantics to explore more states around the diagonal
and changed the reset function to stay within the bounds, studying the
correctness of the algorithm and how it behaves when presented with more
clock variables.

Additional Key Words and Phrases: Probabilistic timed automata, Digital
clock, Markov decision process, Diagonal digital clock, Probabilistic model
checking, Timed automata

1 INTRODUCTION
Model checking [15] is an approach originally developed to verify
the qualitative properties of systems that was subsequently extended
to also handle quantitative features, such as real-time constraints [3].
This extension of model-checking is often applied to timed automata.

A timed automaton is a labelled transition system extended with a
finite set of real-valued clocks, each of which evolves constantly at a
unit rate [28]. Although this formalism introduced by Alur and Dill
[2], provides a robust solution to capture time constraints within
system models, it assumes idealised behaviour, which is unfeasible
in real-time systems.

An extension of this formalismwith integrated discrete probabilis-
tic transitions leads to the notion of probabilistic timed automata.
Probabilistic timed automata are widely used models for cyberphys-
ical systems that capture the timing constraints and uncertainty
of real-time behaviour [23, 42]. This concept is explained in de-
tail in the work of Kwiatkowska et al. [37]. The authors propose
the model and prove that it is practical and expressive through a
series of worked examples and applications, while altering algo-
rithms designed for timed automata [5] to incorporate probabilistic
transitions. In this context, a timed automaton has a finite set of
real-valued clocks that are independent of each other and can be

TScIT 37, July 8, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

reset during execution. Probabilistic timed automata are used to
model systems based on timing and uncertainty, examples include
communication protocols [17, 20, 32, 39], systems in industries such
as aviation [21], networked systems [22, 42], automated human
activity recognition [43], or self-adaptive multi-agent systems [41].
Previous work shows that for timed properties, the validity of

the integral model follows from the validity in the dense-time
model [31]. Integral semantics refers to the clock variables that have
positive integer values and is often known as the digital clock trans-
formation. We thus adopt the digital clock method, namely clocks
with integer values that only change in unit steps. Kwiatkowska
et al. [36] proved, in 2006, that digital clocks are sufficient for the
analysis of probabilistic and expected reachability against closed
diagonal-free probabilistic timed automata. Digital clock abstraction
is a method used to ensure that the Markov decision process ob-
tained from the transformation of a probabilistic timed automaton
has a finite state space.
Formal verification [15] is a technique used to assess whether

a model satisfies its specification often by exhaustively explor-
ing its state space, and has been widely applied to embedded sys-
tems [14, 18, 45] and industrial settings [16, 19, 40, 48]. The form of
model-checking addressed by this study involves the use of the Mod-
est Toolset. Modest is a behavioural modelling language introduced
by Hartmanns [25] for stochastic timed systems. This research ex-
plores a possible implementation of the digital clock abstraction
algorithm in the Modest Toolset, that transforms a probabilistic
timed automaton with diagonal constraints into a Markov decision
process (MDP). The resulting MDPmodel will be subjected to formal
verification using the Modest Toolset mcsta [13] model checker.

Although there are numerous model-checking algorithms such
as region graph construction [2], backward reachability [38], for-
ward reachability [49], each are optimised for specific cases. Due
to its increased performance compared to these methods [34], the
digital clock method followed by a model-checking algorithm on
the resulting Markov decision process is an emerging solution in
model-checking. Currently, the digital clock algorithm does not
allow diagonal constraints in the input automaton. To support trans-
formation into an MDP, solutions include the removal of diagonal
constraints in probabilistic timed automata or the rejection of these
input automata. Modest features the moconv tool, which converts
a probabilistic timed automaton into its digital clock Markov deci-
sion process [11]. The current implementation of digital clocks does
not allow as input a probabilistic timed automaton with diagonal
constraints, and the algorithm does not treat this case.
The relational comparison among clock variables represents a

paramount improvement in the compactness of a probabilistic timed
automaton. Diagonal constraints facilitate modelling and represen-
tation of timing dependencies of a system, enabling synchronisation
between its tasks. Although there is no improvement in expres-
siveness with the use of diagonal constraints in timed automata [9],

1

TScIT 37, July 8, 2025, Enschede, The Netherlands Melania Vartic

diagonalisation helps improvemodel conciseness [8], and alongwith
the performance of the digital clock method, it can be a powerful
addition to existing model checking algorithms.

2 RESEARCH OBJECTIVE AND REQUIREMENTS
To address the problem of diagonal constraints not being supported
by the digital clock abstraction algorithm, the main objective of this
research is to analyse the behaviour and limitations under these
conditions of the existing Modest-based implementation and modify
it to support diagonalisation.
Specifically, we first focus on documenting and applying modi-

fications to the Modest-based implementation of the digital clock
conversion to support diagonal constraints, a requirement referred
to in this work as RQM1. Similarly, another objective is studying
the behaviour of an algorithm extending the digital clocks method
based on a small example (RQM2). Finally, this study should address
how the extended algorithm scales as the number of clocks increases
by observing its behaviour and limitations (RQM3).

3 RELATED WORK
Various researchers analyse probabilistic timed automata, develop-
ing model-checking algorithms and tools. Bouyer et al. [9] proposes
an approach to model-checking classical timed automata that takes
into account the presence of diagonal constraints. The authors ex-
plored and proved the correctness of an algorithm that identifies
and selectively removes only diagonal constraints that cause errors.
Its primary limitations are the focus on timed automata without
addressing probabilistic behaviour and its adoption of an approach
based on diagonal constraint removal, rather thanmaintaining those
constraints and adapting the checking procedure to support them.
Their approach does not use digital clock abstraction, which is a
focus point in our research, and thus it is not applicable in our scope.
Extensive research has been conducted on model checking in

timed automata. Norman et al. [42] provides an overview of the
algorithms for probabilistic timed automata, such as region graph
construction, boundary region graph, digital clock method, and
backward reachability. The region graph method is based on the
construction of timed automata [2], therefore, it is not addressed in
this study, due to our focus on the digital clock method. Norman
et al. [42] defines also the boundary region graph as a finite Markov
decision process equipped with a reward structure; however, this is
not applicable in the context of this study, as considerations regard-
ing cost and reward lie beyond its scope. Both are used primarily to
establish the decidability and complexity of model checking, rather
than for practical implementations. The digital clocks method is
defined by the authors as a restriction of continuous-time seman-
tics; however, in their study they assume no diagonal constraints;
as a result, it cannot be applied to our study. Norman et al. [42]
explain then the backward reachability algorithm as an analysis
used for automata with both an infinite and a finite number of states.
The limitation of this approach is that it is less performant than
the digital clock method and is beyond our scope. Lastly, they ex-
plain abstraction refinement using stochastic games as building an

abstraction of an infinite-state Markov decision process by compo-
nents of two-player stochastic games. This is not applicable in this
research, as it falls outside the scope of digital clocks.

In their research, Hartmanns and Hermanns [26], propose Modest
as a modelling and description language for stochastic time systems.
The approach introduces the first version of the tool mcsta that
translates Modest-based specifications into a format compatible
with the PRISM model checker, delivering significant improvements
in terms of dynamic parallelism and exception handling. Although
this applies to probabilistic timed automata in general, it shows an
older version of the mcsta tool. We must use a newer version, as we
check the Markov decision process resulting after applying digital
clocks to the probabilistic timed automaton.

In 2000, Kwiatkowska et al. [38] proposed the backward reachabil-
ity algorithm, designed for dense semantics. Their approach consists
in each state being represented by a location and clock zone, thus
replacing the need to track the value of each clock with monitoring
the zones determined by the clock constraints. Zones are computed
and represented using difference-bound matrices with an entry for
each pair 𝑥,𝑦 recording the tightest bound on 𝑥 −𝑦. Although this is
related to the problem by covering dense semantics and supporting
diagonal constraints, this approach is significantly slower than the
digital clock method [29], and therefore it is not applicable in our
scope.

4 BACKGROUND
In this section, we lay the formal foundations necessary to define
digital clocks in probabilistic timed automata. In this paper, we use
R≥0 to denote the set of non-negative real numbers, and N the set
of positive integers.

Markov decision processes are an extension of stochastic sequen-
tial decision processes in which the cost and transition functions
depend only on the current state of the system and the action [44].
This is the base model for the model-checking algorithms.

Definition 4.1 (Markov decision process). [33] A Markov decision
process 𝑀 is a tuple

𝑀 = (𝑆, 𝑠, Steps, 𝐿)

where:
• 𝑆 is a finite set of states,
• 𝑠 ∈ 𝑆 is the initial state,
• Steps is a function that assigns to each state 𝑠 ∈ 𝑆 a finite,
non-empty set Steps(𝑠) of probability distributions on 𝑆 , and

• 𝐿 is the labelling function

Probabilistic timed automata [4] are an extension of timed au-
tomata [1], associating with each location a set of actions, where
each action defines a probability distribution over the possible
successor locations. Such automata are conventionally interpreted
within a temporal-semantics framework, whereby the evolution of
clock values is governed by a time domain. The dense-time seman-
tics consists of clock values within R≥0, whereas the integral-time
semantics imply clock values within N. Digital clocks [36] are the
practical implementation of integral semantics.

In this research, we assume for the probabilistic timed automaton
a finite set of clocks X . A function 𝑣 : X → R≥0 is known as clock

2

Extending Digital Clocks to Support Diagonal Constraints in Probabilistic Timed Automata TScIT 37, July 8, 2025, Enschede, The Netherlands

valuation and the set of all clock valuations is denoted RX
≥0. For any

𝑣 ∈ RX
≥0, 𝑡 ∈ R≥0 and 𝑋 ⊆ X the clock valuation which increments

all clock values in 𝑣 by 𝑡 is denoted (𝑣 + 𝑡) (𝑥) = 𝑣 (𝑥) + 𝑡 [46].
Similarly, 𝑣 [𝑋 := 0] represents the clock valuation [42] that resets
all clocks in 𝑋 to 0. The set of clock constraints on X, often referred
to as 𝐶𝐶 (X) is defined by the syntax 𝜒 := 𝑡𝑟𝑢𝑒 |𝑓 𝑎𝑙𝑠𝑒 |𝑥 ≥ 𝑐 |𝑥 ≤
𝑑 |𝑥 + 𝑐 ≤ 𝑦 + 𝑑 |𝜒 ∧ 𝜒 where 𝑥,𝑦 ∈ X and 𝑐, 𝑑 ∈ N [30]. Previous
work [36, 42] includes ¬𝜒 in the syntax; however, this paper is based
on the assumption of closed constraints, that is, comparisons must
use ≥,=, 𝑜𝑟 ≤. A clock value 𝑣 satisfies a clock constraint 𝜒 , 𝑣 |= 𝜒 ,
if 𝜒 is true when substituting all occurrences of 𝑥 with 𝑣 (𝑥) satisfy
the constraint.

Definition 4.2 (Probabilistic Timed Automata). [37] A probabilistic
timed automaton (PTA) is a tuple

(𝐿, ℓ̄, X, Σ, inv, prob)
where:

• 𝐿: finite set of locations, with ℓ̄ ∈ 𝐿 as the initial location;
• X: finite set of clocks;
• Σ: finite set of events, including a subset Σ𝑢 ⊆ Σ of urgent
ones;

• inv : 𝐿 → 𝐶𝐶 (X): assigns a clock constraint (invariant) to
each location;

• prob ⊆ 𝐿 ×𝐶𝐶 (X) × Σ × Dist(2X × 𝐿): the probabilistic edge
relation.

Each state of a PTA is a pair (𝑙, 𝑣) ∈ 𝐿×RX
≥0 such that 𝑣 |= 𝑖𝑛𝑣 (𝑙 ′).

In any state (𝑙, 𝑣), a certain amount of time 𝑡 ∈ R≥0 elapses or an
action 𝑎 ∈ Σ is performed. For time to elapse, t must be chosen in
such a way that 𝑖𝑛𝑣 (𝑙) remains satisfied after the time has passed.
The resulting state is (𝑙, 𝑣+𝑡). Similarly, an action 𝑎 can be performed
if it is enabled, namely 𝑒𝑛𝑎𝑏 (𝑙, 𝑎) is satisfied by 𝑣 . Upon selecting
an enabled action 𝑎, a successor location and a set of variables to
be reset are sampled according to the distribution 𝑝𝑟𝑜𝑏 (𝑙, 𝑎). In
this research, we denote the elements of the form (𝑋, 𝑙 ′) ∈ 2𝜒 × 𝐿

supporting 𝑝𝑟𝑜𝑏 (𝑙, 𝑎) as edges, and their set 𝑒𝑑𝑔𝑒 (𝑙, 𝑎) [42].

Definition 4.3 (Path). A path is an infinite sequence𝜋 = (𝑙0, 𝑣0)
𝑎0−−→

(𝑙1, 𝑣1)
𝑎1−−→ · · ·, where each (𝑙𝑖 , 𝑣𝑖) ∈ 𝐿 × TX is a valid state, and

each transition (𝑙𝑖 , 𝑣𝑖)
𝑎𝑖−−→ (𝑙𝑖+1, 𝑣𝑖+1) is valid under the automaton’s

semantics.

Furthermore, we use the integral semantics of probabilistic timed
automata with diagonal constraints, that is, the time domain is N
rather than R≥0. Thus, for any 𝑥 ∈ X there exists 𝑐𝑥 a maximal
constant such that there exists 𝜒 ∈ 𝐶𝐶 (X) of the form 𝑥 ∼ 𝑐𝑥 , where
∼∈ {≤,=, ≥}. In this paper, the digital clock method is applied to
verify the temporal properties of the form P⊲⊳𝑝 [·]. We focus mainly
on extremal reachability properties, specifically Pmax =?[^L] and
Pmin =?[^L]. Pmax denotes the maximum (best case) probability of
reaching a given location, while Pmin represents its worst case value
[35]. The actual reachability value lies in the interval defined by
these two bounds. The digital clock valuation 𝑣 ∈ NX is the mapping
of the clocks with their values. We denote the time progression as
the valuation increment function, namely 𝑣 ⊕ 1 [42].

(𝑣 ⊕ 1) (𝑥) = min(𝑣 (𝑥) + 1, 𝑐𝑥 + 1) (1)

This paper uses the standard definition of digital clock semantics
found in the work of Norman et al. [42].

Definition 4.4 (Digital Clock Semantics). Let X be a set of clocks.
The semantics of the digital clock abstraction are given by:

(𝑆, Steps)
where:

• 𝑆 ⊆ 𝐿 × NX is the set of symbolic states such that:

𝑆 =

{
(𝑙, 𝑣) ∈ 𝐿 × NX

��� 𝑣 |= inv(𝑙) ∧ ∃𝑥 ∈ X, 𝑣 (𝑥) ≤ 𝑐𝑥 + 1
}

• Steps : (𝐿 × NX) × (Act ∪ {1}) → Dist(𝑆) is the transition
function defined as follows:
– Time step: if 𝑎 = 1, and 𝑣 ⊕ 1 |= inv(𝑙), then

Steps((𝑙, 𝑣), 1) = 𝜇 (𝑙, 𝑣 ⊕ 1);
– Action step: if 𝑎 ∈ Act and 𝑣 |= enab(𝑙, 𝑎), then for all

(𝑙 ′, 𝑣 ′) ∈ 𝑆 ,

Steps((𝑙, 𝑣), 𝑎) (𝑙 ′, 𝑣 ′) =
∑︁
𝑋 ⊆X

𝑣′=𝑣 [𝑋 :=0]

prob(𝑙, 𝑎) (𝑋, 𝑙 ′) .

5 METHOD

5.1 Overview
In this research, we propose an extension of the digital clock ab-
straction algorithm that allows diagonal constraints. The main goal
is to handle these types of constraints in a way that the resulting
Markov decision process after transforming the probabilistic timed
automaton has a finite state space while preserving the original
properties of the automaton. In our context, by properties we refer
to the reachability probabilities Pmax and Pmin.

The digital clock abstraction algorithm begins by reducing the real
clocks into integer variables. The algorithm builds a new discrete-
time automaton by systematically applying all enabled actions at
each location as transitions. Moreover, it unrolls the time steps, re-
placing the clock variables with their values in the resulting Markov
decision process. The standard digital clocks will explore the state
space until each clock variable reaches a value that exceeds the
maximum constant appearing in any constraint involving compar-
isons with the given clock variable. The resulting Markov decision
process after applying the standard digital clock abstraction is the
region of Figure 2 highlighted in light pink.

We propose an extended algorithm that also begins by discretising
the real-valued clocks. Instead of capping each clock variable 𝑥 at
𝑐𝑥 where 𝑐𝑥 is the maximum constant compared to 𝑥 in the list of
constraints, as formalised in Definition 1, we suggest continuing
to increment clocks until all have reached their maximum value.
This means that a clock can exceed its maximum value if any other
clocks have not reached theirs. A key aspect is that we are not
interested in exploring invalid states; therefore, we need to ensure
that we are close to the accepted region of the diagonal constraint.
We achieve this by checking whether the states are in a wider region
bounded by lines parallel to the original diagonal constraints and
shifted according to the maximum value of each clock as presented
in Figure 3. Figure 2 highlights the additional states we explore with
our proposed algorithm in darker pink.

3

TScIT 37, July 8, 2025, Enschede, The Netherlands Melania Vartic

Once a diagonal constraint is not satisfied, the difference between
clocks along with the progression of time will be the same, thus
the algorithm can terminate. In each location, the extended digital
clock algorithm performs a tick action according to the increment
function or an action according to the probability distribution. A
tick action can only be performed if the value after applying the
increment function satisfies the invariant of the target location. Such
invariants are called strong; however, Modest uses weak invariants
[24]. This means that Modest allows us to enter a location in which
its invariant is immediately false, but time cannot progress there.

5.2 Changes in semantics
The increment of the digital clock method in the valuation function
𝑣 ⊕𝑑 1 of 𝑥 is no longer capped at 𝑐𝑥 + 1 where 𝑐𝑥 is the maximum
constant compared to 𝑥 , but it is extended to increment as long as
there exists at least one other clock that did not reach its maximum
and the values are kept in the zone that satisfies the diagonal bounds
we set as in Definition 2.

(𝑣 ⊕𝑑 1) (𝑥) =

𝑣 (𝑥) + 1, if ∃ 𝑥 ∈ X such that 𝑣 (𝑥) < 𝑐𝑥 + 1 and

∀𝑎, 𝑏 ∈ X, 𝑣 (𝑎) − 𝑣 (𝑏) ≤ 𝑐𝑎 + 1
𝑣 (𝑥), otherwise

(2)
Similarly to the standard algorithm, 𝑣 [𝑋 := 0]𝑑 represents the clock
valuation that resets all clocks from 𝑋 to 0. For each clock 𝑦 ∉ 𝑋 , its
value is updated to the minimum of its current value or its associated
maximum constant incremented by 1, so that the resulting pair (𝑥,𝑦)
is between our defined bounds after reset.

𝑣 [𝑋 := 0]𝑑 (𝑎) =
{

0 if 𝑎 ∈ 𝑋,

min(𝑣 (𝑎), 𝑐𝑎 + 1) otherwise.
(3)

The maximum value of the clock incremented by 1 typically corre-
sponds to the last value of 𝑥 where the point is positioned in the
diagonal bound condition where the first member is 𝑥 . This change
is necessary to ensure that when clock variables values are reset,
they do not fall outside of the accepted region.
The semantics of digital clocks with diagonal constraints are

defined similarly to the standard semantics for the digital clock
method.

Definition 5.3 (Digital Clock Semantics). Let X be a set of clocks.
The semantics of the digital clock abstraction are given by:

(𝑆, Steps)

where:

• 𝑆 ⊆ 𝐿 × NX is the set of symbolic states such that:
𝑆 = {(𝑙, 𝑣) | 𝑣 |= inv(𝑙) ∧ (∃𝑥 ∈ X, 𝑣 (𝑥) ≤ 𝑐𝑥 + 1 ∧ ∀𝑎, 𝑏 ∈
X, 𝑣 (𝑎) − 𝑣 (𝑏) ≤ 𝑐𝑎)};

• Steps : (𝐿 × NX) × (Act ∪ {1}) → Dist(𝑆) is the transition
function defined as follows:
– Time step: if 𝑎 = 1, and 𝑣 ⊕𝑑 1 |= inv(𝑙), then

Steps((𝑙, 𝑣), 1) = 𝜇 (𝑙, 𝑣 ⊕𝑑 1);

L0
𝑡𝑟𝑢𝑒

start

L1
𝑡𝑟𝑢𝑒

L2
𝑦 ≤ 1

L3
𝑡𝑟𝑢𝑒

𝑦 = 1, 𝑎 0.4, 𝑦 := 0
0.2

0.4
𝑥 ≥ 1 𝑏, 𝑥 := 0

𝑥 − 𝑦 ≤ 1, 𝑐

Fig. 1. Example Probabilistic Timed Automaton

– Action step: if 𝑎 ∈ Act and 𝑣 |= enab(𝑙, 𝑎), then for all
(𝑙 ′, 𝑣 ′) ∈ 𝑆 ,

Steps((𝑙, 𝑣), 𝑎) (𝑙 ′, 𝑣 ′) =
∑︁
𝑋 ⊆X

𝑣′=𝑣 [𝑋 :=0]𝑑

prob(𝑙, 𝑎) (𝑋, 𝑙 ′) .

5.4 Case Study
To evaluate the accuracy of the extended digital clock abstraction,
we constructed a representative probabilistic timed automaton that
includes a diagonal constraint.
We consider the PTA from Figure 1. A = (𝐿, ℓ̄,X, Σ, inv, prob)

where: 𝐿 = {𝐿0, 𝐿1, 𝐿2, 𝐿3} is the set of locations with initial location
ℓ̄ = 𝐿0; X = {𝑥,𝑦} is the set of clocks; Σ = {𝑎, 𝑏, 𝑐} is the set of
actions; inv(𝐿2) = 𝑦 ≤ 1, and inv(ℓ) = true for all ℓ ∈ 𝐿\{𝐿2}. From
𝐿0, if 𝑦 = 1, the action 𝑎 resets 𝑦 and loops to 𝐿0 with probability
0.4; with probability 0.4, the system makes a probabilistic transition
to an intermediate node that leads to 𝐿1 with probability 0.2 and to
𝐿2 with probability 0.4. From 𝐿2, the action 𝑏 is enabled if 𝑥 ≥ 1,
resets 𝑥 and moves to 𝐿1; action 𝑐 is enabled if 𝑥 − 𝑦 ≤ 1 and leads
to 𝐿3 without resetting any clocks. This automaton is relevant in
testing our extended digital clocks method, as it has valid states that
the standard semantics would not explore.

After applying the algorithm, the resulting Markov decision pro-
cess is represented in Figure 2. The algorithm starts by discretising
all clocks and computes the maximum constant of each of them. For
each location, it attempts to apply both after actions whose guards
are satisfied and tick actions. To perform a tick action, it checks the
conditions stated in Definition 2. In this definition, we apply our
values to the increment function.

(𝑣 ⊕𝑑 1) (𝑥) =

𝑥 + 1, if (𝑥 < 2 ∨ 𝑦 < 2

∧ 𝑥 − 𝑦 ≤ 2
∧ 𝑦 − 𝑥 ≤ 2

𝑥, otherwise

(4)

To better illustrate the difference between the standard digital
clock algorithm and the extension proposed by this research, we
refer to Figure 3 which depicts all the possible states that can be

4

Extending Digital Clocks to Support Diagonal Constraints in Probabilistic Timed Automata TScIT 37, July 8, 2025, Enschede, The Netherlands

L0
𝑥 = 0
𝑦 = 0

start
L0

𝑥 = 1
𝑦 = 1

L0
𝑥 = 2
𝑦 = 2

L1
𝑥 = 1
𝑦 = 1

L0
𝑥 = 1
𝑦 = 0

L2
𝑥 = 1
𝑦 = 1

L3
𝑥 = 1
𝑦 = 1

L3
𝑥 = 2
𝑦 = 2

L1
𝑥 = 0
𝑦 = 1

L1
𝑥 = 1
𝑦 = 2

L1
𝑥 = 2
𝑦 = 3

L2
𝑥 = 2
𝑦 = 2

L1
𝑥 = 0
𝑦 = 2

L1
𝑥 = 1
𝑦 = 3

L1
𝑥 = 2
𝑦 = 4

L0
𝑥 = 2
𝑦 = 1

L0
𝑥 = 3
𝑦 = 2

L1
𝑥 = 2
𝑦 = 1

L1
𝑥 = 3
𝑦 = 2

L2
𝑥 = 2
𝑦 = 1

L2
𝑥 = 3
𝑦 = 2

L3
𝑥 = 2
𝑦 = 1

L3
𝑥 = 3
𝑦 = 2

L0
𝑥 = 2
𝑦 = 0

L0
𝑥 = 3
𝑦 = 1

L0
𝑥 = 4
𝑦 = 2

L1
𝑥 = 3
𝑦 = 1

L2
𝑥 = 3
𝑦 = 1

L1
𝑥 = 4
𝑦 = 2

L2
𝑥 = 4
𝑦 = 2

L1
𝑥 = 2
𝑦 = 2

𝑡𝑖𝑐𝑘 𝑡𝑖𝑐𝑘 𝑡𝑖𝑐𝑘

𝑎

0.4 0.2
0.4

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘
𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘 𝑡𝑖𝑐𝑘 𝑐

𝑐

𝑏

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘𝑏

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑎

0.4 0.2 0.4

𝑡𝑖𝑐𝑘𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑎

0.40.2

0.4

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑐𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑡𝑖𝑐𝑘

𝑏

𝑏

𝑐

𝑏

𝑏

Fig. 2. MDP after digital clock abstraction on our example PTA

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

𝑥
− 𝑦

≤ 1

𝑥
− 𝑦

≤ 2
𝑦
− 𝑥

≤ 2

𝑥

𝑦

Fig. 3. A graph of the explored states with the extended semantics compared
to standard digital clock algorithm

explored in our example automaton. Although the graph does not de-
pict the exact states explored during the construction of the Markov
decision process in Figure 2, it shows the full set of states that could
potentially be reached. Consider that the automaton also contains
a diagonal constraint 𝑥 − 𝑦 ≤ 1. Figure 3 shows the main diagonal
constraint 𝑥 −𝑦 ≤ 1, and the diagonal limits of the state exploration
𝑦 −𝑥 ≤ 2 and 𝑥 −𝑦 ≤ 2. In the state exploration, we want to explore
the states between two diagonals parallel to the diagonal constraint.
This graph illustrates the complete set of states reachable under the
standard digital clock abstraction highlighted in light pink along
with the additional states that we can explore using our extended
algorithm in darker pink. If we keep the standard semantics, valid
states like (3, 2) would not be explored, thus affecting the computa-
tion of the automaton’s properties. To ensure complete exploration
of valid states during model checking, we extend the state space
by drawing diagonal constraints between clock pairs relative to

the maximum of the first clock. This captures a larger finite region
while preserving the properties of the original probabilistic timed
automaton. Furthermore, an important aspect that we changed in
the initial semantics is the reset clock function. Let us take the same
point (3, 2), if we attempt to reset 𝑦 to 0 using standard semantics,
we end up in an invalid state (3, 0). Therefore, we changed the reset
to change the other clocks to their maximum value incremented
by 1 if they are larger, so that after applying it, we are still within
the limits in state (2, 0) and we can continue exploring states in the
accepted region.

5.5 Implementation
In this work, we extended the digital clock method and implemented
it in theModest Toolset. Since portability was a concern, we used the
C# programming language to modify and integrate the algorithm
extension into the Modest Toolset. The digital clock transformation
is a syntax level conversion; thus, the moconv tool can transform
the models specified in the Modest modelling language [6] or JANI
format [12], into a Markov decision process (MDP). The resulting
MDP is in JANI format and can be checked using the mcsta tool
[27].

The representation of diagonal constraints is fully dependent on
the modelling of clock constraints within the Modest Toolset and
ultimately on the definition of Alur and Dill [2]. As a result, our
implementation allows diagonal constraints of the form 𝑥 −𝑦 ≤ 𝑐 or
𝑥−𝑦 ≥ 𝑐 where 𝑐 is an arbitrary constant and 𝑥,𝑦 are clock variables
and other equivalent relations. These constraints can be found as
both location invariants and guards within the specified probabilistic
timed automaton. We implemented the extended algorithm along
three axes, namely in terms of modelling semantics, modifying the
digital clock algorithm, and changes in other components of Modest
Toolset to allow models with diagonal constraints to be checked.

5.5.1 Quantifier expressions. First, we formalised the extended se-
mantics by implementing existential and universal quantifier ex-
pressions, therefore applying the modified semantics introduced in
Definition 2. To understand the quantifier implementation, we must
first examine how the Modest Toolset handles expressions. In Mod-
est, the control flow is based on dynamically updating attributes
on a shared abstract syntax tree to track active sub-expressions,
enabling the structured execution and progression of processes [7].
Therefore, an expression in the Modest Toolset is an abstract syn-
tax tree (AST) node where each inner expression is a subtree, each
representing a mathematical, logical, or symbolic computation.
Quantifier expressions generalise Boolean conditions over a do-

main of variables. We implemented a quantifier expression that
extends the expression as a base class. It contains methods for seri-
alisation, deserialisation, AST traversing, variable collection, and
string representation.

Building on the base quantifier expression, we implemented the
universal quantifier that represents expressions of the form ∀𝑎 ∈ 𝐷 :
𝜙 (𝑎). Each universal quantification binds a variable to a specified
domain, where the domain defines the set of values to be substituted
for the quantified variable. It also includes a mapping from the
variable to an expression. Therefore, we modelled the universal
quantifier to allow for nested expressions, each expression of the

5

TScIT 37, July 8, 2025, Enschede, The Netherlands Melania Vartic

∀𝑎 ∈ 𝑋

∀𝑏 ∈ 𝑋

≤

−

𝑣 (𝑎) 𝑣 (𝑏)

+

𝑐𝑎 1

Fig. 4. Abstract Syntax Tree for expression ∀ 𝑎,𝑏 ∈ X, 𝑣 (𝑎) − 𝑣 (𝑏) ≤ 𝑐𝑎 +1

form ∀𝑎, 𝑏 ∈ 𝐷 : 𝜙 (𝑎, 𝑏) . becomes a nested expression ∀𝑎 ∈ 𝐷,∀𝑏 ∈
𝐷 : 𝜙 (𝑎, 𝑏) where the second expression will be the predicate of the
first. The abstract syntax tree of the expression introduced in our
extended semantics ∀𝑎, 𝑏 ∈ 𝑋 : 𝑣 (𝑎) − 𝑣 (𝑏) ≤ 𝑐𝑎 + 1. is illustrated
in Figure 4.

When evaluating the expression, the solver traverses the univer-
sal quantifier expression AST and first substitutes the outermost
variable, working its way to the innermost variable. While travers-
ing, it transforms it into its most simple form, solving it if possi-
ble. In case of ∀𝑎, 𝑏 ∈ 𝑋 : 𝑣 (𝑎) − 𝑣 (𝑏) ≤ 𝑐𝑎 + 1., it will consider
∀𝑎 ∈ 𝑋,∀𝑏 ∈ 𝑋 : 𝑣 (𝑎) − 𝑣 (𝑏) ≤ 𝑐𝑎 + 1., it will first substitute 𝑎 with
all values in its domain, and then recurse into the inner expression
∀𝑏 ∈ (𝑋 \ {𝑎}) : 𝑎 − 𝑣 (𝑏) ≤ 𝑐𝑎 + 1. and substitute 𝑏 and perform
Boolean conjunction on all sub-expressions. Similarly, it will recur-
sively evaluate the inequality, then the difference 𝑣 (𝑎)−𝑣 (𝑏) and the
addition 𝑐𝑎 + 1, and ultimately the constant values 𝑣 (𝑎), 𝑣 (𝑏), 𝑐𝑎, 1.
After evaluating the constant values, the algorithm will traverse
back to the original expression, computing and substituting the val-
ues of the inner expressions. The universal expression is evaluated
by applying the Boolean and operation to all its inner expressions.
The logic and implementation of the existential quantifier are almost
identical to the universal quantifier, with the primary distinction
that its evaluation applies a Boolean disjunction to its inner expres-
sions rather than a conjunction.

5.5.2 Digital Clocks Algorithm. The Modest Toolset’s digital clock
transformation is the underlying algorithm used by themoconv tool
to transform a probabilistic timed automaton into its MDP repre-
sentation in JANI format when given the –digital-clocks flag. The
moconv tool does not apply valuations to the clock variables, it pro-
duces a symbolic expression-based representation of the resulting
MDP in JANI format. The model checker applies concrete values to
the clocks, in our case the mcsta tool as part of the state generation
and analysis phase. In this section, we discuss the implementation
and changes within digital clock abstraction.

We integrated the modelled expressions and the modified seman-
tics into the existing implementation of the digital clock algorithm,
we modified the current implementation of the reset function, and
we made the parser of the clock constraints allow for open diagonal
constraints. The extended digital clock abstraction relies, similarly
to the standard algorithm, on the assumption of closed constraints;
therefore, expressions of the form 𝑥 − 𝑦 < 𝑐, 𝑥 − 𝑦 > 𝑐, 𝑥 < 𝑐, 𝑥 > 𝑐

for clock variables 𝑥,𝑦 and an arbitrary constant 𝑐 are not supported.

Implementing the new semantics implied changes in the incre-
ment function, that is, instead of the expression min(𝑣 (𝑥) + 1, 𝑐𝑥 + 1,
we injected the expression ∃𝑥 ∈ 𝑋 : 𝑣 (𝑥) < 𝑐𝑎 + 1 ∧ ∀𝑎, 𝑏 ∈ 𝑋 :
𝑣 (𝑎) − 𝑣 (𝑏) ≤ 𝑐𝑎 + 1. For each clock, relevant information is encap-
sulated in a dedicated class storing its integer abstraction of the
original real-valued clock, associated metadata such as the com-
puted upper bound, and the increment assignment used to simulate
time progression within the digital clock semantics. The increment
function is already applied to all clocks; thus we only changed the
function inside the constructor of the clock information class. We
first create the existential quantifier ∃𝑥 ∈ 𝑋 : 𝑣 (𝑥) < 𝑐𝑥 + 1, then
the universal one ∀𝑎, 𝑏 ∈ 𝑋 : 𝑣 (𝑎) − 𝑣 (𝑏) ≤ 𝑐𝑎 + 1, then we apply a
Boolean conjunction to them, and lastly we form a choice expres-
sion, which if the conjunction holds, it will increment the clock
value; otherwise, it will keep the same one.

Another aspect we needed to modify to make the digital clock
algorithm accommodate diagonal constraints is the reset function
of the clocks. In its standard implementation, the function resets
the current clock to 0; however, in our extended algorithm, we need
all points (𝑥,𝑦) where 𝑥,𝑦 are clock variables to still be within the
bounds of our diagonals to ensure that the expression ∀𝑎, 𝑏 ∈ 𝑋 :
𝑣 (𝑎) − 𝑣 (𝑏) ≤ 𝑐𝑎 + 1 holds. We addressed this by checking for each
reset whether the clock value pairs satisfy the diagonals defined
by ∀𝑎, 𝑏 ∈ 𝑋 : 𝑣 (𝑎) − 𝑣 (𝑏) ≤ 𝑐𝑎 + 1. For each reset of the clock,
we retrieve the defined bound diagonals that contain the given
clock, we choose the for the other variables within the constraints
the minimum value between the current one and the maximum
incremented by 1. This ensures that the additional states that we
explore are valid and reachable.

5.5.3 Modest Toolset Integration. The last step to integrate the
algorithm is to allow diagonal constraints in the probabilistic timed
automaton given as input to the moconv tool and to ensure that
when checking the model mcsta allows the clock valuations to go
beyond their 𝑐𝑥 +1 maximum. We achieved this by removing checks
that have been performed throughout the process for each tool
separately, checks for diagonal-free automata, and for the maximum
bound of values taken by the clock variables.

6 RESULTS
To evaluate the feasibility of our approach, as well as its scalability
when introducing more clock variables, we performed two case
studies. In this section, we demonstrate the extended digital clock
transformation by presenting the results of selected case studies
and comparing them against manually computed ones. We measure
the difference between expected and actual probability and assess
our algorithm. The benchmarks we analyse aim to measure the
accuracy and closeness to the actual model of the model-checking
in the Markov decision process generated by our algorithm.
We first analyse the results of the same automaton that we ex-

plained in the previous section illustrated in Figure 1 and its asso-
ciated Markov decision process in Figure 2 resulted after applying
digital clocks. When checking this model, we consider properties
such as the reachability probabilities of the final locations 𝐿1 and 𝐿3.
We computed the values in Table 1 by running the model-checking

6

Extending Digital Clocks to Support Diagonal Constraints in Probabilistic Timed Automata TScIT 37, July 8, 2025, Enschede, The Netherlands

Table 1. Model-Checking Results using mcsta

Property Prob. Bounds Time (s) Error Iter. VI Time (s)

P3Min 0 [0, 0] 0.0 0 1 0.0
P3Max 0.56 [0.56, 0.56] 0.0 0 2 0.0
P1Max 0.9360002 [0.9360002, 0.9360002] 0.0 0 2 0.0
P1Min 0 [0, 0] 0.0 0 2 0.0

Table 2. Comparison of Manually Computed and Tool-Based Reachability
Probabilities

Property Manually Computed Probability Bounds computed with mcsta

𝑃3𝑀𝑎𝑥 0.56 [0.56, 0.56]
𝑃3𝑀𝑖𝑛 0 [0, 0]
𝑃1𝑀𝑎𝑥 0.99 [0.936, 0.936]
𝑃1𝑀𝑖𝑛 0 [0, 0]

mcsta tool on the JANI file resulted after performing the digital
clock conversion using moconv.

The manual calculations supporting our results are presented in
Table 2, and now we detail the methodology used to derive these
values. In Table 2 we report reachability probabilities for specific
target locations. The notation 𝑃𝑛𝑀𝑎𝑥 represents the maximum
probability of reaching a location 𝐿𝑛, while 𝑃𝑛𝑀𝑖𝑛 denotes the
corresponding minimum probability. For example, 𝑃3𝑀𝑎𝑥 = 0.56
means that the best-case probability of reaching 𝐿3 is 0.56. The
values computed by mcsta correspond to the same probabilities,
providing lower and upper bounds for the reachability probabilities
inferred by checking the model.

We begin by analysing the reachability probability of location 𝐿1.
The worst-case scenario for reaching 𝐿1 is when this location is
never reached. Examples of such a path are 𝜋1 = (𝑙0, 𝑙2, 𝑙3) or
𝜋1 = (𝑙0, 𝑙0, 𝑙2, 𝑙3). By showing examples of such paths exist, we
can compute Pmin = 0. To calculate Pmax of reaching 𝐿1, we sum
the probability of going from 𝐿0 to 𝐿1 which we denote 𝑃1𝐿1, with
the probability of reaching 𝐿1 from 𝐿0 through 𝐿2 (𝑃2𝐿1). We now
compute the probability of going directly from 𝐿0 to 𝐿1, a path given
by 𝜋𝑛 = (𝑙0, . . . , 𝑙0︸ ︷︷ ︸

𝑛 times

, 𝑙1). Because it is unknown how many times we

will return to 𝐿0, this probability can be approximated using the
formula for infinite geometric series [47].

∞∑︁
𝑘=0

𝑟𝑘 =
1

1 − 𝑟
, if |𝑟 | < 1 (5)

Thus, our 𝑃1𝐿1 can be calculated as follows.

𝑃1𝐿1 = 0.2 ·
∞∑︁
𝑘=0

0.4𝑘 = 0.2 ·
(

1
1 − 0.4

)
= 0.2 ·

(
1

0.6

)
=

0.2
0.6

=
1
3
≈ 0.33

(6)
Nowwe calculate 𝑃2𝐿1. The paths are of the form𝜋𝑛 = (𝑙0, . . . , 𝑙0︸ ︷︷ ︸

𝑛 times

, 𝑙2, 𝑙1).

Similarly to 𝑃1𝐿1, we can use the infinite geometric series formula
to calculate 𝑃2𝐿1 as in Definition 7. We computed 1 the probability
of being in 𝐿2 and transitioning to a location 𝐿1, dividing the num-
ber of cases in which there exists a path from 𝐿2 to 𝐿1 in Figure 2

by the number of times that location 𝐿2 is reached through that
path. Now we calculate the probability of reaching 𝐿1 through 𝐿2 by
multiplying the probability of reaching 𝐿2 from 𝐿0 the probability
of reaching 𝐿1 once 𝐿2 is reached.

𝑃2𝐿1 = 1·0.4
∞∑︁
𝑘=0

0.4𝑘 = 0.4·
(

1
1 − 0.4

)
= 0.4·

(
1

0.6

)
=

0.4
0.6

=
4
6
≈ 0.66

(7)
We computed the overall probability of reaching 𝐿1 to be approx-
imately Pmax = 𝑃𝐿1 = 𝑃1𝐿1 + 𝑃2𝐿1 ≈ 0.99. Ultimately, we cal-
culate the probabilities of the reachability of 𝐿3. Similarly to 𝐿1,
there are paths that do not reach 𝐿3 at all. Such examples include
𝜋1 = (𝑙0, 𝑙2, 𝑙1) or 𝜋1 = (𝑙0, 𝑙1), and taking this into account the
worst-case probability Pmin = 0. Finally, we compute the best-case
probability of reaching 𝐿3. To calculate Pmax, we need to take into
account when the diagonal constraint is satisfied in 𝐿2. From 𝐿0,
with the probability of 0.4, there will be a reset of 𝑦 and a return
to 𝐿0. This increases the difference between 𝑥,𝑦. To ensure that
the diagonal constraint 𝑥 − 𝑦 ≤ 1 is met, only two resets can be
performed before reaching location 𝐿2 with valuations (1, 1), (2, 1).
Performing a third reset would result in the valuation (3, 1) for
which the constraint does not hold.

𝑃3𝑀𝑎𝑥 = 0.4 + 0.4 · 0.4 = 0.56 (8)

We observe that the results we obtain by performingmodel checking
on the Markov decision process resulting after the digital clock
abstraction algorithm are similar to the results we expected. This
suggests that in this particular case, the extension of the digital clock
algorithm preserved the probability properties of reachability of
the original probabilistic timed automaton; however, the difference
between reachability of 𝐿1 is higher than expected. In the case of
location 𝐿3 reachability, our findings are more significant because
the bounds are tighter than of 𝐿1, we have the exact result we
expected. We see a difference between the manually calculated
probability of reaching 𝐿1, and the output result of the mcsta tool.
This can perhaps be explained by the approximation we did in the
infinite geometric series, we do not know how many times 𝑦 will
be reset, and our algorithm continues as long as there exists at least
one clock which has not reached its maximum value, which in our
context would be 𝑦. Thus, an approximation must be made in order
to calculate the probability of reaching 𝐿1 directly from 𝐿3. However,
we expected a reachability probability of 𝐿1 closer to 1 than we got
as a result, because all paths through the automaton can reach 𝐿1
in the best-case scenario. This discrepancy of 0.06 may be caused
by our extension algorithm or the way it integrates with the mcsta
tool.

6.1 Probabilistic timed automaton with more than two
clocks

This case study shows a limitation of our algorithm in terms of
scalability. For simplicity, consider an example automaton with
three clock variables 𝑥,𝑦, 𝑧 where the maximum values of the clocks
are 𝑐𝑥 = 3, 𝑐𝑦 = 3, 𝑐𝑧 = 2, thus we will have the increment function
illustrated in Definition 10. Let the current location have invariants
𝑥 − 𝑦 ≤ 1∧ ≤ 𝑦 − 𝑧 ≤ 1. Consider that we reach the point (2, 2, 2)
that satisfies the invariant and increment condition, which makes it

7

TScIT 37, July 8, 2025, Enschede, The Netherlands Melania Vartic

Valid (2, 2, 2)

Invalid (3, 2, 0)
𝑥

𝑦

𝑧

Fig. 5. Constrain Violation After Reset in PTA with Three Clocks

a valid state in the automaton. If we attempt to reset z and go back to
this location, it yields (3, 2, 0) where 𝑥 is chosen to satisfy 𝑧 − 𝑥 ≤ 3;
however, the location invariant 𝑦 − 𝑧 ≤ 1 is no longer satisfied.
Therefore, our reset operation disrupted a diagonal involving two
non-reset clocks; thus the diagonal constraints are still not supported
for more than two clocks. The path is defined as follows.

(0, 0, 0) ⊕1−−→ (1, 1, 1) ⊕1−−→ (2, 2, 2)
reset 𝑦
−−−−−→ (3, 2, 0) (9)

(𝑣 ⊕ 1) (𝑥) =

𝑣 (𝑥) + 1, if 𝑥 < 4 ∧ 𝑦 < 4 ∧ 𝑧 < 3
𝑥 − 𝑦 ≤ 4 ∧ 𝑥 − 𝑧 ≤ 4∧
𝑦 − 𝑥 ≤ 4 ∧ 𝑦 − 𝑧 ≤ 4∧
𝑧 − 𝑥 ≤ 3 ∧ 𝑧 − 𝑦 ≤ 3

𝑣 (𝑥), otherwise

(10)

This limitation of the extended digital clock abstraction algorithm
can be visualised in Figure 5. The point (2, 2, 2) is at the intersection
of the accepted regions of the planes determined by the invariants
𝑥 − 𝑦 ≤ 1∧ ≤ 𝑦 − 𝑧 ≤ 1. When resetting the clock 𝑧, the value of 𝑥
also changed to maintain the values within the bounds; however,
the invariant is no longer satisfied. This breaks the formal semantics
of the model and leads to inconsistent analysis results.

7 CONCLUSION
We presented an algorithm to extend the digital clock abstraction
to allow and support diagonal constraints while preserving the
properties of the original probabilistic timed automaton. We imple-
mented it in the Modest Toolset as an underlying component of
the moconv tool, which transforms a probabilistic timed automaton
with diagonal constraints into a JANI file specification of a Markov
decision process. This research aimed to provide a comprehensive
explanation of the behaviour and changes necessary to extend the
standard digital clock algorithm to support diagonal constraints,
while preserving the initial properties of the probabilistic timed
automaton and documenting the modifications applied RQM1.
To assess whether RQM1 we documented the modifications ap-

plied to the initial implementation of the digital clock abstraction
in the Modest Toolset and provided a case study to prove its cor-
rectness on some types of input probabilistic timed automata. We

implemented and modelled the universal and existential quantifier
expression to allow Modest to evaluate our extended semantics.
Then we modelled the extended semantics using the universal and
existential quantifier over the domain of clock variables, which will
be substituted with values during model checking. Finally, we en-
sured that diagonal constraints of the form 𝑥 − 𝑦 ≤ 𝑐 and 𝑦 − 𝑥 ≤ 𝑐

are allowed by the tool moconv and can be modelled in the digital
clock algorithm. The last significant change necessary was to modify
themcsta tool to allow the clock variables to exceed their maximum
value. We applied these changes to the Modest Toolset source code
and analysed its correctness in terms of properties. There appears
to be no significant difference in the reachability probabilities given
as a result of mcsta tool, and the expected manual results, which
satisfies the RQM1.

We analyse the behaviour of our extended semantics in the case
study and show the possibilities in terms of state-space exploration
as formulated in RQM2. We proved that by not capping our clock
variables at their own maximum value and allowing them to exceed
them, we explore additional states that are still valid under the
diagonal constraints. Therefore, we preserved the properties of
the probabilistic timed automaton with a diagonal constraint, as
suggested by the similarity of expected and observed results. We
applied the extension of the digital clock algorithm to a dual sensor
alarm system modelled as a probabilistic timed automaton with one
diagonal constraint, thus achieving RQM2.

Lastly, a focus of our research was also the way our extended algo-
rithm scales with a higher number of clock variables, a requirement
specified in RQM3. Although the number of clocks does not seem
to interfere with state exploration, not enough testing was done
to ensure this. We discovered a limitation of the algorithm when
provided with more than two variables; namely, when resetting
the clocks based on our semantics there will be cases in which the
changes in clocks will determine a violation in the location invari-
ant. We illustrated this issue and hence, our extended algorithm
currently does not support more than two clocks.

7.1 Future Work
A possible area of future research would be developing a formal
mathematical proof to demonstrate the correctness of the extended
digital clock abstraction. This research suggests the effectiveness
of the extended algorithm on the probabilistic timed automaton
analysed; however, it does not guarantee the correctness of the se-
mantics. This can be achieved in future work with a formal proof.
For future work, another field of improvement is the way the cur-
rent algorithm deals with more than two clocks. As the number of
clocks increases, the algorithm proposed in this research exhibits
failure, mainly due to our approach of clock resets. This should be
researched and analysed further and a solution should be found to
ensure the scalability of our extended digital clock abstraction.

8 ACKNOWLEDGEMENTS
I thank Bram Kohlen for his guidance and assistance during this
research. Additionally, my gratitude extends to the researchers who
collaborated to implement the Modest Toolset and provided docu-
mentation for its source code.

8

Extending Digital Clocks to Support Diagonal Constraints in Probabilistic Timed Automata TScIT 37, July 8, 2025, Enschede, The Netherlands

REFERENCES
[1] Rajeev Alur. 1999. Timed Automata. In Computer Aided Verification, Proceedings

of the 11th International Conference on Computer-Aided Verification (CAV 1999),
Nicolas Halbwachs and Doron A. Peled (Eds.). Lecture Notes in Computer Science,
Vol. 1633. Springer Berlin Heidelberg, Berlin, Germany, 8–22. https://doi.org/10.
1007/3-540-48683-6_3

[2] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. Theoretical
Computer Science 126, 2 (1994), 183–235. https://doi.org/10.1016/0304-3975(94)
90010-8

[3] Christel Baier, Luca de Alfaro, Vojtěch Forejt, andMarta Kwiatkowska. 2018. Model
Checking Probabilistic Systems. In Handbook of Model Checking, Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Lecture
Notes in Computer Science, Vol. 10426. Springer International Publishing, Cham,
Switzerland, 963–999. https://doi.org/10.1007/978-3-319-10575-8_28

[4] Danièle Beauquier. 2003. On probabilistic timed automata. Theoretical Computer
Science 292, 1 (2003), 65–84. https://doi.org/10.1016/S0304-3975(01)00215-8

[5] Johan Bengtsson andWang Yi. 2004. Timed Automata: Semantics, Algorithms and
Tools. In Lectures on Concurrency and Petri Nets, Jörg Desel, Wolfgang Reisig, and
Grzegorz Rozenberg (Eds.). Lecture Notes in Computer Science, Vol. 3098. Springer
Berlin Heidelberg, Berlin, Heidelberg, 87–124. https://doi.org/10.1007/978-3-540-
27755-2_3

[6] Henrik Bohnenkamp, Pedro R. d’Argenio, Holger Hermanns, and Joost-Pieter
Katoen. 2006. MoDeST: A Compositional Modeling Formalism for Hard and Softly
Timed Systems. IEEE Transactions on Software Engineering 32, 10 (2006), 812–830.
https://doi.org/10.1109/TSE.2006.104

[7] Henrik Bohnenkamp, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren. 2003.
The Modest Modelling Tool and Its Implementation. In Computer Performance
Evaluation: Modelling Techniques and Tools, 13th International Conference (TOOLS
2003) (Lecture Notes in Computer Science, Vol. 2794), Peter Kemper and William H.
Sanders (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 116–133. https:
//doi.org/10.1007/978-3-540-45232-4_8

[8] Patricia Bouyer and Fabrice Chevalier. 2005. On Conciseness of Extensions of
Timed Automata. Journal of Automata, Languages and Combinatorics 10, 4 (2005),
393–405. https://doi.org/10.25596/jalc-2005-393

[9] Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. 2005. Diagonal
Constraints in Timed Automata: Forward Analysis of Timed Systems. In For-
mal Modeling and Analysis of Timed Systems (FORMATS 2005) (Lecture Notes in
Computer Science, Vol. 3829), Paul Pettersson and Wang Yi (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 112–126. https://doi.org/10.1007/11603009_10

[10] Pierre Brémaud. 2017. Discrete Probability Models and Methods. Probability Theory
and Stochastic Modelling, Vol. 78. Springer International Publishing, Cham,
Switzerland. xiv+559 pages. https://doi.org/10.1007/978-3-319-43476-6

[11] Carlos E. Budde, Pedro R. D’Argenio, Juan A. Fraire, Arnd Hartmanns, and Zhen
Zhang. 2025. Modest Models and Tools for Real Stochastic Timed Systems. Lecture
Notes in Computer Science, Vol. 15261. Springer, Cham, Switzerland, 115–142.
https://doi.org/10.1007/978-3-031-75775-4_6

[12] Carlos E. Budde, Christian Dehnert, Ernst M. Hahn, Arnd Hartmanns, Sebastian
Junges, and Andrea Turrini. 2017. JANI: Quantitative Model and Tool Interaction.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2017) (Lecture Notes in Computer Science, Vol. 10206), Axel Legay and Tiziana
Margaria (Eds.). Springer Berlin Heidelberg, Berlin, Germany, 151–168. https:
//doi.org/10.1007/978-3-662-54580-5_9

[13] Yuliya Butkova, Arnd Hartmanns, and Holger Hermanns. 2019. A Modest Ap-
proach to Modelling and Checking Markov Automata. In Proceedings of the 16th
International Conference on Quantitative Evaluation of Systems (QEST 2019) (Lec-
ture Notes in Computer Science, Vol. 11785), David Parker and Verena Wolf (Eds.).
Springer Cham, Cham, Switzerland, 52–69. https://doi.org/10.1007/978-3-030-
30281-8_4

[14] Xi Chen, Harry Hsieh, Felice Balarin, and Yosinori Watanabe. 2003. Case Studies
of Model Checking for Embedded System Designs. In Proceedings of the 3rd
International Conference on Application of Concurrency to System Design (ACSD),
J. Lilius, F. Balarin, and R. J. Machado (Eds.). IEEE Computer Society, Los Alamitos,
CA, USA, 20–28. https://doi.org/10.1109/CSD.2003.1207696

[15] Edmund M. Clarke. 1997. Model Checking. In Proceedings of the Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 1997) (Lecture
Notes in Computer Science, Vol. 1346), S. Ramesh and G. Sivakumar (Eds.). Springer,
Berlin, Heidelberg, 54–56. https://doi.org/10.1007/BFb0058022

[16] Fady Copty, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila Kamhi, Armando
Tacchella, and Moshe Y. Vardi. 2001. Benefits of Bounded Model Checking in an
Industrial Setting. In Proceedings of the 13th International Conference on Computer-
Aided Verification (CAV) (Lecture Notes in Computer Science, Vol. 2102), Gérard
Berry, Hubert Comon, and Alain Finkel (Eds.). Springer Berlin Heidelberg, Paris,
France, 436–453. https://doi.org/10.1007/3-540-44585-4_30

[17] Conrado Daws, Marta Kwiatkowska, and Gethin Norman. 2004. Automatic Veri-
fication of the IEEE 1394 Root-Contention Protocol with KRONOS and PRISM.

International Journal on Software Tools for Technology Transfer 5, 2-3 (2004), 221–
236. https://doi.org/10.1007/s10009-003-0118-5

[18] Stephen Edwards, Luciano Lavagno, Edward A. Lee, and Alberto Sangiovanni-
Vincentelli. 1997. Design of embedded systems: formal models, validation, and
synthesis. Proc. IEEE 85, 3 (1997), 366–390. https://doi.org/10.1109/5.558710

[19] Borja Fernández Adiego, Dániel Darvas, Enrique Blanco Viñuela, Jean-Charles
Tournier, Simon Bliudze, Jan Olaf Blech, and Víctor Manuel González Suárez. 2015.
Applying Model Checking to Industrial-Sized PLC Programs. IEEE Transactions
on Industrial Informatics 11, 6 (2015), 1400–1410. https://doi.org/10.1109/TII.2015.
2489184

[20] Matthias Fruth. 2006. Probabilistic Model Checking of Contention Resolution
in the IEEE 802.15.4 LR-WPAN Protocol. In International Symposium on Lever-
aging Applications of Formal Methods (ISoLA) (Lecture Notes in Computer Sci-
ence, Vol. 4229). Springer Berlin Heidelberg, Berlin, Heidelberg, 290–297. https:
//doi.org/10.1007/978-3-319-06410-9_39

[21] Uwe Glässer, Sarah Rastkar, and Mona Vajihollahi. 2008. Modelling and Validation
of Aviation Security. In Intelligence and Security Informatics: Techniques and Appli-
cations, Hsinchun Chen and Christopher C. Yang (Eds.). Studies in Computational
Intelligence, Vol. 135. Springer Berlin Heidelberg, Berlin, Heidelberg, 337–355.
https://doi.org/10.1007/978-3-540-69209-6_18

[22] Jürgen Greifeneder and Georg Frey. 2007. Probabilistic Timed Automata for
Modelling Networked Automation Systems. IFAC-PapersOnLine 40, 6 (2007), 1–6.
https://doi.org/10.1109/INDIN.2007.4384939

[23] Darion Haase and Joost-Pieter Katoen. 2024. Unknown Biases and Timing Con-
straints in Timed Automata. arXiv preprint arXiv:2403.02210 (2024). https:
//doi.org/10.48550/arXiv.2403.02210

[24] Ernst M. Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen.
2013. A compositional modelling and analysis framework for stochastic hybrid
systems. Formal Methods in System Design 43, 2 (2013), 191–232. https://doi.org/
10.1007/s10703-012-0167-z

[25] Arnd Hartmanns. 2010. Model Checking and Simulation for Stochastic Timed
Systems. In Proceedings of the 9th International Symposium on Formal Methods
for Components and Objects (FMCO 2010) (Lecture Notes in Computer Science,
Vol. 6957), Bernhard K. Aichernig, Frank S. de Boer, and Marcello M. Bonsangue
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 372–391. https://doi.org/
10.1007/978-3-642-25271-6_20

[26] Arnd Hartmanns and Holger Hermanns. 2009. A Modest Approach to Checking
Probabilistic Timed Automata. In Proceedings of the 6th International Conference
on Quantitative Evaluation of Systems (QEST 2009). IEEE Computer Society, Turin,
Italy, 187–196. https://doi.org/10.1109/QEST.2009.41

[27] Arnd Hartmanns and Holger Hermanns. 2015. Explicit Model Checking of Very
Large MDPs Using Partitioning and Secondary Storage. In Proceedings of the 13th
International Symposium on Automated Technology for Verification and Analy-
sis (ATVA 2015) (Lecture Notes in Computer Science, Vol. 9364), Bernd Finkbeiner,
Geguang Pu, and Lijun Zhang (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 131–147. https://doi.org/10.1007/978-3-319-24953-7_10

[28] Arnd Hartmanns, Joost-Pieter Katoen, Bram Kohlen, and Jip Spel. 2021. Tweaking
the Odds in Probabilistic Timed Automata. In Quantitative Evaluation of Systems
(QEST) 2021 (Lecture Notes in Computer Science, Vol. 12846), Alessandro Abate
and Andrea Marin (Eds.). Springer Cham, Cham, Switzerland, 39–58. https:
//doi.org/10.1007/978-3-030-85172-9_3

[29] Arnd Hartmanns and Bram Kohlen. 2022. Backwards Reachability for Probabilistic
Timed Automata: A Replication Report. arXiv preprint arXiv:2208.11928 (2022).
https://doi.org/10.48550/arXiv.2208.11928

[30] Arnd Hartmanns, Sean Sedwards, and Pedro R. D’Argenio. 2017. Efficient
Simulation-Based Verification of Probabilistic Timed Automata. In Proceedings
of the 2017 Winter Simulation Conference (WSC 2017) (Winter Simulation Con-
ference Proceedings, Vol. 2017), W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz,
N. Mustafee, G. Wainer, and E. Page (Eds.). IEEE, Las Vegas, Nevada, USA, 1419–
1430. https://doi.org/10.1109/WSC.2017.8247885

[31] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. 1992. What Good Are
Digital Clocks?. In Automata, Languages and Programming: 19th International
Colloquium (ICALP 1992) (Lecture Notes in Computer Science, Vol. 623), Werner
Kuich (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 545–558. https:
//doi.org/10.1007/3-540-55719-9_103

[32] Marcin Jurdziński, François Laroussinie, and Jeremy Sproston. 2008. Model Check-
ing Probabilistic Timed Automata with One or Two Clocks. Logical Methods in
Computer Science 4, 3:12 (2008), 1–28. https://doi.org/10.2168/LMCS-4(3:12)2008

[33] Marta Kwiatkowska. 2003. Model Checking for Probability and Time: FromTheory
to Practice. In Proceedings of the 18th IEEE Symposium on Logic in Computer Science
(LICS 2003), Phokion G. Kolaitis (Ed.). IEEE Computer Society Press, Los Alamitos,
CA, USA, 351–360. https://doi.org/10.1109/LICS.2003.1210075

[34] Marta Kwiatkowska. 2007. Quantitative Verification: Models, Techniques and
Tools. In Proceedings of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2007) (ESEC/FSE ’07), Michal Young and Steve Clarke (Eds.).

9

https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1016/S0304-3975(01)00215-8
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1007/978-3-540-45232-4_8
https://doi.org/10.1007/978-3-540-45232-4_8
https://doi.org/10.25596/jalc-2005-393
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/978-3-319-43476-6
https://doi.org/10.1007/978-3-031-75775-4_6
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1109/CSD.2003.1207696
https://doi.org/10.1007/BFb0058022
https://doi.org/10.1007/3-540-44585-4_30
https://doi.org/10.1007/s10009-003-0118-5
https://doi.org/10.1109/5.558710
https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.1007/978-3-319-06410-9_39
https://doi.org/10.1007/978-3-319-06410-9_39
https://doi.org/10.1007/978-3-540-69209-6_18
https://doi.org/10.1109/INDIN.2007.4384939
https://doi.org/10.48550/arXiv.2403.02210
https://doi.org/10.48550/arXiv.2403.02210
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-642-25271-6_20
https://doi.org/10.1007/978-3-642-25271-6_20
https://doi.org/10.1109/QEST.2009.41
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-030-85172-9_3
https://doi.org/10.1007/978-3-030-85172-9_3
https://doi.org/10.48550/arXiv.2208.11928
https://doi.org/10.1109/WSC.2017.8247885
https://doi.org/10.1007/3-540-55719-9_103
https://doi.org/10.1007/3-540-55719-9_103
https://doi.org/10.2168/LMCS-4(3:12)2008
https://doi.org/10.1109/LICS.2003.1210075

TScIT 37, July 8, 2025, Enschede, The Netherlands Melania Vartic

ACMPress, NewYork, NY, USA, 449–458. https://doi.org/10.1145/1287624.1287688
[35] Marta Kwiatkowska, Gethin Norman, and David Parker. 2018. Probabilistic

Model Checking: Advances and Applications. In Formal System Verification:
State-of-the-Art and Future Trends, Rolf Drechsler (Ed.). Lecture Notes in Com-
puter Science, Vol. 10443. Springer International Publishing, Cham, Switzerland,
73–121. https://doi.org/10.1007/978-3-319-57685-5_3

[36] Marta Kwiatkowska, Gethin Norman, David Parker, and Jeremy Sproston. 2006.
Performance Analysis of Probabilistic Timed Automata Using Digital Clocks.
Formal Methods in System Design 29, 1 (2006), 33–78. https://doi.org/10.1007/
s10703-006-0005-2

[37] Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston.
2002. Automatic Verification of Real-Time Systems with Discrete Probability
Distributions. Theoretical Computer Science 282, 1 (2002), 101–150. https:
//doi.org/10.1016/S0304-3975(01)00046-9

[38] Marta Kwiatkowska, Gethin Norman, and Jeremy Sproston. 2000. Symbolic
Model Checking of Probabilistic Timed Automata Using Backwards Reachabil-
ity. Research Report CSR-00-1 CSR-00-1. School of Computer Science, Uni-
versity of Birmingham, Birmingham, United Kingdom. 1–26 pages. https:
//doi.org/10.48550/arXiv.2403.02210

[39] Marta Kwiatkowska, Gethin Norman, and Jeremy Sproston. 2003. Probabilistic
Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention
Protocol. Formal Aspects of Computing 14, 3 (2003), 295–318. https://doi.org/10.
1007/s001650300007

[40] Raluca Marinescu, Henrik Kaijser, Marius Mikučionis, Cristina Seceleanu, Henrik
Lönn, and Alexandre David. 2015. Analyzing Industrial Architectural Models by
Simulation and Model Checking. In Formal Techniques for Safety-Critical Systems
(FTSCS 2014) (Communications in Computer and Information Science, Vol. 476),
Cyrille Artho and Peter Csaba Ölveczky (Eds.). Springer Cham, Luxembourg,
189–205. https://doi.org/10.1007/978-3-319-17581-2_13

[41] Yongan Mu, Wei Liu, Tao Lu, Juan Li, Sheng Gao, and Zihao Wang. 2023. Run-
time Verification of Self-adaptive Multi-agent Systems Using Probabilistic Timed
Automata. Journal of Intelligent & Fuzzy Systems 45, 6 (2023), 10305–10322.
https://doi.org/10.3233/JIFS-232397

[42] Gethin Norman, David Parker, and Jeremy Sproston. 2013. Model Checking for
Probabilistic Timed Automata. Formal Methods in System Design 43, 2 (2013),
164–190. https://doi.org/10.1007/s10703-012-0177-x

[43] Lucjan Pelc and Bogdan Kwolek. 2008. Activity Recognition Using Probabilistic
Timed Automata. In Pattern Recognition: Techniques, Technology and Application,
Patrick Yin (Ed.). I-Tech Education and Publishing, Vienna, Austria, 119–135.

[44] Martin L. Puterman. 1990. Markov decision processes. In Handbooks in Operations
Research and Management Science 2: Stochastic Models, D. P. Heyman and M. J.
Sobel (Eds.). Handbooks in Operations Research and Management Science, Vol. 2.
North Holland, Elsevier, Amsterdam, Netherlands, 331–434. https://doi.org/10.
1016/S0927-0507(05)80172-0

[45] Bastian Schlich and Stefan Kowalewski. 2009. Model checking C source code for
embedded systems. International Journal on Software Tools for Technology Transfer
11, 3 (2009), 187–202. https://doi.org/10.1007/s10009-009-0106-5

[46] Jeremy Sproston. 2021. Probabilistic Timed Automata with Clock-Dependent
Probabilities. Fundamenta Informaticae 178, 1–2 (2021), 101–138. https://doi.org/
10.3233/FI-2021-2000

[47] James Stewart. 2015. Calculus: Early Transcendentals (8 ed.). Cengage Learning,
Boston, MA, USA.

[48] Emília Villani, Rodrigo P. Pontes, Guilherme K. Coracini, and Ana M. Ambrósio.
2019. Integrating model checking and model-based testing for industrial software
development. Computers in Industry 104, 23 (2019), 88–102. https://doi.org/10.
1016/j.compind.2018.08.003

[49] Fuzhi Wang and Marta Kwiatkowska. 2005. An MTBDD-Based Implementation of
Forward Reachability for Probabilistic Timed Automata. In Automated Technology
for Verification and Analysis (ATVA), Doron A. Peled and Yih-Kuen Tsay (Eds.).
Lecture Notes in Computer Science, Vol. 3707. Springer Berlin Heidelberg, Berlin,
Heidelberg, 385–399. https://doi.org/10.1007/11562948_29

A PRELIMINARIES
Definition A.1 (Discrete probability). [10] A probability on (Ω, F)

where Ω is a set of events, is a mapping P : F → [0, 1] such that
for an event A:

• 0 ≤ 𝑃 (𝐴) ≤ 1,
• 𝑃 (Ω) = 1, and
• 𝑃

(∑∞
𝑘=1 𝐴𝑘

)
=
∑∞
𝑘=1 𝑃 (𝐴𝑘)

B DIGITAL CLOCK SEMANTICS IMPLEMENTATION

Listing 1. Building the universal difference-bound condition in the digital-
clock conversion

1 public Expression CreateForallCondition(ILocation loc,
↩→ Dictionary<VariableSymbol,Expression> maxValues,
↩→ Dictionary<VariableSymbol,VariableSymbol> integerVars)

2 {
3 // (1) Map each integer clock to its "bound = max+1"
4 var boundMap = integerVars.ToDictionary(
5 kv => kv.Value,
6 kv => new Addition(
7 maxValues[kv.Key],
8 new NumericValue(1, loc),
9 loc).Optimize());
10
11 // (2) Collect the integer clocks, e.g. [x, y]
12 var ints = boundMap.Keys.ToList();
13
14 // (3) For every distinct pair (a,b):
15 // (a \neq b) \Rightarrow ((a - b) \leq bound(a))
16 var conjuncts = new List<Expression>();
17 foreach (var aSym in ints) {
18 var aRef = new VariableReference(aSym, loc);
19 foreach (var bSym in ints) {
20 if (aSym == bSym) continue;
21
22 var bRef = new VariableReference(bSym, loc);
23 var neq = new BooleanNot(new Equal(aRef, bRef, loc),

↩→ loc);
24 var diffLe = new LessThanOrEqual(
25 new Subtraction(aRef, bRef, loc),
26 boundMap[aSym], loc);
27
28 conjuncts.Add(Implication.Create(neq, diffLe, loc));
29 }
30 }
31
32 // (4) Combine all implications with \land
33 if (conjuncts.Count == 0)
34 return new BooleanValue(true, loc);
35
36 var result = conjuncts[0];
37 for (int i = 1; i < conjuncts.Count; i++)
38 result = BooleanAnd.Combine(result, conjuncts[i]);
39
40 return result.Optimize();
41 }

Listing 2. Building the existential condition in the digital-clock conversion

1 public Expression CreateExistsCondition(ILocation loc,
↩→ Dictionary<VariableSymbol, Expression> maxValues,
↩→ Dictionary<VariableSymbol, VariableSymbol> integerVars)

2 {
3 // One quantified symbolic variable that will range over the

↩→ clocks
4 var quantified = new VariableSymbol("v",

↩→ IntegerType.Instance, false, false, loc);
5
6 var maxInt = integerVars.ToDictionary(
7 kv => kv.Value,
8 kv => new Addition(maxValues[kv.Key], new NumericValue(1,

↩→ loc), loc).Optimize()
9);
10
11 // The domain is just the list of variable references from

↩→ the dictionary keys
12 var domain = maxInt.Keys
13 .Select(clock => (Expression)new VariableReference(clock,

↩→ loc))
14 .ToList();
15
16 // Build the predicate: v < ClockMaxLookup(v)
17 Expression body = new LessThan(
18 new VariableReference(quantified, loc),
19 new ClockLookup(quantified, maxInt, loc),

10

https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.48550/arXiv.2403.02210
https://doi.org/10.48550/arXiv.2403.02210
https://doi.org/10.1007/s001650300007
https://doi.org/10.1007/s001650300007
https://doi.org/10.1007/978-3-319-17581-2_13
https://doi.org/10.3233/JIFS-232397
https://doi.org/10.1007/s10703-012-0177-x
https://doi.org/10.1016/S0927-0507(05)80172-0
https://doi.org/10.1016/S0927-0507(05)80172-0
https://doi.org/10.1007/s10009-009-0106-5
https://doi.org/10.3233/FI-2021-2000
https://doi.org/10.3233/FI-2021-2000
https://doi.org/10.1016/j.compind.2018.08.003
https://doi.org/10.1016/j.compind.2018.08.003
https://doi.org/10.1007/11562948_29

Extending Digital Clocks to Support Diagonal Constraints in Probabilistic Timed Automata TScIT 37, July 8, 2025, Enschede, The Netherlands

20 loc
21);
22
23 return new ExistsExpression(
24 new List<VariableSymbol> { quantified },
25 domain,
26 _ => body, // all use the same predicate
27 loc
28).Optimize();
29 }

C AI STATEMENT
During the preparation of this work, I used ChatGPT to help me
understand certain snippets of the Modest Toolset code or to provide
me with alternative ways of expressing certain ideas or expressions
in words. Lastly, I used Writefull as a spell-checker.

11

	Abstract
	1 Introduction
	2 Research Objective and Requirements
	3 Related Work
	4 Background
	5 Method
	5.1 Overview
	5.2 Changes in semantics
	5.4 Case Study
	5.5 Implementation

	6 Results
	6.1 Probabilistic timed automaton with more than two clocks

	7 Conclusion
	7.1 Future Work

	8 Acknowledgements
	References
	A Preliminaries
	B Digital Clock Semantics Implementation
	C AI Statement

