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Human Activity Recognition (HAR) using Wi-Fi Channel State Informa-
tion (CSI) offers a promising pathway for unobtrusive monitoring enabling
the detection and classification of physical activities from sensed data in
the form of Wi-Fi signals without requiring users to wear any sensors or
devices. A major challenge in current AI powered HAR solutions is the
need for a central processing module, limiting scalability and real-world
applicability. This has encouraged developers to lead the system’s evolution
toward distributed architectures, where sensing and processing are handled
by multiple edge devices. A key issue in deploying distributed HAR systems
is determining which transmitter-receiver pairs are best suited for accurate
activity recognition in a given location. This selection is critical, as it directly
affects system performance, efficiency, and scalability. This thesis focuses on
improving the initialization phase of distributed CSI-based HAR systems by
proposing new ideas and methods which leverage CSI data characteristics
for identifying optimal device pairings across different environments. By
addressing this challenge, the proposed work aims to enhance the reliability
and adaptability of distributed HAR systems, leading the way for more prac-
tical and scalable real-world deployments. Improvements in the classification
model have been achieved, along with promising ideas and methodologies
to enhance the performance of the initialization phase, though these require
further development and refinement for effective implementation.
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1 INTRODUCTION
The increasing demand for continuous, privacy-preserving human
activity monitoring in different environments such as healthcare
institutions or smart homes, drives interest in device-free HAR
solutions.
Wi-Fi CSI sensing has emerged as a promising candidate due to

its ability to detect movement through passive analysis of radio
wave disturbances without the need for any wearables or devices.
This makes it especially valuable for applications where user com-
fort and privacy are critical. CSI takes advantage of the multi-path
propagation of Wi-Fi signals, where even small human movements
affect the amplitude and phase of the signal, making it highly sen-
sitive for detecting physical activities. Moreover, since the Wi-Fi
infrastructure is already deployed in most indoor environments,
CSI-based HAR can be implemented without additional hardware,
making it cost-effective and unobtrusive [4].

However, current systems often suffer from poor scalability due
to centralized computation. Centralized systems also pose serious
privacy and reliability concerns, as they represent a single point
of failure. A central server aggregating all activity data becomes a
vulnerable target for breaches [7]. In safety-critical domains such
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as healthcare, where system up-time and data confidentiality are
highly required, these vulnerabilities are especially concerning.

To address these limitations, many developers focused in the in-
tegration of distributed AI for HAR implementations, where edge
devices such as laptops, routers, and cell phones collaboratively
process and classify CSI data. These devices share partial insights,
forming a multi-agent model which reaches activity and location
classification by consensus. According to Jeroen Klein Brinke, nu-
merous decision-making by consensus approaches can be applied,
enabling shifting intelligence from a centralized server to a dis-
tributed architecture [2].
An issue emerges while implementing this approaches, which

is determining which transmitter-receiver pairs are best suited for
accurate activity recognition in a specific location. This directly
impacts the system’s effectiveness and scalability.

This thesis addresses the challenge of initializing distributed CSI-
based HAR systems by proposing a method to automatically identify
the most suitable transmitter-receiver pairs for each deployment
environment. The approach leverages the rich spatial and tempo-
ral information embedded in Channel State Information (CSI) and
Received Signal Strength Indicator (RSSI) data. Phase, amplitude
and strength are signal characteristics that will be analyzed and
processed to improve pairing decisions and optimize system perfor-
mance. The aim is to develop a solution that is scalable and effective
across different physical layouts, thereby laying a strong foundation
for robust activity recognition without requiring manual setup.

1.1 Problem Statement
In distributed CSI-based Human Activity Recognition (HAR) sys-
tems, a critical step during initialization is the selection of optimal
transmitter–receiver pairs across a set of networked edge devices.
The goal is to identify those links that maximize activity recogni-
tion performance while minimizing communication overhead, and
energy consumption.

1.2 ResearchQuestion
How can the initialization phase of distributed CSI-based Human Ac-
tivity Recognition (HAR) systems be enhanced to automatically and
efficiently identify optimal transmitter-receiver pairs by maximally
exploiting the richness of CSI data?

1.3 Sub-questions (SRQs)
(1) Which model architecture, particularly in comparison to tra-

ditional approaches, can most effectively exploit the unique
characteristics of CSI data, reaching the highest F1-score of
edge models during the initialization phase?

(2) To what extent can RSSI data be utilized to estimate which
node pairs cover an optimal sensing area and to filter out non-
informative transmitter-receiver pairs, thereby narrowing
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down the set of potential sensing pairs and increasing the
selection of effective pairs?

(3) To what extent can amplitude fluctuations extracted from
CSI data be leveraged to evaluate a pair’s transmission qual-
ity, narrowing down the set of potential sensing pairs and
increasing the selection of effective pairs?

2 RELATED WORK
To identify relevant literature for this study, Google Scholar and
IEEE Xplore were consulted using keywords such as “distributed AI,”
“federated learning,” and “CSI-based human activity recognition.”
This search revealed three research areas of interest: centralized AI
for gesture recognition using CSI, decentralized/federated learning
approaches for HAR, and model training strategies in distributed
systems.
Yi Zhang et al. [13] introduced the Widar framework, a Wi-Fi-

based gesture recognition system leveraging AI agents trained to
classify human gestures from CSI data. While their work offers
valuable insights into model design and CSI signal processing, it
adopts a centralized architecture. In contrast, our focus lies in refin-
ing decentralized model initialization strategies, particularly at the
system’s early configuration phase.
Brinke et al. [2] present one of the few studies integrating dis-

tributed AI into CSI-based HAR systems. Their work introduces
various edge training strategies, Consensual, Pairwise (location-
aware), and Pairwise (proximity-aware), which guide how model
inferences are shared and aggregated. Our research builds directly
on this foundation, specifically refining their initialization algo-
rithm by incorporating filtering mechanisms and enhancing the
classification model.
The WiFederated framework [5] offers a federated learning so-

lution for CSI-based HAR, combining locally trained models using
federated averaging. Its strength lies in its ability to generalize across
environments while reducing setup effort and training repetitions.
These contributions are especially relevant to our aim of improv-
ing system scalability and minimizing the initialization latency and
resource consumption.
Taken together, these studies lay the groundwork for our inves-

tigation into improving model initialization in distributed HAR
systems. Our work extends this literature by experimenting with
CNN-based architectures for improved accuracy and exploring al-
ternative metrics like RSSI to enhance transmitter-receiver pair
selection.

3 DATA ACQUISITION

3.1 Experimental Setup
The data used in this study was collected in the e-Health House at
the University of Twente, as part of previous research by Brinke et
al. [2]. The environment consists of three distinct activity zones: the
living room, kitchen area, and bedroom. Seven ASRock NUC BOX-
1220P devices equipped with Intel AX211 NICs were strategically
positioned to simulate realistic smart home setups (e.g., smart TVs,
phones, or kitchen appliances).

Channel State Information (CSI) was captured using thePicoScenes
middleware, which was run as a background system process on each

Fig. 1. Lidar scans of the apartment (e-Health House) with all nodes (𝑛10,...,
𝑛16. Locations where activities are performed are in yellow (𝐿𝐵𝑒𝑑 , 𝐿𝐿𝑖𝑣𝑖𝑛𝑔
and 𝐿𝐾𝑖𝑡𝑐ℎ𝑒𝑛). Note that the image labels a section as table but in this
study this area will be identified as the kitchen [2].

device. The devices operated in monitor/injection mode using a 1×2
MIMO setup at a center frequency of 6.9 GHz. A packet transmission
rate of 100 Hz was used, producing CSI matrices of shape 𝑡 × 52 × 2
over 1-second time windows. All CSI data was encapsulated and
stored in .csi files, which form the core of the dataset used in this
study.
These .csi files were essential to this research, as they embed

metadata fromwhich the RSSI values can be extracted. This allows us
to explore multiple signal-based estimations, including an analysis
of whether RSSI can serve as a proxy for signal quality between
transmitter–receiver pairs during system initialization.

Twelve participants were involved in the original study, perform-
ing a standardized set of activities, including resting, being agitated,
working, and standing up, in each of the three activity zones. Activ-
ities were labeled and synchronized with the CSI data.

In this thesis, the dataset is used to develop and evaluate a refined
initialization algorithm for distributed CSI-based HAR systems. Our
focus is on enhancing model sensitivity and training efficiency by
selectively filtering transmitter–receiver pairs using signal quality
estimations, and by transitioning to CNN-based learning architec-
tures better suited for spatial pattern extraction.

3.2 Evaluation
The primary evaluation metric used to compare different initializa-
tion approaches is the stability of the selected transmitter–receiver
pairs for a given activity location. An initialization method will be
considered effective if it consistently selects the same set of best
performing devices across multiple runs. Conversely, an approach is
considered unreliable if it frequently selects different devices under
the same conditions, indicating high sensitivity to randomness or
noise in the data.

4 STATE OF THE ART
An innovative approach for this initialization method focuses on
measuring the sensitivity of the edge-devices. The sensitivity repre-
sents the ability of each device to detect patterns within a specific
location. This section will delve into the main components of this
approach as they define the bases of our initialization framework.

4.1 Multi-branch model architecture
Each device holds an artificial intelligencemodel architecture known
as a multi-branch model. This architecture is capable of processing
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data through two different branches resulting in two outputs. This
model is suitable for this task as the HAR system is intended to
identify the activity its location [2].

4.2 Training Strategy
The sample dataset is first divided by locations, generating three
smaller datasets. During initialization, each device creates a model
per location and trains it for a few epochs using 15% of the corre-
sponding dataset of that specific location and 10% for validation.
Instead of evaluating final accuracy, the trend of the validation
curve is computed to estimate the pair’s potential to learn relevant
patterns within a specific location [2].

4.3 Sensitivity calculation
The device’s sensitivity is calculated using a series of equations
which compare the history of the validation accuracy during the
training. If the validation accuracy increases, then the learning trend
will be considered positive, which is what this thesis defines as the
device’s sensitivity [2].

4.4 Results
Figure 2 presents a series of heatmap matrices, each correspond-
ing to one of the three activity locations (Living Room, Bed, and
Kitchen). These visualizations represent the frequency with which
specific transmitter–receiver pairs are selected by the initialization
algorithm across multiple runs. This facilitates the analysis of the
algorithm’s preferences and consistency.

Fig. 2. Node distribution for the different rooms after the initialization
phase where the entry represents how many times a receiver (row) was
paired with a transmitter (column) [2].

In the living room, selection was dominated by two strong links,
(𝑛10, 𝑛12) and (𝑛14, 𝑛16), likely due to direct signal paths because
of the lack of obstacles between the devices. In the bedroom, pair-
ings were heavily skewed towards device 𝑛13, which was beside
the activity zone and was involved in nearly 90% of selected pairs,
highlighting the importance of proximity and signal penetration
through thin barriers. In contrast, kitchen pairings were more evenly
distributed, though devices positioned close to the activity area (es-
pecially 𝑛14 and 𝑛16) were still favored. These findings suggest that
spatial proximity and unobstructed signal paths significantly influ-
ence the stability and recurrence of selected pairs.

This thesis focuses on improving the consistency of the initializa-
tion algorithm by adopting the core idea of calculating sensitivity
through the prediction of learning rates via stratified training and
validation. The goal is to reduce variance in transmitter–receiver

pair selection, ensuring the algorithm reliably converges on the
most effective pairs for activity recognition.

5 METHODOLOGY
This section outlines the experimental design and techniques used
to improve the initialization algorithm, with a particular focus on
reducing its result variance. The methodology includes data pre-
processing, model architecture design, and the implementation of
filtering strategies aimed at enhancing transmission quality assess-
ment.

5.1 Data Preparation and Preprocessing
The data used in this study was collected as described in Section 3.1.
It consisted of a combination of Numpy arrays and .csi files. The
Python library, Pandas, was used to preprocess the data, converting
raw numpy arrays into a structured database stored in .csv and .pkl
files. Reformatting the data enabled adding labels to the readings to
convert them into well-defined data samples. The resulting database
significantly facilitated the analysis and manipulation of the CSI
data, especially in the context of training machine learning models.
The software tool Data Wrangler was employed to visualize the
data structure.
The CSI data stored in the Numpy arrays served as the samples

used to train the activity classification model. All data samples
contained sequences of zeros within the CSI values. Further in-
vestigation revealed that these zeros did not provide meaningful
information and could potentially mislead the model during training.
As a result, they were removed from the samples.

Data normalization and reshaping was applied to the remaining
CSI values to ensure that all features are on a comparable scale and
in the correct shape to feed the model. This step helps improve the
model’s learning stability and prevents features with larger numeric
ranges from influencing the model’s performance.

5.2 Model Architecture
Channel State Information (CSI) represents the physical characteris-
tics of a wireless communication channel, capturing the phase and
amplitude fluctuations occurring as an event unfolds in the envi-
ronment, over time. Thus CSI data should be treated as time-series
data, where sequential variations carry information about human
activity. Consequently, models should be designed to capture and
learn from these temporal dependencies.

5.2.1 Convolutional Neural Networks. A Convolutional Neural Net-
work (CNN) is a deep learning model composed of convolutional
layers that enable extracting localized patterns. CNNs are widely
adopted due to their computational efficiency and capacity to learn
discriminative features automatically, enabling the recognition of
time-series patterns[11].
Two types of CNN architectures are commonly used in HAR

systems: 1D-CNNs and 2D-CNNs. Although 2D-CNNs are widely
used, they require reshaping or applying time-frequency transforma-
tions to CSI data, steps that may increase computational complexity,
adding overhead and reducing efficiency on resource-constrained
edge devices.
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Why 1D-CNNs? These models convolve across the temporal di-
mension, preserving the structure of the signal and enabling ex-
traction of relevant temporal features such as abrupt or periodic
amplitude changes produced by human activities interfering the
signal.

In contrast to 2D-CNNs, which are optimized for spatial pattern
recognition, 1D-CNNs are better suited for detecting dependencies
in sequential data. Moreover, their reduced complexity supports
deployment in resource-constrained environments [6, 8, 9].
For this study, the proposed 1D-CNN model processes CSI data

of shape (100, 52, 2), representing 100 time steps, 52 frames, and 2
channels receiving the CSI data, reshaped to (100, 104). It applies
stacked 1D convolutional layers followed by batch normalization
and ReLU activation.
Two models were implemented, a lightweight 1D-CNN and the

activity branch of a state-of-the-art multi-branch model. The dataset
was split into 80% training and 20% testing subsets. The evaluation
metric used to contrast the models’ performance was the F1-score,
selected for its ability to balance precision and recall. Each model
was trained and evaluated across 50 runs in different training sce-
narios. The effectiveness of these models will be analyzed in the
Results section.

5.3 Transmitter–Receiver Pair Filtering
The initialization phase involves training and testing models for
every possible transmitter–receiver pair to evaluate their sensing
capacity, through the sensitivity calculation. However, it does not
consider link quality degradation due to noise, low power, or physi-
cal obstacles. This study proposes improvements that exclude poor-
quality links using two complementary strategies: RSSI-based and
fluctuation-based filtering.

5.3.1 RSSI-based Exclusion. The Received Signal Strength Indicator
(RSSI) measures the power of the received signal. This metric gives
insights on how well a device can hear a signal from an access point
or router.

Noise and outliers significantly degrade the accuracy of classifica-
tion outcomes. In CSI data, phenomena like furniture and excessively
large communication paths can introduce such noise and outliers
into both amplitude and phase measurements, thereby misleading
machine learning models during their training phase [12]. The noise
floor sets a limit on the minimum detectable signal level, signals
falling below this threshold either hinder or completely prevent a
receiver from detecting and interpreting valuable patterns.
The Signal-to-Noise Ratio (SNR) provides a crucial metric,

quantifying the strength of the desired signal relative to the back-
ground noise floor. For the signal to be considered clear, its strength
must be higher than the noise floor by a significant margin [3]

Since 𝑆𝑁𝑅 = 𝑅𝑆𝑆𝐼 (𝑑𝐵𝑚) − 𝑁𝑜𝑖𝑠𝑒𝑃𝑜𝑤𝑒𝑟 (𝑑𝐵𝑚) [3], high RSSI val-
ues generally correlate with lower noise impact, assuming a stable
noise floor. Making RSSI a useful proxy for signal quality.
This study hypothesizes the use of RSSI to identify node pairs

located within an optimal sensing area. Setting a minimum transmis-
sion power to validate the transmission’s quality between a specific
pair of nodes. Conversely, node pairs exhibiting excessively high
RSSI values will also be excluded during the initialization phase.

Strong signal strengths are typically observed between nodes in
very close proximity [1], which are not suitable for area sensing
purposes, as they do not contribute to effective spatial coverage.

In practice the initialization phase excludes transmitter–receiver
pairs where over 30% of their frames fall outside the empirically
determined optimal RSSI range of −70 dBm < 𝑋 < −55 dBm.

RSSI valueswere extracted from the .csi files using thePicoScenes
Python library. Pairs with too weak or overly strong RSSI values,
often indicative of nodes too far apart or too close, were eliminated
from the initialization process.

5.3.2 Fluctuation-based Exclusion. CSI data captures how signal
propagates from the transmitter to the receiver, including phase
and amplitude variations. CSI-based analyzes these variations to
detect patterns and build up knowledge on the nature of the event
occurring in the monitored area.

In the state-of-the-art initialization phase, a sensitivity calculation
is implemented assessing the model’s ability to recognize specific
activities from CSI data. This process demands high accuracy and
precision from the model to identify patterns associated to particular
activity types. Drawing reliable conclusions on sensitivity from the
performance of such complex learning is particularly challenging,
given the limited training performed to maintain low latency during
the initialization phase.

Rather than relying solely on complexmulti-class activity recogni-
tion, this strategy simplifies the assessment by training a lightweight
model for binary classification: detecting whether any activity is
present or not. The underlying hypothesis is that node pairs in-
capable of identifying the presence of an activity will hardly be
suitable to identify specific activities. This approach allows the ini-
tialization phase to narrow down the set of potential best sensing
pairs, thereby reducing the variance of its results.
To generate "no activity" samples, CSI data was collected in the

room stated in Figure 1 while being empty. These were combined
with the activity dataset, relabeled into binary "activity" and "no-
activity" indicators. Due to class imbalance, class weights were
applied to penalize misclassifications of the minority class, encour-
aging the model to take special care identifying samples from this
class.

Models were trained for each transmitter–receiver pair and ranked
by their F1-scores. Pairs whose binary classifiers scored below 0.45
were excluded from candidate sensing links, as they were considered
unreliable for detecting even the presence of activity.
The effects of these filtering strategies are explored in detail in

the Results section.

5.4 Accuracy evaluation
The purpose of the filters is to help the initialization algorithm
converge to a smaller set of potential best sensing pairs, increasing
its precision. Nevertheless, it is also important to verify whether
the selected pairs are truly the best sensing pairs for that specific
location.

To conduct an accuracy evaluation, the node pairs will be strate-
gically trained for each location, following the same procedure used
during the initialization phase. However, instead of using only 15%
of the dataset, 80% will be used to enable a more effective training
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Fig. 3. Architecture of the Convolutional Neural Network (CNN) used in this study. The model consists of multiple convolutional and pooling layers for
feature extraction, followed by fully connected layers for classification. Each layer is annotated with its output shape and activation function.

process. The model will pass through 50 different training itera-
tions, attempting to overcome the impact of noise because filtering
mechanisms are not being applied. By comparing the F1-scores
of the resulting models, more reliable conclusions can be drawn
about which node pairs are most suitable for sensing in that specific
location.

In Section 6, the accuracy of the filters will be evaluated by com-
paring the list of selected sensing pairs to the list of best-performing
pairs, identified based on model performance after more extensive
training.

6 RESULTS
This section presents the outcomes of the methods introduced in
the previous section. The figures represent the results gathered
after conducting each experiment. In Section 7, each of these will
be analyzed, providing enough background to answer the research
questions.

6.1 Model Comparison
Figure 4 shows the average F1-scores achieved by the 1D-CNN and
the activity recognition branch of the multi-branch model across 50
training runs.

Fig. 4. F1-score reached by both models on each training situation.

Figure 5 shows the frequencywithwhich specific transmitter–receiver
pairs were selected using the 1D-CNN during the initialization pro-
cess.

6.2 Impact of RSSI-based Filtering
Figure 6 shows the node pair selection after applying the RSSI-based
exclusion strategy.

6.3 Impact of Fluctuation-based Filtering
Figure 7 illustrates the result of applying the fluctuation-based ex-
clusion strategy.

6.4 Fully-trained Model’s Performance
Table 1 displays the best performing pairs for each location.

Table 1. Best pairs by location, based on fully trained model performance

Location Pair Average F1-score

Living

(12,16) 0.77
(16,12) 0.71
(16,13) 0.66
(16,11) 0.69
(10,12) 0.65

Bed

(16,13) 0.51
(10,13) 0.61
(13,14) 0.62
(13,11) 0.57
(13,12) 0.56

Kitchen

(16,11) 0.71
(11,16) 0.69
(14,13) 0.61
(16,13) 0.59
(14,15) 0.63
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Fig. 5. Node distribution for the different rooms after CNN-based initialization. Entries represent how often a receiver (row) was paired with a transmitter
(column).

Fig. 6. Node distribution for the different rooms after CNN based initialization phase implementing filtering by RSSI, where the entry represents how many
times a receiver (row) was paired with a transmitter (column).

Fig. 7. Node distribution for the different rooms after CNN based initialization phase implementing fluctuation-based exclusion, where the entry represents
how many times a receiver (row) was paired with a transmitter (column).
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7 DISCUSSION
In Section 7 the information presented in Section 6 will be discussed.
The insights obtained from the results analyzes will be taken into
account to answer the research question introduced at the start of
the paper.

7.1 1D-CNN for Activity Classification
The results obtained from comparing models performance address
SRQ1: Which model architecture, particularly in comparison
to traditional approaches, can most effectively exploit the
unique characteristics of CSI data, reaching the highest F1-
score of edge models during the initialization phase?
In terms of performance, it has been demonstrated that the 1D

Convolutional Neural Network (1D-CNN) significantly outperforms
the multi-branch model in activity classification, achieving a notably
higher average F1-Score of 0.572 compared to 0.105. This indicated
the 1D-CNN’s superior capability in extracting relevant temporal
patterns from CSI data.
While no major improvements in convergence are observed,

some consistent patterns emerge, for example, frequent selection of
(𝑛11, 𝑛14) and (𝑛13, 𝑛16) in the kitchen. These results also support
proximity-based relevance, as seen with 𝑛13 being frequently paired
for bed-related activities.

7.2 RSSI-based Pair Filtering
The experiment conducted to evaluate the performance of the RSSI-
based filtering addresses SRQ2: To what extent can RSSI data
be utilized to estimate which node pairs cover an optimal
sensing area and to filter out non-informative transmitter-
receiver pairs, thereby narrowing down the set of potential
sensing pairs and increasing the selection of effective pairs?
Filtering led to a noticeable reduction in spurious pairings such

as (𝑛10, 𝑛14), (𝑛14, 𝑛12), and (𝑛16, 𝑛12), which had minimal selection
frequencies. This reduces considerably the set of pairs to test for
sensitivity reducing the variance of the initialization results and the
algorithm’s latency.

However, the filtering process also omits several high-frequency
pairs that demonstrate strong performance in the fully trainedmodel.
For instance, pairs like (𝑛10, 𝑛13) and (𝑛13, 𝑛14), which, as Table 1
indicates, are among the most effective transmitter-receiver com-
binations for sensing activity on the bed, are excluded under this
approach.

This highlights a conflict between what the RSSI filtering system
considers an optimal sensing area and the results achieved by the
trained model. To investigate the cause of this discrepancy, a deeper
analysis was conducted on the RSSI values that informed the filtering
mechanism. In some cases, a correlation between RSSI and physical
distance was observed. Pairs such as (𝑛16, 𝑛13), (𝑛16, 𝑛12), and (𝑛16,
𝑛11) exhibited the lowest average RSSI values, which aligns with
the isolated location of 𝑛16.
Nevertheless, other pairings such as (𝑛13, 𝑛10) and (𝑛13, 𝑛12),

which are expected to have higher RSSI values due to closer prox-
imity, displayed values similar to those of transmissions involving
𝑛16.

Several factors could contribute to this inconsistency, but the
most likely explanation is multipath propagation, which is widely
recognized as a major limitation in RSSI-based measurements in
indoor environments [10]. The approach of Masoodi et al demon-
strated that usingmultichannel RSSI measurements can significantly
improve precision in signal strength estimation [10].

This suggests that RSSI remains a promising metric for evaluating
sensing quality but it requires refinement to adjust better to the
complexities of indoor signal behavior.

7.3 Fluctuation-Based Pair Filtering
Lastly this section addresses SRQ3: Towhat extent can amplitude
fluctuations extracted from CSI data be leveraged to evalu-
ate a pair’s transmission quality, narrowing down the set of
potential sensing and increasing the selection of effective
pairs?

This strategy omitted a total of 18 node pairs, which is one more
compared to the RSSI-based filtering method. As shown in Figure 7,
the excluded pairs do not follow a clear or consistent pattern. Both
frequently and infrequently selected pairs are omitted without any
evident pattern.
A major limitation of this approach is the high variance ob-

served in the F1-scores of individual pairs across different runs.
This variability makes it difficult to reliably identify the most sen-
sitive transmitter-receiver pairs from a single training session. To
obtain reliable insights on pair sensitivity, multiple training sessions
using varied data samples would be required. However, this is not
possible in the current setup, as it would significantly increase the
model’s latency.

Therefore, in its current implementation, this approach does not
appear to be feasible; nevertheless, the underlying concept may still
hold potential. One possible improvement could involve developing
a lighter model architecture, which would allow for multiple runs
in a shorter amount of time. Another direction could be the design
of a mathematical method to evaluate transmission stability, for
example by detecting noisy links based on the number of outliers in
amplitude values. This would preserve the main idea while avoiding
the need for repeated model training.

8 CONCLUSION
This thesis explores the challenge of enhancing the initialization
phase of distributed CSI-based Human Activity Recognition (HAR)
systems. Our primary objective was to automatically identify opti-
mal transmitter-receiver pairs, thereby improving the consistency
and reliability of the selection process.
Several promising approaches were investigated to enhance dif-

ferent aspects of the algorithm. Our investigation into model ar-
chitectures demonstrated that a 1D Convolutional Neural Network
(1D-CNN) significantly outperformed a multi-branch model in ac-
tivity classification, achieving a notably higher average F1-Score
of 0.572 compared to 0.105. This indicated the 1D-CNN’s superior
capability in extracting relevant temporal patterns from CSI data.

Later in the thesis, filtering mechanisms were investigated, start-
ing with the RSSI-based exclusion approach. This method utilized
Received Signal Strength Indicator (RSSI) values to assess signal
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quality. By establishing an optimal RSSI range and excluding pairs
that frequently fell outside this range, the algorithm aimed to discard
noisy links or those in extreme proximity, which are less suitable
for area sensing.
Lastly, the focus was the fluctuation-based pair filtering. This

approach involved a simpler sensitivity assessment, training light-
weight models to distinguish between activity and no-activity sig-
nals. Pairs withmodels that did not meet a certain F1-score threshold
were excluded.

While these filtering mechanisms showed promise in identify-
ing and excluding non-informative pair links, leading to a more
focused selection of candidate pairs, it was observed that they did
not converge into the most sensing pairs. The core objective of
achieving better accuracy for the selection of optimal pairs remains
a challenge that requires further refinement of these approaches.

However, the implementation of these exclusion methods yielded
a practical benefit. Filtering out suboptimal pairs before the exten-
sive training and evaluation of the models, significantly reduced the
number of models that need to be trained. This conserves computa-
tional resources and reduces the overall initialization time, offering
the possibility of running the sensitivity calculation multiple times
and approximating the most sensitive pairs.
In essence, while the attempts to reduce the variance in the out-

come of the initialization results were not entirely successful, the
proposed filtering techniques could potentially improve the process
of initialization. If proper pair exclusion is implemented valuable
computational time will be directed only towards potentially vi-
able sensing pairs, thus enhancing the practical applicability and
scalability of distributed HAR systems in real-world deployments.

8.1 Future work
In future work, a deeper investigation on why RSSI behaves in such
an unstable way in different indoor settings should be conducted.
Gaining a better understanding of RSSI fluctuations would be

critical to improving the proposed filtering system. Running specific
experiments that look at how RSSI changes under different condi-
tions could help us gain more insight into the causes of RSSI noise.
Additionally, taking multichannel measurements to increase the
precision of the gathered RSSI values could improve the RSSI-based
filtering results. Another important step would be to implement
better methods to normalize CSI, reducing environmental noise and
ensuring the model focuses more on patterns caused by real human
movement.
Lastly, a key issue is data imbalance, which makes it harder for

the model to reliably detect activities. In this case, there was a large
imbalance between the "activity" and "no-activity" data samples. To
address this, more "no-activity" data samples should be collected.
This can help build a better baseline of what the environment’s "nor-
mal" noise looks like, allowing the model to differentiate between
situations when activities are happening or not. A mathematical
method could also be designed to detect samples that do not follow
normal behavior. This would omit the need for training any model
to detect amplitude patterns.
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