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Exploring large state spaces is a common challenge in many domains, re-

quiring systematic strategies to solve complex problems. Existing tools are

often designed around specific strategies or goals, limiting their reusability.

This study proposes the development of a flexible, unified framework for

state space exploration, allowing for customization of exploration strategies

based on various strategy features. The framework emphasizes modularity

and extensibility, and is evaluated through the implementation of multiple

configurations, tested across different state space exploration problems.
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ration framework, Feature model, Strategy features, State space analysis

1 Introduction
State space exploration is the technique of searching through a graph

structure consisting of states, which represent a configuration of a

system at a specific moment in time, and transitions connecting one

state to another, which represent a change made to the configuration

of a system.

State space exploration is used in many disciplines of computer

science, such as model checking [16] and program analysis, where

it plays a crucial role in efficiently navigating large and complex

state spaces [19]. Moreover, it is relevant in other fields, including

game theory [21], physics [30], and medical applications [3, 5, 6].

Within the diversity and broad range of state space exploration,

a problem occurs. Every unique exploration problem requires its

own strategy to solve it or find the desired outcome. As noted by

Ganai et al. [15], who designed a hybrid search strategy, no single

strategy is optimal to efficiently solve the wide variety of problems.

Most of the time, when a new problem needs a solution using state

space exploration, an efficient strategy has to be researched and

implemented, as existing strategies all have their own advantages,

disadvantages, and proper applications [22].

This is also evident in the current state of the art on this topic,

which consists primarily of research carried out to test or develop

efficient algorithms for a specific exploration problem [11, 14] or to

compare different algorithms or variations [8]. Instead, this research

will focus on the creation of a flexible state space exploration frame-

work that supports multiple strategies and features, so as to have an

appropriate exploration strategy for diverse state space exploration

problems.

To address the wide variety, relevant features will be identified

and transformed into a flexible framework that is capable of explor-

ing a state space exploration problem based on selected features.

This gives rise to the following overarching research question:
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How can a flexible framework support the wide range

of existing strategies for solving state space exploration

problems?

This can be divided into the following three sub-questions:

(1) What are the essential exploration features required for a

flexible state space exploration framework?

(2) How can different exploration strategies be abstracted and

integrated into a unified framework?

(3) How well does a flexible exploration framework perform

when applying different strategies to different state space

problems?

Chapter 2 will provide background on state space exploration strate-

gies and feature models. In Chapter 3, existing exploration frame-

works and their limitations will be highlighted. The feature identifi-

cation and framework design and implementation will be discussed

in Chapter 4. Next, Chapter 5 will evaluate the flexible strategies

framework across multiple problems. Finally, Chapter 6 discusses

the findings, limitations, and contribution of this research.

2 Background

2.1 State Space
The process of state space exploration can be formalized as the

search over a state space. In this research, a state space is defined

as:

S = (𝑆,𝐴,𝑇 , 𝑠0,𝐺)
with:

- 𝑆 , the set of all possible states.

- 𝐴, the set of all available actions that lead to a transition.

- 𝑇 ⊆ 𝑆 ×𝐴 × 𝑆 , the set of transitions.
- 𝑠0 ∈ 𝑆 , the initial state.
- 𝐺 , the set of goal states.

Each transition (𝑠, 𝑎, 𝑠′) ∈ 𝑇 represents a labeled move from a state

𝑠 to a successor state 𝑠′ via a action 𝑎. The goal of exploration is typ-

ically to determine whether a state in𝐺 is reachable from the initial

state 𝑠0, making the reached goal states the solutions. Moreover, a

solution can be a trace, being a valid sequence of transitions that

leads to the goal state. Such a solution can be defined as:

𝜌 = ⟨𝑡1, 𝑡2, . . . , 𝑡𝑛⟩ | ∀𝑖 ∈ {1, . . . , 𝑛}, 𝑡𝑖 = (𝑠𝑖−1, 𝑎𝑖 , 𝑠𝑖 ) ∈ 𝑇, 𝑠𝑛 ∈ 𝐺
The exploration of a state space can be viewed as progressing

through layers of states, where each layer contains all states at

the corresponding depth. In other words, all states that are reach-

able from the initial state 𝑠0 by the same fixed number of transitions.

Formally, the depth of a state 𝑠 ∈ S, denoted as 𝑑 (𝑠), can be defined

as the length of the shortest path from the initial state 𝑠0 to 𝑠:

𝑑 (𝑠) = min{𝑛 ∈ N0 | ∃𝜌 = ⟨(𝑠0, 𝑎1, 𝑠1), . . . , (𝑠𝑛−1, 𝑎𝑛, 𝑠𝑛 = 𝑠)⟩ ⊆ 𝑇 }
And a specific layer, denoted as 𝐿𝑘 can be defined as the set of all

states at depth k:

𝐿𝑘 = {𝑠 ∈ 𝑆 | 𝑑 (𝑠) = 𝑘}
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To solve state space exploration problems efficiently, especially

when the state space is large, heuristic functions are often used to

guide the search [28]. A heuristic is a function ℎ(𝑠) that estimates

the cost from a given state 𝑠 to a goal state 𝑔 ∈ 𝐺 , which can be

defined as:

ℎ(𝑠) : 𝑆 → R≥0

A heuristic function has two important properties [7, 24]:

- Admissibility: a heuristic should never overestimates the true

minimal cost 𝛿 (𝑠) from any state 𝑠 to a goal, which can be defined

as:

∀𝑠 ∈ S, ℎ(𝑠) ≤ 𝛿 (𝑠)

- Consistency: a heuristic is consistent if for every state 𝑠 and its

successor 𝑠′, the estimated cost satisfies:

ℎ(𝑠) ≤ 𝑐 (𝑠, 𝑠′) + ℎ(𝑠′)

where 𝑐 (𝑠, 𝑠′) denotes the cost of transitioning from 𝑠 to 𝑠′.

2.2 Strategies
Various space state exploration problems have given rise to the intro-

duction of a wide range of exploration strategies. The strategies all

take a different approach to reach the goal of the exploration. Below,

a handful of the most well-known strategies will be highlighted,

ranging from simple and intuitive strategies to more complex ones.

2.2.1 Breadth First Search. One of the most common exploration

strategies in state space exploration is Breadth First Search (BFS).

The BFS strategy searches through the state space by fully exploring

one layer before continuing to explore deeper in the state space [22].

As a result, BFS is an effective strategy to find the shortest path (the

least number of steps) to the goal.

2.2.2 Depth First Search. Another common exploration strategy

is Depth First Search (DFS), which contrasts with BFS in its traver-

sal behavior. Instead of exploring a state space layer by layer, DFS

explores one path as deeply as possible before backtracking and

exploring alternative branches [22]. Therefore, DFS is a viable alter-

native to BFS that often uses less memory but does not guarantee a

shortest path [20].

2.2.3 Greedy Search. Both BFS and DFS are uninformed strategies,

which means that they do not use additional knowledge about the

problem to solve it. A strategy that does use such additional knowl-

edge is greedy search. It does this by using a heuristic function that

approximates the distance from a state to the goal. This value is

then used to prioritize exploring the states that are estimated to be

closest to the goal [28].

2.2.4 A* Search. Similar to greedy search, the A* search strategy

uses a heuristic function to estimate the distance to the goal andwith

that approximate the best states to explore. However, in contrast

to greedy search, it combines this heuristic function with a cost

function. This cost function represents the cost to reach a state (the

distance from the initial state 𝑠0), and allows the A* exploration

strategy to reliably find the shortest paths to the goal while using

the advantages of a heuristic function [13, 25].

2.2.5 Symbolic State Space Exploration. An alternative to previ-

ously discussed explicit state space exploration is symbolic state

space exploration. Rather than exploring individual states, symbolic

state space exploration operates on symbolic representations of sets

of states [8, 9]. As a result, symbolic state space exploration can be

an effective strategy to solve extremely large state space exploration

problems [8, 17].

2.3 Feature Modeling
Creating feature models is a technique commonly used in software

product line engineering to model the variability and reusability in

a system or complete product line [1, 2]. Feature model diagrams

visualize the features of a system in a hierarchal structure, where

each level of the diagram becomes increasingly detailed. Moreover,

they define relationships between the features such as mandatory,

optional, and alternative, as well as constraints over the features

such as requires, indicating that one feature requires another feature

or a specific option of that feature [2].

This study uses feature models to provide a clear and concise

overview of the differences and variability present in state space

exploration strategies, which can be used to design a flexible explo-

ration framework.

Various studies have been conducted to develop a full understand-

ing of feature models and their potential [1, 4, 26]. These efforts

include approaches to transform feature models into concrete imple-

mentation [1], as well as techniques to analyze feature models [4].

Both act as crucial steps in this study, specifically in implementing

the flexible framework and in creating and validating the design of

the feature model.

3 Related Work
State space exploration has been a relevant topic of research for

many years [15, 16, 19]. As already described, a lot of these works

look into a single optimized strategy, however, studies related to a

flexible strategies framework have been performed as well

Firstly, Kattenbelt [20] argues that most model checking tools

are highly specialized and optimized for a specific purpose, making

it extremely difficult to reuse or extend on them for other related

problems that require a different approach, and therefore proposes

a modular approach to model checking. Their modularity is more

about how tools interact, whereas this framework focuses on how

strategies are built.

Another related work is [17], in which Heijblom investigates how

features of models can be used to determine the optimal exploration

strategy. While their research aims to find optimal strategies for

various exploration problems, this study aims to design a framework

that allows for the configuration of search strategies.

Finally, in their study, Rasmussen et al. [23] use agent-based meth-

ods to build adaptable exploration strategies. While the implemen-

tation differs, this study also aims at creating adaptable strategies.
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4 Methodology and Approach

4.1 Feature Model
The first step in this study is to identify the relevant exploration

features and to create a feature model diagram based on those fea-

tures. To do this, existing search strategies, some of which have been

discussed in Section 2.2, have been analyzed to discover the features

that make each of these strategies unique. The resulting feature

model diagram can be found in Figure 1, and will be explained in

more detail.

4.1.1 Search goal. An essential part of every exploration strategy is

the search goal: every state space exploration problem aims to reach

a state part in the set G, as defined in Section 2.1. However, this goal

can be completely different for different problems, depending on

the specific problem to be solved. For example, a goal could be a

specific state [13] or transition, or it could be to satisfy or violate

some property about a state or transition [25]. The only consistency

between state space exploration problems is that the goal should

be about states or transitions, as these are the building blocks of a

state space. Therefore, in this research, the search goal can be any

boolean expression regarding states and transitions, specifically:

- State s, the id of a state.

- Transition t, the label of a transition.

- Loop, whether a transition is a loop from a state to itself.

- Outdegree n, the number of outgoing transitions from a state.

With these a goal expression can be created like this:

(Transition "finish" & Loop) | Outdegree 0

Meaning, find states with a transition to itself called finish, or with

no outgoing transitions.

4.1.2 Next State Selection. The main difference between the strate-

gies discussed in Section 2.2 is their next state selection policy, which

is the next feature identified in this study. The next state selection

can be divided into two categorizes, informed and uninformed search.
Informed search uses a heuristic function that approximates how

good a state is to explore, so that the most promising states can be

prioritized. The following uninformed state selection policies are

identified for this study:

- Oldest, explore the least recently discovered state next.

- Newest, explore the most recently discovered state next.

- Random, choose a random discovered state to explore next.

For the informed state selection policies, the main component is

the heuristic function. Another component is the state acceptance,

which describes whether a state can be explored based on its heuris-

tic value, and is further highlighted in Section 4.1.4. Some informed

search strategies also use a cost function, which represents the dis-

tance from a state to the initial state 𝑠0. Therefore, informed state

selection consists of a heuristic function and an optional cost func-

tion: 𝑓 (𝑠) = ℎ(𝑠) or 𝑓 (𝑠) = 𝑔(𝑠) + ℎ(𝑠)
Here, 𝑠 represents a state and 𝑓 (𝑠) the function that returns a value

that shows how promising the state is, with the lowest value being

the most promising. The function 𝑔(𝑠) represents the cost function
𝑐 (𝑠0, 𝑠) and ℎ(𝑠) the heuristic function as defined in Section 2.1.

There are numerous heuristic functions that can be used depend-

ing on the precise kind of state space exploration problem and struc-

ture of the states. Depending on the structure of the states, different

heuristics are possible, as the more information a state contains the

more information can be used to estimate the most promising state.

For example, a state can have an id that simply states the order in

which it was generated, or an id that provides more information, or

a state could even be a graph structure that also contains its own

states and transitions. Some examples of heuristics are as follows:

- Node-Edge-Node Count, compare the number of transitions in-

side a state to those of the goal state.

- Transitions Count, the number of outgoing transitions of a state

[29].

- Rule Violation Count, the number of properties that do not hold

in a state, but are satisfied in the goal state [25].

- HammingDistance, number of bits that differ between an encoded

state and the encoded goal state [13].

4.1.3 Frontier Size. The next identified feature is the size of the

frontier. The frontier refers to the set of states that are discovered

but not yet (fully) explored, meaning there may still be more outgo-

ing unexplored transitions from those states to explore. Thus, the

frontier size is the (maximum) number of states in that set. These

are the options for the frontier size feature:

- Single, a frontier size of 1.

- Fixed, a frontier size of some number greater than 1.

- Complete, no limit on the size of the frontier.

A frontier size of 1 allows for a form of linear search, in which the

strategy will always solely look at a single state to further explore,

leaving no room for backtracking. A fixed frontier size results in the

so-called beam search, in which the frontier size is used to create

an optimal balance between finding the best solutions and being

efficient with memory [28].

4.1.4 State Acceptance. When using an informed exploration strat-

egy, the next state selection is based on the most promising un-

explored state, as described in Section 4.1.2. The goal of this is to

not waste time exploring states that have a low chance of finding a

solution. This creates another component, namely state acceptance,

with the following two options:

- Allow Worse, also explore states that seem less promising than

the already explored states.

- Strictly Better, only explore new states that seem more promising

than the already explored state.

When accepting strictly better states, states will not only be ranked

on their heuristic value to determine which one to explore first,

but also states with a lower heuristic value than currently explored

states will not be explored at all. According to research [28], this can

be an effective way to improve efficiency but offers no guarantees

of finding a solution, as exploration could get stuck in local extrema

where a state lacks better successors, preventing progress toward

the goal.

4.1.5 Result. Another relevant feature identified in this study is

the type of result. Depending on the problem being explored, it may

be interesting to find out how often a goal occurs, where it occurs,

or how it occurs. Therefore, the result feature has these options:

- State, return the states in which the goal condition is met.

- Trace, return the full path to the states in which the goal condition

is met.

3
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Fig. 1. Feature Model Diagram

4.1.6 Stop Condition. Another important feature is the stop condi-

tion. To efficiently search through a state space, it is beneficial to

know when to stop searching in a specific direction or completely.

For example, if you know that after a particular transition there

will not be any chance to find a solution, then there is no reason to

keep searching further behind that transition. There are two types

of stop condition in this research, namely the terminate condition,

which stops the search entirely when this condition is met, and the

boundary condition, which prevents the search from continuing

from the state in which the condition is met. The options for the

terminate condition are:

- Solutions n, stop the search when a certain number of solutions

are found.

- Explored n, stop the search when a certain number of states are

explored.

The boundary conditions has two components, namely the condition

and the stop position, which is explained in the next section. Options

for the boundary conditions are:

- State s, do not continue searching after a state with a certain id.

- Transition t, do not continue searching after a transition with a

certain label.

- Loop, do not continue searching after a transition from a state to

itself.

- Depth d, do not continue searching after reaching a certain depth

in the state space graph.

Similarly to the search goal, the options for the terminate condition

and the boundary condition can be combined to create an expression.

4.1.7 Stop Position. As explained above, the boundary condition

determines when successors of a state should not be explored. How-

ever, this gives rise to the question, should exploration be stopped

while exploring the state that met the boundary condition or after

that state? In other words, can a state in which a boundary condi-

tion is met be a solution? Therefore, the stop position component is

identified with the following two options:

- Before State, the state that meets the stop condition cannot be

part of the solutions, even if it meets the goal condition criteria.

- After State, the state that meets the stop condition can be part of

the solutions if it also meets the criteria of the goal condition.

4.1.8 Parallelized. To improve the efficiency of an exploration strat-

egy, research has indicated that parallelizing it could be an option

[9, 12, 14]. That means that multiple parts of the exploration process

will be run simultaneously on multiple cores or machines. This is an

optional feature without multiple options and therefore can either

be included or not included in the exploration strategy.

4.1.9 Search Direction. The final identified feature in this study is

the search direction. Usually a search is performed from the starting

state to a goal state, but that is not the only option. Research has

indicated that searching from both the initial state and the goal state

can improve the performance of some exploration strategies [7].

The search direction feature has the following options:

- Forward, search from the initial state to a goal state.

- Backward, search from a goal state to the initial state.

- Bidirectional, search from both the initial state and a goal state

and find a solution by meeting in the middle.

4



Flexible Strategies for State Space Exploration TScIT 43, July 4, 2025, Enschede, The Netherlands

4.1.10 categorization The features identified in this section can

be divided into two main categories, which can be found in Table

1. The first category are the features that explain the precise way

the strategy searches through the state space. They describe which

states will be explored and in what order. Together, these features

represent the part of the strategy that can be applied to any problem.

The second category of features consists of those that describe

how the precise manner of search, as defined by the first category,

behaves on a specific problem. They describe what the strategy

should search for, when it should stop searching, and what type of

result is expected for a specific state space exploration problem.

Table 1. Feature Categorization

Category 1 Category 2
Next State Selection Search Goal

Frontier Size Result

State Acceptance Terminate Condition

Parallelized Boundary Condition

Search Direction Stop Position

4.2 Validation Table
The feature model aims to provide a flexible and scalable framework

to create an exploration strategy by selecting between its described

features. To ensure its completeness and practical relevance, an

essential criterion is that it should also support existing strategies.

Validating this capability of a feature model is not only crucial

for this study, but also represents an effective analysis technique for

feature models in general, as explored in previous work [4].

To properly validate the feature model, various exploration strate-

gies have been selected, some of which are described in Section

2.2. Additionally, other strategies are selected which can be found

in Table 2 Since these strategies can be applied to any exploration

problem, they are classified according to the features in the first

category in Table 1.

Table 2. Validation Strategies

Strategy Abbreviation Sources
Random Walkthrough RW [12, 24]

Hill Climbing HC [28]

Greedy Search Greedy [28]

A* Search A* [22, 28]

Reverse A* Search Rev-A* [27]

Beam Search Beam [24, 28]

Bidirectional BFS Bi-BFS [7, 24]

Linear Search Linear [10]

Parallel DFS P-DFS [12]

The result of the validation can be found in Table 3, in which

an empty cell is used to illustrate that a particular feature is not

applicable to that specific strategy or that any option is possible.

Table 3. Feature Model Validation Table

Strat.

Feat. Next
State
Selection

Frontier
Size

State
Accept-
ance

Parallel-
ized

Search
Direction

BFS Oldest Complete Excluded Forward

DFS Newest Complete Excluded Forward

RW Random Complete Excluded Forward

HC Heuristic Single

Strictly

Better

Excluded Forward

Greedy Heuristic Complete

Allow

Worse

Excluded Forward

A* Cost +

Heuristic

Complete

Allow

Worse

Excluded Forward

Rev-A* Cost +

Heuristic

Complete

Allow

Worse

Excluded Backward

Beam Heuristic Fixed

Allow

Worse

Excluded Forward

Bi-BFS Oldest Complete Excluded
Bi-

directional

Linear Single

Allow

Worse

Excluded Forward

P-DFS Newest Complete Included Forward

4.3 Implementation
As discussed in Chapter 2.3, there are approaches to transform fea-

ture models to code implementation. These approaches typically

involve translating the feature model into an intermediate repre-

sentation that can then be transformed more directly into an actual

implementation [1]. However, due to the relative simplicity of the

feature model design in this research, this approach has not been

followed for the implementation of the flexible framework.

Instead, to implement this tool, a general explorer is created that

calls methods in interfaces representing the features, together with

implementations of the interfaces representing the options of those

features, and flags are checked to alter the exploration strategy for

the basic features. The implementation is available on GitLab
1
.

4.3.1 Explorer. One of the main components of the exploration tool

is the explorer. The explorer is responsible for exploring the state

space using the selected strategy, and its main method can be found

in Algorithm 1. The explorer searches through the state space by

looping over the states provided by the next state selector and then

checking three conditions, which represent the following features:

(1) The search goal.

(2) The terminate condition.

(3) The boundary condition.

Moreover, to integrate the stop position, the currently explored state

gets added to a list of excluded states when the boundary condition

is met and the stop position is set to stop before the state, to ensure

that the state can be excluded from the final result.

1
https://gitlab.utwente.nl/s2995808/flexible-state-space-exploration-strategies
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Algorithm 1 Explore state space

1: result← ∅
2: excluded← ∅
3: steps← 0

4: while transition← selectNext ≠ null do
5: steps← steps +1
6: state← getTargetState(transition)

7: if isGoal(state, transition, steps, |result|) then
8: result← result ∪ {state}
9: end if
10: if isTerminate(state, transition, steps, |result|) then
11: break
12: end if
13: if isBoundary(state, transition, steps, |result|) then
14: if stopBeforeState then
15: excluded← excluded ∪ {state}
16: end if
17: continue
18: end if
19: addToFrontier(state)

20: end while
21: result← result \ excluded
22: return result

4.3.2 State Selector. The state selector task is to provide the next

state to explore. To implement this behavior, an interfacewas created

with select next as its main method. The next state selection options,

as identified in the feature model (Figure 1), all implement this next

state method. An example of these implementations is that of the

oldest next state selector, which can be found in Algorithm 2 and

looks similar to the other next state selection options.

Algorithm 2 Select next state

1: while frontierState← first state in frontier ≠ null do
2: next← getSuccessor(frontierState)

3: if next = null then
4: remove the first state from frontier

5: continue
6: end if
7: return next

8: end while
9: return null

4.3.3 Excluded Features. There are two features identified and in-

cluded in the feature model, which got excluded from the imple-

mentation. Due to time constraints, not all identified features could

be taken into account. These features are parallelized and search

direction, as these features would have taken significant effort to

implement compared to the other features, and these features are

not unique to an existing search strategy but instead can be seen as

additions to strategies to possibly make them more efficient.

4.3.4 Conditions. The next important component to discuss are the

conditions. Since the search goal and stop conditions are modeled

using an OR-relation, a condition may combine multiple of these

options into a single expression. To support this, the system had to

be implemented in a flexible way that allows for any combination

of these options, which is done by creating an ANTLR grammar
2
.

An example of a condition expression using this grammar could be

the following boundary condition:

(Transition "end" & !Loop) | Depth 10

The conditions in the implementation allow for even greater flexi-

bility and customization than originally envisioned in the feature

model. The available options for the terminate condition, bound-

ary condition, and search goal often overlap and could be applied

to any of the three. Therefore, the implementation allows for any

combination of all available options for each condition type.

4.3.5 Configuration. The configuration of the search strategy is

split into two parts, following the categorization specified in Table

1. The first part is the strategy configuration, where the features

from the first category are set using the format: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 : 𝑜𝑝𝑡𝑖𝑜𝑛,

which are then parsed to configure the system accordingly. An

example of a strategy configuration for greedy search:

𝑆𝑡𝑎𝑡𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟 : ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 𝑠𝑖𝑧𝑒 : 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

𝑆𝑡𝑎𝑡𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 : 𝑎𝑙𝑙𝑜𝑤 𝑤𝑜𝑟𝑠𝑒

The second part is the problem configuration, which sets features

from the second category. An example of the ferryman problem [25]:

𝑆𝑒𝑎𝑟𝑐ℎ 𝑔𝑜𝑎𝑙 : 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ”𝑓 𝑖𝑛𝑖𝑠ℎ” & 𝑙𝑜𝑜𝑝

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 : 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 1

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 : 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ”𝑒𝑑𝑖𝑏𝑙𝑒”

𝑆𝑡𝑜𝑝 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 : 𝑏𝑒 𝑓 𝑜𝑟𝑒

𝑅𝑒𝑠𝑢𝑙𝑡 𝑡𝑦𝑝𝑒 : 𝑡𝑟𝑎𝑐𝑒

Then they are tied together using the final search configuration:

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒 : 𝑓 𝑒𝑟𝑟𝑦𝑚𝑎𝑛

𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒 : 𝑔𝑟𝑒𝑒𝑑𝑦

𝑆𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑛𝑎𝑚𝑒 : 𝐴𝑢𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

4.3.6 Generation. Finally, there is the generation component.When

exploring a state space, generally, the state space is not known

from the start and should be generated while exploring. The tool

implemented in this research focuses on exploration and flexible

strategies to explore state spaces. However, it still requires the gen-

eration aspect, which is integrated in this application by providing

an interface that could be implemented to communicate with a tool

that is specialized in the generation of state spaces. This interface

includes methods for providing the initial state, successors of a state,

and the heursitic value of a state.

An implementation of this generation interface is provided. This

implementation does not integrate any other tool into the system.

Instead, it expects a file containing the entire state space in .aut

format
3
, representing the transition system of the state space.

5 Results

5.1 Evaluation
To understand the performance of the developed flexible framework,

multiple strategies have been tested on various state space explo-

ration problems. This section will describe these problems and how

they will be evaluated.

2
https://www.antlr.org/

3
https://cadp.inria.fr/man/aut.html

6
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5.1.1 Dining Philosophers Problem. The first exploration problem

that will be used to evaluate the framework is the dining philoso-

phers problem. In this problem, a number of philosophers are sitting

around a table. These n philosophers are hungry and have to pick

up two forks to be able to start eating. There are also n forks, which

means that philosophers have to compete against each other for the

required forks [29]. A philosopher can either pick up the fork on

their left, pick up the fork on their right, or place the forks back on

the table.

This problem simulates the concurrency of programs [20], and

the goal is to find deadlocks, which are states without outgoing

transitions. There are two solutions in this problem, namely, each

philosopher picks up the fork on their left, resulting in no philoso-

pher being able to take the fork on their right, and each philosopher

picking up the fork on their right. The goal of this evaluation is to

find these two solutions while exploring the least number of states.

Since the goal is to find states with no outgoing transitions, the

heuristic function used by the informed strategies is the transition

count, which compares the number of outgoing transitions of a

state. The states with the lowest number of outgoing transitions are

considered the most promising states, as they may have a higher

change of leading to a state without outgoing transitions [29].

5.1.2 Pancake Problem. The next problem is the pancake problem.

In this problem, there is a stack of n pancakes, each of a different

size, that has to be sorted with the largest pancakes at the bottom.

To achieve this, the stack of pancakes can be flipped from any level,

resulting in the flipping of the entire stack of pancakes above that

level [18].

The pancake problem has a single solution, which is the state in

which the stack of pancakes is sorted with the largest pancake at

the bottom. Therefore, to evaluate this problem, the search goal is

to explore as few states as possible to find this solution.

For this problem the informed strategies use the so-called gap

heuristic:

“Its heuristic value is the number of stack positions for

which the pancake at that position is not of adjacent

size to the pancake below:“ [18]

ℎ𝑔𝑎𝑝 (𝑠) = |{𝑖 | 𝑖 ∈ {1, . . . , 𝑛}, |𝑠𝑖 − 𝑠𝑖+1 | > 1}|

5.1.3 Queens Problem. The final problem is the queens problem.

In the queens problem, n queens have to be organized on a 𝑛 × 𝑛
chessboard in such a way that no queens attack each other [24]. The

problem starts with a queen in the first row of each column, and a

solution can be found by moving queens to different rows in their

respective columns.

The number of solutions for this problem varies with the board

size n. Since this problem will be solved by moving the queens’

positions to optimize the layout towards a goal state, the search goal

for this problem is limited to finding a single solution. Therefore,

the focus will once again be on the number of explored states to

find one of the solutions.

The heuristic used for this problem is “the number of pairs of

queens that are attacking each other, either directly or indirectly“ [24].

By minimizing the number of attacking queens pairs, the goal of a

board without any attacking queen pairs may be reached sooner.

5.2 Analysis
To conclude the performance of the flexible framework, the strate-

gies described in Table 3 have been applied to the state space explo-

ration problems described in the previous section. The result of the

problems can be found in Tables 4, 5, and 6. With n the n-size prob-

lem is denoted, and max shows the theoretical maximum amounts

in the entire state space. The values for the random walkthrough

strategy are gathered by exploring the state space three times and

computing the average, and beam search is used with a frontier size

set to 10. The results are analyzed below, organized per problem.

5.2.1 Dining Philosophers Problem. The results of the dining philoso-
pher problem show that every strategy, except for hill climbing,

has managed to find both goal states that are present in the state

space. Concerning the number of states explored, the three strate-

gies greedy search, A* search, and beam search perform clearly

better than the others. These are the informed search strategies,

which indicates that the transition count heuristic that is used in

this problem is an effective heuristic for this exploration problem.

A* search seems to be the most effective strategy for this problem,

resulting in the lowest number of explored states for 6, 8, and 9

philosophers. However, when comparing the results of each strategy

between the different problem sizes, beam search does not increase

as rapidly compared to other strategies when n increases. This

could indicate that for larger state spaces of the dining philosopher

problem, beam search possibly becomes the most optimal strategy.

Table 4. Performance Metrics for the n-Dining Philosophers Problem

Metric Solutions States Explored
n 6 7 8 9 6 7 8 9

Max 2 2 2 2 3 405 11 910 40 827 137 784
BFS 2 2 2 2 3 405 11 910 40 827 137 784

DFS 2 2 2 2 1 868 5 170 23 230 62 276

RW 2 2 2 2 990 1 757 6 678 19 830

HC 0 0 0 0 6 7 8 9

Greedy 2 2 2 2 130 100 167 327

A* 2 2 2 2 83 114 108 186

Beam 2 2 2 2 88 171 228 329

5.2.2 Pancake Problem. When analyzing the pancake problem, the

most important metric is the number of states explored, since there

is only one solution to each of the n-pancake problems in this

study, and except for hill climbing all strategies managed to find

this solution in every exploration.

The three uninformed strategies BFS, DFS and random walk-

through all performed really poorly on this problem, especially

compared to the informed strategies. This shows that the pancake

problem requires an appropriate heuristic to be solved efficiently,

and that the gap heuristic is such heuristic.

Greedy search turned out to be the most optimal strategy for

the pancake problem, achieving the best results across all tested

n-pancake problems, followed by beam search.

7



TScIT 43, July 4, 2025, Enschede, The Netherlands Luuk Alfing

Table 5. Performance Metrics for the n-Pancakes Problem

Metric Solutions States Explored
n 6 7 8 9 6 7 8 9

Max 1 1 1 1 4 332 35 282 322 562 3 265 922
BFS 1 1 1 1 3 884 29 234 64 642 1 420 616

DFS 1 1 1 1 2 201 5 441 79 429 935 203

RW 1 1 1 1 2 583 23 965 229 517 1 012 268

HC 0 0 0 0 9 3 2 6

Greedy 1 1 1 1 10 13 16 20

A* 1 1 1 1 308 493 119 1 112

Beam 1 1 1 1 58 73 62 96

5.2.3 Queens Problem. The queens problem has led to some inter-

esting results. Firstly, once again, the uninformed strategies per-

formed significantly worse than the informed strategies and espe-

cially scaled extremely bad when testing on higher numbers of n, as

can be noticed from the results of the 6-queens and 7-queens prob-

lem. Therefore, it can be again be concluded that a good heuristic

has been selected for this problem.

Secondly, for the 4-queens and 5-queens problem, hill climbing,

greedy search, and A* search all managed to find a solution while

exploring the minimum number of required states. Whereas, none

of them managed to achieve the same result when exploring the

two larger 6-queens and 7-queens state spaces. Hill climbing did

not even reach a solutions before stopping the exploration, which is

a surprising result, as it was expected to be one of the more efficient

strategies for exploring large variations of the n-queens problem

[24]. This result indicates that with larger variant of this problem,

hill climbing reaches local extrema, indicating the need for a more

advanced optimization of this strategy [28]. Based on the results of

this test, A* search seems to be the best strategy for the n-queens

problem, closely followed by greedy search.

Lastly, beam search shows some interesting results in this prob-

lem, it managed to find a solution in (𝑛 − 1) × 10 + 1 explored states,
meaning it searches 𝑛 − 1 of its frontier size and then finds it. This

indicates that a smaller frontier size may be better for this problem.

Table 6. Performance Metrics for the n-Queens Problem

Metric Solutions States Explored
n 4 5 6 7 4 5 6 7

Max 2 10 4 40 3 075 62 511 1 399 685 34 588 847
BFS 1 1 1 1 1 082 20 242 448 022 10 394 246

DFS 1 1 1 1 1 038 2 317 228 680 9 639 509

RW 1 1 1 1 2 298 3 379 247 411 1 100 055

HC 1 1 0 0 4 5 10 8

Greedy 1 1 1 1 4 5 28 34

A* 1 1 1 1 4 5 10 30

Beam 1 1 1 1 31 41 51 61

6 Conclusion
In this study, the impact of a flexible framework for state space

exploration problems was explored. Relevant exploration features

were identified and integrated into a feature model diagram that

captures the important aspects of a state space exploration strategy.

This led to the development of a flexible framework capable of

addressing diverse state space problems in a configurable and adapt-

able manner. By allowing both the problem and the strategy to be

defined through configuration, the framework reduces the need to

balance trade-offs between efficiency, optimality, and scalability. Its

flexibility allows strategies to be adapted for each unique problem,

improving applicability across various domains and problems.

6.1 Discussion
The results of this research demonstrate the potential of a flexible

framework for state space exploration problems. However, this flex-

ibility comes with its own trade-offs. The high level of configurable

parts leads to a more complex setup process, which requires users

to have a solid understanding of the problem and strategies, and

may increase the time needed to identify optimal feature selections.

Moreover, the framework focuses on the exploration of state

spaces. Another important aspect of solving state space exploration

problem is the generation of state spaces. Although the framework

provides an interface to allow for the integration of state space

generation tools, this remains a challenge for users, who require

the knowledge to integrate such tools themselves or access to such

tools to provide generated transition system manually.

While the defined set of features covers a broad range of explo-

ration strategies, it may not include every specialized or highly

optimized strategy, which may limit its effectiveness in some cases.

Finally, while the framework was tested on several problems, a

broader validation across additional domains and problem types is

necessary to fully understand its strengths and limitations.

Overall, the flexible framework represents a significant step to-

wards unifying diverse state space exploration strategies under a

single configurable framework. However, careful consideration of

configuration complexity and performance trade-offs is necessary.

6.2 Future Work
One direction for future work is to expand the number of integrated

features. The first step will be to include the parallelization and

search direction features. These features were identified in this

study but excluded from the implementation of the framework as

discussed in Section 4.3.3, but could allow for more advanced and

specialized configurations.

Another area of future work involves automated strategy se-

lection, where exploration strategies are configured based on the

problem, as investigated in [17]. Moreover, it could focus on the

support of dynamic strategies that change during exploration.

Next, the usability of the framework could be improved. Intro-

ducing a visual tool or user interface, for example, would make the

framework more accessible to a wider range of users.

Finally, evaluating the framework across a broader set of problems

and domains would be an important next step. This would provide

a deeper understanding of its strengths and limitations.
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