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Blockchain-based Federated Learning (BCT-FL) integrates blockchain tech-
nology with Federated Learning (FL) to enhance privacy, trust, and auditabil-
ity. The use of smart contracts in this integration raises the discussion of their
documented vulnerabilities and their relevance to FL. This paper examines
the impact of smart contract vulnerabilities on the privacy guarantees of
BCT-FL systems. It provides a structured taxonomy of vulnerabilities based
on trusted sources, maps their effects on key privacy-preserving mechanisms
(e.g., secure aggregation, differential privacy, certificate-less authentication),
and analyzes their severity through a custom evaluation framework. The
findings highlight that certain vulnerability classes, such as access control
flaws, improper exception handling, and storage design issues, pose a crit-
ical threat to confidentiality and trust. It concludes with a discussion on
the framework used and recommends directions for privacy-aware smart
contract design, specifically tailored to the needs of Federated Learning
systems.
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1 INTRODUCTION
Federated Learning (FL) has emerged as a promising framework for
addressing concerns over data privacy in traditional machine learn-
ing [33]. By allowing individual clients to collaboratively train a
shared model without exchanging raw data, FL significantly reduces
the risks associated with centralized data collection. Its applications
have quickly expanded into domains like healthcare, finance, and
edge computing, where data privacy and local computation are both
essential [47]. Yet, the decentralized nature of FL introduces new
challenges in coordination, trust, and incentive design. To manage
these issues, research has proposed integrating Blockchain Tech-
nology (BCT) into FL systems. Blockchain’s immutable ledger [38]
and smart contracts provide the tools to automate coordination,
track contributions, and distribute rewards fairly in a decentralized
manner [9]. This integration, often referred to as BCT-FL, is gain-
ing traction not only in academic proposals but also in early-stage
implementations [48]. However, this architectural shift is not with-
out its risks. Smart contracts, while central to BCT-FL systems, are
known to be vulnerable to various logic and security flaws [44].
From infamous exploits such as the DAO reentrancy attack [16] to
more subtle bugs in access control and randomness, the vulnerabili-
ties of smart contracts are well-documented. What remains to be
adequately explored is how these vulnerabilities affect the privacy
and security purposes of Federated Learning systems. In particular,
smart contract vulnerabilities may compromise critical aspects of
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privacy-preserving mechanisms, model integrity, or the fairness
of reward distribution, therefore undermining the very grounds of
adopting FL in the first place. This thesis examines this intersec-
tion by conducting an assessment of smart contract vulnerabilities
within the context of privacy-preserving mechanics of Federated
Learning. It identifies and explains which classes of smart contract
vulnerabilities are most relevant to FL, and how they affect differ-
ent mechanisms (such as Differential Privacy, Secure Aggregation,
Secret Sharing, and incentive mechanisms governed by smart con-
tracts). Furthermore, to give structure to this research, a Design
Science Research methodology (DSRM) will be utilized. It defines
a real-world problem (vulnerabilities undermining privacy in BCT-
FL systems), develops an artifact (a privacy-focused risk-ranking
framework), and evaluates it through conceptual justification and
literature alignment.

Research Questions. These questions act as guidelines through
the process:

• RQ1:What types of smart contract vulnerabilities are rele-
vant to BCT-FL systems?

• RQ2: How do these vulnerabilities affect privacy-preserving
mechanisms in FL?

Hypotheses. Accompanied with these hypotheses aiming to sup-
port the questions:

• H1 Only vulnerabilities that involve external calls, data ex-
posure, or access control are relevant to BCT-FL systems.

• H2 Vulnerabilities related to Unsafe External Calls and Im-
proper Access Control, as defined in the OpenSCV taxonomy
[61], have a greater impact on privacy-preserving mecha-
nisms in Federated Learning than other vulnerability cate-
gories.

The rest of this paper is organized as follows. Section 2 presents
the technical background on Federated Learning, its privacy mecha-
nisms, blockchain technology, smart contracts, and how blockchain
is usually integrated into the FL framework. Section 3 goes over
the research methodology used in this paper. Section 4 presents
Smart contract vulnerabilities relevant for the FL domain and the
relevant FL mechanism, and their interaction. Section 5 introduces
the artifact, a privacy-centered vulnerability ranking framework,
and ranks the relevant vulnerabilities identified. Section 6 discusses
and evaluates the validity of the ranking, the research contributions,
and finally addresses the research questions and hypotheses. Section
7 is the conclusion, discussing the whole paper, its limitations, and
suggestions for future work.

2 BACKGROUND

2.1 Federated Learning
Machine learning(ML) has proven valuable across various domains,
including cybersecurity, healthcare, smart cities, e-commerce, and
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agriculture, enabling threat detection, diagnostics, traffic optimiza-
tion, and personalized recommendations. As shown in the paper
by Kapoor [26], these advances are driven by access to large vol-
umes of high-dimensional data. However, the paper also highlights a
drawback: the difficulty of data collection. To combat this drawback,
a different framework called Federated Learning (FL) has been
developed. FL enables collaborative model training without trans-
ferring raw data, addressing many of the limitations inherent in
traditional ML systems [33]. Similarly, challenges stem in ML from
having to aggregate large sets of data from multiple sources into a
central server, such as concerns regarding user privacy, regulatory
compliance, and resource usage through communication [50]. These
are addressed in FL by utilizing a distributed model training method
across decentralized devices or institutions. This allows the training
of models without sharing raw data. Instead, only model updates
are exchanged between the server and clients, allowing participants
to collaboratively develop a global model while keeping their data
local and private. This process repeats over several rounds [33, 60].
FL shifts the learning process of the model closer to where the data
is generated. This is useful for privacy-sensitive applications such
as for use with mobile devices (locally generated data, often con-
taining personal information), for hospitals and medical settings
(patient data is highly sensitive and institutions prefer keeping it
on-premise due to strict HIPAA regulations [31]), and financial in-
stitutions (similar to patient data, institutions often prefer keeping
financial data on-premise due to strict regulatory frameworks such
as the Gramm-Leach-Bliley Act (GLBA), the General Data Protection
Regulation (GDPR), the California Consumer Privacy Act (CCPA),
and regional data localization laws [42]). This architecture choice
introduces three fundamental characteristics: Privacy by Design:
Since raw data never leaves the client’s device or environment, FL
inherently reduces the risks associated with data breaches or mis-
use [27]. Communication Efficiency: Instead of sending entire
datasets for training, only model updates are shared, making FL
suitable for bandwidth-constrained or mobile environments [36].
Scalability Across Domains: FL supports interoperability between
devices (cross-device, e.g., smartphones) and environments with dif-
ferent institutions and siloed data (cross-silo settings, e.g., hospitals
or banks), each with distinct requirements in terms of trust, data
size, and system reliability. [12] However, implementing FL is chal-
lenging due to issues such as non-IID(independent and identically
distributed) data, varying resources, and unreliable connectivity.
Zhao et al. report over a 50% drop in accuracy under highly skewed
non-IID data distributions [72]. Furthermore, resource disparities
introduce the straggler effect, forcing the server to wait for slower
clients and risking dropouts, which in turn slows convergence and
degrades performance [36]. Lastly, unstable connectivity causes
missed communication rounds and incomplete updates, further hin-
dering convergence and model quality [64]. Moreover, FL does not
inherently defend against inference attacks or malicious participants
aiming to manipulate model updates [36]. To address these concerns,
FL research incorporates various privacy-preserving mechanisms,
such as differential privacy [40] [1], secure aggregation [7], ho-
momorphic encryption [28, 54], cryptographic approaches [71], as
well as architectural innovations like hierarchical and decentralized

FL models [12, 49]. Together, these efforts aim to make FL robust,
privacy-preserving, and practical for real-world deployment.

2.2 Blockchain
Blockchain is a decentralized, tamper-proof, distributed digital ledger
that records transactions securely, utilizing cryptographic hashes
and consensus across a network of computers, eliminating the
need for a central authority. [13]. Initially introduced by Satoshi
Nakamoto to support Bitcoin, which focused on solving the double-
spending problem without relying on trusted third parties to act
as central figures [38]. Transactions are grouped into blocks, each
cryptographically linked to the previous one using hash functions,
forming an immutable and transparent chain. To achieve consensus
across the network, blockchain systems employ mechanisms such
as Proof-of-Work (PoW)[38], Proof-of-Stake (POS)[51], Delegated
Proof of Stake (DPoS)[22], and Proof of Authority (PoA)[24]. These
are all designed to maintain data integrity and security, ensuring
consistency throughout the blockchain network.

The blockchain network operates by utilizingminers or validators,
depending on the consensus mechanism employed, to verify and
record transactions in the ledger. In order to motivate participants
to perform these tasks, incentive mechanisms are used. These in-
centives are typically governed by tokenomics, the economic design
of token-based ecosystems, which focuses on aligning individual
behavior with the overarching system goals [51]. Blockchain partic-
ipants, such as miners in PoW or validators in PoS, are rewarded
with native tokens for securing the network, validating transac-
tions, and reaching consensus [23, 38]. These tokens have monetary
value, creating economic incentives for the expected behavior and
system maintenance. This structure is based on mechanism design
theory, aiming to develop rules and reward structures that lead to
the desired behavior (e.g., honest validation, high availability) [30].
Furthermore, blockchain has evolved into a broader technological
framework that enhances transparency, trust, and security in vari-
ous sectors, including finance, healthcare, logistics, and governance
[14]. However, despite its broad usability, blockchain faces chal-
lenges related to scalability, energy consumption, and regulatory
uncertainty [56].

2.2.1 Smart contracts. Smart contracts are self-executing, im-
mutable contracts stored on a blockchain that automatically enforce
the terms of an agreement once the predefined conditions are met.
Proposed by Nick Szabo and popularized by platforms like Ethereum,
these contracts eliminate the need for intermediaries, reduce trans-
action costs, and improve reliability by enforcing contractual obli-
gations without the risk of tampering due to their immutability
and self-executing nature[56]. Smart contracts operate within the
blockchain environment, supporting various processes such as de-
centralized finance (DeFi), supply chain traceability, digital identity
verification, secure healthcare data management, and automated
legal agreements by automating and securing interactions across
these domains [35].

Despite their potential, smart contracts have their limitations, in-
cluding coding vulnerabilities, a lack of legal recognition in many ju-
risdictions, creating uncertainty around their enforceability and lim-
iting their utilization in legally regulated industries or cross-border
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applications [4], and difficulties in enforcing and representing real-
world events in digital logic, continue to pose significant challenges
[56]. To address these, current research explores formal verification
methods, better programming practices, and dynamic compliance
frameworks that can adapt to different regulatory requirements[25]

2.3 Blockchain integrated Federated Learning (BCT-FL)
FL faces several critical challenges, including reliance on a cen-
tral aggregator, risks of data or model manipulation, difficulty in
tracking and verifying contributions, and a lack of auditability [64].
The integration of blockchain technology addresses these issues
by utilizing the decentralized consensus mechanisms that remove
the reliance on a trusted central party. Furthermore, blockchain
ensures a tamper-proof model update and transparency throughout
the entire process. At the same time, smart contracts play a cru-
cial role in enforcing rules and processes, distributing incentives,
and automating logic securely and transparently.[39] One of the
key synergies between blockchain and FL is the implementation
of incentive mechanisms, which encourage client participation in
training tasks. Due to the resource-intensive nature of FL, requiring
significant computational effort, communication bandwidth, and
battery life, clients may be reluctant to contribute without com-
pensation [70]. Blockchain enables a transparent environment for
tracking contributions and distributing rewards fairly, often via the
use of smart contracts [9, 40].

Smart contracts would automate the process of coordinating client
participation, reward allocation, and process enforcement without
requiring a central authority [9]. They are crucial in maintaining
accountability and decentralized trust in FL systems. However, smart
contracts are not immune to vulnerabilities such as reentrancy
attacks, arithmetic bugs, and access control issues 1[44]. In the
context of FL, such vulnerabilities could be exploited to manipulate
contributions, bypass participation policies, or leak data, leading to
privacy issues.

2.4 Literature Gap
An increasing number of research efforts and practical applications
have demonstrated the potential of integrating blockchain technol-
ogy (BCT) with federated learning (FL), particularly to enhance data
privacy, decentralization, and auditability [9, 29, 46, 48, 53]. These
Blockchain-based Federated Learning (BCT-FL) systems have been
applied in various domains, including healthcare, IoT, and industrial
automation, often relying on smart contracts and consensus mech-
anisms to coordinate training and establish trust in decentralized
environments. However, while the benefits of this integration are
well-documented, limited attention has been paid to the security
risks and vulnerabilities introduced by smart contracts in FL sys-
tems. In particular, there is a lack of systematic analysis on how
these vulnerabilities might impact privacy-preserving mechanisms
within FL. Furthermore, a domain-specific framework that ranks
these vulnerabilities based on their potential to impact FL system
privacy or integrity does not exist. This highlights the need for
deeper investigation into the intersection of smart contract security

1explained in more detail in their respective sections

and federated learning, especially regarding threat models, attack
surfaces, and mitigation strategies specific to BCT-FL deployments.
This thesis addresses that gap by proposing a structured risk-

ranking framework. The aim is to identify which vulnerabilities
pose the greatest threat to privacy in BCT-FL systems and to provide
a way to prioritize mitigation efforts. By focusing specifically on
privacy impact, instead of general exploit possibility, the framework
introduces a unique perspective focused on the data protection
requirements of BCT-FL.

3 RESEARCH METHODOLOGY

3.1 Design Science Research Methodology (DSRM)
Overview

A Design Science Research Methodology(DSRM) is utilized through-
out this paper. DSRM is particularly useful for research that aims
to solve practical problems through the design, construction, and
evaluation of artifacts, such as models, or in our case, frameworks
[43]. Table 1 summarizes the six core activities of DSRM and their
specific relevance to this paper.

Table 1. Design-Science Research Guidelines [21]

Guideline Description
Design as an Artifact Design-science researchmust produce a viable artifact in the form of a construct,

a model, a method, or an instantiation.
Problem Relevance The objective of design-science research is to develop technology-based solu-

tions to important and relevant business problems.
Design Evaluation The utility, quality, and efficacy of a design artifact must be rigorously demon-

strated via well-executed evaluation methods.
Research Contributions Effective design-science research must provide clear and verifiable contribu-

tions in the areas of the design artifact, design foundations, and/or design
methodologies.

Research Rigor Design-science research relies upon the application of rigorous methods in
both the construction and evaluation of the design artifact.

Design as a Search Pro-
cess

The search for an effective artifact requires utilizing available means to reach
desired ends while satisfying laws in the problem environment.

Communication of Re-
search

Design-science research must be presented effectively both to technology-
oriented as well as management-oriented audiences.

Design as an Artifact: The proposed artifact, a privacy-oriented
risk-ranking framework, is constructed through literature synthesis
and analytical mapping of vulnerability classes to privacy-preserving
mechanisms.
Problem Relevance: The absence of a structured approach to

the evaluation of smart contract vulnerabilities in the context of FL
privacy is the problem identified. This is grounded in the increasing
amount of BCT-FL systems [9, 29, 46, 48, 53] and the security risks
that come with those.

Design Evaluation: Its evaluation follows a descriptive approach,
as outlined by Hevner et al. [21]. Specifically, it adopts an ex-ante,
artificial evaluation strategy, relying on literature alignment, logical
reasoning, and relevance to BCT-FL workflows rather than empirical
testing.
Research Contributions: This work introduces a novel frame-

work that links smart contract vulnerabilities to FL privacy mecha-
nisms, an underexplored intersection. It offers a structured frame-
work for assessing privacy risks in BCT-FL, contributing to both
design theory and practical threat modeling.

Research Rigor: The framework is grounded in established tax-
onomies and privacy models, constructed by systematically integrat-
ing findings from established sources. Its evaluation follows DSRM
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standards for conceptual artifacts, ensuring internal consistency
and theoretical soundness.
Design as a Search Process: The framework reflects a design-

as-search approach, as outlined by Hevner et al. [21], by comparing
multiple taxonomies and mechanisms to identify the most relevant
components for BCT-FL. Its structure and scoring criteria were
guided by recurring patterns and practical relevance.

Communication of Research: The findings and design process
are communicated in this paper in an attempt to support both re-
searchers and practitioners working on privacy, blockchain security,
and federated learning systems.

3.2 ResearchQuestions
This paper attempts to answer two research questions. Research
question 1 (RQ1) asks: "What types of smart contract vulnerabil-
ities are relevant to BCT-FL systems?" The second research ques-
tion (RQ2) explores: "How do these vulnerabilities affect privacy-
preserving mechanisms in Federated Learning?" To support these
questions, the following hypotheses are proposed. H1 claims that
only vulnerabilities that involve external calls, data exposure, or
access control are relevant to BCT-FL systems, due to the specific
roles smart contracts play in such architectures. H2 hypothesises
that vulnerabilities related to Unsafe External Calls and Improper
Access Control, as defined in the OpenSCV taxonomy [61], have
a greater impact on privacy-preserving mechanisms in Federated
Learning than other vulnerability categories.

RQ1: To address RQ1, a multi-step analysis was conducted, com-
bining literature review and vulnerability classification. First, a
targeted literature review was conducted to identify the privacy-
preserving mechanisms used in Federated Learning (FL), including
differential privacy[40] [1], secure aggregation [7], homomorphic
encryption [28, 54], secret sharing, and related cryptographic tech-
niques [71]. These mechanisms were used as a guide to analyze
whether each vulnerability could pose a threat to privacy or data
integrity in FL. In the second step, established smart contract vulner-
ability taxonomies were consulted, specifically OpenSCV [61], while
Pishdar et al. [44] was used as an empirical reference to validate
relevance and frequency of vulnerabilities in practice. Other sources
were either outdated or conceptually subsumed by these. Each listed
vulnerability was examined for its potential to compromise any
of the identified FL mechanisms or to affect the confidentiality, in-
tegrity, or authenticity [10] of client data and model updates. Vulner-
abilities were kept if they posed a reasonable threat to FL operations,
such as model update submission, reward distribution, participant
identification, or training data protection. This included, for exam-
ple, vulnerabilities like reentrancy, improper input validation, and
delegatecall to untrusted contracts. Vulnerabilities irrelevant to FL-
specific architectures, such as those addressing only gas efficiency
or generic ERC-20 token logic, were excluded. In the final step, each
selected vulnerability was documented and analyzed concerning
its possible impact on FL system security, with results structured
to support the following privacy risk mapping. RQ2: To address
Research Question 2 (RQ2), the subset of smart contract vulnera-
bilities identified as relevant to BCT-FL systems will be analyzed
to determine their impact on the privacy-preserving mechanisms

within FL. The analysis is set up as a three-phase approach. First,
each vulnerability was mapped to potential attack surfaces within
a blockchain-based FL architecture, focusing on elements such as
model update submission, reward distribution, and participant au-
thentication. Second, for each privacy mechanism, the potential
for data leakage, unauthorized access, manipulation of logic, or vi-
olation of integrity was assessed. Supporting evidence, including
technical descriptions and examples from the literature and vulner-
ability taxonomies, was referenced to affirm the mappings. Finally,
each vulnerability’s impact was evaluated using the developed struc-
tured classification framework and categorized as high-, medium-,
low-impact, or in between, based on the severity of its effect on
privacy-preserving mechanisms, its exploitability, and detectability.
This impact classification enables a detailed understanding of how
different types of vulnerabilities compromise privacy in Federated
Learning and forms the basis for future risk prioritization.

3.3 Artifact development
The artifact developed in this study is a privacy-focused risk-ranking
framework aimed at evaluating how smart contract vulnerabilities
affect BCT-FL. Its creation followed a structured, literature-driven
process. Vulnerability categories were selected based on existing
taxonomies, primarily OpenSCV [61], and further filtered using
empirical insights from Pishdar et al. [44] to ensure relevance to
smart contracts typically deployed in FL coordination, aggregation,
and incentive mechanisms. Each category was conceptually mapped
to privacy-preserving techniques used in FL, such as Differential
Privacy, Secure Aggregation, and secret sharing, with attention to
how specific exploits could compromise their guarantees.

The framework uses three scoring dimensions: Privacy Impact (I),
Exploitability (E), and Detectability (D), inspired by the OWASP risk
rating methodology[41] as adapted by Ula et al. [59] and adjusted for
the privacy priorities of FL. To reflect the importance of privacy, the
final Composite Risk Score (CRS) assigns a weight of 0.5 to privacy
impact, 0.3 to exploitability, and 0.2 to detectability.

Each vulnerability category was assessed across the three scoring
dimensions using a qualitative scale from 0 (negligible) to 3 (severe).
These scores were based on documented exploit cases, existing tax-
onomies, and conceptual analysis of how each vulnerability interacts
with privacy-preserving mechanisms and functional roles in FL sys-
tems. Privacy Impact (I) was given the highest weight (0.5) to reflect
the central aim of the framework: assessing vulnerabilities through
a privacy lens. In BCT-FL, preserving privacy is not just a design
preference but a foundational requirement, especially in sensitive
domains like healthcare or finance, where FL is commonly applied.
Exploitability (E) was weighted at 0.3, recognizing that some vul-
nerabilities, while severe in theory, may be difficult to exploit in
real-world deployments due to distinct system configurations or
user behavior. Detectability (D) received the lowest weight (0.2), as
the presence of a vulnerability, even if easy to detect, can still pose
a significant threat if it directly compromises privacy or enables
adversarial inference.
This weighting scheme was chosen to balance theoretical risk

with practical feasibility. It allows the framework to highlight vul-
nerabilities that may be easy to overlook during development (e.g.,
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metadata exposure or weak access control) but carry substantial
privacy consequences if exploited. This structured design allows
for meaningful prioritization of vulnerabilities within the BCT-FL
threat landscape.

4 LITERATURE REVIEW

4.1 Federated Learning
Federated Learning (FL) was introduced as a decentralized alterna-
tive to traditional machine learning, aiming to protect user privacy
by keeping data local to each client [33]. However, FL does not inher-
ently guarantee privacy [12, 19, 36, 67], as model updates exchanged
during training can leak sensitive information through attacks like
model inversion, membership inference, or gradient leakage.

This section outlines the core privacy mechanisms in FL, followed
by cryptographic enhancements and architectural considerations,
ending with a discussion on smart contracts and their associated
vulnerabilities.

4.2 Privacy Mechanisms in Federated Learning
Federated Averaging. FedAvg is the foundational algorithm in

most FL implementations, where clients train locally and send up-
dates to a central server for aggregation [32]. While it retains raw
data locally, it lacks cryptographic protections, making updates sus-
ceptible to inference over time. Moreover, its assumption of IID data
doesn’t hold in practice, leading to model drift on non-IID datasets
[57].

Differential Privacy. Differential Privacy (DP) protects against
inference attacks by adding noise to client updates before sharing
[40]. Local DP is commonly used in FL, but it introduces a privacy-
utility trade-off, especially under non-IID data. DP also requires
careful management of the privacy budget (epsilon) [1].

Secure Aggregation. Secure aggregation ensures that the server
sees only the sum of client updates, not individual ones. Protocols
like Bonawitz et al. use random masking to achieve this even un-
der client dropout [7]. SAFELearn further improves performance
by reducing communication rounds and supporting flexible cryp-
tographic backends [15], although this approach increases system
overhead.

4.3 Cryptographic Enhancements
Secret Sharing. In FL, updates can be split into shares using Shamir’s

Secret Sharing, so that only a threshold number is needed to recon-
struct the original [54]. This enhances fault tolerance but requires
careful tuning of the threshold to strike a balance between security
and availability.

Homomorphic Encryption. HE enables computation on encrypted
updates, allowing aggregation without decryption. While it ensures
confidentiality, Fully Homomorphic Encryption (FHE) is still im-
practical for large-scale FL, making Partial HE or hybrid schemes
more viable [28, 54].

SecureMulti-Party Computation and Zero-Knowledge Proofs. SMPC
and ZKPs enable secure aggregation and verifiable updates without
revealing inputs [37, 58, 68, 71]. Although powerful, they are limited

by significant computational and coordination overhead, especially
at scale.

Certificateless Authentication. Certificateless schemes allow iden-
tity verification without central certificate authorities, using partial
keys and user identities [67]. This reduces key escrow risks and
enhances trust in decentralized FL settings without central bottle-
necks.

4.3.1 Architectural Considerations.

System Architecture. FL systems may be centralized (with a single
aggregator), decentralized (fully peer-to-peer), or hierarchical (with
edge aggregators) [12, 49]. These choices affect both the privacy
risk and the deployability of cryptographic tools, such as SMPC or
secure aggregation.

Smart Contract-Based Incentives. Smart contracts automate re-
wards, enforce protocol rules, and track contributions in decentral-
ized FL [66]. However, bugs in contract logic or role management
may leak metadata or be exploited, undermining privacy. Their
immutable nature makes proper design and auditing essential.

4.4 Smart Contract Vulnerabilities Relevant to BCT-FL
Smart contracts integrated into FL expose the system to various
logic and design-level vulnerabilities. Based on OpenSCV [61] and
Pishdar et al. [44], we identify six categories relevant to privacy in
BCT-FL:

• Control Flow Vulnerabilities: These include issues such
as unsafe external calls, reentrancy, and misuse of delegate-
call, which allow malicious contracts to hijack or recursively
trigger logic within an FL pipeline. In BCT-FL, such vulnera-
bilities can be exploited to manipulate the execution of reward
distribution, skip validation checks, or inject malicious up-
dates. For example, an attacker could exploit reentrancy to
repeatedly claim rewards before internal state changes occur
[16].

• ExceptionHandling &Gas Logic: Smart contracts that lack
robust exception handling may silently fail when confronted
with unexpected behavior, such as an out-of-gas error or an
unhandled return value. In the context of FL, this could mean
that a participant’s contribution is skipped without notifica-
tion or logged feedback, reducing the quality of aggregation
and potentially revealing who did or did not contribute based
on observed output discrepancies [62].

• Reward & Incentive Issues: Vulnerabilities in incentive
mechanisms allow adversaries to perform actions like free-
riding, where they receive rewards without contributing valid
updates, or spoof participation to inflate earnings. These at-
tacks degrade trust in the system and often rely on on-chain
logs that inadvertently leak behavioral metadata such as par-
ticipation frequency or timing information that can later be
linked to user identity or data value [29].

• Storage & Memory Exploits: Improper handling of storage,
such as leaving state variables public or failing to restrict
write access, can expose or allow tampering with sensitive
FL metadata. For example, attackers may observe update
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hashes, learning rates, or training timestamps to infer data
distribution or model sensitivity. In more severe cases, they
could overwrite stored model parameters or participation
logs to bias outcomes [6].

• Access Control & Identity: In FL, participants often have
distinct roles—clients, validators, aggregators, that must re-
main isolated for system integrity. Weak access control, such
as missing ownership checks or role verification, enables im-
personation and privilege escalation. An attacker could pose
as both a contributor and a validator to approve their own
malicious updates, undermining model trustworthiness and
user anonymity [17].

• Bad Randomness: Many FL operations rely on random-
ness for client selection, task allocation, or timing. When
contracts use weak sources like block timestamps or block
hashes, attackers can predict or bias the randomness to their
advantage—e.g., by manipulating when to send transactions
to increase their selection odds. This opens the door to Sybil
attacks and biases the training dataset, reducing fairness and
potentially revealing patterns in participation [11].

A summary of the key smart contract vulnerabilities relevant to
federated learning, along with their implications for privacy and
system integrity, is presented in Table 2.

Vulnerability Type Examples / Subtypes Potential Impact on FL Privacy
Mechanisms

Control Flow Vulnerabil-
ities

Reentrancy, Improper check of ex-
ternal call return values, Malicious
fallback function, delegatecall mis-
use, Improper external locking

Enables recursive calls or logic hijack-
ing, possibly leaking rewards, states, or
disrupting coordination and aggrega-
tion workflows

Exception Handling &
Gas Logic

improper exception handling, gas
mismanagement

Silent failure of model updates, skipped
logic branches, skewed aggregation or
broken training pipelines

Reward & Incentive Is-
sues

Unsafe credit transfer, missing to-
ken verification, spoofed participa-
tion, free-riding

Tampered or unfair reward distribu-
tion, exposure of participant contribu-
tion patterns, broken trust

Storage & Memory Ex-
ploits

Public state variables, overwritable
mappings, misuse of arrays or stor-
age slots

Tamperingwithmodel parameters, leak-
ing metadata, compromising integrity
of training state or behavior

Access Control & Identity Weak ownership checks, role confu-
sion, impersonation, ID leakage

Unauthorized updates, Sybil attacks,
role abuse, loss of anonymity or data
confidentiality

Bad Randomness Predictable randomness sources
(e.g., blockhash, timestamp)

Manipulation of participant selection,
contribution timing or reward bias; en-
abling fairness and participation attacks

Table 2. Summary of Smart Contract Vulnerabilities and Their Impact on
FL Privacy Mechanisms

5 VULNERABILITY RANKING FRAMEWORK AND
DISCUSSION

To evaluate the severity of each smart contract vulnerability in
blockchain-based federated learning (BCT-FL), this section intro-
duces a structured risk scoring model inspired by the OWASP
methodology as adapted by Ula et al. [59]. Each vulnerability is
assessed across three dimensions:

• Privacy Impact (I): The degree to which the vulnerability
compromises privacy-preserving mechanisms in FL.

• Exploitability (E): The likelihood of the vulnerability being
exploited in practice.

• Detectability (D): The difficulty of detecting the vulnerabil-
ity using current tools and auditing practices.

Each dimension is scored from 0 (negligible) to 3 (severe), and
the final Composite Risk Score (CRS) is calculated using a weighted
formula:

CRS = 0.5 · 𝐼 + 0.3 · 𝐸 + 0.2 · 𝐷
This yields a normalized score on a 0–3 scale that prioritizes pri-

vacy impact while also considering exploitability and detectability.
Table 3 shows the scores and final risk levels.

Table 3. Composite Risk Ranking of Smart Contract Vulnerabilities

Vulnerability Type I E D CRS Risk Level
Access Control & Identity 3 3 2 2.7 High
Reward & Incentive Logic 2 3 2 2.3 Med–High
Bad Randomness 2 3 1 2.1 Med-High
Control Flow 2 2 2 2.0 Medium
Storage & Memory 2 2 2 2.0 Medium
Exception & Gas Handling 1 2 2 1.5 Med–Low

5.1 Analysis and Discussion
Access Control & Identity (CRS: 2.7 High Risk).

• Impact (3): Access control flaws enable impersonation, Sybil
attacks, and unauthorized data access, violating fundamental
privacy guarantees in FL systems [? ? ]. They directly com-
promise identity protection, allowing attackers to validate
their malicious updates and increase the chance of inference
attacks.

• Exploitability (3): These issues are commonly exploited in
deployed smart contracts due to the frequent omission of
strict role checks and reliance on address-based logic [20].

• Detectability (2):While some access control issues can be
statically detected (e.g., using Slither), deeper privilege esca-
lation or identity leakage is often missed without formal role
verification tools[34].

Reward & Incentive Logic (CRS: 2.3Medium-High Risk).

• Impact (2): These flaws primarily expose metadata (e.g.,
participation frequency, reward logs) rather than raw data,
but enable behavioral inference and undermine fairness in
FL [67, 70].

• Exploitability (3): Attacks such as free-riding or reward
inflation can be easily executed by simulating or duplicating
participation [29].

• Detectability (2): Although anomalous token flows may
eventually be flagged, subtle metadata leakage or participa-
tion spoofing is not easily identified without private logging
mechanisms[5].

Bad Randomness (CRS: 2.1Medium-High Risk).

• Impact (2): Weak randomness (e.g., blockhash, timestamp)
allows adversaries to manipulate selection, timing, or re-
wards, leading to fairness degradation and enabling Sybil
attacks [11].
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• Exploitability (3): These sources are easily accessible and
predictable by miners or attackers; randomness manipula-
tion has been repeatedly demonstrated in DeFi and gaming
applications [45, 55].

• Detectability (1): The use of insecure entropy sources is rela-
tively easy to detect through static analysis or code review[45].

Control Flow (CRS: 2 Medium Risk).
• Impact (2): Reentrancy and delegatecall misuse affect control
flow integrity and can corrupt training, reward logic, or model
state in BCT-FL systems [25]. They directly compromise role
isolation, enabling attackers to impersonate multiple roles
and manipulate validation outcomes, thereby amplifying the
risk of biased aggregation and metadata exposure.

• Exploitability (2): These are well-documented vulnerabil-
ities, but exploiting them requires transactional timing or
interface flaws, which are not always present [? ].

• Detectability (2): Detectable using symbolic execution tools
like Oyente or Mythril, but complex inter-contract logic may
bypass such static checks [8, 20].

Storage & Memory Exploits (CRS: 2.0 Medium Risk).
• Impact (2): Improper storage design (e.g., public variables, in-
dexable arrays) may leak update metadata or allow tampering
with model parameters, undermining privacy indirectly [6].

• Exploitability (2): Public blockchains expose contract state
by design, making information leakage likely without delib-
erate obfuscation [61].

• Detectability (2): Memory-related bugs and leakage are of-
ten missed during audit unless explicitly modeled; access
control to storage slots is rarely formally verified[52].

Exception Handling & Gas Logic (CRS: 1.7Medium-Low Risk).
• Impact (1): While these issues don’t typically leak raw data,
they cause silent failures, skipped updates, dropped partic-
ipants, or stalled aggregation rounds, leading to bias or in-
complete learning [62].

• Exploitability (2): Adversaries can intentionally exploit gas
limits or exception blindness in contracts to create denial-of-
service or dropout conditions [20].

• Detectability (2):Whilst detection tools specifically for ex-
ception handling and Gas-related exceptions exist, these types
of failures often go unnoticed unless comprehensive runtime
monitoring and fallback mechanisms are implemented [2, 18].

From the table 3, it seems that Access control & Identity, Reward
& Incentive Logic, and Bad Randomness vulnerability have the most
significant impact regarding Privacy-Preserving Mechanisms in
FL. These vulnerabilities not only facilitate direct attacks, such as
impersonation, free-riding, or Sybil manipulation, but also expose
behavioral metadata that can compromise participant anonymity
and system fairness. While control flow, storage, and gas-related
issues remain relevant, their impact on privacy is often indirect
or context-dependent. The overall risk analysis confirms that safe-
guarding FL privacy can not be done by cryptographic techniques
alone; it requires secure, formally verified smart contract design,
careful management of on-chain metadata exposure, and runtime

protections against silent failures. These findings provide a ranked
view of which vulnerabilities demand the most urgent attention in
FL deployments that rely on blockchain infrastructure.

6 EVALUATION

6.1 Validity & Alignment with current Frameworks
The proposed ranking framework is conceptually grounded in and
thematically aligned with established classification schemes such
as OWASP[41], Pishdar et al.[44], and OpenSCV[61]. OWASP’s
risk assessment methodology was utilized for the structure of the
scoring system, particularly the use of Impact, Exploitability, and
Detectability as core dimensions. However, the weights were ad-
justed to emphasize privacy, reflecting the unique concerns of FL,
by assigning a higher value to impact over detectability. Pishdar et
al.’s [44] taxonomy contributed empirically observed smart contract
vulnerability categories, while OpenSCV [61] provided detailed,
systematic coverage of lesser-known but relevant exploit types. To-
gether, these sources shaped a taxonomy that is both rigorous and
applicable to the privacy context of BCT-FL.

6.2 Research contribution
This papermakes two key contributions. First, it introduces a privacy-
focused vulnerability ranking framework specifically for BCT-FL,
one of the first structured efforts to assess smart contract risks
through a privacy lens rather than general security. Second, it con-
ceptually integrates vulnerability classifications with FL-specific
mechanisms like secure aggregation, secret sharing, and differen-
tial privacy, revealing how incorrectly secured smart contracts can
(in)directly compromise these privacy protections.

6.3 Implications for Developers and Researchers
The results highlight the importance of secure-by-design practices
[63] in BCT-FL development, suggesting that developers should
adopt formal verification methods for role enforcement and ran-
domness generation, consider using Verifiable Random Functions
(VRFs) [69] and threshold cryptography, and design smart contracts
to minimize on-chain metadata exposure. For researchers, the frame-
work provides a basis for extending analysis into empirical valida-
tion, testing, or simulation, encouraging more privacy-aligned smart
contract architectures within federated learning ecosystems.

6.4 Revisiting ResearchQuestions and Hypotheses
RQ1: The literature-based taxonomy and ranking framework de-
veloped in this study identify the most relevant smart contract vul-
nerabilities for BCT-FL as those that intersect with privacy-critical
roles and data flows, particularly access control, incentive logic, ran-
domness, and storage mechanisms. While access control, external
calls, and data exposure strongly align with privacy risks in FL, the
inclusion of randomness and exception-handling vulnerabilities, de-
spite not involving direct data exposure, indicates that Hypothesis
1 is only partially supported. These findings suggest that the scope
of relevant vulnerabilities extends beyond the original hypothesis,
encompassing indirect threats that compromise fairness, anonymity,
or aggregation integrity.
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RQ2: These selected vulnerabilities were shown to compromise
privacy by enabling identity misuse and role escalation (via access
control flaws), leaking behavioral metadata (via reward and storage
designs), and degrading the guarantees of secure aggregation and
fairness (via randomness manipulation or exception handling). Hy-
pothesis 2 is thus only partially supported. While improper access
control emerged as the most critical category, unsafe external calls,
though impactful, did not show the highest privacy consequences.
Instead, vulnerabilities in randomness and incentive logic weremore
significant, indicating that privacy threats in BCT-FL arise from a
broader set of mechanisms than initially hypothesized.

7 CONCLUSION

7.1 Contributions
This thesis examined the intersection of Federated Learning (FL)
and Blockchain Technology (BCT), focusing specifically on how
smart contract vulnerabilities affect privacy-preservingmechanisms.
Through the Design Science Research Methodology (DSRM), a novel
artifact was proposed: a privacy-oriented vulnerability ranking
framework. The framework maps known smart contract vulner-
abilities to FL mechanisms such as secure aggregation, differential
privacy, and secret sharing. Informed by OpenSCV [61] and sup-
ported by empirical patterns from Pishdar et al. [44], the taxonomy
emphasizes categories most likely to disrupt confidentiality, fairness,
or anonymity in BCT-FL.
By prioritizing privacy impact over general exploitability, the

framework offers developers and researchers a focused lens for
evaluating risk in BCT-FL environments. The structured scoring
and conceptual alignment with existing threat models contribute
to bridging the gap between smart contract security and privacy
engineering in federated learning systems.

7.2 Discussion
This paper initially focused on examining which smart contract vul-
nerabilities are most relevant to BCT-FL and how they affect privacy-
preservingmechanisms. The findings show that while access control,
external calls, and data exposure pose significant privacy risks, other
categories, such as randomness manipulation and incentive logic,
also play a critical role. These affect fairness, anonymity, and aggre-
gation integrity, even without directly leaking data. As a result, both
research hypotheses are only partially supported: access control is
confirmed as a key concern, but the impact of external calls is less
dominant than expected, and the broader set of vulnerabilities has
greater implications for privacy than originally assumed.

7.3 Limitations
Several limitations should be acknowledged. First, the evaluation in
this study is conceptual rather than empirical; the framework has
not been tested in a live or simulated BCT-FL environment. This
was a deliberate choice, given that BCT-FL systems are still in their
early stages and lack widely adopted testing infrastructures. The
aim was to build a clear and structured foundation that can guide
future implementations. As outlined by Hevner et al.[21], concep-
tual evaluation through logical reasoning and literature alignment

is a valid and rigorous form of assessment in design science, espe-
cially in early phases where real-world experimentation may not
yet be feasible. Second, the analysis is centered on Ethereum-style
smart contracts and may not fully generalize to other platforms
like Hyperledger Fabric [3] or Polkadot[65]. Third, the vulnerability
scoring is heuristic, relying on theoretically informed judgments
rather than statistically calibrated risk metrics. Lastly, the cyberse-
curity landscape is rapidly evolving. New attack vectors, tooling,
and architectural shifts may render some assumptions outdated. As
such, the framework should be periodically revisited and adapted
to reflect emerging threats and mitigation strategies.

7.4 Future Work
Future research can expand on this foundation in multiple direc-
tions. First, empirical validation of the framework, via case studies,
testbeds, or simulations, would help assess its practical effectiveness
and refine the ranking logic. Second, there is significant potential
to develop tooling support for static or dynamic analysis of privacy-
relevant vulnerabilities in smart contracts used within FL workflows.
Third, adapting the framework across different blockchain ecosys-
tems could improve its generalizability and expose platform-specific
risks or advantages. Finally, as smart contracts increasingly au-
tomate sensitive coordination and reward processes, future work
should explore regulatory and ethical implications, particularly the
privacy risks of on-chain metadata exposure and their interaction
with compliance frameworks such as GDPR [42] or HIPAA [31].
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A APPENDIX A
During the preparation of this work, I used ChatGPT to give me
ideas and help me with structuring sections of the thesis. After using
ChatGPT, I thoroughly reviewed and edited the content as needed,
taking full responsibility for the outcome.
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