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Rust’s strong safety guarantees and performance make it a compelling
candidate for General-Purpose GPU (GPGPU) programming. Building upon
prior work that demonstrated a hybrid Rust compiler capable of targeting
both CPU and GPU from a single source, we address a key limitation: the
inability to use many standard Rust features within GPU kernel code. This
limitation arises because compiler ’language items’ (’lang-items’), which
implement core features, often rely on CPU-specific assumptions that are
invalid in the GPU context. To overcome this, we extend the existing hybrid
compiler with a context-dependent lang-item system. This system enables
the compiler to select specialized, GPU-safe implementations for lang-items
when compiling kernel code, while retaining standard implementations
for host code. As a result, a significantly broader range of idiomatic Rust
features becomes available within GPU kernels, substantially improving the
practicality and expressiveness of integrated hybrid compilation in Rust.

1 INTRODUCTION
The Rust programming language continues to gain traction for sys-
tems development, offering compelling advantages in safety, concur-
rency, and performance [7]. Simultaneously, the practice of using
Graphics Processing Units (GPUs), originally designed for rendering
complex visuals, for general-purpose computational tasks—known
as GPGPU computing—provides mass parallelism computing essen-
tial for accelerating demanding workloads across various scientific
and industrial domains [9]. Combining Rust’s technologies with
the parallel processing power of GPUs holds significant promise,
potentially leading to safer, more maintainable high-performance
applications. However, integrating GPU acceleration smoothly into
compiled languages like Rust remains challenging compared to the
relative ease seen in dynamic languages like Python, where libraries
such as Numba allow defining GPU kernels alongside host code [8].

Recent work by Aukes [1] made significant progress by develop-
ing a prototype Rust compiler capable of integrated hybrid compila-
tion. This prototype allows developers to defineGPU kernels directly
within their Rust source code alongside host logic, processing both
through a modified compiler pipeline. While this demonstrated the
feasibility of a unified workflow, practical use revealed a fundamen-
tal obstacle: many standard Rust features and idioms fail within
GPU kernels.

We identify the root cause of this obstacle as the incompatibility
of standard Rust ’language items’ (’lang-items’) [14] with the con-
strained GPU execution environment. These compiler primitives,
implementing core semantics like error handling or dynamic mem-
ory allocation, typically assume CPU characteristics (e.g., existence
of OS services, specific memory models) [6] that differ fundamen-
tally on GPUs. For example, the standard error handler in Rust
expects to print an error message to the console, an operation that
is not possible on a GPU, which lacks standard I/O. The prototype,
while successfully separating code paths, did not address any func-
tionality related to these lang-items.
In this paper, we design and implement a context-dependent

lang-item system within the existing hybrid compiler fork in order
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to tackle this incompatibility. This system enables the compiler to
automatically select appropriate lang item implementations based
on the target context (CPU host vs. GPU device). By providing
specialized, GPU-aware implementations, we significantly expand
the range of idiomatic Rust features usable within GPU kernels,
making the integrated hybrid compilation approach substantially
more practical.

With the problem in mind, this paper aims to answer the follow-
ing research question:

How can compiler support for context-dependent lang-items
enable idiomaticRust across diverse execution environments?

We break this down into the following sub-questions:

(1) What compiler architecture modifications should be made for
target-aware integration of lang-item implementations?

(2) How should we design lang-item implementations for con-
strained execution environments (e.g., GPUs)?

(3) What range of core Rust language features, previously unus-
able in the target constrained environment (GPU), would be
supported with the proposed architectural changes?

We provide background on Rust language items, the compiler ar-
chitecture, and the existing hybrid compilation approach in Section 3.
In Section 4, we describe the modifications made to the compiler and
support libraries to enable context-dependent lang-items. Section 5
discusses the design and implementation of GPU-specific lang-item
replacements. In Section 6, we present the new Rust features that be-
come available in GPU kernels as a result of our approach. Section 8
offers a discussion of the results and current limitations. Finally,
Section 9 outlines possible directions for future work.

2 RELATED WORK
The immediate foundation for our project is the hybrid Rust com-
piler prototype developed by Aukes [1]. This work introduced a
novel approach by modifying the Rust compiler itself to handle both
CPU host code and GPU device code. The prototype demonstrated
separating the compilation paths at the mid-level representation
stage and embedding the resulting GPU bytecode back into the host
application as a static string.

Beyond the integrated prototype that we extend, other methods
exist for leveraging GPUs in Rust. One common strategy involves
using API wrappers like ‘rust-cuda‘ [11] or ‘ocl‘ [17], which provide
Rust bindings to native CUDA and OpenCL APIs. These allow us
to load and launch kernels but typically require writing the kernel
code itself in C++/CUDA C or OpenCL C, or managing pre-compiled
PTX/SPIR-V modules. This approach requires handling separate
kernel codebases and interacting with complex, often unsafe, APIs.
Another significant effort is the ‘rust-gpu‘ project [5], which focuses
on compiling Rust code, primarily targeting graphics shaders, into
the SPIR-V intermediate representation. This operates as a distinct
compiler backend, generating SPIR-V modules for later use. While
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advancing Rust for GPU programming, its focus on shaders and
separate compilationmodel differs from the goal of enabling general-
purpose kernels compiled via an integrated Rust compiler.

Moreover, the concept of providing alternative implementations
for lang-items is well-established within the Rust ecosystem, par-
ticularly for environments such as microcontrollers or embedded
systems [13]. When targeting platforms lacking an operating sys-
tem or standard library, developers must often supply their own
implementations for critical lang items to bridge the gap. For in-
stance, embedded applications must define a custom panic handler
(panic_impl), perhaps by looping indefinitely or triggering a hard-
ware reset, as standard unwinding mechanisms are unavailable.
Similarly, if heap allocation is required in such a context, the devel-
oper must provide a suitable static allocator implementation. This
existing practice demonstrates Rust’s flexibility in accommodating
target-specific overrides for core primitives.

3 BACKGROUND
To understand the proposed system, it is essential to understand the
role of lang-items in Rust, the constraints of GPU execution envi-
ronments, and the architecture of both the standard Rust compiler
and the extensions provided by Aukes in [1].

3.1 The GPU Execution Model
Graphics Processing Units (GPUs) are specialized hardware designed
for highly parallel computation. Unlike CPUs, which are optimized
for sequential processing and complex control flow, GPUs excel at
running thousands of lightweight threads in parallel, each perform-
ing similar operations on different data. This parallelism comes with
important constraints, such as:

• No Operating System Services: GPU code (called kernels)
cannot perform system calls, file I/O, or interact with the
operating system in the way CPU code can.

• Distinct Memory Model: GPUs have their own memory
hierarchy, including global, shared, and local memory. Stan-
dard heap allocation is often unavailable or must be managed
differently.

• Simplified Error Handling:Mechanisms like stack unwind-
ing (cleaning up unused memory objects) or process termina-
tion are not generally available. In a GPU context, if a kernel
encounters an error, it may simply halt or signal an error flag.

These differences mean that code written for CPUs cannot always
be reused directly on GPUs, especially if it relies on features like
dynamic memory allocation or standard error handling.

3.2 Rust Language Items (Lang-Items)
One of Rust’s unique features is its use of language items (commonly
called lang-items), which are special functions or types that the
compiler relies on to implement core language features. These lang-
items are not part of the language syntax itself, but are instead
marked in library code with the #[lang = "..."] attribute.

Lang-items serve as the bridge between the language and its stan-
dard library. For example, when a program encounters a panic (an
unrecoverable error), the compiler expects to find a function marked
as the panic handler lang-item, which it then calls. Other lang-items

define how dynamic memory allocation works, how destructors are
called, and how certain traits (such as copying or iteration) are im-
plemented. In typical Rust programs, these lang-items are provided
by the standard library, which assumes a conventional operating
system and CPU environment.

However, when targeting environments that lack standard operat-
ing system services—such as embedded systems or GPU—developers
must provide alternative implementations for these lang-items. This
flexibility allows Rust to be used in a wide range of contexts.

3.3 The Rust Compiler Architecture
The Rust compiler, rustc, works in several steps to turn source code
into an executable program. This section describes the main stages
of its pipeline relevant to this paper, drawing from the official Rust
Compiler Development Guide [16]. Understanding these compo-
nents helps explain how Rust features work and how the compiler
can be adapted for different targets.

3.3.1 Intermediate Representations
After parsing the source code, the compiler processes it through
several intermediate representations:

• High-level Intermediate Representation (HIR): This is
a structured, desugared version of the source code, closely
reflecting the original syntax but normalized for further anal-
ysis. The HIR is used for tasks like type checking.

• Mid-level Intermediate Representation (MIR): The MIR
is a simplified, control-flow-oriented representation of the
program. It abstracts away many syntactic details and is de-
signed to make optimizations and analyses easier. The MIR
is the main input for later stages such as monomorphization,
borrow checking, and code generation.

3.3.2 The Query System
In a traditional compiler, the compilation process is organized as
a fixed sequence of stages or “passes.” For example, the compiler
might first parse the source code, then perform type checking, then
optimize the code, and finally generate machine code. Each stage
processes the entire program before passing its results to the next
stage. This approach is straightforward, but it can be inefficient:
even a small change in the source code may require re-running
many stages for the whole program, and adding new analyses or
transformations often means modifying the pipeline itself.
The Rust compiler takes a different approach with its query sys-

tem. Instead of fixed passes, the compiler organizes its work as a
collection of small, focused queries. Each query is responsible for
computing a specific piece of information, such as the type of an
expression, the borrow-checked version of a function, or the MIR
for a particular item.
The query system makes the compiler more modular and ex-

tensible. New analyses or transformations can be added as new
queries, and the system automatically manages their dependen-
cies and caching. In the context of this work, the query system is
leveraged to distinguish between host and kernel code and to ap-
ply target-specific transformations, such as swapping lang-items,
only where necessary in the compilation pipeline, without affecting
unrelated parts of the program.
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3.3.3 Monomorphization and Code Generation
After the compiler has generated and optimized the MIR, it performs
monomorphization. In Rust, generics allow functions and types to
be written abstractly, so they can operate on different data types
without code duplication. During monomorphization, the compiler
creates concrete versions of each generic function or type for every
set of type parameters actually used in the program.
Once monomorphization is complete, the compiler lowers the

MIR to target-specific machine code, such as x86, ARM, or GPU
bytecode (e.g., PTX for NVIDIA GPUs). This is typically done using
a backend like LLVM, which handles the final optimization and code
generation steps, allowing Rust to target a wide range of hardware
platforms.

3.4 Hybrid Compiler Modifications
The hybrid Rust compiler developed by Aukes [2] extends the stan-
dard Rust compiler to support integrated compilation of both CPU
and GPU code from a single source file. The key modifications
relevant to this work are:

• Kernel Annotation and Separation: The compiler recog-
nizes special annotations (#[kernel]) to identify functions
intended for GPU execution. During compilation, it separates
these kernel functions from the host code by issuing different
queries for the relevant context.

• Dual Compilation Paths: At the MIR level, the compiler
processes host and kernel code along separate paths. Host
code is compiled as usual for the CPU, while kernel code is
compiled to GPU-compatible bytecode (in the current itera-
tion, PTX for NVIDIA GPUs).

• Embedding GPU Code: The resulting GPU bytecode is em-
bedded into the host binary as a static string, allowing the
host code to launch GPU kernels at runtime.

• Shared Intermediate Representations: Both host and ker-
nel code share the same initial parsing and HIR stages, but
diverge at the MIR stage, where target-specific transforma-
tions and code generation occur.

In addition to modifying the compiler itself, Aukes also devel-
oped a CUDA support library, which provides safe Rust bindings
to the CUDA API. This support library will also be extended to
interact with the new lang-item system, supplying CUDA-specific
implementations for language features as needed.

4 COMPILER MODIFICATIONS
The goal is to allow the same Rust source code to use familiar
language features in both host and kernel code, while ensuring that
the underlying implementations are correct for each target. This
requires the compiler to:

• Distinguish between host and kernel code during compilation.
• Substitute standard lang-items with target-specific versions
only in kernel code.

• Allow external libraries to provide their own target-specific
lang-item implementations.

4.1 Kernel-Specific Lang-Items in the HIR
To enable this, we introduce new lang-items at the High-level Inter-
mediate Representation (HIR) level, specifically for kernel functions.
These kernel lang-items can be implemented in the same way as
standard lang-items, which means they can be provided by any
library. For example, the CUDA support library written by Aukes
[3] is extended to provide these lang-items, mapping them to CUDA
specific-operations (such as cudaTrap and cudaMalloc).

4.2 MIRQuery and Lang-Item Swap Pass
As illustrated in Figure 1, the compilation path diverges at the MIR
level to handle host and kernel code separately. This separation is
managed by an existing kernel MIR query that is responsible for
producing the MIR for functions marked as GPU kernels. The core
modification of our work is the introduction of a dedicated kernel
lang-item swap pass within this query. This pass maintains a map-
ping from standard lang items (such as panic_impl, exchange_-
malloc) to their kernel-specific counterparts. As the pass traverses
the MIR of a kernel function, it identifies calls to standard lang-items
and rewrites the MIR to call the kernel version instead.
The choice to perform this transformation on the MIR, rather

than the earlier HIR, is deliberate. First, the hybrid compiler’s ar-
chitecture only identifies and separates kernel functions from host
code after the initial HIR analysis is complete. More fundamentally,
the HIR is designed to be a high-level representation that faithfully
reflects the source code’s structure and semantics, making it suitable
for type-checking and trait resolution [15]. The MIR, by contrast, is
the appropriate stage for such changes as it is a lower-level repre-
sentation intended for target-specific transformations.
Further, the transformation is performed before monomorphiza-

tion. By applying the swap at this stage, we ensure that all generic
functions and types are instantiated with the correct, kernel-specific
lang-items. This is crucial, as it prevents the original, CPU-specific
lang-items from ever reaching the code generation backend for
the kernel. Consequently, all downstream code generation for the
kernel is guaranteed to use implementations that are safe and ap-
propriate for the target environment, avoiding compilation errors
or undefined behavior.
Since this transformation is performed only for requests of the

kernel MIR, any changes made to it will only be reflected in the
generated kernel bytecode. This ensures that host code continues
to use the standard lang-items and is compiled as usual.

5 DESIGN OF GPU-SPECIFIC LANG-ITEMS
With the compiler infrastructure in place to support target-aware
lang-items, the next step is to design implementations of these
lang-items that are appropriate for the GPU environment. With
the replacement lang-items being implemented through the same
mechanism as standard lang-items, they can be provided by any
support library – in this case, the CUDA support library.
When implementing lang-items for GPU kernels, several key

principles should guide the design:
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Fig. 1. Compiler pipeline with lang-item swap pass. The figure extends the architecture diagram from Aukes [1], highlighting the lang-item swap pass.

• Signature Compatibility: GPU-specific lang-items must
have exactly the same function signatures as their CPU coun-
terparts. This ensures seamless substitution during compila-
tion and guarantees that all call sites, including those gener-
ated by the compiler or standard library, remain valid.

• Semantic Alignment: The GPU implementation should pre-
serve the intent and semantics of the original lang-item as
much as possible, so that code behaves consistently across
host and device. In practice, this means that the GPU-specific
version should match the observable behavior of the CPU
version wherever the hardware and execution environment
allow. This is typically ensured by designing the GPU im-
plementation to follow the same function signatures, return
values, and side effects as the standard version, and by vali-
dating behavior through tests. However, not all semantics can
be fully preserved due to fundamental differences between
CPU and GPU environments. In such cases, the implementa-
tion must provide the closest reasonable approximation and
clearly document these differences for users.

• GPU Suitability: Implementations must avoid dependencies
on unavailable features, such as operating system services or
host-side I/O, and should be designed with the GPU’s memory
model, parallelism, and resource limitations in mind.

To demonstrate the approach, we discuss the lang-items currently
supported in the CUDA support library: panic handling and dynamic
memory allocation. For each, we compare the standard CPU imple-
mentation to the current GPU implementation, and outline possible
alternative designs.

5.1 Panic Handling
CPU Implementation. On the CPU, the panic lang-item is typi-

cally implemented to print an error message, unwind the stack1,
and terminate the process or thread. This relies on operating system
services and standard I/O, and may provide detailed diagnostics
for debugging. Panics can either abort the process immediately or
unwind the stack, allowing for resource cleanup and, in some cases,
recovery if a suitable handler is present.

GPU Implementation. On the GPU, such facilities are unavailable.
There is no standard output, no operating system to report errors to,
and stack unwinding is not supported. In the CUDA support library,

1Stack unwinding is the process of walking back up the stack after an error, running
destructors for all in-scope variables as each stack frame is removed.

the panic lang-item is implemented using the CUDA trap instruc-
tion. When a panic occurs in a kernel, this instruction immediately
halts the current thread and signals an error to the CUDA runtime.
This approach is minimal and robust: it prevents further execution
of faulty code and allows the host application to detect that a kernel
has failed, typically by checking the CUDA error status after kernel
launch. However, it does not provide detailed information about the
cause or location of the panic, nor does it allow for resource cleanup
or recovery within the kernel.

Other implementations are possible, for example, a panic handler
could write an error flag, thread index, or diagnostic information
to a pre-allocated region of global memory. After kernel execution,
the host could inspect this memory to determine which threads
panicked and possibly why. This would allow for more detailed
error reporting or debugging, but introduces additional complexity:
memory must be reserved and managed for error reporting, and
care must be taken to avoid race conditions if multiple threads panic
simultaneously.

5.2 Dynamic Memory Allocation
CPU Implementation. On the CPU, Rust’s dynamic memory allo-

cation is built on a multi-layered abstraction designed to decouple
memory requests from the underlying memory provider. This sys-
tem revolves around lang-items, compiler-generated code, and a
library-provided allocator.

As seen in Figure 2, the process begins when application code uses
a type like Box<T>2, which triggers a call to the exchange_malloc
lang-item. However, this lang-item is merely a placeholder for an-
other function. The compiler translates this high-level request into
a call to a ’magic’3, low-level function symbol: __rust_allocate.
Similarly, when a heap-allocated value is dropped, the drop_in_-
place lang-item is invoked. This triggers compiler-generated ’drop
glue’ code specific to the type being dropped, which for heap types
like Box<T> includes a call to another standard symbol, __rust_-
deallocate.
For our purpose, the important part of this design is how these

standard symbols are defined. By default, Rust’s standard library
provides the implementations, typically by linking to an allocator

2Box<T> is a standard Rust type that allows a value of type T to be stored on the heap
rather than on the stack. This enables the creation of data structures whose size is not
known at compile time, such as linked lists or trees.
3By ’magic’, we informally refer to symbols or behaviors that are not explicitly written
by the user but are part of a convention understood by the compiler. The compiler
automatically generates and links these symbols.
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like the operating system’s native malloc. However, developers
can override this default behavior using the #[global_allocator]
attribute. This attribute is applied to a static item whose type im-
plements the GlobalAlloc trait. The compiler then generates the
__rust_allocate and __rust_deallocate functions as thin wrap-
pers4 that forward calls to the alloc and dealloc methods of the
user-provided allocator. This mechanism allows any part of the pro-
gram to allocate and free memory without needing to know which
specific allocator is being used.

Fig. 2. Flow of dynamic memory allocation for both compilation paths.

Kernel Allocator Attribute. Memory management on the GPU
presents additional challenges that a simple lang-item swap cannot
solve. While swapping exchange_malloc would redirect explicit
allocations, it fails to account for deallocations. As on the CPU,
deallocation is handled by compiler-generated ’drop glue’ that calls
the low-level __rust_deallocate symbol directly. A swapped lang-
item would be bypassed, causing kernel code to incorrectly call the
host’s deallocator.
To solve this, we introduce a new #[kernel_allocator] at-

tribute, which provides a GPU-specific analog to the host’s #[global_-
allocator]. This attribute is applied to a custom allocator type
designed for the kernel environment. When compiling kernel code,
the compiler recognizes this attribute and, for the GPU target only,
redefines the __rust_allocate and __rust_deallocate symbols
to call the methods of the designated kernel allocator. As shown in
the right branch of Figure 2, this approach ensures that all calls to
dynamic memory operations within a kernel, both allocation and
deallocation within drop glue, are routed through the GPU-specific
implementation.

GPU Implementation. The CUDA support library provides a con-
crete implementation for this system. It offers an allocator type that

4A thin wrapper is a function that performs no computation itself, serving as a call to
another function.

is marked with the #[kernel_allocator] attribute. This alloca-
tor’s methods are simple wrappers around CUDA’s device memory
management functions: its alloc method calls cudaMalloc, and
its dealloc method calls cudaFree. This setup allows GPU kernels
written in traditional Rust to leverage the native memory manage-
ment mechanisms of the CUDA runtime.
The flexibility of the #[kernel_allocator] mechanism, how-

ever, is not limited to this single implementation. It is designed,
as the lang-item swaps, to be an extensible interface. Alternative
allocator strategies could be implemented to suit specific application
requirements or backends. For example, a developer could provide a
bump allocator 5 in global memory for fast, lock-free allocation, or a
memory pool to reduce fragmentation for workloads with frequent,
uniformly sized allocations.

6 NEWLY ENABLED FEATURES
The introduction of context-dependent lang-items in the hybrid
Rust compiler significantly expands the set of Rust features available
within GPU kernels. In this section, we evaluate the impact of these
changes by highlighting the newly enabled features and presenting
concrete kernel examples that were previously unsupported.
With the new system, GPU kernels can now take advantage of

several key Rust features that were previously unavailable:
• Panic Handling: Kernels can safely use panic! and other
error-handling idioms. Instead of causing undefined behavior
or compilation failures, panics are now handled in a way that
is appropriate for the GPU environment.

• Dynamic Memory Allocation: Kernels can create and use
heap-allocated data structures, such as Box<T> and Vec<T>,
with memory allocated directly on the device.

• Idiomatic Rust Patterns:Many common Rust constructs,
such as unwrap() and dynamic data structures, can now be
used naturally in kernel code, making GPU programming in
Rust more expressive and familiar.

6.1 Panic Handling
Previously, GPU kernels could not use the language’s built-in panic
mechanism, whichmeant that errors like out-of-bounds access could
not be reported in a standard way. With the new system, panics are
now supported in device code. This allows kernels to use panic!
for error reporting, as shown in Listing 1, where a panic is triggered
if a thread attempts to access data outside the valid range. Further,
common Rust error handling patterns, such as using unwrap() on
Option and Result types, are also now available in GPU kernels,
as they also rely on the panic! macros.

6.2 Dynamic Memory Allocation
With the introduction of GPU-specific lang-items and the #[ker-
nel_allocator] system, Rust kernels can now use dynamic mem-
ory allocation on the GPU. This enables the use of heap-allocated
data structures, such as trees, lists, or buffers, directly within GPU
code.

5A bump allocator is a simple memory allocator that allocates memory by incrementally
moving a pointer forward in a pre-allocated region. While, very fast, it does not support
the deallocation of individual objects.
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#[kernel]
unsafe fn add_with_bounds_check(a: &[i32], b: &[i32],

mut out: Buffer<i32>) {
let i = gpu::global_tid_x();
if i >= a.len() {

panic!("Thread {} out of bounds", i);
}
let mut sum = 0;
for j in 0..a.len() {

sum += a[j] + b[j];
}
out.set(i, sum);

}

Listing 1. A kernel that performs bounds-checked parallel addition and
panics on out-of-bounds access.

This capability is useful in many practical scenarios. For exam-
ple, tree structures are commonly used to represent hierarchical or
recursive data. In industry, such trees are fundamental for build-
ing acceleration structures in computer graphics, such as BVH or
kd-trees for ray tracing and collision detection [10], or for spatial
indexing in geospatial analysis, including quadtrees and octrees
in mapping and GIS [12]. In machine learning, decision trees and
random forests are widely used for classification and regression [4],
and can benefit from parallel construction and evaluation on the
GPU.

Listing 2 shows a kernel where each thread builds a small binary
tree and computes the sum of its values. This demonstrates how
dynamic memory enables more flexible and idiomatic Rust code on
the GPU.

7 TOOLING USAGE
All development for this work was carried out using the same repos-
itories as described in the original hybrid compiler paper [1]. As
such, the installation and usage instructions remain unchanged.
To use the prototype, users must have a CUDA-enabled GPU, a

supported operating system (Windows or Linux), and the CUDA
Toolkit installed. The modified Rust compiler can be obtained by
cloning the repository at https://github.com/NiekAukes/rust-gpu-
hybrid-compiler [2] and following the installation steps in the pro-
vided README.md.

The CUDA support library and sample projects are available
at https://github.com/NiekAukes/rust-kernels [3]. This repository
contains the necessary libraries for kernel execution as well as
example code that can serve as a template for new projects.

8 DISCUSSION
The introduction of context-dependent lang-items into the hybrid
Rust compiler may be a significant step toward making idiomatic
Rust programming practical and robust for GPU development. By
allowing the compiler to substitute core language features with GPU-
appropriate implementations, we have enabled Rust constructs, such
as safe panic handling and dynamic memory allocation, that were
previously unavailable or unsound in device code.

struct TreeNode {
value: i32,
left: Option<Box<TreeNode>>,
right: Option<Box<TreeNode>>,

}

impl TreeNode {
fn new(value: i32) -> Box<TreeNode> {

Box::new(TreeNode {
value,
left: None,
right: None,

})
}

fn sum(&self) -> i32 {
let mut total = self.value;
if let Some(ref l) = self.left {

total += l.sum();
}
if let Some(ref r) = self.right {

total += r.sum();
}
total

}
}

#[kernel]
fn tree_kernel(mut results: Buffer<i32>) {

let i = gpu::global_tid_x();
let mut root = TreeNode::new(i as i32);
if i % 2 == 0 {

root.left = Some(TreeNode::new(i as i32 * 2));
}
if i % 3 == 0 {

root.right = Some(TreeNode::new(i as i32 * 3));
}
results.set(i, root.sum());

}

Listing 2. A kernel where each thread dynamically allocates and sums a
binary tree.

This work shows that much of Rust’s safety and expressiveness
can be brought to the GPU domain without forcing developers to
abandon familiar idioms. For example, the ability to use panic!
and unwrap() in kernels allows for clear error handling, while sup-
port for heap-allocated data structures like trees enables more so-
phisticated algorithms, including those used in graphics, scientific
computing, and data analytics.
A key strength of this approach is its extensibility. By defining

kernel-specific lang-items at the HIR level and performing substi-
tutions in a dedicated MIR pass, the system allows any library to
provide its own implementations. This modularity makes it possible
to support additional GPU backends, improve error reporting, and
expand the set of language features available in the future.
However, there are trade-offs. The system introduces additional

complexity into the compilation process, as maintaining parallel
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sets of lang-items for each target increases the maintenance burden
for both compiler developers and library authors. As the number
of supported lang-items grows, keeping these mappings consistent
may become more challenging, especially as the Rust language
evolves.
Some language features, such as panic handling, remain more

limited on the GPU — for example, panics typically result in thread
termination rather than stack unwinding. Dynamic memory alloca-
tion is now possible, but is constrained by the GPU’s memory model
and allocator design. Furthermore, while the current implementa-
tion targets CUDA, supporting other GPU backends will require
further engineering effort.

Another important aspect is the interaction between Rust’s safety
guarantees and the introduced compiler extensions. The overall
safety of kernel code ultimately relies on the correctness of the
GPU-specific lang-item implementations. For instance, dynamic
memory allocation on the GPU must be carefully managed to pre-
vent leaks or misuse, and panic handling must avoid leaving the
device in an inconsistent state, especially since stack unwinding and
resource cleanup are typically unavailable. Notably, since these lang-
items are frequently implemented using unsafe code and foreign
function interfaces (FFI) to communicate with GPU runtimes, the
responsibility for maintaining Rust’s safety properties shifts from
the language and compiler to the implementer of these lang-items.
Overall, context-dependent lang-items offer a practical compro-

mise: they bring much of Rust’s safety and expressiveness to GPU
programming, while introducing some new complexity that must
be managed as the system matures.

9 FUTURE WORK
The current system establishes a viable framework for context-
dependent lang-items, opening several paths for future development.
Future work should focus on broadening language feature support,
enhancing error reporting mechanisms, and adapting the system
for different GPU backends.

9.1 Expanding Lang-item Coverage
While panic handling and dynamic allocation are critical, several
other lang-items could be investigated to enable more advanced,
idiomatic Rust in GPU kernels. An area of exploration is that of the
Iterator trait family, specifically the IteratorNext and IntoI-
terIntoIter lang-items. These are the foundation of Rust’s for
item in collection loops. Enabling them for GPU kernels would
allow developers to write safer and more expressive iteration code.

9.2 Advanced Panic Handling
The current panic_impl for CUDA relies on the trap instruction,
which halts a thread but provides no diagnostic information to the
host. A major area for future work is to design a communicative
panic handler.

This could be achieved by creating a standardized error-reporting
protocol between the host and device. Before launching a kernel,
the host application would allocate a small buffer in global GPU
memory and pass a pointer to it. The GPU-side panic_impl would
be modified to, instead of immediately trapping, attempt to write

details from the PanicInfo struct—such as the error message, file,
and line number—into this buffer. After the kernel completes (or
fails), the host could check this buffer to retrieve and display a
detailed error message, transforming panics from silent failures into
actionable debug information.

9.3 Alternative Backends
The core architecture for swapping lang-items is backend-agnostic,
but the implementations themselves are highly specific to the target
hardware and API. Extending this work to support other backends,
such as SPIR-V for Vulkan and OpenCL, presents another research
direction.
On one hand, the implementation of items such as panic_impl

would not change significantly. While the CUDA version uses a
specific intrinsic (cudaTrap), a SPIR-V implementation would likely
use the OpKill instruction to terminate the invocation.

On the other hand, dynamic memory allocation (exchange_mal-
loc) would require a completely different approach. The CUDA
implementation can directly call cudaMalloc. In a Vulkan envi-
ronment, there is no direct equivalent. A SPIR-V kernel allocator
would need to interface with a memory management system set up
by the host using Vulkan APIs, potentially leveraging extensions
like buffer device addresses. This highlights that each new backend
requires not just a new code generator but a carefully designed
library of lang-item implementations that respect the execution
model, memory hierarchy, and available intrinsics of that specific
environment.

9.4 Approach Streamlining
As the number of supported lang-items increases, ensuring correct-
ness and reducing manual effort will become increasingly important.
In that sense, another direction for future work is to improve the
reliability of GPU-specific lang-item implementations through sys-
tematic testing. This could include developing targeted tests that
compare the behavior of host and kernel lang-items in controlled
scenarios, or even exploring formal verification techniques to catch
mismatches in semantics. Another direction is to automate the pro-
cess of adding new lang-items for kernels. For example, Rust’s exist-
ing macro system for registering lang-items could be supplemented
with functionality that automatically generates kernel-specific defi-
nitions when a new lang-item is introduced, reducing boilerplate
and the risk of human error.

10 CONCLUSION
We have presented a context-dependent lang-item system for Rust,
enabling the hybrid compiler to select specialized, GPU-safe im-
plementations for core language features when compiling kernel
code. This allows developers to write GPU kernels in idiomatic Rust,
using constructs such as panic!, unwrap(), and dynamic memory
allocation, features that were previously unavailable or unsafe in
device code.

The system’s extensibility and modularity provide a strong foun-
dation for future work. As more lang-items are supported and tool-
ing improves, the gap between CPU and GPU Rust programming
will continue to narrow. In summary, context-dependent lang-items
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make it possible to write safer, more maintainable, and more id-
iomatic Rust code for heterogeneous computing, opening the door
to new applications and more robust GPU software.
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