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The availability of gesture recognition technologies raises the potential for
improvement of human-computer interaction and the adoption of gesture
recognition as a widely used way of interaction. Adoption continues to be
limited on consumer-grade computers because of concerns about high pro-
cessing demands and specialized hardware requirements. This study assesses
the feasibility of implementing webcam-based gesture-controlled interfaces
on typical consumer-grade computers without decreasing overall system
performance. Multiple machine learning models, including traditional clas-
sifiers and boosted trees, were trained and benchmarked for real-time CPU,
GPU, and RAM usage. Optimization techniques such as pre-pruning and
frame skipping were applied to reduce resource demands. Resource consump-
tion was estimated for several types of real-world computer configurations,
from high-end desktops to low-cost laptops. The results show that models
with the adoption of optimization techniques can achieve high accuracy
while consuming less than 2% of computational power, making real-time
gesture recognition feasible for the majority of consumer-grade computers,
with the exception of low-end laptops with constrained processing power.
This research highlights key system requirements, trade-offs, and future
directions to encourage broader adoption of gesture-based interfaces on
consumer-grade computers.

CCS Concepts: • Computing methodologies → Machine learning algo-
rithms; • Human-centered computing→ Gestural input.

Additional Key Words and Phrases: Gesture Recognition, Human-Computer
Interaction, Webcam-based Interaction, Real-Time Processing, Resource
Optimization, Consumer-Grade Computers, CPU and GPU Benchmarking,
Machine Learning Models

1 Introduction
Technology keeps evolving in the modern world, and so does how
users interact with their devices. One form of this evolution is
where feature phones with button interaction have been replaced
by smartphones that provide gesture interaction. This step is only a
precursor to an overall movement of natural and intuitive human-
computer interfaces. Gesture recognition [12] is the process by
which a system detects and responds to human movements as input,
using sensors such as cameras or motion detectors. Gesture-based
interfaces which allow users to communicate with computers using
body gestures are becoming more and more popular in a variety
of application areas, such as gaming and smart homes. Despite
its increasing popularity in the aforementioned use cases, gesture-
controlled interfaces are still not widely used in regular consumer-
grade computers.

This hesitation to utilize gesture-controlled interfaces on typical
computers is mainly due to worries regarding hardware constraints,
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inconsistent performance, and the assumption that gesture recogni-
tion necessitates specific hardware. Indeed, hardware constraints
were present as different studies used different hardware and equip-
ment, such as [6] using two cameras and colored gloves, [13] using
two types of gloves: sensor-based data gloves and multiple-colored
gloves, and [8] using the Red, Green, and Blue finger caps for the
gesture-based human-computer interaction. Such hardware and
equipment requirements to use gesture recognition for computer
control are stopping average users from using it. However, [16]
and [17] have shown that the development of a human-interaction
system that uses only one single camera is possible. This makes
gesture-based human-computer interaction systems more accessible
to average users and opens new opportunities for wide-scale adop-
tion. However, the computational load of such human-computer
interaction systems in terms of an average computer and their influ-
ence on computational load and overall performance of the computer
remains open.
In real-world scenarios, users operate desktops or laptops with

limited processing power and resources, frequently running several
programs simultaneously that consume the computer’s limited re-
sources. Gesture-based human-computer interaction solutions must
function well without significantly affecting system performance to
be realistically feasible for use on consumer computers with limited
resources. High CPU, GPU, or RAM consumption can cause laptops
to lag, overheat, and have shorter battery lives, all of which have
a negative impact on usability and the likelihood that technology
will be widely adopted.

This research aims to evaluate the influence of gesture-based
human-computer interaction systems on consumers’ computers,
focusing on processing power usage. After training gesture recog-
nition models, CPU and GPU resources used by the gesture recog-
nition software were benchmarked. After the measurement of the
CPU and GPU resource utilization, market research on the aver-
age consumer-grade computer specifications was made. Then, the
resource utilization was projected onto consumer-grade computer
specifications based on the feasibility of a real-time gesture recogni-
tion human-computer interaction system was assessed.

2 Problem Statement
Previous research on gesture recognition has required complex sys-
tems consisting of multiple cameras or sensor-enabled gloves. Re-
cent studies have, however, proved gesture-based human-machine
interaction to be technologically feasible with just a single webcam.
However, in contrast to this headway, much remains to be discov-
ered about the computational cost of executing gesture recognition
software on standard consumer hardware. In particular, limited in-
formation exists regarding how much processing resources—CPU,
GPU and RAM—are consumed when such systems operate in real-
time. Because the majority of consumer computers possess limited
resources and tend to execute several different applications at any
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given time, heavy system requirements of gesture-based systems
can lower usability and make widespread adoption less feasible. The
aim of this research is to examine the processing needs of gesture
recognition systems of consumer-level personal computers. The
usability of the gesture-controlled interface by average users will
be determined by testing the system load and comparing it with
standard system specifications.

2.1 ResearchQuestion
The following research question will emerge from the problem state-
ment:

Is the performance of gesture recognition systems feasible for real-
world use on consumer-grade computers without significantly de-
grading overall system functionality, and to what extent do they
impact CPU, GPU and RAM usage?

This Research Question can be answered with the following sub-
questions:

(1) How much CPU and GPU power does gesture recognition
software use during real-time operation?

(2) What is an average CPU, GPU and RAM specifications for
consumers’ computers?

(3) How does running gesture recognition software affect overall
consumers’ computers system usability?

3 Related Work
Scopus and Google Scholar were used to collect relevant literature
for the research topic. Using search terms like "gesture recognition"
and "human-computer interaction", a number of documents were
discovered that contain conducted research in this domain.
Gesture recognition [12] is a well-researched technology, the

capabilities of which grow with time. With the advancement of
technology, it can be seen that the need for external hardware or
equipment, which was present in [6] (two cameras and colored
gloves), [13] (sensor-based data gloves and multiple-colored gloves),
and [8] (Red, Green, and Blue finger caps) has been eliminated. [16]
and [17] have shown that the development of a human-computer
interaction system that uses only one single camera is possible.
Moreover, in [4], it is discussed what steps should be taken to create
a working gesture recognition model that can be later used in a
human-computer interaction system similar to [16]. Algorithms
that can be used for gesture recognition in such human-computer
interaction systems are described in [10], [9], [5], [14], [2] and [2].
In addition, [11] shows that the single camera was the most used
environment type that is used for gesture recognition from 2014 to
2020.

[3] has shown that the digital camera or web camera as an input
device can outperform hardware-specific input devices like colored
gloves or data gloves, achieving a recognition rate as high as 98.7%,
which can be considered a feasible recognition rate for widespread
usage and increase adoption rate due to no additional hardware
requirements except for webcam.

In addition, [1] and [15] describe techniques that can be used for
the optimization of gesture recognition models in a case when the

hardware requirements for the non-optimized models are too high
for an average consumer-grade computer.

4 Methods of Research
This section will cover the research methodology, which is divided
into six phases. Each phase describes actions taken to complete the
research. The research was done using the Python programming
language. The Main Python libraries used during the research were
sci-kit-learn for data splitting, model training, and evaluation; mat-
plotlib for plotting confusion matrix; and joblib for model storage
and later use.

4.1 Initial Design
The initial design phase includes the preliminary design of the re-
search, model development, challenges encountered with the initial
solution, and justification of the changes done to the initial design.
Initially, the machine learning algorithmswere planned to be trained
on the photo datasets containing people showing different gestures.
The main problem with dataset selection was that the majority of
the datasets for the gesture recognition algorithms were in black
and white and focused on the palm instead of the top body view
that would be received from the regular webcam. The dataset that
would fit the intended view was the HaGRID dataset [7]. After re-
trieving datasets for the three gestures, instead of the thirty-three
gestures provided by HaGRID due to the size of the datasets for each
gesture being more than 100 GB, a couple of models were trained
on this subset of images. The results of the trained models were
approximately twenty-three percent, which is less than random
guess results given that only three classes are present. Such poor
results were caused by the fact that the images contained a lot of
redundant information and changes such as different backgrounds,
clothes, colors, etc. After retrieving such poor results, the decision
to pre-process the photos was made. Photo pre-processing involved
detecting hands in the photos before passing them to the models.
YOLOv5 pre-trained models for hand detection were used for this
task. Unfortunately, even with pre-processing, the models were
showing poor results, and in addition, hand detection models them-
selves were unreliable. Consequently, additional literature research
was conducted to identify a more effective solution.

4.2 Software Creation and Evaluation
The software creation phase will cover the process of the creation of
the final solution for model training, machine learning algorithms
research and implementation, evaluation, and benchmarking of the
models. After the aforementioned additional literature research,
Google’s MediaPipe Hands1 (later referenced as MediaPipe) was
found and tested. MediaPipe detects hand and creates landmarks on
them. MediaPipe showed promising results on the live video testing.
However, they performed poorly on the HaGRID dataset, as the
photos in the dataset have people standing further than expected in
regular web cameras. Because of this, the decision was made to cre-
ate a dataset using the regular webcam. The creation of the dataset
was done by capturing 2000 frames per gesture, 1000 frames for the

1Google MediaPipe Hands: https://ai.google.dev/edge/mediapipe/solutions/vision/
hand_landmarker
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left arm, and 1000 frames for the right arm. In addition, 2000 frames
of the hands in the rest or showing the gestures not included in the
model were taken. After the frame collection, these frames were pro-
cessed to create landmarks, and these landmarks were stored to be
later used for the model training. Models trained on these landmarks
showed sufficient results with approximately ninety-seven percent
accuracy. After training, these models were tested using real-time
video from the web camera. MediaPipe processed each frame from
the web camera by creating the landmarks that the model then
processed to create a prediction. After confirming that the mod-
els perform well on the real-time video and training, the Python
application was developed to recognize the gestures and perform
the action on the computer accordingly. One application version
performs back, page up, and page down commands, while the sec-
ond version stops the music, starts the next song, or returns to the
previous one. Moreover, a brief delay is introduced between actions
to prevent the application from executing the same action multiple
times for a single gesture while still allowing the user to repeat
the desired command. After developing the application, additional
academic research was conducted to identify alternative machine
learning algorithms that could be evaluated and benchmarked later.
In the end, six machine learning algorithms (Bagging Classifier [10],
k-Nearest Neighbor [9], Logistic Regression Predictor [5], Multi-
Layer Perceptron [14], Random Forest Classifier [2], Support Vector
Machine [2]) and four boosted trees were trained. The training and
validation split for these models were created by randomly selecting
twenty percent of the frames for the validation set. The remaining
eighty percent were used for training. Additionally, the F1 score was
monitored to help detect and prevent overfitting. After the training,
all models were stored as joblib files for later use. The accuracy of
all models ranged between 93.37 and 99.44 percent.

4.3 Benchmarking
The benchmarking phase will cover steps taken to benchmark all
models. The benchmark process started by creating a one-minute-
long video, which included showing each gesture with both hands,
showing gestures outside of the scope of the classes, and cases when
there is no hand visible in the frame. The video is in 480p and has a
frame rate of 60 frames per second. After the creation of the video,
the frames of this video were sent to the prediction models while
monitoring the GPU, CPU, and RAM usage of the computer. The
psutil Python library was used to monitor the CPU and RAM. This
library tracked RAM and CPU usage that were dedicated to the
process. Unfortunately, GPU usage per process tracking is only
available for NVIDIA GPUs. As the models were tested on the AMD
GPU, getting per-process usage was impossible. Instead, the overall
GPU usage of the computer was recorded. Such recording was done
by using the OpenHardwareMonitor Python library. To ensure that
the data was as precise as possible, the only process running during
the benchmarking process was the benchmarking process itself. No
mouse movements were present to even more reduce unrelated GPU
usage. The results of the benchmarking can be seen in the 1 and
2. The 1 shows the performance metrics of the models, and the 2
shows the resource usage of GPU, CPU, and RAM of each model.

Table 1. Model Performance Metrics

Model Accuracy (%) Weighted F1 Score

k-Nearest Neighbors 99.43 0.9943 0.31
Logistic Regression 94.44 0.9444 0.37
Support Vector Machine 93.37 0.9334 0.46
Bagging Classifier 98.44 0.9844 0.47
Multi-Layer Perceptron 98.69 0.9869 0.50
Random Forest Classifier 99.12 0.9912 0.58
CatBoost Classifier 98.44 0.9787 3.92
XGBoost Classifier 99.12 0.9912 8.61
LightGBM Classifier 99.31 0.9931 10.36
Histogram-based Gradient Boosting 99.44 0.9944 16.86

Table 2. Model Resource Usage

Model Avg FPS Avg CPU (%) Avg RAM (MB) Avg GPU (%)

k-Nearest Neighbors 32.08 3.43 576.84 0.05
Logistic Regression 32.13 3.06 572.88 0.06
Support Vector Machine 32.10 3.15 577.36 0.07
Bagging Classifier 32.05 3.72 566.43 0.07
Multi-Layer Perceptron 32.09 3.03 573.06 0.09
Random Forest Classifier 32.05 3.47 582.83 0.09
CatBoost Classifier 15.98 6.36 631.81 0.15
XGBoost Classifier 31.98 92.96 581.77 0.05
LightGBM Classifier 32.10 28.69 571.65 0.20
Histogram-based Gradient Boosting 29.01 60.49 570.99 0.14

The Score for each model is calculated as follows:

Score =
Avg CPU × Avg GPU × Avg RAM × 10
Accuracy × Avg FPS ×Weighted F1

A low score indicates a good performance of the model. The find-
ings show that the model with the lowest score, k-Nearest Neigh-
bors, achieves a balance between accuracy and resource usage. A
weighted F1 score that is almost the same as the accuracy indicates
that the precision and recall of the model are equal for all classes
and that there is no class bias. The model with the highest accuracy
is the HistGradientBoost model, with an accuracy of 99.44%. Unfor-
tunately, the HistGradientBoost model has the second-highest score
because of the average CPU usage of 60.49%, which is twenty times
more than the Multi-Layer Perceptron, which has only 3.03% usage
of CPU. Almost all models have a CPU usage a little higher than 3%
except boosted trees, which have CPU usage in the range of 60%
to 93%. GPU usage of almost all models is also comparatively low,
around 0.05%. Unfortunately, usage of boosted trees is once again
higher with a range of 0.14% to 1.53%, with the higher end being 30
times larger than the usage of other models. As for the RAM usage,
the range of the RAM used is from 566.43MB to 631.81MB, which
is only an 11% difference in RAM usage. Data shows that boosted
trees perform worse than the standard machine learning algorithms
on such small datasets. The best model with the lowest score was
k-nearest neighbours with a score of 0.31, and the worst performing
models were boosted trees: CatBoost, XGBoost, HistGradientBoost,
and LightGBM with scores of 3.92, 8.61, 16.86, 167.90 respectively.
As we can see, the difference between scores is almost 542 times.

Other important metrics of the models are prediction speed and
model size. Prediction speed is critical for real-time implementation
and must be minimal to ensure correct operation without noticeable
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delays. Otherwise, the solution will not be feasible for real-time
usage as users would have to wait before command execution. Model
size is an important factor, as smaller models occupy less storage
space on the user’s device, ensuring minimal impact on available
memory and allowing faster downloads and updates. Each model’s
prediction speed and size are shown in the 3.

Table 3. Models’ Speed and Size

Model Average Prediction Time (ms) Model Size (KB)

Bagging 5.53 1860
CatBoost 0.63 269
Histogram-based Gradient Boosting 4.67 1460
k-Nearest Neighbors 2.39 4942
LightGBM 0.22 1391
Logistic Regression 0.29 3
Multi-Layer Perceptron 0.33 532
Random Forest 4.38 5359
Support Vector Machine 0.62 1530
XGBoost 0.64 980

4.4 Optimization
The Optimization phase will cover the optimization techniques
applied to the models and how these optimizations have influenced
the performance of the models.

4.4.1 Pre-Pruning. The first optimization technique that was used
was Pre-Pruning. Pre-pruning is a technique that limits the tree
growth of the decision-tree-based models during training. This
technique helps create smaller models. Moreover, smaller models
can have less prediction time because fewer decisions are evaluated
per prediction. Pre-pruning optimization techniques were applied
to the following models: Bagging Classifier, CatBoost Classifier,
Histogram-based Gradient Boosting, LightGBM Classifier, Random
Forest Classifier, and XGBoost Classifier. The Pre-Pruning was done
by adjusting tree hyperparameters to make the model as small as
possible without significant loss of accuracy. The hyperparameters
for each model were adjusted individually for Pre-Pruning, as each
model had unique hyperparameters that would be passed to the
model constructor. The hyperparameters for the models are shown
in 4.

Table 4. Hyperparameters for different classifiers

Classifier Hyperparameters
Bagging Classifier max_depth = 7, min_sam-

ples_leaf = 10

CatBoost Classifier iterations = 100, depth =
5, l2_leaf_reg = 10.0, min_-
data_in_leaf = 10, grow_-
policy = ’Depthwise’, ver-
bose = 100

Histogram Gradient Boosting max_depth = 2, max_leaf_-
nodes = 3, min_samples_leaf
= 10

LightGBM Classifier learning_rate = 0.1, max_-
depth = 2, num_leaves =
3, min_data_in_leaf = 20,
min_gain_to_split = 0.1,
num_boost_round = 100

Random Forest Classifier n_estimators = 100, max_-
depth = 5, min_samples_leaf
= 10

XGBoost Classifier n_estimators = 50, max_-
depth = 3, min_child_weight
= 10, gamma = 1.0, learning_-
rate = 0.1

The main objective was to reduce the model size without losing
more than 5% in accuracy. The results of the Pre-Pruning can be
seen in the 5.

Table 5. Pre-Pruned Models’ Speed and Size

Model Average Prediction Time (ms) Model Size (KB)

Bagging Classifier 5.29 597
CatBoost Classifier 0.63 234
Histogram-based Gradient Boosting 4.10 319
LightGBM Classifier 0.20 194
Random Forest Classifier 4.34 565
XGBoost Classifier 0.63 227

As shown in the 5, Pre-Pruning is a powerful technique if the
size reduction is needed. Size reductions of the models are in the
range of 13% to almost 90%, with an average size reduction being
68.57%. Such size reductions can be helpful in cases where the model
size is crucial, such as model usage in edge computing. In addition,
Pre-Pruning also reduced the prediction times of the models up to
a 12.22% reduction. Noticeably, Pre-Pruning improves prediction
time more for models with larger initial prediction time, such as
Histogram-based Gradient Boosting(12.22% reduction) and Bagging
Classifier(4,34% reduction).

4.4.2 Frame Skipping. Another optimization technique that was
used was Frame Skipping. The frame-skipping technique was em-
ployed by analyzing only every eighth video frame. The rest of the
frames were grabbed but not analyzed. The video used for frame-
skipping benchmarking was the same as that of the initial solution.
In addition, the time delay was implemented to ensure that frame
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grabbing and analysis cannot be executed faster than in the real-
time video. This way, the benchmarking is as close as possible to
real-time usage settings. The models’ results with frame skipping
can be seen in the 6 and 7. The 6 shows the performance metrics of
the models, and the 7 shows the resource usage of GPU, CPU, and
RAM of each model with the usage of frame skipping optimization
technique:

Table 6. Model Performance Metrics with Frame Skipping

Model Accuracy (%) Weighted F1 Score

Random Forest Pruned 94.06 0.9406 0.09
Bagging Classifier 98.44 0.9844 0.11
Logistic Regression 94.44 0.9444 0.12
Bagging Pruned 95.13 0.9510 0.13
k-Nearest Neighbors 99.43 0.9943 0.15
Multi-Layer Perceptron 98.69 0.9869 0.15
Random Forest Classifier 99.12 0.9912 0.17
CatBoost Classifier 98.44 0.9844 0.28
CatBoost Pruned 94.56 0.9670 0.32
Support Vector Machine 93.37 0.9334 0.37
Histogram-based Gradient Boosting Pruned 96.19 0.9618 4.13
Histogram-based Gradient Boosting 99.44 0.9944 5.08
LightGBM Pruned 95.81 0.9581 5.67
XGBoost Pruned 94.56 0.9452 6.71
XGBoost Classifier 99.12 0.9912 9.62
LightGBM Classifier 99.31 0.9931 9.61

Table 7. Model Resource Usage with Frame Skipping

Model Avg FPS Avg CPU (%) Avg RAM (MB) Avg GPU (%)

Random Forest Pruned 31.66 0.89 576.49 0.05
Bagging Classifier 31.64 0.98 565.81 0.06
Logistic Regression 31.86 1.19 571.85 0.05
Bagging Pruned 31.56 1.12 561.14 0.06
k-Nearest Neighbors 31.86 1.10 575.21 0.07
Multi-Layer Perceptron 31.88 1.05 572.28 0.08
Random Forest Classifier 31.74 1.02 581.87 0.09
CatBoost Classifier 31.75 0.98 582.51 0.09
CatBoost Pruned 31.82 1.32 567.65 0.07
Support Vector Machine 31.93 1.20 574.90 0.15
Histogram-based Gradient Boosting Pruned 31.04 29.74 569.70 0.07
Histogram-based Gradient Boosting 29.12 18.33 570.45 0.14
LightGBM Pruned 32.13 28.88 555.93 0.12
XGBoost Pruned 32.36 28.71 562.16 0.12
XGBoost Classifier 32.48 28.64 577.94 0.19
LightGBM Classifier 32.08 28.85 554.93 0.19

As can be seen in the 6, after applying the frame-skipping opti-
mization technique, the initial model with the best score became
a Bagging Classifier, with a score of 0.11, which is almost 3 times
better than the score of the best initial model, k-nearest Neighbors
with a score of 0.31. Moreover, the Pre-Pruned Random Forest was
the best model overall. In addition, the CatBoost classifier model
had the most noticeable improvement, with a score drop from 3.92
to 0.28, which is a drop of 92. 9%. This score decrease was caused
by the drop in CPU usage from 6.36% to 0.98% and the increase in
Average Frames Per Second from 15.98 to 31.75. The biggest im-
provement in absolute score was the Histogram Gradient Boosting
model, with a score decrease from 16.86 to 5.08, which is a drop of
11.78 points. This decrease was due to a reduction of CPU usage
from 60.49% to 29.74% and GPU usage from 0.14% to 0.07%. The CPU
usage of all models has dropped significantly, averaging 3 times less

CPU usage compared to the initial results, with the exception of
LightGBM. GPU usage remained relatively the same for all models.
Such steady usage can be explained by the fact that even though the
program does not process the frame, it still grabs it, which requires
GPU usage. Due to the same frame-grabbing reason, RAM usage
also remained at nearly the same levels. Moreover, all Pre-Pruned
models have scored better or, in the case of the CatBoost Classifier,
nearly the same as initial models. Such results indicate that the
Pre-Pruning optimization technique improves the trade-off between
accuracy and resource usage of the computer.

4.5 Market Research
The Market Research phase will provide insights regarding specifi-
cations for average consumer-grade desktop computers and laptops.
In 2024–2025, tasks performed on an average consumer-grade com-
puter include web browsing, video streaming, and office work. Ac-
cording to the statistics covered in the following section, CPUs with
integrated graphics or low- to mid-tier GPUs are used in such setups.
The standard setup favors mid-tier GPUs and 6 to 8-core CPUs that
provide a good balance between price and performance. Remark-
ably, many laptops rely on integrated graphics (GPU built into the
CPU) for graphics unless a separate graphics card is needed for light
gaming or multimedia acceleration. This is reflected in shipment
data – the number of GPUs shipped annually exceeds the number of
CPUs by approximately 24% (since almost every computer processor
includes an integrated GPU). Overall, the average consumer-grade
computer in 2024-2025 uses a mid-range Intel Core or AMD Ryzen
CPU and low- to mid-tier GPU or integrated graphics.

4.5.1 Data Sources. To determine average specifications for the
CPU and GPU of an average consumer-grade computer, the follow-
ing sources were used:

• PassMark CPU and GPU Benchmark Data: This source
collects benchmark submissions worldwide. In February 2025,
PassMark 2 noted an unusual drop in average CPU perfor-
mance year-on-year before recovering and achieving a 2.45%
increase, potentially because more people were buying effi-
cient, low-power CPUs for basic computers instead of high-
performance chips. This drop implies that average customers
are giving top priority to better price-to-performance ratios
and adequate performance.

• CPU-Z Validator Data: Data from CPU-Z 3 submitted
benchmarks show that in the first quarter of 2025, the most
popular CPU configuration changed from 6-core to 8-core
CPUs as the top choice (currently 25.6% vs 22.4%). This trend
was mainly accelerated by the success of CPUs like AMD’s
Ryzen 7 9800X3D, which is now the most used CPU according
to CPU-Z data, appearing in 4.9% of all submitted benchmarks.
In addition to CPU data, the CPU-Z Validator also monitors
installed GPUs. The top three GPUs installed in the bench-
marked and submitted setups are NVIDIA GeForce RTX 4060,
NVIDIA GeForce RTX 3060, and NVIDIA GeForce RTX 5080.
NVIDIA GeForce RTX 4060 was used in 3.7% of benchmarked

2PassMark Year on Year CPU Performance: https://www.cpubenchmark.net/year-on-
year.html
3CPU-Z Validator Statistics: https://valid.x86.fr/statistics.html
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setups, gaining the most used GPU status. NVIDIA GeForce
RTX 3060 or NVIDIA GeForce RTX 5080 were used in 3.4% of
benchmarked computers, gaining second and third places in
most used GPUs. Moreover, the most used RAM size is 32GB,
with 37.7% benchmarks using this capacity of RAM. This data
shows that the users combine an 8-core CPU with a mid-tier
GPU that is on the same performance level as the CPU and
32GB RAM. In addition, 6-core CPUs combined with low- to
mid-tier GPUs can still be found in older or cheaper setups.

• Retail Sales for CPU, GPU and RAM: Top-selling CPUs
and GPUs on platforms like Amazon can give insights into the
most used CPUs and GPUs in new builds. Of the 10 top-selling
CPUs on Amazon, 7 have eight cores (as of July 2025), support-
ing the shift from the 6-core to 8-core CPUs indicated on CPU-
Z benchmarks. Moreover, on Amazon’s ratings, AMD’s Ryzen
7 9800X3D is only the second best-selling CPU, contrary to
data provided by CPU-Z. The top-selling CPU on the Amazon
market is the AMD Ryzen 7 7800X3D, which supports data
from PassMark CPU benchmark data that users give priority
to better price-to-performance ratios. Additionally, the top-
selling Intel CPU only ranks 13th in Amazon’s top-selling
CPU list. This Intel CPU is an Intel Core i7-12700KFwith eight
cores, which one more time supports the shift from 6-core
CPUs to 8-core CPUs. As for GPU sales, the top-selling GPU
is NVIDIA GeForce RTX 3050, which is once again contrary
to CPU-Z data and supports the claim that users favor low-
to mid-tier GPUs that are on the same performance level as
the most popular CPU models. In addition, the top-selling
graphic cards list is dominated by NVIDIA, with only 3 out of
10 top-selling GPUs being produced by AMD. The top-selling
AMD graphics card is RX 7600 XT, which is also a mid-tier
graphics card that can be combined with a top-selling AMD
mid-tier CPU, AMD Ryzen 7 7800X3D. Regarding RAM, the
32GB capacity dominates, with 6 out of 10 top-selling RAM
sticks being 32 GB. Moreover, the top 4 selling RAM is 64GB,
which possibly indicates the start of a shift towards an even
bigger RAM capacity. The remaining three positions in the
top 10 selling list are occupied by 8GB RAM that is still used
in budget computer setups.

• SteamHardware Survey:While Amazon’s top-selling CPUs
and GPUs provide insights into what is popular in the new
setups, hardware surveys like Steam Hardware Survey can
provide an understanding of what is popular in the current
setups. As it can be seen in the Steam Hardware Survey from
May 2025, the most popular CPU core number is 6, meaning
that even though newer setups have shifted from 6 cores to 8
cores, the overall usage could not yet shift. However, 8-core
CPUs are not far from reaching 6-core popularity because the
8-core CPUs have gained 1.93% in popularity from January
2025, being the biggest gainer and being used in 24.01% of
setups, while 6-core CPUs have faced the most significant
decline in popularity, losing 1.37% in popularity from January
dropping from being used in 32.04% of setups to 30.67%. Re-
garding graphic cards, the most used graphics card, according
to Steam Hardware Support, was NVIDIA GeForce RTX 3060,
which is slightly better than NVIDIA GeForce RTX 3050 but

still in the mid-tier graphics cards list and can be paired with
all previously listed popular mid-tier CPUs. Moreover, the
dominance of the NVIDIA graphics cards is more evident
in the Steam Hardware Survey, with the first non-NVIDIA
graphics being only in 13th place. This place is taken by AMD
Radeon Graphics, which is not a graphics card but an AMD
Integrated Graphics. The first AMD graphics card is only in
29th place. In addition, the integrated graphics also has taken
a noticeable percentage of usage. Both AMD and Intel Inte-
grated Graphics take around 4% of usage each. Concerning
RAM, 16 GB is still the most used RAM capacity, with a usage
of 43%. However, this can change as the 16 GB RAM capacity
has lost 0.86% of usage in the last month while the 32GB
capacity has gained 0.16%, resulting in 33.75% of usage.

• Retail Sales for Laptops: As shown in the data from the
Steam Hardware Survey, even among gamers, 8% of them
use laptops with integrated graphics, and even more people
have laptops in their homes and use laptops on a day-to-
day basis. Therefore, a laptop inclusion in data had to be
done. Data was gathered by accessing the Amazon platform
and searching for laptops filtered by best-selling. All laptops
were divided into four categories: High-End Laptops with
Integrated Graphics, Budget Laptops with Integrated Graph-
ics, High-End Laptops with Dedicated Graphics, and Budget
Laptops with Dedicated Graphics. Example devices for each
category were selected as follows: On the Amazon website,
the keyword ’laptop’ was searched with the sorting order of
best-selling devices. For each category, specific filters were
applied: for budget laptops, the price range was between 200
and 400 dollars; for high-end laptops, the price was between
700 and 1000; with integrated graphics or dedicated graphics
card; AMD processor and graphics card or Intel processor
and NVIDIA graphics card. In total, eight different laptops
were selected. In addition to laptops, four additional sample
desktop computer setups were created, high-end or budget
versions and a combination of AMD processor and graphics
card or Intel processor and NVIDIA graphics card. The most
popular processors and graphics cards of the needed segment
were selected for these combinations. In total, twelve sample
devices were determined, as can be seen in the 8.

Table 8. Category and Example Device Overview

Category Example Device

High-End Integrated (Intel) ASUS Zenbook 14
High-End Integrated (AMD) ASUS Zenbook 14 OLED
Budget Integrated (Intel) HP 14" Ultra Light
Budget Integrated (AMD) Acer Aspire 3

High-End Dedicated (Intel + NVIDIA) Acer Nitro V
High-End Dedicated (AMD + AMD) ASUS TUF Gaming A16

Budget Dedicated GPU (Intel + NVIDIA) HP Victus 15.6" i5 Gaming Laptop
Budget Dedicated GPU (AMD + AMD) HP Victus 15.6" Ryzen 5
High-End Desktop (Intel + NVIDIA) Intel i7-13700K + NVIDIA RTX 4070 Ti
High-End Desktop (AMD + AMD) AMD Ryzen 7 7800X3D + Radeon RX 7900 XT
Budget Desktop (Intel + NVIDIA) Intel i5 + NVIDIA GTX 1650
Budget Desktop (AMD + AMD) AMD Ryzen 5 5600G + Radeon RX 6500 XT

Specification of each sample device can be seen in 9. For each
sample device, its CPU, GPU and RAM capacity is provided.
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Table 9. Device Specifications Overview

Device & Category CPU GPU RAM

High-End Integrated (Intel) Intel Core i5-1240P Intel Iris Xe 16 GB
High-End Integrated (AMD) AMD Ryzen 7 7730U AMD Radeon Vega 8 16 GB
Budget Integrated (Intel) Intel N4120 Intel UHD 600 iGPU 8 GB
Budget Integrated (AMD) AMD Ryzen 3 7320U AMD Radeon 610M iGPU 8 GB
High-End Dedicated (Intel +
NVIDIA)

Intel Core i7-13620H NVIDIA RTX 4050 16 GB

High-End Dedicated (AMD +
AMD)

AMD Ryzen 7 7735HS AMD Radeon RX 7600S 16 GB

Budget Dedicated GPU (Intel +
NVIDIA)

Intel Core i5-12450H NVIDIA GTX 1650 16 GB

Budget Dedicated GPU (AMD +
AMD)

AMD Ryzen 5 7535HS AMD Radeon RX 6550M 16 GB

High-End Desktop (Intel +
NVIDIA)

Intel Core i7-13700K NVIDIA RTX 4070 Ti 32 GB

High-End Desktop (AMD +
AMD)

AMD Ryzen 7 7800X3D AMD Radeon RX 7900 XT 32 GB

Budget Desktop (Intel +
NVIDIA)

Intel Core i5-12400F NVIDIA GTX 1650 16 GB

Budget Desktop (AMD + AMD) AMD Ryzen 5 5600G AMD Radeon RX 6500 XT 16 GB

4.6 Resource Usage of Average Computers
In this subsection, an estimation of the model’s resource usage
of average computers, which was defined in the Market Research
subsection, will be covered. For the estimation of resource usage,
two models will be used: the k-Nearest Neighbors Classifier as the
best non-optimized model and the Random Forest Classifier with
Pre-Pruning and Frame Skipping as the best model with optimiza-
tion techniques usage. Model Resource Usage that was covered in
both Benchmarking and Optimization sub-sections was created by
benchmarking models on the Intel i5 12600KF processor with a base
clock of 3.7Ghz and 10 cores, AMD RX 6900 XT graphics card with
23 TFLOPS, and 32GB of RAM. The processor’s clock speed and
number of cores, TFLOPS of a graphics processor, and capacity of
RAM for each sample computer can be seen in the 10.

Table 10. Device Specifications Overview

Device & Category CPU N of Cores & GHz GPU TFLOPS RAM

High-End Integrated (Intel) 12 cores, 1.7 GHz 1.7 TFLOPS 16 GB
High-End Integrated (AMD) 8 cores, 2.0 GHz 2.0 TFLOPS 16 GB
High-End Dedicated (Intel +
NVIDIA)

10 cores, 2.4 GHz 12.5 TFLOPS 16 GB

High-End Dedicated (AMD +
AMD)

8 cores, 3.2 GHz 21 TFLOPS 16 GB

Budget Dedicated GPU (Intel +
NVIDIA)

8 cores:, 2.0 GHz 3.0 TFLOPS 16 GB

Budget Dedicated GPU (AMD +
AMD)

6 cores, 3.3 GHz 4.5 TFLOPS 16 GB

Budget Integrated (Intel) 4 cores, 1.1 GHz 0.25 TFLOPS 8 GB
Budget Integrated (AMD) 4 cores, 2.4 GHz 0.6 TFLOPS 8 GB
Budget Desktop (Intel +
NVIDIA)

6 cores, 2.5 GHz 3.0 TFLOPS 16 GB

Budget Desktop (AMD + AMD) 6 cores, 3.9 GHz 5.7 TFLOPS 16 GB
High-End Desktop (Intel +
NVIDIA)

16 cores, 3.4 GHz 40 TFLOPS 32 GB

High-End Desktop (AMD +
AMD)

8 cores, 4.2 GHz 61 TFLOPS 32 GB

The following formulas have been used to calculate the adjusted
resource usage for each sample computer.

Adjusted
CPU Usage =

Tested computer
CPU Usage ×

N CoresTested × Clock
SpeedTested

N CoresSample ×
Clock

SpeedSample

Adjusted GPU Usage = Tested computer
GPU Usage × TFLOPS𝑇𝑒𝑠𝑡𝑒𝑑

TFLOPS𝑆𝑎𝑚𝑝𝑙𝑒

Adjusted RAM Usage =
Tested computer RAM Usage

RAM Capacity of Sample computer
× 100

The adjusted resource usage for the sample computers of the k-
Nearest Neighbors model without Frame Skipping is provided in 11.
The resource usage of the Pre-Pruned Random Forest model with
Frame Skipping can be seen in the 12.

Table 11. Adjusted Resource Usage for k-Nearest Neighbors

Device & Category CPU (%) GPU (%) RAM (%)

High-End Integrated (Intel) 6.22 0.68 3.52
High-End Integrated (AMD) 7.93 0.58 3.52

High-End Dedicated (Intel + NVIDIA) 5.29 0.09 3.52
High-End Dedicated (AMD + AMD) 4.96 0.05 3.52

Budget Dedicated GPU (Intel + NVIDIA) 7.93 0.38 3.52
Budget Dedicated GPU (AMD + AMD) 6.41 0.26 3.52

Budget Integrated (Intel) 28.84 4.60 7.04
Budget Integrated (AMD) 13.22 1.92 7.04

Budget Desktop (Intel + NVIDIA) 8.46 0.38 3.52
Budget Desktop (AMD + AMD) 5.42 0.20 3.52

High-End Desktop (Intel + NVIDIA) 2.33 0.03 1.76
High-End Desktop (AMD + AMD) 3.78 0.02 1.76

Table 12. Adjusted Resource Usage for Pre-Pruned Random Forest with
Frame Skipping

Device & Category CPU (%) GPU (%) RAM (%)

High-End Integrated (Intel) 1.61 0.68 3.52
High-End Integrated (AMD) 2.06 0.58 3.52

High-End Dedicated (Intel + NVIDIA) 1.37 0.09 3.52
High-End Dedicated (AMD + AMD) 1.29 0.05 3.52

Budget Dedicated GPU (Intel + NVIDIA) 2.06 0.38 3.52
Budget Dedicated GPU (AMD + AMD) 1.66 0.26 3.52

Budget Integrated (Intel) 7.48 4.60 7.04
Budget Integrated (AMD) 3.43 1.92 7.04

Budget Desktop (Intel + NVIDIA) 2.20 0.38 3.52
Budget Desktop (AMD + AMD) 1.41 0.20 3.52

High-End Desktop (Intel + NVIDIA) 0.61 0.03 1.76
High-End Desktop (AMD + AMD) 0.98 0.02 1.76

As shown in the 11, processor usage of the model is high for some
of the setups, especially for the Intel-based setup with Integrated
Graphics. In this setup, the model is estimated to take 28.84% of the
processor power, which is almost 1/3 of all processing power and
cannot be dedicated to the background-run application. Moreover,
only five models use less than 6% of the overall processing power.
As for GPU usage, the metrics show much better results, with the
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model’s expected GPU use being higher than 1% only in 2 sample
computers, both with the type of Budget Laptop with Integrated
Graphics. Such a tendency also can be seen in the model’s expected
RAM usage. RAM usage is expected to be higher than 4% only in
the two aforementioned sample computers.

Moving on to the Pre-Pruned Random Forest model with Frame
Skipping, it has shown much better results in usability because of
the initial less use of resources on the testing computer. The only
expected CPU computational power usage that is higher than 6% is
at an Intel-based setup with Integrated Graphics with an expected
usage of 7.48%. All of the remaining sample computers’ expected
usages average 1.7%, which is appropriate for the background ap-
plication. In addition, High-End Desktops’ expected computational
power usage is even less than 1%. As for expected GPU usage, it is
mainly less than 1% with a mean of 0.77%. The only sample com-
puters that have expected GPU usage of more than 1% are Budget
Laptops with Integrated Graphics, which the low computational
capabilities of the integrated graphics in budget computers can ex-
plain. Concerning RAM, expected usage remained the same as for
the K-Nearest Neighbors model, as the RAM needed for both models
is almost the same.

5 Conclusion
After model creation, benchmarking, and projecting the process-
ing power used on the sample average computers, it is possible to
evaluate the feasibility of using gesture recognition models for com-
puter control on the average consumer-grade computer. The first
finding is that usage of the MediaPipe Hands significantly improves
the accuracy of models, from 28% without MediaPipe Hands usage
to the accuracy level of 99.44% for the most accurate model, the
Histogram-based Gradient Boosting model. Hence, the usage of the
MediaPipe Hands is recommended for the creation of such algo-
rithms. Moving onto resource usage of the models, as can be seen
from the projection of the initial models on the sample consumer-
grade computers, even the best model without optimization can take
up a lot of resources of budget desktop computers and all laptops.
Therefore, the use of optimization techniques like frame skipping
makes it possible to reduce the computational requirements of the
models and make them better suited for real-time use. In addition,
pre-pruning of the models can be done to reduce the models’ size
but with a trade-off in accuracy. Pre-pruning can be helpful in cases
where the prediction model size should be as tiny as possible, for
example, for edge computing environments. After the application of
the aforementioned optimization techniques to the models, the com-
putational power needed for the gesture recognition models can be
considered feasible for real-time usage on the majority of consumer-
grade computers, except the budget laptop versions, which do not
have powerful enough processors and graphics to support seamless
usage fo the gesture-recognition models without influence on users’
computer usability.

6 Future Work

6.1 Optimization Techniques
More optimization techniques and their influence on models’ re-
source usage, accuracy, and size can be investigated to improve

performance and feasibility further. Especially further investigation
of optimization techniques that can reduce gesture recognition mod-
els’ RAM usage is recommended, as even already optimized models
use 3.81% of RAM on average, which is the worst performance
metric of the optimized models.

6.2 Model-Only Graphics Card Benchmarking
Due to limitations, the usage of graphics card resources used solely
by the models was impossible to test. Even though the benchmark-
ing was aimed to ensure that graphics card resources were used
only by the model during benchmarking, some unintended use of
graphics card resources was possible. Model-only graphics card
usage benchmarking will provide a clearer understanding of the
models’ GPU usage and may demonstrate feasible usage even on
the sample computers that are currently considered unfeasible.

6.3 Energy Consumption Analysis
The research did not cover energy consumption analysis, which can
provide insights into the influence of the gesture recognitionmodels’
usage on laptop battery life. Significant battery consumption on
laptops can determine gesture recognition models as unfeasible for
usage on laptops.

6.4 Benchmarking On Different Systems
Benchmarking gesture-recognition models on computers with dif-
ferent levels of hardware, from low- to high-end hardware, instead
of the resource usage projection based on the hardware capabilities,
can provide a more comprehensive understanding of the feasibility
of gesture-recognition models’ usage on different hardware.

6.5 User-Centered Testing
User-centred testing of gesture-recognition models and usage of
gestures as a way of human-computer interaction can provide in-
sights into the possibility of the potential adoption of hand gestures
as a new, commonly used way of human-computer interactions.
Moreover, such studies can show which maximum prediction time
is acceptable for users without causing discomfort.

6.6 Machine Learning Algorithms
Testing of additional machine learning algorithms can provide data
about more suited machine learning algorithms for gesture recogni-
tion tasks. In addition, such testing can identify more balanced and
optimized algorithms that will require less computational power of
the computer and increase the number of hardware that can run
gesture recognition models in the background without influencing
users’ computer usability.
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