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This study explores the Team Formation Problem (TFP) in an
educational case study that aims to create project teams balancing
cognitive diversity and student preferences—a computationally
complex task due to its NP-hard nature. The research investigates
three nature-inspired metaheuristics: an enhanced mono-objective
Genetic Algorithm (GA), a multi-objective Non-dominated Sortig
Genetic Algorithm (NSGA-II), and a discrete Particle Swarm Op-
timization (PSO) approach adapted to the TFP. All algorithms
are modified to strictly enforce domain-specific constraints and
are evaluated on real and reduced datasets representing up to 278
students. Results show that PSO consistently outperforms both ge-
netic algorithms in terms of solution quality, although at a higher
computational cost. Meanwhile, NSGA-II retains its advantage
of offering a diverse set of trade-offs via Pareto-optimal fronts,
making it especially suitable for scenarios requiring flexible or
value-driven decision-making. The study contributes open-source
tools and empirical benchmarks to support reproducible research
in team optimization and algorithmic approaches to educational
design.
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1 INTRODUCTION

Team-based learning (TBL) has become a widely adopted
instructional strategy in higher education due to its proven
impact on deep learning, critical thinking, and student engage-
ment [41, 43]. However, decades of research on working groups
remind us that simply grouping students is not sufficient to
guarantee such benefits [17, 39]. Instead, the success of TBL
depends on the careful formation of effective teams: those
capable of performing assigned tasks, maintaining member
satisfaction, and remaining viable for future collaboration
[18, 30].
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Traditional team formation strategies in education, such
as random assignment, instructor-based matching, or self-
selection, often fail to account for important task and social
dynamics, which largely shape team effectiveness [37]. Team ef-
fectiveness models, such as the classical Input-Process-Output
(IPO) and Input-Mediator-Output-Input (IMOI) frameworks
highlight the critical role of input factors in the team forma-
tion stage, with particular emphasis on task relevance and
interpersonal diversity [25]. Guided by this theory and evi-
dence that cognitive variety often outperforms raw ability in
complex problems [23], this paper focuses on two attributes
instructors can measure before teams start work:

(1) Project-preference alignment, which consists of assign-
ing students to projects they genuinely want to tackle.
Project-preference alignment increases intrinsic motiva-
tion, and curbs social loafing (8, 20, 47].

(2) Cognitive diversity, which in the context of this study
consists of balancing complementary cognitive styles
captured via Belbin roles [2]. Cognitive diversity broad-
ens the idea pool and buffers teams against impasses
[5].

The challenge of optimizing team formation around these
multifaceted objectives is known in operations research lit-
erature as Team Formation Problem (TFP) [28]. Although
ideally instructors could create optimal teams based on their
pedagogical criteria, the reality is that this problem often
becomes computationally infeasible (also known as an NP-
hard problem) [33], as the number of team members and
teams to be formed grows, increasing the number of possible
combinations of team members exponentially and gradually
resembling the setup of the Knapsack problem [42].

As a consequence, researchers have increasingly turned to
heuristics and metaheuristics as data-oriented approaches de-
signed to guarantee a (nearly) optimal formation of teams. A
recent systematic literature review found that approximately
60% of the reviewed studies implemented genetic algorithms
(GA), with particle swarm optimization (PSO) a distant but
growing alternative [34]. However, two key limitations in ex-
isting research motivate this study:

(1) Most studies use generic metaheuristic operators (e.g.,
standard crossover and mutation) without incorporat-
ing domain-specific constraints or knowledge (such as
ensuring team feasibility or maximizing cognitive diver-
sity).

(2) Comparative studies between mono- and multi-objective
algorithms remain scarce, especially in the context of
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educational TFPs with dual objectives (preference sat-
isfaction and diversity).

This study aims to compare a constraint-compliant GA
with a discrete PSO for the formation of project teams that
jointly maximize project preference satisfaction and cogni-
tive diversity in a cohort of 400 first-year computer-science
students. Furthermore, it compares these mono-objective al-
gorithms with a multi-objective NSGA-II implementation.
These algorithms will first be tested in test environments in
small-scale reduced datasets and then applied to large-scale
datasets with real anonymized data from the case study dis-
cussed. In doing so, this paper addresses the following research
questions:

Research Question 1: Which metaheuristic, GA or PSO,
produces higher-quality teams (in terms of our dual effec-
tiveness objective) within practical runtime limits?
Research Question 2: What type of metaheuristics, mono-
objective or multi-objective, produce higher-quality teams,
and what is the diversity-runtime tradeoff for these?
Research Question 3: How do the findings of RQ 1 and 2
affect TBL in higher education, and how can the findings
of this research be applied to similar TFPs?

In this paper, section 2 discusses relevant work in the re-
search and formulation of the TFP and past metaheuristic
implementations as attempts to solve it, section 3 formulates
a methodology for the implementation and evaluation of the
algorithms with respect to the datasets used, section 4 visu-
alizes the experiments, section 5 contrasts the experiments’
results with those of existing research, and discusses its appli-
cations to general educational contexts, section 6 concludes
the findings of the conducted research, and section 7 illustrates
valuable directions for future research.

2 BACKGROUND
2.1 The Team Formation Problem

A 2021 systematic literature review on TFPs [28] defines a
taxonomy of the TFP, categorizing it into two classes, each
with three subclasses, based on a comprehensive but non-
exhaustive review of more than 100 articles. In summary, it
defines assignment-based models as models that form teams
by directly matching candidates to roles or groups based on
suitability scores, costs, or interpersonal preferences typically
focusing on structured optimization. Juarez et al. then define
community-based models as models that select teams from
social networks by optimizing skill coverage and collaboration
strength, emphasizing candidate interactions and connectivity.
The given case study falls into this specific subclass, mak-
ing it a suitable candidate for exploratory research in this
field. Moreover, the review discusses various approximation
methods to (nearly) solve the TFP, focusing on heuristics,
approximation algorithms, and metaheuristics.
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2.2 Selected Attributes

As mentioned in the introduction of this paper, two attributes
were selected to assess the suitability of candidate team for-
mations. These were decided firstly based on data availability
(as the data was collected prior to this research), and secondly
based on the suitability of either attribute for measuring the
suitability of team formations, as elaborated below.

2.2.1 Attribute 1: Satisfaction with the selected project and
relevance in educational contexts. Previous research on TBL in
higher education shows that student autonomy, particularly
in task or project selection, enhances achievement motivation
[8], which, in turn, has been shown to reduce social loafing
and disengagement in group work [47]. When students feel
ownership over the task, they are more likely to contribute
actively and consistently. For this reason, satisfaction with
project assignment was selected as a key attribute to evaluate
team suitability in this study, based on the alignment between
final team allocations and each student’s ranked top five
project preferences.

2.2.2 Attribute 2: Belbin roles and relevance in educational
contexts. Cognitive diversity, as modeled by Belbin’s team
roles, has been shown to improve team performance and
collaboration quality. Aranzabal et al. [2] found that teams
balanced in Belbin roles in a project-based course performed
better academically and reported more effective communica-
tion and coordination. Similarly, Borges, et al. [5] developed
a group formation method that integrates Belbin roles with
project preferences and skills, resulting in teams that stu-
dents perceived as more balanced and fair. For this reason,
Belbin role diversity was selected as a key attribute in this
study, using precollected role assessments to support cognitive
complementarity during team formation.

2.3 Metaheuristics

Blum and Roli [4] define metaheuristics as “high-level general-
purpose strategies of stochastic search and optimization”,
meaning they are flexible, problem-agnostic methods that
use randomness to efficiently explore complex solution spaces
without guaranteeing optimality. Despite not guaranteeing
optimality, their article found that these strategies proved
useful in complex problems because of the way they sample
the solution space with efficiency. Notably, the article found
that GA and simulated annealing (SA) showed a higher use
rate than other metaheuristic strategies, as did Maqtary, et
al. [34]. However, the article emphasizes that this may be
because these strategies are generally more used, also outside
of the TFP.

2.3.1 Genetic Algorithms. The simple genetic algorithm, SGA,
a subset of evolutionary algorithms, EAs, was first conceptu-
alized by J.H. Holland in 1975 [22]. It can be explained as an
iterative optimization process inspired by natural selection.
The general workflow of a genetic algorithm is illustrated
in Figure 3 (Appendix A.1), which shows the key steps in a
typical SGA cycle [24]. The algorithm begins by generating an
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initial population of encoded solutions (in the context of the
TFP, possible team arrangements) called chromosomes, eval-
uates them through a fitness function, and then creates new
generations through repeated cycles of selection, crossover,
and mutation. This process is looped until a stopping crite-
rion is met (a satisfactory standard), at which point the best
solution found according to the relevant objective function is
returned.

2.3.2 Particle Swarm Optimization. The Particle Swarm Op-
timization (PSO) algorithm was first introduced by Kennedy
and Eberhart in 1995 [13, 29]. Inspired by the social behavior
of bird flocking and fish schooling, PSO uses the collective
intelligence of particles (candidate solutions) to explore the
solution space collaboratively.

The general workflow of PSO is illustrated in Figure 4
(Appendix A.2). It begins by initializing a swarm of particles,
each representing a candidate solution (like a GA). Each
particle has a position (solution representation) and velocity
(rate of change), both of which are iteratively updated. The
algorithm evaluates the quality of each particle based on
a defined fitness function. Each particle keeps track of its
personal best position, and the swarm tracks the global best
position found among all particles.

During each iteration, particles update their velocities and
positions guided by both their individual experience and the
swarm’s collective experience. This collaborative movement
allows the particles to progressively converge towards optimal
or near-optimal solutions. The iterative process continues
until a predefined stopping criterion is met, such as reaching
a satisfactory solution quality or a maximum number of iter-
ations. At this point, the algorithm returns the best solution
identified during the optimization process.

2.3.3 Non-dominated Sorting Genetic Algorithm Il. The Non-
dominated Sorting Genetic Algorithm II (NSGA-II) is an
evolutionary algorithm designed to solve multi-objective opti-
mization problems, first introduced by Deb et al. in 2000 [12].
Although it shares the foundational structure of standard
GAs (selection, crossover, and mutation), NSGA-II differs in
how it handles selection to preserve a diverse and high-quality
set of solutions across multiple objectives.

As illustrated in Figure 5 (Appendix A.3), NSGA-II works
by combining the parent population P; with the offspring pop-
ulation @ to form an intermediate population R;. This com-
bined population is then sorted into different non-dominated
fronts F1, Fy, ... based on Pareto dominance. The algorithm
progressively fills the next generation P;; using these fronts
until the population limit is reached. When a front does not
fully fit, its members are ranked by a crowding distance mea-
sure to ensure that the most diverse solutions (those farthest
from others in objective space) are retained, while the rest are
rejected. This combination of dominance ranking and preser-
vation of diversity allows NSGA-II to converge toward the
true (best) Pareto front while maintaining a well-distributed
solution set [12]. That means that unlike single-objective GAs,
NSGA-II outputs a series of dominating chromosomes with

trade-offs (i.e., an increase in one objective in exchange for a
decrease in the other).

2.4 Research Gaps and Subsequent Research Aim

In its discussion of various experiments that implemented
(variations of) evolutionary algorithms, Judrez et al’s 2021
literature review [28] identifies a research gap in the imple-
mentation of genetic algorithms aiming to solve the TFP in
various contexts, primarily in sports and education. That
is, most works have not explored GAs further than basic
implementations that use simple crossovers such as Simu-
lated Binary Crossover (SBX), n-point crossover, and uniform
crossover. This restricts the problem-specific adaptability,
as simple crossovers will often ignore problem-specific con-
straints, greatly reducing the applicability of the implemen-
tations when considering the diversity of TFPs. Therefore,
there may be value in investigating and evaluating the imple-
mentation of more complex genetic algorithms.

For example, Nand and Sharma [35] performed a compar-
ison of the Firefly Algorithm (FA), PSO (Particle Swarm
Optimization) and IWO (Invasive Weed Optimization), intro-
ducing a GA implementation later in its study, but without
a specification on the implementation of crossover functions
of the algorithm itself. Similarly, Chen et al. [7] propose a
genetic algorithm integrated with social network analysis to
form heterogeneous student groups based on grade, gender,
and sociometric status, but it also omits any formal descrip-
tion or categorization of the crossover operator used, instead
relying on mutation and selection as primary evolutionary
drivers.

An exception to this is the Enhanced Genetic Algorithm
(EGA) proposed by Hwang et al. [24], which employs a multi-
point crossover operator specifically designed to ensure that
the difference in the number of students in any two groups
does not exceed one. However, the authors acknowledge a
key limitation: one of their defined constraints (i.e., each
group must include at least one student who understands
each required concept) is not strictly enforced. Instead, solu-
tions violating this constraint are allowed during chromosome
generation and are only penalized in the fitness function. As
such, this implementation does not fully resolve the constraint
satisfaction challenge, leaving room for improvement in their
EGA implementation.

Another exception is the deterministic crowding evolution-
ary algorithm (DCEA) proposed by Yannibelli and Amandi
[46], which employs a permutation-based representation and
order crossover to form well-balanced teams according to the
Belbin role model. Although this approach effectively ensures
team size balance and role distribution within groups, it is
limited by its narrow focus on a single fixed grouping cri-
terion (i.e., role balance) without supporting multiobjective
or constraint-flexible extensions. The algorithm does not al-
low instructors to specify alternative or additional criteria
(e.g., academic performance, prior collaboration, or learning
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styles), which are often critical in real-world educational set-
tings. Therefore, despite its robust optimization mechanics,
the lack of generalizability and customization means this line
of research still leaves open opportunities for developing more
adaptable, multi-criteria team formation algorithms.

Lastly, the crossover method used in the genetic algorithm
described in Chen at al’s research [6] is a custom form of
team-wise random sampling, not a standard crossover method
such as single-point, n-point, uniform, or SBX. However, the
applicability of this research is limited, as it is executed on
a small (publicly unavailable) sample and it is not tested
or benchmarked against other algorithms. This problem is
also common to many PSO implementations [14, 19, 21, 35,
48]. Moreover, some of these PSO implementations also lack
complex constraint-compliant functions for velocity, with more
complex implementations still lacking applicability to TFPs
with global constraints.

As shown by these previous examples, valuable attempts
have been made to produce complex implementations of the
genetic algorithm, but shortcomings present either in the
logic of the algorithms themselves, or the connection between
the algorithms and the contexts in which they were tested
allow space for improvement in the field. One variation of the
genetic algorithm that has been used to solve multi-objective
extensions of assignment-based kindred TFPs (which the
selected case study falls under) and community-based with
weighted-skills TFPs, as identified by Judrez et al. [28], is
the Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[12]. Some studies have implemented the NSGA-II for solving
various multi-objective TFPs, with various levels of success,
but fail to present a meaningful benchmark or comparison
with other genetic algorithms, or often other metaheuristics at
all, instead illustrating comparisons of the NSGA-II against
non-evolutionary algorithms like WSM or TOPSIS, or even
randomly or self-selected team arrangements [1, 15, 27, 36, 44].
Therefore, due to its adequacy for TFPs that fall under the
assignment-based kindred subclass, and the complexity of
its crossover function, this algorithm will be studied in this
paper.

2.5 Problem Definition

To understand how the selected case study falls under the
subclass of multi-objective assignment-based kindred TFPs,
the case study and its constraints must be formally defined.

The Data & Information Course at the University of Twente
typically contains about 400 students, where instructors must
divide these students into teams of 5-6 students for the course’s
project component. The restrictions of this TFP are listed
below.

Team restrictions:

(1) Each team must be made up of exactly 5-6 students.

(2) Each team must be made up of no more than 4 TCS
students, with the remaining students coming from
other study programs.
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(3) No more than 3 students may have the same native
language, except Dutch.

Domain restrictions:

(1) Each student must be in exactly one team.
(2) The maximum number of teams per project is given by
the formula below.

L. Ideal number of teams
Upper Limit =

Number of projects
The mathematical model for this case study can be found
in a publication by Barrios-Fleitas et al. (unpublished) [3].

3 IMPLEMENTATION

Firstly, the original data set was cleaned and reduced data
sets were derived for early standardized testing, creating
a benchmark to guide the early steps of implementation.
More details on the process and mathematical computations
involved in these steps can be found in Appendix B.

3.1 Genetic Algorithm

The early implementation of a genetic algorithm was inspired
by the SGA presented by J.H. Holland (Figure 3). Python
was chosen as the primary language for this implementation
due to its extensive libraries for data handling and analysis.
The pseudocode found in Appendix C.1 was developed for
the planning of this implementation.

To aid the implementation, the following utilities were
developed:

e a function to evaluate the fitness score of a team ar-
rangement,

e a function to check whether a team arrangement is valid,
according to the restrictions of the given case,

e an exhaustive solver that evaluates all possible arrange-
ments, returning the best possible arrangement (feasible
for testing in small datasets).

These utilities, as well as all code and relevant files in
this paper can be found in a public GitHub repository with
documentation [16]. After developing these key utilities, the
basic algorithm and its main functions (crossover algorithm,
mutation algorithm) were developed. This basic algorithm was
first tested on small reduced datasets, where the performance
of the algorithm could easily be weighed against the best
possible solution computed by the exhaustive solver.

3.1.1 Initial Population Generation. The initial population
generation of a GA is integral to both the quality of its
solutions and its convergence speed [26]. For example, if the
chromosomes generated in the initial population were to lack
diversity, even robust crossover and mutation functions may
fail to avoid overfitting its later chromosomes to a small subset
of the full solution space [40]. The algorithm developed for
initial population generation ensures both diversity through
random assignment, as well as the validity of the generated
team assignments by validating them against the restriction
checker.
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3.1.2 Fitness Function. The fitness function of a GA will fully
determine the characteristics of the chromosomes selected and
returned by the algorithm. For this case study, a linear fitness
function was implemented that equally valued project pref-
erence alignment and cognitive diversity by assigning either
of them equal weights. The formula of the fitness function is
given below.

Arrangement Score = 0.5-PS 0.5-CD

where:

e PS = Project Satisfaction (normalized, 0 to 1 based on
ordinal scale)

e CD = Cognitive Diversity (normalized, 0 to 1 using
Blau Index)

Project-preference Alignment. In this fitness function, project
satisfaction (project-preference alignment) is coded based on
a list of preferences submitted by each individual student,
where an assignment of the student’s first-choice project will
yield a score of 1, down to 0.8, 0.6, 0.4, and 0.2 where the
student was assigned their fifth preferred choice. If a student
is assigned a project that was not on their project preference
list at all, this will yield a score of 0. For assessing the ade-
quacy of any team in an arrangement, the mean value of all
the team members’ project-preference alignment is computed.

Cognitive Diversity. Diversity in Belbin Roles (cognitive
diversity) represents a perfectly cognitively diverse team with
a score of 1, and a team without cognitive diversity (e.g., a
team made up of only six shapers) with a score of 0. The
cognitive diversity value is assigned based on the Blau index
[10], particularly the adjusted (normalized) formula given
below.

Blau Index,qj = % (1 — :1 p?)

For assessing an arrangement of teams, the mean fitness
score of all the teams in the arrangement is computed, yielding
a normalized value from 0 to 1.

3.1.3 Crossover and Mutation. What differentiates the ge-
netic algorithm implemented in this research from a standard
genetic algorithm is its crossover function. Unlike many GA
implementations in TFP optimization research, the crossover
function considers the entire solution space as a parameter,
ensuring that both local restrictions of the TFP (e.g., num-
ber of nationalities in a team), and global restrictions (e.g.,
number of teams per project) are respected.

This is achieved by evaluating candidate offspring not only
in terms of their individual team compositions but also in
how they contribute to the overall feasibility of the full team
arrangement. The crossover process begins by randomly se-
lecting a subset of teams from one parent and ensuring no
student duplication by filtering additional teams from the sec-
ond parent. To preserve global feasibility, particularly project
assignment balance, the function computes and respects a
dynamically derived maximum number of teams per project.

Furthermore, the crossover function proactively fills any
remaining student slots by invoking a team-generation rou-
tine that explicitly maintains compliance with global project
limits and team-level constraints. If a feasible child cannot
be produced within a fixed number of crossover attempts,
the function defaults to generating a new valid solution from
scratch, thereby ensuring continuity of the evolutionary pro-
cess without stagnation.

The mutation function introduces variation into the popu-
lation by swapping students between two randomly selected
teams. This operation preserves most of the existing structure
while potentially improving diversity. After each mutation,
the function validates the modified arrangement against all
defined constraints (e.g., student uniqueness, project quotas,
team feasibility). If a valid solution is found, it is returned
immediately. Otherwise, the process retries up to a fixed
number of attempts before falling back to generating a new
random valid arrangement. This ensures robustness by bal-
ancing exploration with feasibility preservation in the search
space. With the early implementation of the GA complete,
testing was conducted on a dataset of 15 students by setting
the algorithm to run until maximum efficiency was reached
(the optimal arrangement was output). This allowed for the
identification of flaws in the algorithm presented. Details on
the early testing and enhancement process can be found in
Appendix D.

3.2 Particle Swarm Optimization

The PSO algorithm implemented in this study was based on
the structure presented in Figure 4. Like the other 2 algo-
rithms, it was implemented in Python. The implementation
was guided by the pseudocode developed and found in Ap-
pendix C.2. As PSO is also a mono-objective algorithm, the
utility functions developed for the GA were reused for this
PSO implementation.

3.2.1 Particle Encoding and Initialization. Each particle in the
swarm encodes a full solution (i.e., a complete assignment of
students to teams and projects), but unlike the chromosomes
generated in the GAs, stores additional information elabo-
rated in the following subsections. Initial arrangements are
generated randomly using the same random team-generation
algorithm used in the GA’s population initialization step
that ensures that the initial population is composed of valid
particles.

3.2.2 Velocity and Position Updates. In classical PSO, veloc-
ity is a vector in continuous space (e.g., a map of the real
world). However, in this discrete implementation, velocity
is interpreted as a list of swap operations (or other trans-
formations) that will be applied to a particle to generate a
new candidate solution, as team arrangements cannot be ex-
pressed continuously, but rather through references (discrete).
Each particle updates its position using a composite of three
components:
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e Inertia: preserves part of the previous velocity (i.e.,
previously successful swap operations),

e Cognitive component: encourages a return toward the
particle’s own best-known arrangement,

e Social component: pulls the particle toward the best-
known global solution.

Inside of the PSO loop, a velocity and position recongifura-
tion attempts to conduct swaps between students in two teams
with a series of hyperparameters that control the behavior of
the function:

e w: determines the probability of the new velocity vector
adopting each of the values (swaps) of the previous
velocity vector,

e c;: determines the probability of the new velocity vector
adopting a swap that brings it closer to the particle’s
best-scoring arrangement,

e c2: determines the probability of the new velocity vector
adopting a swap that brings it closer to the global best-
scoring arrangement.

3.2.3 Constraint Compliance. Because transformations (i.e.,
student swaps) can result in invalid arrangements, each update
cycle includes a validation check. If a transformation leads to
an infeasible state, the algorithm either:

e Attempts other swaps (within a fixed retry limit), or
e Resets the particle to a new valid random solution.

This mechanism prevents premature convergence and en-
sures the search remains within the feasible region.

3.3 Non-dominated Sorting Genetic Algorithm II.

The Non-dominated Sorting Genetic Algorithm IT (NSGA-II)
is, unlike standard GAs, a multi-objective EA. This means
that it is designed to simultaneously optimize various objec-
tives (i.e., project-preference alignment and cognitive diver-
sity) without requiring a manually weighted fitness function
to do so. Like the earlier described GA, a NSGA-II that can
tackle the specific TFP of this research was developed using
Python. The pseudocode found in C.3, adapted from the orig-
inal NSGA-II algorithm [12], was developed for the planning
of this implementation.

3.3.1 Reusability. Since despite its multi-objective nature the
NSGA-IT is also a GA, several utils and functions from the GA
implementation are reused, namely the restriction checker (as
the same restrictions still apply), the fitness functions (as the
functions are the same, but computed separately), and the
crossover and mutation functions, as they are still a crucial
component of NSGA-II, as shown in Figure 5. Moreover,
the (reduced) datasets used for developing and testing the
developed GA are maintained for the purpose of testability.

3.3.2 Chromosome Representation and Objective Evaluation.
As previously mentioned, each chromosome generated by the
NSGA-II still represents a complete valid team arrangement,
meeting the same restrictions the developed GA meets as
detailed in Section 2.5. Moreover, the same fitness functions
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for project-preference alignment and cognitive diversity ex-
plained in section 3.1.2 are used. However, since this algorithm
is multi-objective, it ranks the chromosomes it generates via a
function referred to as Pareto dominance, a form of comparing
any two individuals in its population.

3.3.3 Fast Non-Dominated Sorting. The principle of Pareto
dominance, and the basic implementation that this article
derives thereof, is that any one individual (chromosome) in a
population is said to Pareto dominate another if it is at least
as good in all objectives, and strictly better in at least one
[11]. In this implementation of fast non-dominated sorting,
individuals that are non-dominated are assigned to Pareto
fronts, a set of all the solutions that each generation of the
algorithm generates. In terms of the code implementation,
this means that for any chromosome that is output in each
front, there exists no chromosome with the same or higher
fitness score for one of the two objectives that also holds
a higher fitness score in the second. In the GA loop of the
implementation, the first front represents that with the best
trade-offs and is prioritized in the selection function.

3.3.4 Crowding Distance and Diversity Preservation. The de-
veloped NSGA-II implementation uses crowding distance as
a secondary selection criterion to maintain diversity among
solutions. This metric approximates how isolated a solution
is within the set of non-dominated solutions by comparing
its objective values to those of its neighbors. Boundary solu-
tions (those with the best or worst value in either objective)
are assigned an infinite distance to ensure they are always
preserved. The remaining solutions are given a score based
on how far apart they are from others in normalized objec-
tive space. By favoring chromosomes with higher crowding
distances, the algorithm avoids premature convergence and
encourages exploration of a wide range of trade-offs.

3.4 Parameter Setting

The parameter setting process for tunable parameters in the
developed GAs and PSO replicated the methodology of other
EA implementations for tackling similar NP-hard problems
[31, 32]. A detailed overview of the parameter setting process
can be found in Appendix F.

4 EXPERIMENTS

4.1 Mono-objective Benchmarking Against Optimal
Solutions (Small-scale)

Using the developed exhaustive solver and 3 reduced datasets
of 15 students (Appendix B), the performance of both mono-
objective algorithms was benchmarked against the optimal
solution computed by the solver (the global maximum of the
solution space). The performance of these algorithms with
respect to these thresholds can be found in Figures 6, 7 and 8
in Appendix G.
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4.2 Performance on Large-scale Datasets Against a
Baseline

To assess the effectiveness of the evolutionary functions of the
algorithms developed, the performance of the mono-objective
algorithms was tested against a selective stochastic algorithm
that replicates the selection and generation behavior of a
Genetic Algorithm on randomly generated but restriction-
abiding arrangements. The results of this comparison across
differently sized datasets are visualized in Figures 9, 10 and 11
in Appendix G.

4.3 Mono-objective vs. Multi-objective: EGA and PSO vs.
NSGA-II

To present a valuable benchmark between mono- and multi-
objective EAs, the Pareto fronts generated by the NSGA-II
implementation were visualized, highlighting the best single
best solution generated by the GA and PSO expressed in terms
of both of the objectives present in its objective functions.
The average results of 30 runs across differently sized datasets
are visualized in Figures 12, 13 and 14 in Appendix G.

4.4 Applicability to Real-World Scenario

To both visually and statistically verify the applicability to
traditional team formation processes (i.e. self-selection or
random assignment) in real-world applications, figures 1 and 2
illustrate the mean performance of 100 generations/iterations
of both mono- and multi-objective algorithms against the
self-selected team assignment formed for the original Data &
Information project with 278 students.

GA and PSO vs. Benchmarks on Original Dataset

— cA
PSO

—--- self-Selected

-+ Random Arrangement

[ 20 40 60 80 100
Generation/lteration

Fig. 1. Performance of GA and PSO against random arrangement and
original selection in real-world case.

Moreover, Wilcoxon signed-rank tests [45] were used to sta-
tistically compare the final generation fitness scores produced
by the GA and PSO algorithms against the fitness score of the
self-selected assignment, as well as their performance against
each other, as shown in Figures 15 and 16

NSGA-Il vs GA/PSO vs Benchmarks on Original Dataset
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Fig. 2. Performance of the GA, PSO and NSGA-II against random
arrangement and original selection in real-world case.

4.5 Efficiency and Computational Cost Analysis

To understand the technical feasibility of the development
algorithms and their practicality in classroom contexts, the al-
gorithms developed were assessed for statistics on algorithmic
efficiency and time complexity. An overview and elabora-
tion of these can be found in Tables 12, 13 and 14 inside of
Appendix G.

5 DISCUSSION

Figures 6 to 8 demonstrate that the PSO and GA developed
exhibit stable improvement across runs, further supported by
early testing (Appendix D), where most tests converged to
the optimum within 200 iterations, often under 100. Figures 9
to 11 evidence the algorithms’ success in outperforming a
selective stochastic baseline while fully respecting both local
(e.g., CS student caps) and global (e.g., project team limits)
constraints. This addresses the call by Juarez et al. [28] for
problem-specific constraint handling, and builds on Hwang et
al’s work on constraint-focused GAs [24], improving feasibility
without relying on penalization. Although the opposite was
true in testing datasets, the PSO appears to outperform the
GA in all experiments, likely due to its more rigorous discrete
velocity function, relying less on stochasticity than the GA
does.

Figures 12 to 14 visually compare the mono-objective algo-
rithms with the multi-objective NSGA-II. The Pareto fronts
produced by NSGA-II consistently align with or dominate the
GA’s best result, indicating comparable optimality. Neverthe-
less, PSO seems to notably dominate its fronts in the same
number of generations/iterations. However, unlike the GA
and PSO’s single weighted output, NSGA-ITI offers a spectrum
of trade-offs, which is particularly valuable in social science
contexts. Notably, the diversity offered by NSGA-II does not
appear to come at the cost of excessive computational com-
plexity, unlike the visible performance-computation trade-off
for PSO seen in 13. This contrasts findings in other evolution-
ary algorithms [46]. The literature reveals a technical-social
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divide: while algorithmic research often overlooks practicality,
social science lacks tools for constrained optimization. This
work suggests that hybrid, constraint-conscious algorithms
may bridge that gap.

Tables 12 , 13 and 14 further reveal that NSGA-IT converges
faster than the enhanced GA, despite producing a wider
solution space. The high standard deviation in the mean of
some of its computations per run suggests that this faster
conversion may happen due to overly early conversion to
local optimums in some runs. Although the observed drop
in evaluations for larger datasets complicates conclusions
about complexity, it may stem from improved constraint
compliance. Empirical runtime trends suggest linear growth
relative to dataset size for both genetic algorithms, while
PSO’s complexity trends toward O (n2), though this appears
manageable in practice, supporting scalability.

Finally, the experiment design provides rare reproducibility
in TFP optimization research, addressing issues of benchmark-
ing and comparability noted in prior work [6]. The open-source
tools, (reduced) datasets, and benchmark subsets developed
in this study form a foundation for accessible and replicable
research, and are already being used to support metaheuristic
evaluation in related projects [16].

6 CONCLUSIONS

This research evaluated the effectiveness of two types of Ge-
netic Algorithms, an enhanced mono-objective GA and a
multi-objective NSGA-II, and a discretized Particle Swarm
Optimization implementation for solving the Team Formation
Problem with a focus on balancing member satisfaction and
cognitive diversity. Results showed that all approaches are
capable of generating high-quality team arrangements that
lie close or ahead of the Pareto front, with neither genetic
algorithm consistently outperforming the other in terms of ob-
jective trade-off. PSO largely outperformed the GA in larger
datasets, although its computational rigour may be seen as
a limitation. On the other hand, NSGA-II offers the added
benefit of flexibility by producing a set of diverse trade-offs,
enabling decision-makers to select solutions based on context-
specific priorities rather than relying on fixed weightings.

In terms of practical efficiency, both genetic algorithms
demonstrated acceptable performance within runtime con-
straints, with NSGA-II often converging faster despite gen-
erating a broader solution space. The practical efficiency of
PSO should be sufficient for smaller classroom settings, but
could be a drawback in larger-scale applications with a need
for more dynamic decision-making. While the empirical time
complexity was observed to grow roughly linearly with dataset
size, NSGA-II's typical worst-case complexity of O (nz) did
not appear to present a bottleneck at the tested scales. These
findings suggest that multi-objective approaches like NSGA-II
may offer a more robust and adaptable alternative for real-
world TFP applications, particularly where trade-offs must
be navigated or constraints dynamically balanced.
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Finally, the demonstrated research and experiments yield
answers to the research questions presented:

Research Question 1: As evidenced by the experiments con-
ducted, the Particle Swarm Optimization implementation
produced higher-quality teams within practical runtime limits
(~10 minutes), but a tradeoff in solution quality and compu-
tational rigour is present.

Research Question 2: In the experiments conducted, mono-
objective metaheuristics produced higher-quality teams than
multi-objective metaheuristics, as PSO particles would of-
ten dominate the chromosomes in NSGA-II’s Pareto fronts.
However, the NSGA-II offers a much wider diversity of solu-
tions in terms of the choice in attribute weighting it offers in
educational contexts, and presents itself as a more dynamic
alternative in these.

Research Question 3: The findings of RQ 1 and 2 encourage
an adoption of metaheuristics for the formation of educational
teams in higher education. From a technical perspective, in-
novative adaptations like the constraint-compliant GA and
discretized PSO using team-level swaps in its velocity function
may inspire similar approaches for other TFPs or NP-hard
problems. More broadly, this work highlights a promising inter-
section between algorithmic optimization and educational de-
sign, where computational methods support socially grounded
decision-making.

7 FUTURE WORKS

Throughout the completion of this article, several directions
for future research were identified, namely:

(1) Future operations research could experiment with differ-
ent functions for initial population generation, crossover,
mutation, velocity, and other evolutionary steps of the
algorithms developed and conduct more robust testing
and benchmarking than this research could offer.

(2) Manipulations could be done to the implementation of
this research, such as different function codings or en-
tirely different objective functions could be investigated.
A more thorough exploration of literature regarding the
influence of both personal and interpersonal factors on
team effectiveness could help establish more reliable
measurements for the "ideal" team, further bridging the
gap between operations research and social science.

(3) The NSGA-II implementation could be further explored.
The algorithm does not take into account the global
front (as it only selects non-dominated individuals).
However, logging the global front of the NSGA-II could
help analyze the convergence of the algorithm in con-
trolled datasets, and potentially enhance the algorithm.

(4) Technical studies could explore the effectiveness of (evo-
lutionary) algorithms such as PSO, EGA or NSGA-II
when ignoring some restrictions (for example, soft re-
strictions) as they explore the solution space. A suitable
balance between ignoring restrictions and strictly en-
forcing them which allows for better exploration, and
still ensures valid output, may be achievable.
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A ALGORITHMS
A.1 Genetic Algorithm

‘Chromosome encoding and
initial population generation

Fitness evaluation

Crossover

Mutation

Terminate and output best solution |

Fig. 3. Flowchart of the Simple Genetic Algorithm (SGA). Reproduced
from [24].

A.2  Particle Swarm Optimization

Initialize group of particles

Evaluate pBest for
each particle

urrent position True
is better than pBest2

False

Update pBest

Assign pBest to gBest

Compute velocity
Update particle position

Target reached? YLUE

Fig. 4. Flowchart of the Particle Swarm Optimization (PSO) algorithm.
Reproduced from [38].

A.3  Non-dominated Sorting Genetic Algorithm Il

Non-dominated
sorting

Crowding
distance
sorting

Qe = }«Rgected

(=

Fig. 5. lllustration of the NSGA-II selection process. The parent popu-
lation P; and offspring Q+ are combined and sorted into non-dominated
fronts Fy, Fa, F3. Individuals are selected for the next generation Py
based on rank and crowding distance. Reproduced from [12].

B DATA CLEANING AND PREPARATION

The original data set (406 students) was cleaned by removing
students with incomplete or inconsistent data (128 removed,
51 kept with corrections), leaving 278 students. The cleaning
process included dealing with missing Belbin roles, project
preferences, and dropouts, and ensuring partner-based data
consistency. The inclusion-exclusion criteria for the data clean-
ing process are found in Table 1.

Category Description #
Only doing additional assignment 9
Not doing project 66
Dropped out 23
Missing study 3
Removed (128) Missing study and Belbin role 1
Missing Belbin role 18
Missing project preferences 4
Crossed out in original dataset 4

Missing project preferences, but | 16
could assign partners’
Two different project preference lists | 2
(partners’ used)
Dropped out, but data complete 1
Belbin role scores didn’t add up, but | 27
dominant role was found
Extra digit in student number (cor- | 2
rected)
Fulfilled first and third condition 1
Fulfilled first and fourth condition

Kept (51)

Table 1. Summary of Data Cleaning Decisions

Three reduced data sets were then created to simulate real-
istic team formation scenarios, preserving key demographic
distributions (e.g., 67% TCS, 33% BIT, 35% Dutch, 17% Fe-
male). These small data sets were used to test the performance



TSclT 42, July 1, 2025, Enschede, The Netherlands

of the algorithms in controlled scenarios. Moreover, a Python
util was developed to ensure that future subsets of the full
dataset (as seen in section 4) maintained the aforementioned
demographic distributions.

The size of the three reduced data sets was determined
based on the following mathematical function:

n! . R

X PrOJectsTe‘m“s
k ). (m N
(z‘:lsz-) (j:lmJ')

= Partitions x Project Assignments

Total Arrangements =

where:
e n is the number of students,
e s; is the size of team i,
e m;! corrects for duplicate team sizes (i.e., m; is the
number of teams of the same size j in the partition).
A population size of 12 students was first arbitrarily se-
lected, which yielded the following.

12!

(66!) - (2!)

The exhaustive solver took 5.0375 seconds to solve this and,
from this, a formula for the expected computation time for n
total arrangements was developed*:

x 7% = 22,638 Total Arrangements

*All computations were done on the same JupyterLab servers, so

minimal variation in computation power can be assumed.

5.0375
22,638
~ Total Arrangements x 0.000223 seconds

Time = Total Arrangements X seconds

From this formula, n was maximized while keeping the
expected computation time below 3 hours, which yielded
n = 15:

|
I 73 243,261,218 Total Arrangements
(5!5!5!) - (3!)
L 5.0375 N
Expected Time = 43,261,218 x m seconds & 2.67 hours

C ALGORITHMS PSEUDOCODE
C.1 Genetic Algorithm

while (initial population < n):
create random team arrangement
if valid arrangement, add to initial population
while (iterations < number of generations):
give fitness scores to current generation
select 2 parent arrangements with best score
while (offspring < number of offspring):
create
ensure

child arrangement as crossover of parents
validity of arrangement

mutate child arrangement to introduce randomness
ensure validity of arrangement

return highest-scoring arrangement
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C.2 Particle Swarm Optimization

initialize empty swarm
while (swarm size < n):
create random team arrangement
if valid, add to swarm as new particle

for each particle:
set personal best = current position
set global best = best particle in swarm

while (iterations < number of generations):
for each particle in swarm:

generate new velocity using:
- inertia component (previous velocity)
- cognitive component (toward personal best)
- social component (toward global best)

apply velocity to update position

if new position is valid:
evaluate fitness
update personal best if fitness improved
update global best if fitness improved

else:
try alternative transformations or reset

return global best solution

C.3 NSGA-II

F = [[1]

for individual p in population P:
Slpl = [1 # Solutions dominated by p
nlp] =0 # Number of solutions that dominate p
for q in P:

if dominates(p, q):
S[p] .append(q)
elif dominates(q, p):

nlp] +=1
if n[p] == 0:
p.rank = 1
F[0] .append (p)
i=0
while F[i] !'= [1:
Q =[] # Next front

for p in F[il:
for q in S[pl:
nlql =1
if nlq] ==
q.rank = i + 2
Q.append(q)
i+=1
F.append(Q)
return F

D EARLY TESTING AND ENHANCEMENTS

Although early results for the GA implementation were promis-
ing, showing that some test runs output the optimal solution
in under 30 generations (checking less than 1000 of over 43
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million possible arrangements), some runs would reach a peak
efficiency early on (e.g., reach a score with 95% efficiency
within the first 30 generations), with said score not increasing
for thousands of generations thereafter.

This suggested that the algorithm heavily relied on the
initial population generation yielding two strong parent chro-
mosomes, meaning if all 10 randomly generated arrangements
in the initial population were far from optimal, the algo-
rithm would constantly create offspring based on two parent
chromosomes that would never yield the optimal solution.

Two solution approaches for this problem were identified:

(1) Increasing the size of the initial population: Increasing
the size of the (randomly generated) initial popula-
tion allows the GA to cover more variation before the
crossover-mutation loop. This avoids executing a loop
on two initial parent chromosomes that will never yield
the optimal solution.

Introducing randomness in the algorithm: While muta-
tions in the SGA introduce some randomness, it is very
limited (i.e., one small swap) and fails to substantially
change the structure of a parent arrangement. Hence,
it fails to uncover largely different arrangements that
could yield the optimal solution. Therefore, systemati-
cally introducing complete randomness (such as in the
initial population) every n generations where the score
does not increase would introduce large randomness at
times when the much-needed variation in the generation
of arrangements stagnates.

The first approach improved performance (test runs of
the algorithm would more often reach the optimal solution),
but would still sometimes fail to output the optimal solution
when the initial population generation did not yield high-
scoring chromosomes. Moreover, this approach would not be
scalable to larger datasets, as substantially more combinations
become possible, meaning that finding a strong candidate in
the initial population generation eventually becomes an NP-
hard problem in the same way that the TFP itself becomes
an NP-hard problem as the number of students increases.

Therefore, introducing randomness in the algorithm ensures
that even if the initial population is suboptimal, the search
space can be periodically reexplored. This systematic reintro-
duction of randomness provides new candidate solutions that
may not be accessible through traditional crossover and muta-
tion alone. In this way, the algorithm becomes less dependent
on the initial population and more robust to local optima,
improving its ability to consistently find the global optimum
within a feasible runtime (i.e., sufficiently fast for classroom
applications). These adjustments significantly improve the
real-world applicability of the genetic algorithm to the team
formation problem, especially in scenarios with large, highly
constrained datasets.

After 100 test runs for various efficiency thresholds in all
three reduced data sets, the standard GA yielded the results
in Table 2, evidencing the performance of the GA. Individual
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performance data for each separate reduced data set can be
found in Appendix E.

Efficiency | Generations | Arrangements Computed
90% 9.20 193.91
95% 46.68 840.80
100% 146.41 2638.41

Table 2. GA mean performance on reduced datasets at various effi-
ciency thresholds

Although this implementation showed promising results
across these reduced datasets, later testing on large datasets
showed that the GA would sometimes violate general con-
straints (i.e., number of teams per project). Therefore, the
crossover function was adjusted to ensure that any random ar-
rangement generation (as a fallback for missing students due
to overlap in the crossover) would respect not the global re-
strictions of that subset specifically, but the global restrictions
of the full chromosome.

This enhanced implementation not only solved the restric-
tion violation problem but yielded significantly better chromo-
somes in the full dataset. However, the restriction-violating
GA yielded better chromosomes and would always converge
to the optimal solution in reduced datasets, unlike the cor-
rected GA. This suggests that some evolutionary (or other)
algorithms may be more efficient in searching their solution
spaces when ignoring global restrictions, potentially being
more effective in finding optimal solutions.

The early testing of the GA developed (the first algorithm
implemented in this experiment) helped uncover implemen-
tation challenges, for which solutions suitable for all three
algorithms were found. Hence, early testing on the paper’s
NSGA-IT and PSO implementations was not as rigorous.

E RAW TEST DATA

Efficiency | Generations | Arrangements Computed
90% 9.20 188.85
95% 78.70 1392.73
100% 97.46 1727.28

Table 3. GA mean performance on reduced dataset 1 at various
efficiency thresholds

Efficiency | Generations | Arrangements Computed
90% 13.23 283.07
95% 16.79 330.26
100% 124.32 2202.05

Table 4. GA mean performance on reduced dataset 2 at various
efficiency thresholds
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Efficiency | Generations | Arrangements Computed
90% 5.16 109.80
95% 44.54 799.40
100% 217.44 3985.91

Table 5. GA mean performance on reduced dataset 3 at various
efficiency thresholds

F PARAMETER SETTING

Following the methodology of previous work in the field
[31, 32], datasets composed of data from 50, 100, and 200
students respectively were derived through random selection
from the full dataset of 278 students. Tuning parameters were
determined for each algorithm, and the derived configurations
were run on all datasets.

F.1 Genetic Algorithm

The tunable parameter (which could affect the algorithm per-
formance) for the developed GA is the parent reset threshold
Py, in other words, the stagnation threshold at which parents
are completely reset to explore a different subset of the so-
lution space. Table 6 shows reasonable parameter values to
assess during parameter setting.

Parameter Value
Pr € {5,10,15,20}

Table 6. Parameter tuning range used for GA experiments.

For the GA developed and the parameter values mentioned,
the mean values of 10 runs of 1000 generations shown in
Table 7 were found.

Size 5 10 15 20

50 | 0.7186 | 0.7235 | 0.7204 | 0.7187
100 | 0.7042 | 0.7038 | 0.6963 | 0.7015
200 | 0.6777 | 0.6787 | 0.6783 | 0.6751

Table 7. Average scores for different values of P, across dataset sizes.

A Friedman test [9] was performed using the scipy.stats
library to evaluate the effect of different values Pr in different
datasets of different sizes. The test resulted in a chi-square
value of 3.8000 and a p-value of 0.2839, indicating that the
performance differences were not statistically significant at
a standard a < 0.05. Consequently, P was set to 10 for the
computation of the final results based on the best average
performance, but it can be assumed that the parameter does
not significantly affect the performance of the GA following
the Friedman test.
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w c1 ‘ co
‘ 0.25 0.5 0.75
0.25 0.25 0.8089 0.8176 0.8016
0.25 0.5 0.7994 0.8014 0.7960
0.25 0.75 0.7833 0.7769 0.7891
0.5 0.25 0.8090 0.8164 0.8138
0.5 0.5 0.8081 0.7959 0.8073
0.5 0.75 0.7743 0.7675 0.7718
0.75 0.25 0.7997 0.8139 0.8126
0.75 0.5 0.7968 0.8000 0.800
0.75 0.75 0.7858 0.7724 0.7805

Table 9. Average PSO fitness scores on small (50 person) dataset for
each combination of w, ¢y, ca.

w c1 ‘ co
‘ 0.25 0.5 0.75
0.25 0.25 0.7795 0.7769 0.7690
0.25 0.5 0.7691 0.7659 0.7661
0.25 0.75 0.7547 0.7468 0.7450
0.5 0.25 0.7748 0.7782 0.7834
0.5 0.5 0.7670 0.7704 0.7503
0.5 0.75 0.7550 0.7396 0.7371
0.75 0.25 0.7764 0.7787 0.7774
0.75 0.5 0.7668 0.7663 0.7669
0.75 0.75 0.7381 0.7584 0.7542

Table 10. Average PSO fitness scores on medium (100 person) dataset
for each combination of w, ¢y, ca.

F.2 Particle Swarm Optimization

The tunable parameters (which could affect the algorithm
performance) for the developed PSO are those mentioned in
Section 3.2.2. These hyperparameters w, c1, and cg repre-
sent stochastic probabilities of adopting swaps from different
particles in the swarm, ranging from O to 1. Table 8 shows
reasonable parameter values to assess during parameter set-
ting.

Parameter Value

w € {0.25,0.5,0.75}
c1 € {0.25,0.5,0.75}
co € {0.25,0.5,0.75}

Table 8. Parameter tuning range used for PSO experiments.

For the developed PSO and the parameter values men-
tioned, the mean values of 10 runs of 250 iterations shown
in Tables 9, 10 and 11 were found for the respective dataset
sizes.
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w c1 ‘ co
‘ 0.25 0.5 0.75
0.25 0.25 0.7359 0.7369 0.7335
0.25 0.5 0.7281 0.7315 0.7266
0.25 0.75 0.7109 0.7117 0.7134
0.5 0.25 0.7364 0.7388 0.7399
0.5 0.5 0.7307 0.7323 0.7292
0.5 0.75 0.7094 0.7095 0.7075
0.75 0.25 0.7377 0.7370 0.7341
0.75 0.5 0.7301 0.7251 0.7204
0.75 0.75 0.7117 0.7094 0.7121

Table 11. Average PSO fitness scores on large (200 person) dataset
for each combination of w, ¢y, ca.

As for the GA developed, a Friedman test was performed
using the scipy.stats library to evaluate the effect of different
value tuples w, c1, co across datasets of different sizes. The test
yielded a Friedman statistic of 54.0000 with a corresponding
p-value of 0.0000, indicating statistically significant differ-
ences in performance between at least some of the parameter
configurations at a standard significance threshold a < 0.05.

The test was applied over the average fitness scores across
three datasets (small, medium, and large), treating each com-
bination of w,c1,c2 as a separate treatment. The ranking
of these combinations, as shown in the resulting mean rank
values, enabled the identification of the most effective param-
eter settings. The combination w = 0.5,¢1 = 0.25,¢c2 = 0.75
achieved the best overall rank, closely followed by w = 0.5,¢1 =
0.25,¢c2 = 0.5 and w = 0.75,¢; = 0.25,c9 = 0.5, suggesting
that these configurations lead to superior fitness performance
across datasets.

Consequently, w = 0.5,¢1 = 0.25,¢c9 = 0.75 was selected
as the final parameter setting for the computation of the
main PSO results, based on both statistical evidence and
consistently high average scores.

F.3 NSGA-II

Unlike the enhanced GA developed earlier, the NSGA-IIT
implementation used in this project does not incorporate
explicitly tunable parameters. This is due to the design of the
implementation, which follows a minimalistic and standard
approach based on the original formulation [12]. Parameters
such as population size and number of generations are treated
as fixed computational constraints rather than elements to be
tuned for performance, as they directly scale the total number
of evaluations (i.e., increasing the population size will give
more exploration diversity and hence find better solutions,
but at the cost of computation time). Furthermore, advanced
features such as adaptive mutation or restart strategies were
not implemented, leaving no algorithm-specific parameters
that influence performance in a tunable manner.
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G RESULTS
G.1 Mono-objective Performance Against Optimal
Solutions
Reduced Dataset 1 — GA & PSO vs. Optimal (Mean of 100 Runs)
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Fig. 6. Performance of GA and PSO in reduced dataset 1 benchmarked
against optimum.

Reduced Dataset 2 — GA & PSO vs. Optimal (Mean of 100 Runs)
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Fig. 7. Performance of GA and PSO in reduced dataset 2 benchmarked
against optimum.

Reduced Dataset 3 — GA & PSO vs. Optimal (Mean of 100 Runs)
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Fig. 8. Performance of GA and PSO in reduced dataset 3 benchmarked
against optimum.
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G.2 Performance on Large-scale Datasets Against a

Baseline
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Fig. 9. Performance of GA and PSO against random baseline in a

small (50 person) dataset.
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Fig. 10. Performance of GA and PSO against random baseline in a

medium (100 person) dataset.
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Fig. 11. Performance of GA and PSO against random baseline in a

large (200 person) dataset.
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G.3

Diversity Score

Frutos-Rodriguez D., Barrios-Fleitas Y., and Lalla E.

Mono-objective vs. Multi-objective: GA and PSO vs.
NSGA-II

NSGA-II Pareto Fronts vs. PSO and GA on Small Dataset (Mean of 30 Runs)
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Fig. 12. Visual comparison of NSGA-II Pareto fronts and PSO and
GA fitness.

NSGA-II Pareto Fronts vs. PSO and GA on Medium Dataset (Mean of 30 Runs)

0.94
.
° =0
0.92 e
.
° e
0.90 s
eco
o o e
5
3 0.88
2
g .
=
O 086 -
. .
coe .
oo -
0.84 o Geno Gen 70
. oo o Genlo Gen 80
. o Gen20 Gen 90
. - Gen30 Gen 100
0.82 Gen40 < Mean Best GA Solution
Gen 50 Mean Best PSO Solution
Gen 60
030 035 0.40 045 0.50 0.55

satisfaction Score

Fig. 13. Visual comparison of NSGA-II Pareto fronts and PSO and
GA fitness.
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Fig. 14. Visual comparison of NSGA-II Pareto fronts and PSO and
GA fitness.
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G.4  Wilcoxon Signed-Rank Tests

Comparison Statistic p-value
GA vs Self-Selected 14.0  6.96 x 1076
PSO vs Self-Selected 1.0 1.92 x 1076

Fig. 15. Wilcoxon signed-rank test results comparing the final fitness
of GA and PSO to the self-selected student arrangement.

For each run of Figure 1, the best score at generation/iteration
100 was extracted, and then compared to the benchmark value
(the self-selected score) using a paired non-parametric test.
The low statistics and p-values indicate that both the GA
and PSO significantly outperform the self-selection threshold.
Moreover, the following Wilcoxon signed-rank test compares
the performance of the GA to the of the PSO in a dataset of
200 students, showing that the PSO significantly outperforms
the GA implementation.

Comparison Statistic p-value

PSO vs GA 00 1.73x1076
PSO vs Random 0.0 1.73 x 1076
GA vs Random 0.0 1.73x 1076

Fig. 16. Wilcoxon signed-rank test results comparing final fitness of
PSO, GA, and Random on the 200-person dataset.

G.5 Efficiency and Time Complexity

Based on an average of 30 runs, each of 100 generations/iter-
ations of the developed GA, PSO and NSGA-II, the values
seen in tables 12, 13 and 14 were computed.

Size GA PSO NSGA-II
50 81.91  45.63 54.35
100  88.32 194.00 70.90
200 118.61 752.22 96.13

Table 12. Mean runtime per algorithm (30 runs, seconds).

While the GAs roughly follow a trend of linear growth in
computation time (O (n)), the time complexity of the PSO
can be estimated with the following:

By assuming that the runtime can be modelled as

Tn=c-nk

where

e T'n is the total runtime for a dataset of size n,
e c is a constant coefficient,
e k is the degree that defines the growth rate,
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we analyze empirical runtime values using ratios:

7100 _ (@)’“ _ ok
T50 50
4.25 = 2F
k ~logy4.25 =~ 2.09

7100 _ (@)’“ ok
T50 100
3.88 = 2F
k ~logy3.88 ~ 1.95

In both cases, the estimated exponent k ~ 2 suggests that
the runtime of PSO grows approximately at (O (nz))

Size GA PSO  NSGA-II
50 25,684 134,232 23,640
100 32,937 285,623 33,167
200 17,410 565463 15,821

Table 13. Mean evaluations per algorithm (30 runs).

Size GA PSO NSGA-II
50 598 2,193 496
100 500 11,300 705
200 343 22,116 5,241

Table 14. Standard deviation of evaluations per algorithm (30 runs).
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