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Evaluating the Efficacy of a New Synthetic AI-Generated Dataset for
Training Face Recognition Models
ADHAM ELHABASHY, University of Twente, The Netherlands

The increasing demand for large-scale facial datasets to train deep learning-
based face recognition (FR) systems has raised critical concerns regarding pri-
vacy, consent, and data collection ethics. Synthetic face datasets, particularly
those generated by diffusion models have proven to be a promising solution
by offering diversity, scalability, and identity control without relying on
real individuals. This study investigates the effectiveness of FLUXSynID—a
high-resolution, diffusion-based document-style synthetic dataset for train-
ing face recognition models. We conducted a comprehensive evaluation
under three experimental scenarios: full-data training, sequential learning
in data-scarce settings, and hybrid training with mixed real and synthetic
data. The results show that models trained on synthetic faces can match
or exceed the performance of models trained on real data, particularly in
high-security verification tasks and expressive test conditions. Moreover,
strategically combining synthetic and real data improves generalization
and bridges performance gaps caused by data imbalance. These findings
highlight the viability of synthetic data as both a privacy-preserving alter-
native and a valuable complement to real-world datasets for modern face
recognition.

1 INTRODUCTION
Over the past decade, face recognition (FR) systems have achieved
remarkable advancements driven by deep learning and the availabil-
ity of large-scale real-world facial datasets, such as VGGFace2[1]
and MS-Celeb-1M [3]. These models have attained impressive per-
formance in both identification and verification tasks, particularly
when trained on large, diverse datasets of real human faces [7, 15].
However, collecting and using real facial data at scale raises signifi-
cant ethical, legal, and privacy concerns, and it is also very difficult
to gather comprehensive real datasets. Consequently, there is a grow-
ing interest in using synthetic face datasets generated by generative
models as a scalable, privacy-friendly alternative [8]. Synthetic data
offer the ability to produce large quantities of training images with-
out violating the privacy of real people, as well as an easy alternative
to gather diverse experiment-specific data.
Early efforts in synthetic face generation were dominated by

Generative Adversarial Networks (GANs), particularly StyleGAN,
which demonstrated the capability to produce high-quality, photo-
realistic face images [5]. Recently, diffusion models have made a
significant advancement in generative AI, enabling the creation of
highly diverse and realistic facial images [2, 4]. The advancement of
diffusion models presents an opportunity to re-evaluate the current
state-of-the-art training of FR models on synthetic data, potentially
overcoming the limitations observed in current GAN-based datasets.
In this research, we utilize FLUXSynID [24], a new synthetic dataset
generated using the FLUX.1 diffusion model[10]. FLUXSynID offers
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a variety of a high-resolution synthetic identities and is originally
developed to support research in Morph Attack Detection (MAD)

2 PROBLEM STATEMENT
Despite significant advancements in face recognition driven by large-
scale real-world datasets, ethical and privacy constraints greatly
limit the collection and use of such data. Synthetic datasets offer a
promising alternative for training face recognition models, as they
provide a scalable and privacy-preserving substitute for real faces.
However, prior work has shown a performance gap, when training
FR models exclusively on GAN-generated images. In this study, we
attempt to evaluate this gap systematically by comparing FR models
trained on the FLUXSynID diffusion-based synthetic dataset against
those trained on equally sized subsets of real data. By evaluating
both scenarios of full datasets with maximum identities available
and limited-data scenarios, we aim to evaluate how synthetic and
real data influence recognition performance and draw actionable
conclusions for privacy-preserving, data-efficient FR model devel-
opment.

3 RELATED WORK

3.1 Synthetic vs. Real Data in Face Recognition
Current efforts to use fully synthetic datasets for face recognition
have revealed a notable performance gap compared to real datasets.
Qiu et al. [32] reported that models trained on GAN-generated
faces (SynFace) achieved around 92% accuracy on LFW, whereas
models trained on real datasets gave 99% [7]. Similar scenarios were
observed with other GAN-based datasets, such as DigiFace-1M [9]
and SFace [33], which is mainly due to limited intra-class variation
and subtle generative artifacts.

Recent advances in generative modeling narrowed this gap. Style-
GAN2 [25] enables high-fidelity identity-preserving face image syn-
thesis, and diffusion-based models have since improved realism and
diversity further [2, 4]. Notably, DCFace [26] introduced dual condi-
tioning to control identity and facial attributes, while IDiff-Face [11]
achieved up to 98.0% verification accuracy on LFW. Xu et al. [36]
extended this with ID3, enhancing intra-class diversity and identity
consistency.
Furthermore, SynthDistill [34] uses a real-pretrained teacher to

trainmodels on purely synthetic faces, reaching 99.5% LFWaccuracy.
Such methods demonstrate that modern synthetic datasets, coupled
with effective training strategies, can rival real-data performance.
However, this requires altering the standard face recognition model
architecture to work with synthetic data.

3.2 Hybrid Training: Mixing Real and Synthetic Data
Recent literature shows that hybrid training combining synthetic
and real data is a practical strategy to achieve high performance.
Qiu et al. [32] found that adding a small real subset to synthetic data
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greatly improved performance. Conversely, Bae et al. [9] showed
that supplementing real datasets with synthetic subsets enabled
performance that is comparable to a full real dataset.

This approach gained traction in benchmarks (e.g., FRCSyn 2024
(CVPR Workshops) [12]), where top-performing models used hy-
brid training with diffusion-generated datasets [11, 26]. Key factors
influencing success include the synthetic-to-real ratio, integration
strategy, and domain alignment.

Strategies such as progressive mixing, loss weighting, consistency
regularization, and domain adversarial training have been proposed
to mitigate the domain shift. SynthDistill [34] is a notable example
that uses a real-data teacher model to guide hybrid learning.

4 RESEARCH QUESTIONS
To evaluate the efficacy of using the FLUXSynID datasets to train
face recognition models. The research is guided by the following
three key research questions:

• RQ1 Under identical training conditions, how do face recog-
nition models trained on the synthetic (FLUXSynID) dataset
compare to those trained on the real-world (VGGFace2) dataset
in terms of generalization performance and robustness to ex-
pression and pose variations on unseen test sets?

• RQ2 In low-data regimes with a limited number of identities,
how does the shared similarity between a synthetic dataset
(FLUXSynID) and a real-world dataset (DemorphDB-FRGC)
influence on face recognition model performance under fair
comparison conditions?

• RQ3How does combining varying ratios of real and synthetic
data (Hybrid Training) impact the face recognition model per-
formance, generalization, and ability to address characteristic
variations like expression, pose, and lighting across diverse
testing environments?

5 DATASETS

5.1 VGGFace2 (Real Data Subset)
VGGFace2 is a large-scale face recognition dataset originally con-
taining 3.31 million images of 9,131 identities, with high diver-
sity in pose, age, illumination, and background [1]. For the exper-
iments, a balanced subset of 9,130 identities from VGGFace2 was
extracted,selecting three images per identity (27,393 images in total)
to ensure fairness when comparing to synthetic data. The selection
prioritized frontal or near-frontal poses and well-aligned faces (see
Section 6.1 for preprocessing details) to get as similar images as
possible to the FLUXSynID dataset. This subset of VGGFace2 serves
as the "real" data in experiments.

5.2 FLUXSynID (Synthetic Data Subset)
FLUXSynID contains 14,889 unique synthetic identities, each com-
posed of a document-style image and three live-capture variants
generated through different post-processing pipelines (LivePortrait
[18], PuLID [19], and Arc2Face [29]). These identities are created
using the FLUX.1 diffusion model, guided by prompts enabling high
fidelity and control over identity attributes such as gender, age, and
region of origin.

Compared to traditional GAN-based datasets such as StyleGAN2
or even other traditional diffusion-based datasets such as ONOT,
FLUXSynID offers more realistic and varied identity representations.
As shown in Figure 3, a t-SNE [6] visualization of facial features
reveals that FLUXSynID identities are spread across a broader area
and they overlap heavily with real datasets (FRLL [13] and CFD [28]).
In contrast, GAN-based identities tend to form denser clusters with
less distribution. This broader distribution highlights the diversity
and realism of FLUXSynID, making it a strong candidate for training
face recognition models.

Fig. 1. t-SNE visualization showing the distribution of FLUXSynID identities,
figure copied from [24]

Fig. 2. Sample of the FLUXSynID, cropped from the figure in [24]

To match the VGGFace2 subset, a subset of 9131 identities from
the FLUXSynID dataset is extracted. However, to maintain diversity
and reduce redundancy, we used one of the provided filtered iden-
tity lists, which contains identities retained after removing overly
similar faces based on ArcFace similarity [15, 24] scoring under a
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certain threshold (0.4969). This allowed us to select more varied and
discriminative identities for training within the restricted number
of identities we have to match the VGGFace2 with.
From each selected synthetic identity, we chose the three live

capture images (excluding the document-style photo) to mirror the
structure of the VGGFace2 subset, where three images per identity
were also selected. This selection was done explicitly to ensure
consistency in dataset size and per-identity image count, allowing
for a fair one-to-one comparison in the experiments between real
and synthetic datasets. The chosen synthetic images reflect natural
variations in facial expression, pose, and lighting similar to what
is observed in VGGFace2 while maintaining identity consistency.
All images were originally 1024 × 1024 pixels and were resized to
112 × 112 during preprocessing (Section 6.1) to match the input
requirements of the face recognition model.

5.3 DemorphDB-FRGC (FRGC Images Filtered for
Document-LikeQuality)

DemorphDB aggregates five facial-image collections (FRGC[38],
EURECOM-IST [39], Utrecht ECVP [40], CFD [28], and FRLL [13])
and applies strict filters to retain only “document-like” images with
frontal poses, removing images with closed eyes and extreme ex-
pressions.

For our experiments, we primarily used identities from the FRGC
subset of DemorphDB. Following the same three-crop preprocessing
as in Section 6.1, we selected all identities with at least three available
images. This resulted in up to 489 genuine (unmorphed) identities,
mostly from FRGC, with a small number from EURECOM-IST. These
non-FRGC samples met the same quality criteria and were visually
similar in terms of pose and lighting conditions.

5.4 Unseen Test Sets
To evaluate the generalization ability of the face recognition models
trained on synthetic vs real data, we selected two face datasets(CFD
and FRLL) as unseen test sets. These datasets were not used during
training and serve to assess how well the learned facial embeddings
perform on previously unseen identities.
While CFD and FRLL are not standard benchmarks for state-of-

the-art face recognition (such as LFW (Labelled Faces In Wild) [23],
they are highly compatible with the characteristics of our training
data in terms of resolution, pose, and controlled capture conditions.
This makes them suitable for isolating and comparing the effects of
training on real versus synthetic data.
Furthermore, given that the primary goal of this work is not

to achieve the highest possible recognition accuracy, but rather
to evaluate data-driven model behavior, these test sets serve as
meaningful benchmarks. They allow us to focus on comparability
and performance consistency across training conditions rather than
absolute accuracy on challenging public state-of-the-art scores.

• CFD (Chicago Face Database): A high-resolution dataset
of 597 individuals photographed in a studio with consistent
lighting, frontal poses, and different expressions. Images are
demographically varied across ethnicity and gender. CFD
provides a controlled yet demographically rich testing envi-
ronment. Since facial accessories and background clutter are

minimal, it evaluates how well a model performs in recogniz-
ing subtle facial distinctions. Unfortunately due to the privacy
restrictions, images from the dataset cannot be showed, but
it is important to highlight that CFD has various expressions
for some identities not just neutral and smiling (e.g. happy,
angry, excited).To further increase the dataset’s demographic
diversity, two diversity extensions were incorporated: the
CFD-MR extension, which adds 88 multiracial individuals to
enhance Middle-Eastern and North African representation,
as well as the CFD-India extension, which adds 142 Indian in-
dividuals to augment South Asian coverage. These additional
sets increase the total number of unique identities to 827.

Note: In DemorphDB’s CFD subset each identity has only a
single image, so these were filtered out and not included in
our DemorphDB-FRGC training set. Consequently, we use
the full CFD collection separately as a test set.

• FRLL (Face Research Lab London Set): Similar to CFD, a
studio based dataset of 102 adult subjects, each photographed
under standardized conditions with neutral and smiling ex-
pressions. The high-resolution images are well aligned, with
clean backgrounds and frontal poses. Although limited in
size, FRLL’s document-style format make it highly relevant
for assessing performance in biometric verification scenarios
such as identity verification in airports.

Fig. 3. Sample of the FRLL [13] dataset

The following table summarizes key visual attributes across the
training and test datasets:

Attribute VGGFace2 CFD FRLL FLUXSynID DemorphDB-FRGC
Quality Medium High High High High
Lighting Varied Controlled Controlled Varied Controlled
Expression Varied Mostly Neutral Neutral/Smiling Varied Neutral
Background Varied Controlled Controlled Varied Controlled
Pose Mostly Frontal Frontal Frontal Frontal Frontal

Table 1. Characteristics of training and test datasets.

6 METHODOLOGY

6.1 Preprocessing and Augmentations
To make sure all input images both real and synthetic are handled
in a consistent and fair way, the same preprocessing steps is applied
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across all datasets. It starts by detecting faces using the Multi-Task
Cascaded Convolutional Networks (MTCNN) detector [37]. This
method locates the face in the image and then crops a tight region
around the face to focus on the relevant interest section. Later all
images are resized to 112× 112 pixels, which is a standard input size
for many popular face recognition models [15].

To ensure fairness, improve generalization and increase data vari-
ation due to limited data available, identical augmentation pipelines
were applied during training to both real and synthetic training
images. The augmentations introduced variation while preserving
facial identities:

• Horizontal Flip: Simulates mirrored poses.
• Color Jitter: Imitates changes in lighting and camera set-
tings.

• Affine Transforms: Adds slight rotation, scaling, and trans-
lation.

• Random Erasing:Mimics occlusions like glasses or acces-
sories.

All augmentations were applied during training using torchvi-
sion [30]. Parameters were carefully chosen to avoid excessive dis-
tortion as the data is already limited, and a fixed random seed is
used to ensure consistent augmentation across runs.

6.2 Model Architecture and Loss Function
Due to the limited data available for the experiments and to ensure
fairness and comparability, the experiments were conducted on a
fine-tuned ResNet-50 [21] backbone pre-trained on ImageNet [14].
This choice wasmade instead of fine-tuning a pre-trained face model
to not introduce any bias towards real data.
Backbone Architecture: We adopt a deep convolutional net-

work based on ResNet-50 [21] as our face embedding model. ResNet-
50 is a 50-layer residual network known for its strong performance
on ImageNet [14]. We initialize the network with weights pre-
trained on the ImageNet 1,000-class dataset, which provides a robust
baseline for feature extraction. The original 1000-class classifica-
tion layer is removed and replaced with a fully connected layer of
size 512. Then ℓ2 normalization is applied to the embedding. The
512-D embedding was chosen to align with the state-of-the-art face
recognition frameworks (for example ArcFace also use embeddings
512-D). The ℓ2 normalization ensures that similarity can bemeasured
by simple dot product or cosine similarity, and it stabilizes training
when using a distance-based loss. In a nutshell, the backbone net-
work processes 112 × 112 RGB images and produces compact 512-D
normalized embeddings.
Loss Function: Different margin-based loss functions such as

ArcFace [15], CosFace [35], and SphereFace [27], are widely used
in face recognition as well as metric learning losses such as triplet
loss [7] and contrastive loss [20]. Margin-based softmax losses are
widely used as the state-of-the-art for face recognition and serve
as the standard benchmark for evaluating synthetic FR models.
However, they require a large number of images per identity to learn
stable class-specific representations and prevent overfitting [15, 35].
Given our dataset contains only three images per identity, such

losses tend to be less stable and prone to overfitting. In contrast,
triplet loss with batch-hardmining [22] does not rely onmaintaining

a separate classifier weight for each identity and is better suited for
this scenario.

Triplet loss operates on sets of 2 images: an anchor face, a positive
face of the same identity (as the anchor), and a negative face from
a different identity. The loss works by encouraging the model to
make the embedding of the anchor closer to that of a positive image
(same person) than to a negative image (different person) by at least
a margin 𝛼 . Following FaceNet [7], we set this margin to 𝛼 = 0.2 in
our experiments. In other words, for each triplet, the network tries
to ensure:

| |𝑓 (𝑥anchor) − 𝑓 (𝑥positive) | |22 + 0.2 < | |𝑓 (𝑥anchor) − 𝑓 (𝑥negative) | |22,

where 𝑓 (𝑥) represents the embedding of image 𝑥 . By applying this
rule, the model learns to “pull” embeddings of the same person closer
together, while simultaneously “pushing” embeddings of different
people farther apart.

The batch-hard triplet mining method is used [22]; for each train-
ing batch it picks the hardest (most challenging) positives and neg-
atives for every anchor. This way, the model focuses on the most
challenging cases, which speeds up learning and makes the train-
ing more effective especially since we have only three images per
identity.

6.3 Training Protocols
Experiment 1: Full Supervised Training (Flux vs. VGG)
The first experiment evaluates the efficacy of fully synthetic data
versus real data for training a face recognition model from scratch
(finetuning the backbone). We train two separate models under
identical settings. One on the real VGGFace2 subset and one on the
synthetic FLUXSynID subset, and then compare their performance
on the unseen test sets. Fairness and consistency are maintained:
both models use the same ResNet-50 architecture, initialization, and
hyperparameters, and see the exact same number of images (9,130
identities ×3 images/identity). The only difference is the nature of the
data (real vs AI-generated). This one-to-one comparison allows us to
isolate the impact of synthetic training data on model effectiveness.
For each dataset (VGGFace2-real and Flux-synthetic), we train

the model for the same number of epochs, ensuring both models
have equivalent training iterations. We also maintain the same batch
size and triplet mining strategy. This means if a batch contains for
example 30 identities with 3 images each, that structure is the same
whether those images are real or synthetic.

We monitored the training loss and fixed the learning rate of 1𝑒−4
for both runs. To ensure scientific reproducibility, each training run
was executed with a fixed random seed for weight initialization and
data shuffling. After training, models are and evaluated on CFD and
FRLL. This experiment addresses the core question: can a model
trained purely on synthetic faces achieve performance compared
to one trained on real faces? By keeping everything else consistent,
the aim is to provide a fair and a comparable result.

Experiment 2: Sequential Learning on FLUX-Style Real
Data (Incremental IDs: 50→ 489)
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Experiment 2 is designed to evaluate the competence of the
synthetic training specifically within a domain that is really sim-
ilar in the characteristics of the FLUXSynID dataset, but is con-
strained in the number of available real identities.Accordingly, we
use DemorphDB-FRGC for comparison. The primary objective is
to examine whether models maintain a performance difference as
we incrementally expose them to increasing amounts of data. To
ensure that any observed improvements follow a clear and explain-
able trend. Four pairs of comparisons are tested: 50 identities, 100
identities, 250 identities, and the full set of 489 identities.
At each stage, models are trained independently using either

FLUXSynID synthetic or DemorphDB-FRGC real identities. To en-
sure comparability and stability given the small data regime, we
adopt a smaller learning rate of 3𝑒−5 and train with the default
explained triplet loss using a ResNet-50 backbone.
To accommodate the limited number of classes per stage, we

implement a custom batch sampler that draws a fixed number of
identities per batch. Each stage is then trained for a fixed number
of 15 epochs, providing the same total number of training steps
across all data samples while validation performance is monitored
to ensure this training protocol does not lead to overfitting.
The key goal of this experiment is to observe the trend of per-

formance across the increase of identities available and determine
whether synthetic pretraining retains an advantage or if real data
eventually overtakes it.

Experiment 3: Hybrid Training with Mixed Datasets
This experiment investigates whether combining real and syn-

thetic face data in different proportions improves face recognition
performance by leveraging the strengths of both sources. Unlike
pretraining and fine-tuning setups, the training dataset here is con-
structed by mixing FLUXSynID (synthetic) and VGGFace2 (real) at
varying ratios from the start.

The rationale is that real images offer natural texture, noise,
and expression diversity, while synthetic images contribute well-
balanced and demographically controlled samples. By training on
combined datasets, the model is exposed to a wider distribution
of facial variations in terms of diversity such as demographics as
well as visual characteristics (e.g lighting and poses), potentially
improving generalization.

To ensure comparability with the models trained in Experiment 1,
the training protocol is kept identical: the same ResNet-50 backbone,
initialization, batch size, triplet mining strategy, epochs and learning
rate. Each hybrid model sees the same total number of images and
follows the same data augmentation and evaluation procedure.

The following mixing ratios of synthetic to real data were tested:

• 10% synthetic + 90% real
• 25% synthetic + 75% real
• 50% synthetic + 50% real
• 75% synthetic + 25% real
• 90% synthetic + 10% real

Each ratio was trained using the same architecture and augmen-
tation pipeline. This design directly addresses RQ3 by examining
how different proportions affect performance using a fixed learning

rate of 1𝑒−4 and whether mixed datasets help capture a broader
range of facial characteristics.

7 EVALUATION PROTOCOL
Model performance is evaluated using standard biometric verifi-
cation metrics: Equal Error Rate (EER) and True Match Rate
(TMR) at specified False Match Rate (FMR) thresholds (1% and
0.1%). These metrics are widely used in academic benchmarks, such
as the NIST’s Face Recognition Vendor Test (FRVT) [17], and are
considered robust indicators of a system’s practical verification
capabilities [31].

To define these core metrics, consider the following:
• False Match Rate (FMR) is the proportion of impostor pairs
incorrectly matched:

𝐹𝑀𝑅 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁 (1)

• FalseNon-MatchRate (FNMR) is the proportion of genuine
pairs incorrectly false-matched:

𝐹𝑁𝑀𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
(2)

Where 𝑇𝑃 , 𝐹𝑁 , 𝐹𝑃 , and 𝑇𝑁 represent True Positives, False
Negatives, False Positives, and True Negatives.

The Equal Error Rate (EER) is the specific rate at which 𝐹𝑀𝑅 =

𝐹𝑁𝑀𝑅. This point on the ROC curve highlights the optimal balance
between false acceptances and false rejections, providing a single
overall measure of system performance. A lower EER indicates a
higher likelihood of better performance.
True Match Rate (TMR) indicates the proportion of genuine

pairs correctly matched:

𝑇𝑀𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

The TMR at a specified FMR (e.g., TMR@FMR = 1%) is simply
the percentage of genuine matches you obtain when the decision
threshold is set so that at most 𝛼% of impostors are accepted. It is es-
pecially useful in applications that require very low false-acceptance
rates, such as airport security checks.

To compute these metrics, all identity pairs in the evaluation set
are compared using cosine similarity between the embedding vec-
tors. Pairs are labeled as either genuine (same identity) or impostor
(different identity), and a Receiver Operating Characteristic (ROC)
curve is generated. From this curve, both the EER and TMR@FMR
values are derived.

For completeness, overall accuracy at the EER threshold is also
reported. While accuracy offers an intuitive understanding of gen-
eral performance, it is less informative in this case, as a model may
achieve high accuracy by favoring the majority class [31]. There-
fore, accuracy is presented as a supplementary metric rather than a
primary evaluation criterion.

8 RESULTS AND DISCUSSION
This section presents a comprehensive analysis of the three core
experiments conducted to evaluate the efficacy of the synthetic
FLUXSynID dataset in comparison to real data. Each experiment
addresses one of the key research questions (RQ1–RQ3) related to
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full-data training, low-data regimes sequential training, and hybrid
dataset mixing. For each experiment, you can find the relevant plot
summary in Appendix C

8.1 RQ1: Full Training Results (FLUXSynID vs. VGGFace2)

Table 2. Performance of models trained exclusively on VGGFace2 vs.
FLUXSynID across FRLL and CFD.

Trained On Test Dataset EER Accuracy TMR@FMR=1e-2 TMR@FMR=1e-3

VGGFace2 FRLL 0.0048 0.9952 0.9902 0.7941
FLUXSynID FRLL 0.0070 0.9930 0.9902 0.9412
VGGFace2 CFD 0.0535 0.9465 0.7082 0.3760
FLUXSynID CFD 0.0405 0.9595 0.8607 0.6048

Table 2 shows the results from experiment 1 regarding RQ1 by com-
paring models trained exclusively on FLUXSynID or VGGFace2.
Results on FRLL demonstrate that both datasets support high ac-
curacy and low error rates with VGGFace2 achieving lower EER.
However, FLUXSynID achieves notably higher at FMR=1e-3, indi-
cating improved precision in higher security thresholds.
On the more expressive CFD dataset, FLUXSynID outperforms

VGGFace2 across all metrics. This suggests that the inherent ex-
pression diversity within FLUXSynID provides better generalization
to expressive, real-world faces. The alignment in pose and image
quality between FLUXSynID and the test datasets further supports
its strong performance.
These findings reveal that synthetic data, when generated with

modern diffusion models, can compete with real-world "in-the-wild"
datasets in full-data training scenarios. However, this does not show
much difference as it is on a higher level and there are several
factors related to datasets difference that may cause this. Therefore
to narrow the scope the following experiment should provide a
more solid conclusion regarding performance difference.

8.2 RQ2: Sequential Learning (DemorphDB-FRGC vs.
FLUXSynID)

Table 3. TMR@FMR=1e-2 performance of sequential learning across
DemorphDB-FRGC and FLUXSynID at varying identity counts.

Metric ID Count Test Dataset DemorphDB-FRGC FLUXSynID

TMR@FMR=1e-2

50 FRLL 0.5980 0.6275
100 FRLL 0.6275 0.6667
250 FRLL 0.7549 0.7255
489 FRLL 0.8333 0.8137

50 CFD 0.1963 0.4244
100 CFD 0.2182 0.4841
250 CFD 0.4058 0.5391
489 CFD 0.4668 0.5517

This experiment investigates the performance of synthetic data on a
smaller scope (RQ2), comparing FLUXSynID with the smaller, high-
quality DemorphDB-FRGC dataset. Both datasets are comparable
in terms of diversity and visual characteristics. Identity counts of
50, 100, 250, and 489 were evaluated.

Fig. 4. FRLL EER Performance Plot for Experiment 2

Fig. 5. CFD EER Performance Plot for Experiment 2

Across the FRLL dataset, both datasets show improved perfor-
mance with increasing identity count, though FLUXSynID exhibits
slightly lower EERs at 250 and 489 identities. On CFD, the synthetic
model outperforms DemorphDB-FRGC at every stage.
In terms of TMR@FMR = 1e-2 as shown in Table 3, when eval-

uated on the FRLL dataset the performance is close between both
datasets, however DemorphDB-FRGC slightly outperforms per-
forms better. On CFD models trained on FLUXSynID consistently
outperform DemorphDB-FRGC.
Plots 4 & 5 show the trend in the EER as identities increase. In

CFD the results are consistent showing how the models trained on
FLUXSynID perform better overall. On the other hand, the noisy plot
for FRLL correlates with the inconsistent results of the TMR@FMR,
which can be due to the overall poor performance of the models
combined with the limited evaluation identities in the FRLL datasets.
Overall. the results are explainable due to the attribute similar-

ity of the datasets. DemorphDB lacks the variation of expressions
present in CFD, while FLUXSynID maintains such variation, the
opposite is true for FRLL.
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8.3 RQ3: Hybrid Mixing Ratios (Synthetic + Real Data)

Fig. 6. Optimal Combination Ratio Plot for Experiment 3

To address RQ3, we evaluate hybrid training strategies using var-
ied mixing ratios of FLUXSynID and VGGFace2. Figure 6 presents
the full overview of the performance of the different ratios for the
two evaluation datasets, highlighting the optimal performing ra-
tio with the green dot. It also combines the baseline full models
trained exclusively on VGGFace2 (100% real) and FLUXSynID (100%
synthetic) from Experiment 1 to show a complete comparison. Ad-
ditionally, the detailed performance metrics for all mixing ratios
and evaluation thresholds are summarized in the Appendix (see
Table A).

On the FRLL dataset, the best overall performance is observed at
25% synthetic data. This model achieves the lowest EER (0.0032), the
highest accuracy (0.9969), and a TMR@FMR=1e-3 of 0.9510. These
results suggest that the embedding of synthetic images provides
valuable addition to the diversity of the dataset such as expression
and lighting variations without introducing a disruptive shift in the
model domain.

On the other hand, results on the CFD dataset are less noisy and
steadily improve as the synthetic embedding ratio increases, from
75% up to a full model the results are very close with minor differ-
ences, these results also support the fact that the hybrid datasets
reduce that gap difference between datasets with mismatches in
feature similarity.

These findings validate hybrid training as a robust strategy. When
carefully balanced, synthetic data not only complements real data by
filling diversity gap but also helps improve the performance beyond
what either training set achieves alone. Moreover, incorporation
of synthetic samples can match or even exceed the effectiveness
of purely real training, particularly when the real dataset lacks
variability.

9 LIMITATIONS AND FUTURE WORK

9.1 Limitations
• Limited Data Availability: Due to the unique style of the
FLUXSynID dataset, it is challenging to get similar datasets

with close shot style and number of identities. Accordingly
none of the benchmark datasets (e.g., LFW, IJB) could be used,
reducing the dependability of the results.

• Controlled Domain Bias: All datasets (FRLL, CFD, FRGC)
are captured under uniform studio conditions, which gives
some sort of bias towards either real or synthetic datasets
based on the common features.

• Architectural Dependence: We evaluated only a ResNet-
50 backbone with triplet loss, which is considered a poor
architecture for FR models.

• Modality Constraints: FLUXSynID lacks multi-view con-
tent, limiting insights into the models robustness under pose
and motion variations.

9.2 Future Work
Building on these findings, several directions require further explo-
ration. First, extending FLUXSynID with more data to match global
state-of-the-art FR training datasets will definitely be beneficial
to further experiment the capabilities of utilizing the FLUXSynID
dataset on a bigger scale and gain insight on whether the conclusion
of this paper can be generalized or not. Second, evaluating syn-
thetic training across a wider variety of architectures (e.g., attention-
based backbones, lightweight mobile networks) could reveal model-
specific benefits or limitations. Third, integrating domain-adaptation
techniques such as adversarial alignment or style transfer could help
close the gap between synthetic and real data gap when training on
highly diverse datasets. Finally, investigating multi-view synthetic
data generation would also help in generalization and open the door
to utilize the dataset for more complex face recognition scenarios.
Collectively, these recommendations will help solidify the role of
diffusion-based synthetic dataset "FLUXSynID" as a foundation for
next-generation, privacy-preserving biometric systems.

10 CONCLUSION
In this work, we conducted a systematic evaluation of the efficacy of
the FLUXSynID diffusion-based synthetic dataset for training face
recognition models under three complementary scenarios directly
addressing our research questions. In Experiment 1 (Full Datasets
Training), which addressed RQ1, we found that a model trained
purely on FLUXSynID can match, and at high-security thresholds
even exceed the performance of a model trained on the real VG-
GFace2 dataset, particularly on the expression-rich CFD evaluation
dataset. Experiment 2 (Sequential Learning) addressed RQ2 and
demonstrated that synthetic training maintains an advantage over
small real datasets (DemorphDB) across increasing identity counts,
especially under challenging expressive conditions. Finally, in Ex-
periment 3 (Hybrid Training), addressing RQ3, we found that mixing
a ratio of 25% FLUXSynID with 75% real data yields the lowest EER
and highest TMR@FMR on FRLL, while higher synthetic ratios
benefit performance on CFD.
To conclude, these results confirm that the new diffusion-based

synthetic data (FLUXSynID) can serve not only as a privacy-friendly
stand-in for real faces but also as a valuable addition that bridges
diversity gaps when limited real data is available and enhances
generalization. However, given the controlled conditions and limited
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dataset scope, further work is needed to validate these findings on
in-the-wild benchmarks and with more advanced face recognition
models.
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A EXTENDED RESULTS

Table 4. Performance of hybrid and full models trained with varying per-
centages of FLUX on FRLL and CFD datasets.

Training Mix (% FLUX) Test Dataset EER Accuracy TMR@FMR=1e-2 TMR@FMR=1e-3

0% (VGGFace2 only) FRLL 0.0048 0.9952 0.9902 0.7941
10% FRLL 0.0041 0.9959 1.0000 0.9314
25% FRLL 0.0032 0.9969 1.0000 0.9510
50% FRLL 0.0085 0.9915 0.9902 0.7549
75% FRLL 0.0186 0.9814 0.9608 0.8431
90% FRLL 0.0269 0.9731 0.9706 0.7843
100% (FLUX only) FRLL 0.0070 0.9930 0.9902 0.9412

0% (VGGFace2 only) CFD 0.0535 0.9465 0.7082 0.3760
10% CFD 0.0479 0.9521 0.8263 0.5869
25% CFD 0.0451 0.9549 0.8282 0.5577
50% CFD 0.0411 0.9589 0.7467 0.3369
75% CFD 0.0350 0.9650 0.8747 0.5544
90% CFD 0.0364 0.9636 0.8873 0.6015
100% (FLUX only) CFD 0.0405 0.9595 0.8607 0.6048

B AI ASSISTANCE DISCLOSURE
Assistance from AI tools such as ChatGPT and Paperpal were used
in writing this paper. These tools were used to improve the flow
and enhance the expression of ideas for clarity. All content was
manually reviewed before usage.

C ADDITIONAL FIGURES

Fig. 7. Performance metrics for the full models.

Fig. 8. Metrics for sequential training.

Fig. 9. Hybrid training performance for different FLUX ratios.
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