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Abstract—With the rapid growth in the number of mobile
applications, monitoring their activity within a network has
become increasingly challenging due to the substantial volume of
traffic generated. Mobile application fingerprinting has emerged
as a practical solution for identifying application behaviour
through network traces, even when traffic is encrypted. This
paper introduces an efficient approach using MinHash and
Locality-Sensitive Hashing (LSH) to identify mobile application
behaviours by comparing only traces with high similarity, which
significantly reduces computational overhead while maintaining
high accuracy and supporting the detection of previously unseen
applications. We evaluated the proposed method through two
experiments: application recognition and unseen application
detection. In these experiments, we achieved an average accuracy
of 83% on the ReCon dataset, while reducing comparison
complexity from O(n?) to O(nlogn).
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I. INTRODUCTION
A. Motivation

Mobile application fingerprinting refers to techniques for
identifying which applications are generating observed net-
work traffic [1]]. This capability is vital for network manage-
ment, quality-of-service (QoS) assurance, and intrusion detec-
tion [2]]. For example, network operators need to know which
applications traverse their infrastructure to allocate resources
and detect malicious behaviour. Xin Wang et al. [3] note
that the explosive growth of mobile device usage has made
application identification “a crucial task for mobile network
management and security.” However, since most mobile traffic
is encrypted [4] [S)], fingerprinting must rely on metadata
and behavioural features rather than payload content. This
makes it possible to monitor applications just by looking at
network traffic, but it also means that even encrypted traffic
can unintentionally reveal personal details about how someone
is using their applications[4]]. Nevertheless, given billions of
devices and millions of applications in ecosystems like Google
Play, scalable application fingerprinting is essential to security
and privacy-preserving monitoring.

B. Existing Mobile Fingerprinting Techniques
Traditional methods such as port- [6] or signature-based [/]]
inspection are ineffective on today’s mobile traffic [8]. Instead,
researchers have explored several classes of approaches:
Machine learning classifiers achieve high accuracy but
require labeled data and frequent retraining [3][9].

Correlation-based methods, such as FlowPrint [4], dis-
cover application fingerprints from unlabeled traffic by find-
ing sets of network endpoints that consistently communicate
together. FlowPrint builds a graph where each node represents
a cluster of destinations (IP/port pairs) and edges encode how
often two destinations co-occur in time. It then finds groups of
endpoints that frequently communicate together and uses the
list of addresses in each group as an application’s fingerprint.
Once fingerprints are constructed, FlowPrint uses the Jaccard
similarity between destination sets to label traffic. In the train-
ing phase, flows are grouped into fingerprints, and each finger-
print is assigned the application label that appears most often
among its flows (a majority-vote). At runtime, a new flow’s
fingerprint (i.e. its set of destinations) is compared against all
labeled fingerprints from training using Jaccard similarity; the
flow is then given the label of the closest matching fingerprint.
This unsupervised clustering approach allows FlowPrint to
recognise applications without pre-existing signatures, but it
can be computationally heavy (finding cliques in a graph) and
may produce multiple overlapping fingerprints per application.

Automata-based approaches, like ML-NetLang [10], treat
each application’s traffic as a formal language of destination
sequences. During training, ML-NetLang converts each appli-
cation trace into a “word” by ordering its destination identifiers
(e.g. IP addresses or service names). It then runs a grammar
inference algorithm (k-TSS) to learn a k-test vector (a form
of finite automaton) that captures all allowed substrings of
length & in that word. Effectively, each application’s fingerprint
is a set of valid address subsequences (a k-TSS language)
drawn from its training traces. For classification, an incoming
trace is similarly turned into a word of destinations and
compared against all learned languages. The system computes
numerical features measuring how well the trace’s substrings
match each application’s k-TSS fingerprint (for example, by
counting common k-grams). These features (one per known
application) are fed into a supervised classifier (e.g. logistic
regression) which outputs the most likely application label.
This method is robust to traffic encryption (since it only
uses address sequences) and has shown high accuracy, but it
relies on labeled training data for every application and cannot
recognise unseen applications not in its training set.

More recently, Mashnoor et al. introduced LSIF, a
lightweight fingerprinting method that uses the Nilsimsa
(LSH-based method) hash to identify IoT devices based on



their encrypted network traffic. They combine all traffic from
a device into one continuous stream and compute a single
compact hash for it. Their approach does not require explicit
feature extraction or model retraining. However, LSIF is
fundamentally device-centric its goal is to recognise which
device generated the traffic, not which specific application.
In contrast, our approach shifts the focus to application-
level fingerprinting, which is a more granular and practical
need in mobile environments where a single device may run
multiple applications simultaneously. Rather than aggregating
all device traffic, we assume each trace originates from a
single application and compute an LSH fingerprint for that
application’s behaviour. These fingerprints are then compared
against a database of known application fingerprints to identify
the source application. This distinction is crucial for network
operators interested in application-level traffic analysis, for
monitoring, access control, or anomaly detection. While both
methods use LSH to enable fast, scalable comparisons on
encrypted traffic, our approach distinguishes in the fact that it
is able to identify and detect individual applications, including
previously unseen applications. It avoids the need for hand-
crafted features or supervised learning, and it supports open-set
recognition, meaning that it can identify input (applications)
that do not belong to any class (unseen applications) as
compared to LSIF.

C. Problem Statement and Research Objectives

To evaluate the effectiveness and practicality of using LSH
for mobile application fingerprinting, we propose the following
research questions. These questions aim to assess the suitabil-
ity of similarity metrics, the accuracy of estimation techniques,
and the impact of configurable parameters on our approach:

o RQ1: Is Jaccard similarity an appropriate metric for com-
paring mobile application execution traces represented as
sets of k-shingles?

o RQ2: How accurately does MinHash’s estimated Jaccard
similarity approximate the actual Jaccard similarity?

o RQ3: How do variations in key parameters, such as the
number of hash functions, band size, and number of
bands, affect accuracy?

o RQ4: How effective is the proposed LSH-based system in
recognizing known applications and detecting previously
unseen ones based on network behaviour traces?

By addressing these questions, the work aims to provide
insights into the practical applicability of hash-based finger-
printing approaches.

BACKGROUND OF LSH

LSH is a technique used to efficiently identify similar items
in large datasets without comparing all pairs. It begins with
a process called Shingling. In simple terms, this is a way of
representing the information within a document (or, in this
case, an application’s network trace) as a set of substrings
of length k, known as k-shingles. For example, if a trace is
represented by the string abcdefg and k = 3, the set of 3-
shingles is {abc, bcd, cde, def, efg}. This lets us

convert behavioural traces into sets, allowing similarity to be
measured via set-based metrics like Jaccard similarity:

R 1 n
J(A,B) =~ ; [hi(A) = hi(B)] (1)
This formula is explained later in this section.

After generating these shingles, we apply a hash function
to each shingle, rather than using the raw strings. This step
compresses the data and allows for efficient comparison. For
example, instead of storing each shingle as a full string, we
can apply a hash function that converts it into a compact
numerical value, such as a 32-bit integer. While this can lead to
occasional collisions (different shingles mapping to the same
value), it significantly reduces memory usage and allows for
fast, constant-time comparisons.

The next step is MinHashing. We simulate this process using
hash functions. For each hash function, we apply it to the
indices of all shingles in a trace and record the minimum
value. Repeating this across multiple hash functions yields
a MinHash signature—a vector of integers that compactly
represents the original set. The similarity between two traces
can now be approximated by the fraction of components
their signatures share, which estimates the Jaccard similarity
between the original sets ().

Example — MinHashing: Consider two traces A and B with
shingle sets {a, d} and {a, c, d} respectively. Suppose
we define a hash function such that:

h(a) = 1,h(c) = 3,h(d) = 2

The MinHash of A is min{1, 2} = 1, and for B it
is min{1l, 3, 2} = 1. Since both sets have the same
MinHash under this function, we count this as one match.
Repeating with multiple hash functions and counting the
fraction of matches provides an estimate of Jaccard similarity.

To efficiently detect similar traces among large collections,
we apply LSH bucketing to these MinHash signatures. A
MinHash signature is split into b bands of » rows each. Each
band (a short vector of hash values) is hashed into a bucket.

The relationship between the number of hashes, bands, and
band size is given by the formula:

Number of hashes = Number of bands x Band size

Each h-dimensional signature is split into b bands of size 7, so
that b-r = h. Two signatures that match exactly in all r values
of any band are placed in the same bucket. By construction,
two signatures with true Jaccard similarity s collide in at least
one band with probability

P(candidate) = 1 — (1 — s")°

which creates a sharp threshold behaviour. In other words,
similar traces (large s) are very likely to share a band, while
dissimilar traces (small s) rarely do. Two traces that share
the exact same band vector will land in the same bucket for
that band and are marked as a candidate pair. This drastically
reduces the number of comparisons needed.

Example — Bucketing: Assume signatures of length 12 are
divided into 4 bands of 3 values each. Trace A has a band



[0, 1, 31, and so does trace B. Since they match exactly
in one band, they are assigned to the same bucket in that band
and are flagged for detailed comparison. If two traces differ
in all bands, they are never compared. This selective approach
enables fast similarity search even on massive datasets. Note
that these bands must also appear in the same position,
meaning that if [0, 1, 3] appears in different places in
both traces, then they are not assigned to the same bucket, as a
bucket is identified by an index and the band, so for example
assume trace A generated the following buckets: bucket O :
[0, 1, 3],bucketl:[1, 1, 3],bucket3: [0, 1, O],
and so on. If [0, 1, 3] does not appear in bucket O for
trace B, then they are not put together in the same bucket,
and therefore not considered similar.

After the buckets have been computed, traces that fall within
the same bucket will then have all of there signatures compared
with each other to find the similarity between them, which
implies that exact equality between traces is not needed, but
it will rather filter out dissimilar traces. If a trace shares
similar signatures with multiple traces, then the trace with
the highest similarity is considered to be the most similar
trace. Thresholds are often used after computing the Jaccard
similarity between pairs of traces. Pairs that have a similarity
above the set threshold (e.g. 0.5) will be flagged as candidate
pairs; those below the threshold are not considered to be
candidate pairs.

In essence, LSH provides an efficient and scalable way to
detect similar application behaviours by combining shingling,
MinHashing, and probabilistic bucketing. This allows the
system to quickly identify traces that are likely to be similar,
without needing to compare every pair directly.

II. METHODOLOGY
A. Dataset

We use the ReCon dataset, which includes multiple versions
of 512 popular Android applications from the Google Play
Store, covering 7,665 application releases over eight years of
version history [11}[12]]. To collect network traffic, each appli-
cation was installed and interacted with through automated and
scripted scenarios on real mobile devices, simulating typical
user behaviour. From this dataset, we randomly selected 100
applications and 10 execution traces for each, resulting in a
total of 1,000 traces used in our experiments.

The raw network traffic was converted into symbolic be-
havioural traces using the Trace Generator introduced in [10],
which processes each application’s traffic as follows:

1) Network flows are first extracted from packet captures.

2) For each flow, features such as timestamps, destination

IP address, destination port, and TLS certificate are
extracted.

3) All flows are sorted chronologically by the timestamp

of their first packet.

4) Flows are categorised based on unique destination iden-

tifiers—either (IP, port) tuples or TLS certificates.

5) Each unique destination category is assigned a symbolic

label using a mapping function. These labels follow the

format “Sj,” where j is a natural number representing
the j-th unique destination observed. For example, “S6”
denotes the 6th unique destination seen across all traces.

6) Each flow is then replaced with its corresponding sym-
bol, forming a symbolic trace that captures the temporal
order of destinations accessed by the application during
execution.

These symbolic traces serve as abstract behavioural repre-
sentations of each application’s network activity and are the
basis for our fingerprinting and similarity analysis.

B. Parameter selection

To evaluate whether Jaccard similarity is suitable for com-
paring mobile application execution traces, to answer RQI,
we analysed how well it distinguishes between traces from
the same application (intra-class) and different applications
(inter-class). This evaluation was carried out using 10 random
applications. Each trace was then represented as a set of k-
shingles, and the actual Jaccard similarity was then computed
between all pairs:

J(4, )= 408l
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The difference between the actual Jaccard similarity (2) and
estimated Jaccard similarity is that it compares the k-
shingles rather than the MinHash signatures, which involves
more comparisons but is more accurate [13]. The normalised
frequency of similarity values for both intra- and inter-class
comparisons was then plotted. These plots reveal whether
same-application traces consistently show higher similarity
than different-application traces. A clear separation between
the two distributions suggests that Jaccard similarity effec-
tively captures behavioural similarity. By varying k, the plots
also help identify the shingle size that best supports this
distinction, directly answering the research question. To quan-
titatively assess how well different k-shingle sizes separate
intra- and inter-class similarity distributions, Python’s NumPy
library was used to calculate the area of overlap between
the two distributions. A lower overlap area indicates better
separation and, therefore, a more effective similarity metric.

Across shingle sizes k = 1 to 4, the overlap areas were
0.234, 0.227, 0.234, and 0.399, respectively. The overlap areas
can also be seen in each of the figures - it is the region in
figures [Ta] [Ib] [Ic| and [Td] colored in dark red. Based on these
results, k = 2 yielded the smallest overlap, and thus the clearest
distinction between same-application and different-application
traces, supporting it as the most appropriate shingle size for
this task.

Then to establish how well MinHash’s estimated Jaccard
similarity approximates the actual Jaccard similarity (2),
to answer RQ2, the mean squared error (MSE) between them
was plotted across different number of hash functions in order
to find the optimal number of hashes where the difference
between the actual Jaccard similarity and the estimated Jaccard
similarity was considered negligible.
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Fig. 1: Normalised frequency distributions of actual Jaccard similarity values for different k-shingle sizes. Lower overlap
indicates better separation between same-application and different-application traces.
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Fig. 2: MSE across different numbers of hash functions after
setting the number of shingles to 2.

As shown in [2] the MSE decreases with more hash func-
tions but plateaus around 150 hashes. Beyond this point,
further increases in the number of hashes provide negligible
improvement in estimation accuracy. Therefore, 150 hash
functions were chosen as a balance between performance and
computational efficiency.

C. System Overview
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Fig. 3: System overview

The proposed system for application recognition and un-
seen application identification is structured into two main
operational stages: the enrollment stage and the application
identification stage, as illustrated in Fig. [3] Both stages
follow a nearly identical processing pipeline, but serve distinct
purposes within the fingerprinting framework.

Enrollment Stage. This stage is responsible for creating and
storing application fingerprints. It begins with the collection
of network packet captures (pcaps), which are preprocessed to
extract flow-level destination information.

Once the destination flows are extracted, each trace is
converted into a sequence of k-shingles, capturing short, over-
lapping subsequences that represent local behavioural patterns.
These shingles are then passed through a MinHashing step to
generate compact signature vectors. Each signature is divided
into multiple bands according to the specified band size, and
each band serves as an index into an LSH bucket.

The LSH bucketing process effectively groups traces that
share a high degree of structural similarity. These buckets serve
as the system’s reference for application behaviour and are



stored persistently in the LSH bucket storage for use during
identification.

Application Identification Stage. In this stage, the system
processes new or incoming traces to determine whether they
correspond to known applications or exhibit previously un-
seen behaviour. The trace undergoes the same preprocessing
and fingerprinting pipeline as in the enrolment stage: flow
destination extraction, shingle formation, MinHash signature
generation, and LSH bucketing.

Once the trace is hashed into LSH buckets, the system
invokes the identifier, which compares the newly generated
buckets with those stored during the enrollment stage. If a
matching bucket is found, the system assigns the trace to the
corresponding enrolled application. The logic assumes that
traces mapped to the same bucket are behaviourally similar
and thus likely originate from the same application or a
functionally similar one.

In case of unseen application detection, when there are
no matching buckets found or the similarity falls below the
defined threshold, the trace is flagged as belonging to an
unseen application. This mechanism allows the system not
only to classify known behaviours but also to detect novel
patterns that deviate from all previously observed signatures.

III. EVALUATION AND RESULTS

This section presents two key experiments designed to
evaluate the ability of the LSH-based approach to classify
mobile application traces. Both experiments use a dataset of
100 applications, each containing 10 execution traces extracted
from recon-symbol logs. These traces were converted into
k-shingles and then represented using MinHash signatures
for efficient comparison. The core goal is to assess how
effectively the model can identify whether a trace belongs to
a previously seen (known) application or represents unseen
behaviour, thereby supporting application fingerprinting in
dynamic network environments.

To evaluate the effectiveness of the proposed approach,
we report four widely used classification metrics: accuracy,
precision, recall, and Fl-score. These metrics are used for
both application recognition and unseen application detection,
and they are well-established in recent literature on similarity-
based and LSH-driven fingerprinting systems.

Accuracy measures the overall correctness of classification,
while precision and recall capture the trade-off between false
positives and false negatives. The Fl-score, as the harmonic
mean of precision and recall, provides a balanced assessment
of model performance. Their combined use is particularly
relevant in similarity-based tasks where exact matches are not
guaranteed, and in open-world settings where distinguishing
known from unknown classes is essential.

Recent studies on mobile and IoT fingerprinting support the
use of these metrics in LSH-based contexts. For instance, ML-
Netlang [10], FlowPrint [4], and AppSniffer [14] report these
metrics to evaluate application identification. These works em-
phasise that while accuracy gives a general performance view,
precision and recall are crucial for understanding the system’s

TABLE I: Band Size for Different Number of Bands (with
150 Hashes)

Number of Bands | Band Size
150 1
75 2
50 3
30 5

TABLE II: Results showing accuracy, precision, recall and
F1-score of application recognition using different number of
bands and band sizes.

Bands (b) Accuracy Precision Recall F1 Score
150 0.8527 + 0.0428 0.8144 + 0.0733 0.7752 + 0.0851 0.7772 + 0.0778
75 0.7795 £ 0.0570 | 0.7343 £ 0.0957 | 0.6777 + 0.1001 0.6858 + 0.0948
50 0.3186 + 0.0708 | 0.4153 +0.0827 | 0.2877 £ 0.0710 | 0.3287 + 0.0725
30 0.0645 + 0.0341 0.0954 + 0.0534 | 0.0629 + 0.0335 | 0.0736 + 0.0399

ability to correctly classify or reject traces, particularly in
scenarios involving encrypted or evolving traffic patterns.

In this work, we adopt the same metrics to ensure compara-
bility with prior research and to capture both overall and class-
specific performance, especially when evaluating robustness
across seen and unseen application traces.

For Locality-Sensitive Hashing (LSH), each bucket cor-
responds to a band composed of a fixed number of hash
values, known as the band size. In our experiment, the number
of hashes was fixed at 150. The following table shows the
resulting band size for each band count configuration:

According to Meira et al. [15]], larger b (smaller 7) increases
collision probability for a given s (making the scheme more
sensitive, at the cost of more false positives), whereas smaller
b (larger r) makes the scheme stricter. We empirically tested
these settings (see [[I] and [ITI) to balance the trade-off between
false negatives and false positives.

A. Application Recognition

The first experiment evaluates the system’s ability to recog-
nise applications it has encountered during training. For each
application, 8 of the 10 available traces are used for training,
while the remaining 2 traces serve as the test set. This is
implemented using 5-fold stratified cross-validation across all
100 applications, ensuring that each fold tests on a different
subset of traces while preserving class balance. After gener-
ating the MinHash signatures for the training traces, LSH is
used to bucketize them. During testing, each query trace is
hashed, and candidates are retrieved from the corresponding
LSH buckets. If the most similar candidate (based on Jaccard
similarity) matches a training application, that application
is predicted. In cases of tie on similarity across multiple
applications, majority voting is applied to determine the final
prediction. This experiment provides insight into the model’s
ability to correctly associate previously seen behaviours with
their originating applications. For the classification of seen
applications, our results show a sharp performance degradation
as the number of bands decreases. In particular, the 150-
band setting (band size 1) achieved the highest performance:
85.27% accuracy and an Fl-score of 77.72%. In contrast,
reducing the band count to 75, 50 or 30 yielded substantially



lower accuracy, precision, recall, and F1, reflecting the known
effect that more hash functions (larger signature size) yield
better LSH matching quality. In summary, our best seen-
application configuration 150 bands and band size of 1 far
outperformed all lower-band configurations, highlighting the
trade-off between hash count and accuracy in LSH-driven
classification.

B. Detection of Previously Unseen Applications

The second experiment introduces unseen applications into
the evaluation pipeline. The dataset is split such that 80 appli-
cations are treated as “seen” and used for training and partial
testing, while the remaining 20 are designated as “unseen.”
For each seen application, § traces are used for training and 2
for testing; all 10 traces of each unseen app are used in the test
set. This setup also utilised a 5-fold stratified cross-validation
across the 100 applications. This setup simulates real-world
scenarios where new applications appear in the network. Dur-
ing inference, if a test trace’s similarity to any training trace
does not exceed a specified Jaccard threshold, it is labeled as
“Unseen.” Otherwise, the most similar application is selected
based on majority voting among top-matching candidates. The
experiment is repeated across five Jaccard thresholds: 0.05,
0.10, 0.15, 0.20, and 0.25 to evaluate robustness to similarity
sensitivity. Performance is measured in terms of accuracy,
precision, recall, and Fl-score, specifically focusing on the
ability to distinguish between seen and unseen applications.
This experiment helps quantify the system’s false positive and
true negative rates in a realistic environment. Majority vote
was also applied to this experiment.

TABLE III: Results showing accuracy, precision, recall and
F1-score of unseen application detection using different num-
ber of bands and band sizes, and with the use of different
similarity thresholds.

Threshold Bands (b) Accuracy Precision Recall F1 Score

150 0.5783 + 0.0067 0.9664 + 0.0226 0.2500 + 0.0141 0.3969 + 0.0168

0.05 75 0.6839 +0.0079 | 0.8813 + 0.0274 | 0.4990 + 0.0102 | 0.6369 + 0.0070
) 50 0.7083 + 0.0107 0.6676 = 0.0099 0.9470 % 0.0068 0.7830 % 0.0055
30 0.5906 + 0.0022 0.5757 + 0.0013 1.0000 * 0.0000 0.7307 + 0.0011

150 0.8011 £ 0.0111 | 0.8419 + 0.0181 | 0.7910 £ 0.0128 | 0.8155  0.0093

0.10 75 0.7883 = 0.0116 0.8073 = 0.0187 0.8140 = 0.0116 0.8104 + 0.0084
" 50 0.6928 + 0.0057 0.6482 + 0.0049 0.9780 + 0.0024 0.7796 + 0.0029
30 0.5906 + 0.0022 0.5757 + 0.0013 1.0000 + 0.0000 0.7307 + 0.0011

150 0.7433 + 0.0080 0.6950 + 0.0062 0.9590 + 0.0037 0.8059 * 0.0055

0.15 75 0.7372 + 0.0054 0.6894 + 0.0040 0.9590 + 0.0037 0.8022 + 0.0038
. 50 0.6544 +0.0028 | 0.6183 +0.0022 | 0.9880 = 0.0040 | 0.7606 + 0.0015
30 0.5906 + 0.0022 0.5757 + 0.0013 1.0000 + 0.0000 0.7307 + 0.0011

150 0.6628 + 0.0067 0.6237 + 0.0045 0.9910 + 0.0020 0.7656 + 0.0038

0.20 75 0.6628 + 0.0067 | 0.6237 + 0.0045 | 0.9910 £ 0.0020 | 0.7656 + 0.0038
) 50 0.6289 * 0.0062 0.6000 % 0.0040 0.9960 * 0.0020 0.7489 % 0.0032
30 0.5906 + 0.0022 0.5757 + 0.0013 1.0000 + 0.0000 0.7307 + 0.0011

150 0.6161 £ 0.0054 | 0.5918 + 0.0034 | 0.9960 = 0.0020 | 0.7425 + 0.0028

025 75 0.6161 * 0.0054 0.5918 + 0.0034 0.9960 + 0.0020 0.7425 + 0.0028
- 50 0.6117 + 0.0067 0.5890 + 0.0041 0.9960 + 0.0020 0.7403 + 0.0035
30 0.5906 + 0.0022 | 0.5757 + 0.0013 1.0000 + 0.0000 | 0.7307 + 0.0011

For unseen applications, we assessed classification at mul-
tiple Jaccard similarity thresholds (0.05, 0.10, 0.15, 0.20,
0.25) using the same band settings. We found that 150 bands
with a Jaccard threshold of 0.10 provided the most balanced
results: this configuration yielded 80.11% accuracy and an F1-
score of 81.55%, with consistently high precision and recall.
Lowering the threshold (0.05) made the matching criterion
less strict, which produced very high precision but at the
cost of far lower recall and a reduced Fl-score. Conversely,

raising the threshold beyond 0.10 also unbalanced the tradeoff.
These patterns reflect the standard precision-recall tradeoff
in threshold-based similarity detection: a moderate similarity
threshold (0.10) gives the best overall balance of metrics,
whereas overly strict thresholds inflate precision at the expense
of recall. Thus, our unseen-application experiments indicate
that 150 bands and a band size of 1 with a threshold of 0.10
is the optimal setting, achieving high and stable values across
all evaluation metrics.
The source code of the experiments are accessible at: [[}

IV. DISCUSSION

Our experiments demonstrate that locality-sensitive hashing
(LSH), when configured appropriately, is a practical and
efficient strategy for generating behavioural fingerprints of
mobile applications. By applying 2-shingle tokenisation, 150
hash functions, and a banding scheme with 150 bands (each
of size 1), the system was able to effectively distinguish
between known applications and reliably detect unseen ones.
These results support the broader observation that approximate
similarity detection using MinHash signatures is well-suited
to capturing meaningful structural patterns in mobile traffic
traces.

Nonetheless, there are several important considerations and
limitations that merit further discussion.

Robustness and evasiveness. One potential limitation of
LSH-based fingerprinting is its vulnerability to behavioural
manipulation. While our approach does not rely on payload
inspection or IP-level features—making it more resilient to
encryption—it still depends on the consistency of trace-level
structures. If a malicious application were engineered to in-
ject noise or mimic another application’s signature, it could
potentially evade detection or produce ambiguous matches.
That said, sustaining such mimicry without degrading the
application’s functionality or user experience may not be
trivial, especially if the attacker does not control upstream
network endpoints.

Ambiguity from generic traffic. Another challenge arises
from applications whose traffic is dominated by interactions
with common services such as advertising networks or ana-
lytics platforms. Since many applications share these depen-
dencies, their trace structures can appear deceptively similar,
leading to false matches. This limitation is not unique to our
method—most flow-based and even packet-level fingerprinting
systems struggle with traffic homogeneity. Future improve-
ments might consider augmenting the signature with temporal
or frequency-weighted components to better distinguish back-
ground services from core app behaviour.

Handling multiple active applications. Our current eval-
uation assumes that only one application is generating traffic
at a time, which simplifies fingerprint assignment. However,
modern mobile operating systems increasingly allow concur-
rent application execution, background activity, and multi-
window interactions. These overlapping traces could com-
promise the fidelity of a single-application fingerprint. One

Uhttps://gitlab.utwente.nl/s2888327/minhash-1sh.git
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possible solution is to segment traffic based on temporal bursts
or session contexts, but this requires richer metadata and
further investigation.

Scalability and generalization. One of the key strengths of
our method is that it remains lightweight and fast even as the
number of known applications increases. The LSH structure
supports sublinear-time lookup, and our fingerprinting step
does not require retraining or updating large models. This posi-
tions the system well for deployment in real-time monitoring
environments or resource-constrained devices. However, the
accuracy and stability of the model may still depend on the
diversity of the dataset used to generate reference signatures.
Extending our evaluation to larger, more heterogeneous appli-
cation sets remains a priority for future work.

Privacy considerations. Finally, while our method does not
inspect payloads and operates effectively on encrypted traffic,
it still has privacy implications. Being able to infer appli-
cation usage from metadata alone—even in semi-supervised
settings—raises concerns about surveillance and profiling.
This underscores the need to carefully consider deployment
contexts, ensure informed consent where applicable, and avoid
misuse of such systems in ways that could undermine user
autonomy.

In summary, our results affirm the value of LSH-based
similarity detection for mobile application fingerprinting, par-
ticularly in settings where rapid identification, scalability,
and encrypted traffic support are critical. At the same time,
addressing the edge cases described above will be essential to
making such systems more robust, trustworthy, and ethically
sound.

V. RELATED WORKS

In contrast to our work, the surveyed works use very
different techniques. Mashnoor et al. [2]] also use LSH (the
Nilsimsa hash) but for IoT device identification rather than
mobile applications. They examine various Nilsimsa parameter
settings and report about 94% device-ID accuracy (precision
94%, recall 93%, F193%). Like our method, this avoids
explicit feature extraction, but Mashnoor’s LSH is based on
fixed-distance digests and tuned for device traffic, whereas
our LSH operates on tokenised packet features. In practice,
their LSH (LSIF-R) slightly outperforms prior ML methods
by 12% (to 94% accuracy). By contrast, our LSH pipeline
on application data achieved moderate accuracy (typically
below these deep-learning baselines). Unlike our approach,
Mashnoor et al. do not address unseen (new) applications
(or in their case IoT devices), but rather only identify IoT
devices that went through training. Wang et al. [3]] propose
App-Net, a supervised hybrid neural network that processes
raw TLS traffic with parallel CNN and bi-LSTM paths. App-
Net automatically learns features from the first data packet
and the packet-length sequence, fusing them to recognise
applications. On a dataset of 80 mobile applications, they
report 93.2% overall accuracy and 91.2% macro-averaged F1
(Precision/recall values are not explicitly given, but accuracy
and F1 are both above 90%). Unlike our LSH, App-Net

requires training on labelled application traces and is far more
complex (deep learning with millions of parameters). In
our experiments, the LSH pipeline yielded lower accuracy
than App-Net’s 93% (85.37% for application recognition and
80.11% for unseen application detection), reflecting the advan-
tage of learned features. App-Net, however, has no mechanism
for unknown applications — it can only classify among the
80 trained classes. In summary, Wang et al’s method is
more accurate on the seen-application task but is a heavy-
weight, supervised model, whereas our LSH is simpler but
less accurate. Van Ede et al. [4] introduce FlowPrint, a semi-
supervised method focusing on unseen application detection.
FlowPrint clusters destination IPs and finds temporal flow
correlations to build application fingerprints, entirely without
prior labels. On both Android and iOS traffic, they achieve
89.2% accuracy for recognising known applications. Crucially,
FlowPrint can flag new applications: it reports a precision of
93.5% for unseen-application detection (and detects 72.3%
of new applications within 5 minutes of activity). Our LSH
method, by contrast, achieves 84.19% precision for unseen-
application detection (takes ~8 minutes with 5-fold stratified
training and testing with different numbers of bands). In
practice, FlowPrint’s accuracy on known applications (89%) is
comparable to our LSH (depending on settings), but its unseen-
application capability (93.5% precision) is unique. Marzani
et al. [4] propose ML-NetLang, combining automata learning
with machine learning. They treat each application’s flow-
level behaviour as a formal language (k-TSS automaton)
over destination-related symbols, then classify using a logistic
regression or SVM. On a cross-platform dataset (mixed An-
droid/iOS applications) they report around 95/97% accuracy
(95% average F1). For example, ML-NetLang attains 96%
accuracy (P~95-96%, R~96%, F1~95%) on the combined
Android/iOS test. This outperforms both FlowPrint (89%) and
a traditional AppScanner baseline in their experiments. The
approach is supervised (using one trace per application for
training/testing) and cannot detect unseen applications. Com-
pared to our LSH, ML-NetLang’s accuracy is higher (96% vs
our 85.37%), but it relies on handcrafted destination features
and learning. Our LSH uses only raw packet ordering/hash
similarity and is fully unsupervised after hashing; it is lighter
but achieves somewhat lower accuracy than ML-NetLang.
Finally, Liu et al. [9] present TransECA-Net, a hybrid CNN
+ Transformer model with channel attention for encrypted-
traffic classification. They evaluate on a 12-class encrypted
traffic dataset (ISCX). TransECA-Net achieves 97.7% overall
accuracy, 98.2% precision, and 97.9% recall (implying F1
98.0%). This is state-of-the-art for their traffic categories, sig-
nificantly higher than simple CNN or CNN+LSTM baselines.
Note this is a general traffic classifier (VoIP, email, etc.), not
specifically mobile applications. Nevertheless, it illustrates that
deep transformer models can greatly exceed the accuracy of
simple LSH or fingerprinting techniques. In relative terms,
TransECA-Net’'s 98% accuracy far surpasses our LSH on
application data, though it is a much more complex model
and requires training. As with App-Net, there is no unseen-



application detection mechanism — it is pure classification over
known classes.

TABLE 1V: Performance Comparison on Application recog-
nition

Method (Source)
Our approach (LSH)
App-Net

FlowPrint
ML-NetLang LR
TransECA-Net

Accuracy | Precision Recall
85.37% 81.44% 77.52%
93.2% - -
94.47% 94.7% 94.47%
97.0% 97.0% 97.0%

~ 98.0% ~ 98.0% | ~98.0%

F1 Score | Defects unseen applications? | C y
TI2% | Yes O(nlogn)
91.2% | No O(n
94.58% | Yes O(n
96.0% | No O

~ 98.0% | No O(n

VI. CONCLUSION AND FUTURE WORK

This work introduced a scalable fingerprinting technique for
mobile applications using Locality-Sensitive Hashing (LSH)
over symbolic execution traces. By transforming behavioural
traces collected via the ReCon framework into sets of k-
shingles, then encoding them with MinHash and organizing
them into LSH buckets, the system efficiently estimates simi-
larity between traces without relying on deep packet inspection
or fully supervised learning. Through careful parameter tun-
ing—particularly using £ = 2 shingles, 150 hash functions,
and band size 1—the approach achieves a practical balance
between detection accuracy and computational efficiency.

Empirical results on a dataset of 1,000 application traces
(100 applications x 10 runs) validate the method’s perfor-
mance in both closed-world (seen applications) and open-
world (unseen application detection) settings. The system at-
tained up to 85.27% accuracy and 77.72% F1-score for known
applications, and 80.11% accuracy with 81.55% F1-score for
identifying unknown applications at a Jaccard threshold of
0.10. Compared to more complex models like FlowPrint [4]]
or neural approaches like ML-NetLang [10] or TransECA-
Net [9]], this method offers a lightweight and interpretable
alternative that performs well under real-time constraints and
encrypted traffic, making it especially suitable for network
monitoring in constrained environments.
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