
A Novel Heuristic for Directed Acyclic Graph Task Scheduling using
Longest Betweenness Centrality
N.P. DAMINK, University of Twente, The Netherlands

Task scheduling is a well-known NP-hard problem that involves efficiently

allocating computational tasks across available resources. Existing heuris-

tic approaches, such as HEFT and MinMin, typically rely on basic task

properties and may fail to capture deeper structural dependencies in the

task graph. In this work, we propose a novel list-scheduling heuristic based

on Longest Betweenness Centrality (LBC), a metric designed to quantify

a task’s influence by evaluating its presence on long dependency paths.

We introduce six LBC-based ranking methods, including variants that are

source-based and successor-weighted. The most promising variant, LBC-

SRL, estimates task criticality by analyzing each task’s current critical

dependencies. Experimental evaluations across five synthetic DAG gener-

ation models and multiple processor configurations demonstrated that

LBC-SRL consistently outperforms classical heuristics such as MinMin,

HCPT and PEFT. On DAGs with a high density, LBC-SRL achieves perfor-

mance comparable to HEFT. Although HEFT remains the top performer

overall, pairwise comparisons reveal that LBC-SRL frequently matches its

performance and occasionally even surpasses it. These findings illustrate

the potential of incorporating global graph-theoretical metrics into task

scheduling.

Additional Key Words and Phrases: Task Scheduling, Directed Acyclic

Graphs (DAGs), Longest Betweenness Centrality (LBC), Parallel Comput-

ing, Makespan, List Scheduling Algorithms, Scheduling Heuristics, Static

Scheduling, Graph Centrality

1 INTRODUCTION
Task scheduling is a fundamental problem in computer science

with widespread applications in domains such as cloud comput-

ing [4], data processing [14], and real-time systems [20]. In the

modern era, single processor systems are often insufficient for

processing the huge amounts of data generated. This has led to

the emergence of parallel and distributed computing environ-

ments, where multiple processors or computing nodes execute

tasks concurrently [7]. Although these environments significantly

increase computational power, they also introduce considerable

complexity into the scheduling process. Task scheduling involves

assigning computational tasks to available resources, such as

multiple CPUs, distributed nodes, or virtual machines. The pri-

mary goal is to optimize performance metrics, such as minimiz-

ing makespan or balancing load distribution across processors.

Suboptimal scheduling can result in resource under-utilization

and increased execution times. In large-scale environments, even

small inefficiencies can lead to significant performance bottle-

necks, which in practice may result in increased operational costs.

Therefore, effective task scheduling is of great importance in

modern computing environments. However, many existing task

scheduling heuristics rely on simple task properties and fail to

account for the global structure of the task graph. To address this

limitation, we propose a novel scheduling approach that leverages

a new centrality metric to capture deeper structural dependencies.

TScIT 43, July 4, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

1.1 Contributions
This paper makes the following key contributions:

• It introduces the novel graph-theoretic metric LBC, de-

signed to quantify task importance based on their presence

along long dependency paths in DAGs.

• It proposes several LBC-based task scheduling heuristics

and formally analyzes their computational complexity.

• It presents a comprehensive empirical evaluation com-

paring the proposed LBC-based heuristics to established

scheduling heuristics across a diverse set of synthetic DAG

topologies and processor counts.

• It demonstrates the value of incorporating global structural

information into task scheduling decisions.

1.2 Problem Statement
This study considers the task scheduling problem 𝑃 | 𝑝𝑟𝑒𝑐 | 𝐶max

in Graham’s notation [15]. This notation represents a schedul-

ing problem on parallel machines with identical processors (𝑃),

indicating that all processors execute any task with the same

speed. Each task is associated with a processing cost and is sub-

ject to precedence constraints (𝑝𝑟𝑒𝑐). Finally, the objective of

this problem is to minimize the makespan (𝐶max). This study fo-

cuses specifically on static scheduling, in which all tasks and their

dependencies are known ahead of scheduling. Unlike dynamic

scheduling, which makes decisions at runtime, static scheduling

allows optimization based on the complete structure of the task

DAG.

Since this problem is NP-complete [27], it is believed that no

algorithm can find the optimal solution in polynomial time. Con-

sequently, heuristic algorithms are essential for finding efficient

and scalable solutions.

This paper investigates how the Longest Betweenness Cen-

trality (LBC) metric, introduced in section 4.1, can be effectively

integrated into heuristic task scheduling algorithms for parallel

and distributed computing systems. To address this main research

objective, we will investigate the following key questions:

• How do different LBC-based ranking strategies affect the

makespan of task scheduling across diverse DAG struc-

tures?

• How does the computational complexity of the proposed

LBC-based scheduling algorithms compare to that of state-

of-the-artmethods such asHEFT, PEFT,MinMin, andHCPT?

• How do the proposed LBC-based heuristics compare to

state-of-the-art scheduling algorithms in terms ofmakespan

performance across various task graph types and processor

configurations?

The remainder of this paper is structured as follows. Section 2

present the foundational concepts upon which this paper is built.

Section 3 reviews the state-of-the-art literature on heuristic sched-

uling algorithms and identifies key limitations in existingmethods.

Section 4 introduces the Longest Betweenness Centrality (LBC)

metric and several variants of the novel LBC-based heuristic. The-

oretical formulations and complexity analyses are provided to

establish their computational feasibility. Section 5 outlines the

1

TScIT 43, July 4, 2025, Enschede, The Netherlands N.P. Damink

experimental methodology, including details on DAG genera-

tion and evaluation parameters. Section 6 presents the empirical

results, comparing the proposed heuristics against established

algorithms across a range of scenarios. Finally, Section 7 discusses

the findings, limitations, and directions for future research.

2 BACKGROUND
In task scheduling, an application’s components and their depen-

dencies can be represented by a Directed Acyclic Graph (DAG).

Formally, a taskDAG is a graph𝐺 = (𝑉 , 𝐸), where𝑉 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}
is a finite set of tasks and 𝐸 is a set of directed edges represent-

ing dependencies between these tasks. We denote the number

of tasks as 𝑛 = |𝑉 | and the number of dependencies as 𝑒 = |𝐸 |.
Each task 𝑡𝑖 ∈ 𝑉 is associated with a processing cost 𝑐𝑖 . This

represents the time or computational effort required to execute

the task. Each directed edge from task 𝑡𝑖 to task 𝑡 𝑗 , denoted as

(𝑡𝑖 , 𝑡 𝑗) ∈ 𝐸, indicates that 𝑡𝑖 must be completed before task 𝑡 𝑗 be-

gins. By definition, a DAG does not contain cycles, which means

that there is no sequence of tasks 𝑡𝑖1 , 𝑡𝑖2 , . . . , 𝑡𝑖𝑘 , 𝑡𝑖1 such that each

(𝑡𝑖𝑙 , 𝑡𝑖𝑙+1) ∈ 𝐸. Thus, the structure of a DAG directly represents

the order in which tasks must be executed. DAG-based models

are especially useful in parallel and distributed computing envi-

ronments, where tasks can run concurrently if dependencies are

respected.

One of the main objectives in task scheduling is minimizing

the makespan. Makespan (𝐶𝑚𝑎𝑥) is commonly used as a perfor-

mance metric to evaluate scheduling algorithms. It indicates the

completion time of the last task [22]. Effectively, it measures the

total time required to complete a set of tasks. Note that this is

different from the cumulative processing time of all tasks, as our

parallel computing environment allows multiple tasks to execute

concurrently. Formally, the makespan can be defined as

𝐶𝑚𝑎𝑥 = max

𝑖∈𝑡𝑎𝑠𝑘𝑠
𝐶𝑖 (1)

where 𝐶𝑖 is the finishing time of task 𝑖 and 𝑡𝑎𝑠𝑘𝑠 is the set of all

tasks to be scheduled.

We now introduce key definitions that will be used throughout

the remainder of this paper.

Definition 1: Let 𝑃𝑟𝑒𝑑 (𝑡𝑖) denote the set of direct predecessors
of the task 𝑡𝑖 . Formally, in the context of DAGs, this set is defined

as:

𝑃𝑟𝑒𝑑 (𝑡𝑖) = {𝑡 𝑗 | (𝑡 𝑗 , 𝑡𝑖) ∈ 𝐸} (2)

Definition 2: Let 𝑆𝑢𝑐𝑐 (𝑡𝑖) denote the set of direct successors
of the task 𝑡𝑖 . Formally, in the context of DAGs, this set is defined

as:

𝑆𝑢𝑐𝑐 (𝑡𝑖) = {𝑡 𝑗 | (𝑡𝑖 , 𝑡 𝑗) ∈ 𝐸} (3)

We further define 𝑆𝑢𝑐𝑐∗ (𝑡𝑖) as the set of all successors of 𝑡𝑖 . That
is, the set of all tasks 𝑡 𝑗 ∈ 𝑉 such that there exists a directed path

from 𝑡𝑖 to 𝑡 𝑗 in the DAG.

Definition 3: Let the 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ denote the longest path

from an entry task to an exit task within the DAG. Formally, let

the sets of entry and exit tasks be defined as:

𝑇𝑒𝑛𝑡𝑟𝑦 = {𝑡𝑖 | 𝑃𝑟𝑒𝑑 (𝑡𝑖) = ∅} (4)

𝑇𝑒𝑥𝑖𝑡 = {𝑡𝑖 | 𝑆𝑢𝑐𝑐 (𝑡𝑖) = ∅} (5)

Then, the 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ is the path of maximum total weight

among all directed paths from any task in 𝑇𝑒𝑛𝑡𝑟𝑦 to any task

in 𝑇𝑒𝑥𝑖𝑡 . This path determines the minimum completion time of

the entire task DAG and forms the bottleneck for scheduling.

Definition 4: Let 𝐸𝑆𝑇 (𝑡𝑖 , 𝑝 𝑗) represent the earliest start time

of task 𝑡𝑖 on processor 𝑝 𝑗 :

𝐸𝑆𝑇 (𝑡𝑖 , 𝑝 𝑗) = max

{
𝑇𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑝 𝑗), max

𝑡𝑝 ∈𝑃𝑟𝑒𝑑 (𝑡𝑖)

(
𝐴𝐹𝑇 (𝑡𝑝) + 𝑐𝑝,𝑖

)}
(6)

where 𝑇𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑝 𝑗) is the earliest time at which processor 𝑝 𝑗
is ready for task execution, 𝐴𝐹𝑇 (𝑡𝑝) is the actual finish time of

predecessor 𝑡𝑝 , and 𝑐𝑝,𝑖 is the communication cost between tasks

𝑡𝑝 and 𝑡𝑖 . Note that 𝑐𝑝,𝑖 = 0, as communication costs are not

considered in our study.

Definition 5: Let 𝐸𝐹𝑇 (𝑡𝑖 , 𝑝 𝑗) represent the earliest finish time

of task 𝑡𝑖 on processor 𝑝 𝑗 :

𝐸𝐹𝑇 (𝑡𝑖 , 𝑝 𝑗) = 𝐸𝑆𝑇 (𝑡𝑖 , 𝑝 𝑗) +𝑤𝑖, 𝑗 (7)

where𝑤𝑖, 𝑗 is the processing cost of task 𝑡𝑖 on processor 𝑝 𝑗 . How-

ever, we assume a homogeneous processor environment, meaning

that each processor executes tasks with the same efficiency. Con-

sequently, the cost of executing task 𝑡𝑖 on any processor 𝑝 𝑗 is

uniform and given by𝑤𝑖, 𝑗 = 𝑐𝑖 .

3 STATE-OF-THE-ART
Numerous task scheduling heuristics have been developed in prior

work. These heuristics are commonly categorized into clustering-

based, duplication-based, and list-based scheduling algorithms.

Clustering-based algorithms aim to minimize communication

costs by grouping related tasks onto the same processor. Duplication-

based methods aim to reduce data transfer latency by replicating

the predecessors of tasks across processors. Finally, list-based

scheduling algorithms assign priorities to tasks and schedule

them according to these priorities [2].

Beyond these classical categories, recent research has explored

metaheuristic techniques, such as genetic algorithms [21] and

particle swarm optimization [5], as well as machine learning-

based methods, like reinforcement learning [25]. These methods

are particularly effective in heterogeneous or cloud environments,

where dynamic scheduling plays a significant role.

Among these categories, list-based scheduling algorithm have

consistently demonstrated superior performance in static and

homogeneous environments [2], which aligns with the scope of

this study. Consequently, list-based approaches are the primary

focus of this work.

Well-known list-based scheduling algorithms includeMinMin [16],

HEFT [26], HCPT [17], and PEFT [3]. These algorithms mainly

rely on basic task graph properties, such as task execution time,

immediate dependencies, or placement on the critical path. Al-

though such properties can sometimes be effective for efficiently

computing a near-optimal solution, they fail to exploit deeper

structural characteristics of DAGs. As a result, these methods may

overlook more optimal scheduling opportunities that can arise

from global graph patterns. Therefore, a gap exists in leveraging

advanced graph-theoretic concepts to make scheduling decisions.

This work aims to address this gap by proposing a novel heuristic

that incorporates both global and local structural properties of

DAGs to improve scheduling performance. The following section

will provide a more detailed description of existing algorithms,

which will serve as benchmarks in the comparative evaluation of

our proposed approach.

2

A Novel Heuristic for Directed Acyclic Graph Task Scheduling using Longest Betweenness Centrality TScIT 43, July 4, 2025, Enschede, The Netherlands

3.1 MinMin
MinMin [16] is a greedy task scheduling heuristic that aims to

minimize makespan by greedily assigning tasks that have the

minimum EFT among all ready tasks. Specifically, for each ready

task, it computes the EFT on all available processors and selects

the task-processor pair that results in the minimum EFT. This

process repeats until all tasks have been assigned.

3.2 HCPT
HCPT (Heterogeneous Critical Path Task scheduling) [17] consists

of two phases, a ranking phase and a processor selection phase.

In the ranking phase, tasks are prioritized based on their depth

and position on the critical path. It schedules tasks in decreasing

order of depth, giving precedence to those that are deep ancestors

of nodes on the critical path. In the processor selection phase,

HCPT applies an EFT scheduling strategy. For each task, it selects

the processor time slot that yields the earliest finish time while

respecting precedence and availability constraints.

3.3 HEFT
HEFT (Heterogeneous Earliest Finish Time) [26] also follows these

two main phases. In the ranking phase, tasks are prioritized based

on their upward rank, which estimates the longest path from

the task to the exit node. This metric can be interpreted as a re-

verse depth, highlighting tasks that lie on or near the critical path.

During the processor selection phase, HEFT applies an EFT sched-

uling strategy similar to HCPT. However, HEFT also supports

task insertion. This allows tasks to be scheduled between existing

time slots, provided that precedence and availability constraints

are maintained.

3.4 PEFT
PEFT (Predict Earliest Finish Time) [3] also consists of two pri-

mary phases. In the ranking phase, tasks are prioritized using an

Optimistic Cost Table (OCT). Each entry optimistically estimates

the EFT by considering both computation and communication

costs along critical paths. Tasks are then scheduled in descending

order of their rank, where the rank is defined as the average value

of the task’s entries in the OCT. In the processor selection phase,

PEFT assigns tasks to processors by estimating the EFT based

on predicted values. It uses a similar EFT insertion technique

as HEFT. However, it improves task scheduling by using more

accurate finish time predictions. These predictions better capture

communication delays, leading to improved load balancing and

increased efficiency.

4 PROPOSED METHOD: LBC-BASED SCHEDULING
HEURISTICS

Algorithm 1 presents the structure of the proposed LBC-based

scheduling heuristic, which is divided into twomain phases. In the

ranking phase, a supernode 𝑠∗ is added usingAdd-Super-Node(𝐺),
after which task scores are computed using one of the two pro-

posed 𝐿𝐵𝐶 variants. These scores are then refined using one of

six scoring strategies detailed in Section 4.2.1, applied through

Apply-Scoring-Strategy(𝑠𝑐𝑜𝑟𝑒𝑠,𝐺). The introduced supernode
is then removed from the final ranking. In the processor selection

phase, tasks are scheduled onto processors using an insertion-

based EFT policy, implemented as Schedule(𝐺, 𝑟𝑎𝑛𝑘𝑖𝑛𝑔, 𝑃,𝐶).

The following sections provide a detailed explanation of the un-

derlying theory behind the LBC prioritization metric, followed

by a discussion of each phase in more detail.

Algorithm 1 Main pseudocode for the LBC-based heuristics.

function LBC-Heuristic(Graph 𝐺 , Processors 𝑃 , Costs 𝐶)

𝐺 ← Add-Super-Node(𝐺)
𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝐿𝐵𝐶 (𝑠) (𝐺,𝐶)
𝑠𝑐𝑜𝑟𝑒𝑠 ← Apply-Scoring-Strategy(𝑠𝑐𝑜𝑟𝑒𝑠,𝐺)
𝑟𝑎𝑛𝑘𝑖𝑛𝑔← Score-Guided-Ranking(𝐺, 𝑠𝑐𝑜𝑟𝑒𝑠)
remove 𝑠∗ from 𝑟𝑎𝑛𝑘𝑖𝑛𝑔

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← Schedule(𝐺, 𝑟𝑎𝑛𝑘𝑖𝑛𝑔, 𝑃,𝐶)
return 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

end function

4.1 Longest Betweenness Centrality
The scheduling heuristic is built around a novel metric called

Longest Betweenness Centrality (LBC). Traditional betweenness

centrality measures the importance of a node within a network

by counting how often it lies on the shortest paths between pairs

of nodes [6]. In contrast, LBC redefines this concept by focusing

on the longest paths. We define the longest path between two

nodes 𝑡𝑖 and 𝑡 𝑗 as the path with the maximum total weight among

all directed paths from 𝑡𝑖 to 𝑡 𝑗 . The existence of these paths is

guaranteed by the acyclic nature of DAGs. The LBC for a node 𝑣

can be formally defined as follows:

𝐿𝐵𝐶 (𝑣) =
∑︁
𝑠,𝑡 ∈𝑉
𝑠≠𝑣≠𝑡

𝐿𝑠𝑡 (𝑣)
𝐿𝑠𝑡

(8)

where 𝐿𝑠𝑡 is the number of longest paths from node 𝑠 to node 𝑡

and 𝐿𝑠𝑡 (𝑣) is the number of those paths that pass through 𝑣 .

Makespan is primarily affected by the longest execution paths

in the DAG. Therefore, effective scheduling requires identifying

tasks that frequently occur along those paths. The LBC metric

captures this by prioritizing tasks that contribute the most to the

DAG’s critical structure. Unlike most state-of-the-art methods,

LBC also considers the influence of tasks on long, non-critical

paths, which can significantly affect the makespan. An illustrative

example of how LBC is computed on a small weighted DAG is

provided in Appendix C.

Brandes’ algorithm [8] is widely recognized as one of the most

efficient methods for computing standard betweenness centrality.

We adapt a variation of this algorithm to compute LBC. Specifi-

cally, the new variant tracks maximum path lengths and counts

the number of such longest paths that pass through each node.

Moreover, the BFS or Dijkstra algorithm is replaced with a topo-

logical traversal to ensure that nodes are processed in the correct

order for DAGs. This adaptation maintains the polynomial-time

efficiency of the original algorithm, making it suitable for large

task DAGs. The full pseudocode for this adaptation can be found

in Appendix B.1.

In addition to the general LBC metric, we introduce a vari-

ant called Source-based Longest Betweenness Centrality (𝐿𝐵𝐶𝑠).

This version focuses on the influence of a node on the longest

paths originating from entry tasks in the DAG. This approach

still captures tasks that are critical to long execution chains, but

avoids the computational overhead of evaluating all node pairs.

3

TScIT 43, July 4, 2025, Enschede, The Netherlands N.P. Damink

The 𝐿𝐵𝐶𝑠 score for a node 𝑣 is defined as:

𝐿𝐵𝐶𝑠 (𝑣) =
∑︁

𝑡 ∈𝑉 , 𝑠∈𝑇𝑒𝑛𝑡𝑟𝑦
𝑡≠𝑣≠𝑠

𝐿𝑠𝑡 (𝑣)
𝐿𝑠𝑡

(9)

The full pseudocode for this adaptation can be found in Appen-

dix B.2.

4.2 Ranking Phase
4.2.1 Scoring Strategies for Task Prioritization. To determine the

most effective use of LBC, this paper explores six task scoring

approaches based on the metric. For each approach, a supernode

𝑠∗, with edges to all entry nodes, is added to the DAG. Formally,

the new augmented DAG is defined as:

𝐺 ′ = (𝑉 ∪ {𝑠∗}, 𝐸 ∪ {(𝑠∗, 𝑣) | 𝑣 ∈ 𝑉 , 𝑃𝑟𝑒𝑑 (𝑣) = ∅}) (10)

In this augmented DAG, the new vertex 𝑠∗ has outgoing edges to

all nodes 𝑣 ∈ 𝑉 for which 𝑃𝑟𝑒𝑑 (𝑣) = ∅. The main advantage of

introducing this supernode is that the source nodes are included

in the longest path computations, allowing them to be properly

quantified.

LBC: The first scoring approach directly uses the LBC score as

the priority score for each node. The idea is that tasks with high

LBC scores lie on many long dependency chains, contributing the

most to the total execution time. Using this approach, the score

of a node can be defined as:

𝑆𝑐𝑜𝑟𝑒 (𝑖) = 𝐿𝐵𝐶 (𝑖) (11)

LBC Source-based (LBC-S): This second scoring approach uses

the source-based variant of the LBC algorithm. Priority scores

are computed analogously to the previous method, but using the

source-based LBC metric:

𝑆𝑐𝑜𝑟𝑒 (𝑖) = 𝐿𝐵𝐶𝑠 (𝑖) (12)

This approach only considers the longest paths that originate from

the starting node, which is sufficient for our goal of minimizing

these paths.

LBC Source-based with Direct Successors (LBC-SDS): This
scoring approach builds upon the source-based variant of the LBC

algorithm. However, the score also incorporates the scores of its

dependent successor tasks. Specifically, the score is defined as

a combination of the 𝐿𝐵𝐶𝑠 score of the task and its immediate

successors:

𝑆𝑐𝑜𝑟𝑒 (𝑖) = 𝐿𝐵𝐶𝑠 (𝑖) +
∑︁

𝑠∈𝑆𝑢𝑐𝑐 (𝑖)
𝐿𝐵𝐶𝑠 (𝑠) (13)

The underlying rationale is to prioritize tasks that lead to succes-

sors with higher scores. This promotes the execution of tasks that

contribute more significantly to the overall execution time.

LBC Source-based with All Successors (LBC-SAS): This scor-
ing approach extends the previous algorithm by considering not

only the immediate successors of a task, but all its transitive suc-

cessors. Specifically, the score is computed as the sum of the 𝐿𝐵𝐶𝑠
scores of the task itself and of all of its downstream tasks:

𝑆𝑐𝑜𝑟𝑒 (𝑖) = 𝐿𝐵𝐶𝑠 (𝑖) +
∑︁

𝑠∈𝑆𝑢𝑐𝑐∗ (𝑖)
𝐿𝐵𝐶𝑠 (𝑠) (14)

This approach places even more emphasis on tasks that contribute

to a larger number of high-scoring successors.

LBC Source-based with Weighted Successors (LBC-SWS):
This approach further extends the previous algorithm by intro-

ducing a weighted scoring mechanism for the successor tasks. It

draws inspiration from the work of Lin et al. [19], who proposed

a weighted out-degree (WOD) metric to determine task priori-

ties. This approach prioritizes tasks with a high out-degree and

gives additional weight to those whose successor nodes have a

low in-degree. Building on this concept, our approach adopts a

similar, but reversed rationale. We will be prioritizing tasks with

a high in-degree, as their high number of dependencies can delay

execution and significantly impact the makespan if scheduled late.

The score is defined as follows:

𝑆𝑐𝑜𝑟𝑒 (𝑖) = 𝐿𝐵𝐶𝑠 (𝑖) +
∑︁

𝑠∈𝑆𝑢𝑐𝑐∗ (𝑖)
𝐿𝐵𝐶𝑠 (𝑠) · |𝑃𝑟𝑒𝑑 (𝑠) | (15)

This approach emphasizes tasks that unlock access to highly

connected successors, which are likely to become bottlenecks in

later execution stages.

LBC Source-based Repeated Loop (LBC-SRL): The final scor-
ing approach introduces an iterative variant of the source-based

LBC method. Instead of computing all scores in a single pass,

LBC-SRL recomputes the 𝐿𝐵𝐶𝑠 scores at each step of the ranking

process. At each iteration, the algorithm identifies all source nodes

and computes their source-based LBC scores using the current

state of the DAG. The highest-scoring node is selected, added to

the ranking, and removed from the graph. This process is repeated

until all nodes are scheduled. As this procedure involves itera-

tive graph updates and score recalculations, it is better expressed

procedurally rather than with a simple formula. The complete

pseudocode is provided in Appendix B.3. Although this design

increases the computational overhead, it enables more informed

scheduling decisions. At each step, the algorithm selects the task

uponwhich themost remaining tasks depend, thereby prioritizing

the tasks that are most critical for subsequent execution stages.

In summary, these LBC-based strategies differ primarily in how

they incorporate downstream influence: LBC and LBC-S focus

solely on the centrality of the task, while the LBC-SDS, LBC-

SAS, and LBC-SWS variants progressively expand the scope of

influence from direct to weighted transitive successors. LBC-SRL

stands out by recalculating the influence after each scheduling

step, allowing the task prioritization to adapt to the evolving DAG

structure.

4.2.2 Score-Guided Topological Scheduling. After computing the

scores using one of the described scoring approaches, the final

ranking is determined using a score-guided topological sort. Dur-

ing the traversal, tasks are ordered in a ranking that respects all

precedence constraints. At each step, the algorithm selects the

highest-scoring ready task using a priority queue implemented

as a heap. Note that this ranking procedure is applied to all ap-

proaches except LBC-SRL, which already constructs the ranking

iteratively during the score computation. The detailed pseudocode

for this ranking procedure can be found in Appendix B.4.

4.3 Processor Selection Phase
The processor selection phase follows the task order of the gener-

ated ranking. This phase applies a similar insertion-based sched-

uling strategy used in HEFT [26]. Each task is scheduled on the

processor that provides the lowest EFT. Task insertion between

existing tasks is allowed, provided that dependency and avail-

ability constraints are satisfied. The detailed pseudocode for this

scheduling procedure is provided in Appendix B.5.

4

A Novel Heuristic for Directed Acyclic Graph Task Scheduling using Longest Betweenness Centrality TScIT 43, July 4, 2025, Enschede, The Netherlands

4.4 Complexity Analysis
Table 1 presents the asymptotic time complexity of the scheduling

algorithms evaluated in this study. In this table, we denote the

number of tasks as 𝑛 = |𝑉 |, the number of edges as 𝑒 = |𝐸 |, and
the number of processors as 𝑝 = |𝑃 |. These complexity bounds are

essential for evaluating the practical scalability of each approach,

especially when applied to large task graphs.

The LBC and LBC-SRL heuristics have a worst-case time com-

plexity of O(𝑛2 · 𝑝 + 𝑛 · 𝑒). The term O(𝑛 · 𝑒) originates from
the calculation of the LBC scores, with each 𝐿𝐵𝐶𝑠 computation

requiring O(𝑛+𝑒) time. When repeated across 𝑛 tasks, this results

in a total of O(𝑛2 +𝑛 ·𝑒) time. However, the term O(𝑛2) is asymp-

totically dominated by the processor selection phase, which has a

time complexity of O(𝑛2 · 𝑝). In this phase, each task is compared

against all already scheduled tasks on every processor to identify

the optimal insertion point. Consequently, the total complexity

for these two algorithms is O(𝑛2 · 𝑝 + 𝑛 · 𝑒). In dense graphs,

where 𝑒 ≈ 𝑛2, the traversal term dominates, leading to a complex-

ity of O(𝑛3). In contrast, in sparser graphs or systems with many

processors, the insertion phase dominates the complexity.

The remaining LBC variants have an overall complexity of

O(𝑛2 · 𝑝). These approaches simplify the scheduling phase by

using a lighter 𝐿𝐵𝐶𝑠 with complexity O(𝑛 + 𝑒) and a sorting step

with O(𝑛 log𝑛). Neither outweighs the cost of the insertion phase,
which remains the asymptotically dominant component.

Similarly, the complexities of HEFT and PEFT are dominated

by the insertion phase, resulting in a total complexity of O(𝑛2 ·𝑝).
For each scheduled task, MinMin evaluates all ready tasks

across all processors to find the minimum EFT, leading to a time

complexity of O(𝑛2 · 𝑝).
Finally, HCPT uses a simpler insertion-free selection mecha-

nism, reducing its complexity to O(𝑛 · 𝑝). The dominant step for

HCPT is the task ranking, which takes O(𝑛 log𝑛) time.

Algorithms Total Complexity

LBC, LBC-SRL O(𝑛2 · 𝑝 + 𝑛 · 𝑒)
LBC-S, LBC-SDS, LBC-SAS,

LBC-SWS, HEFT, MinMin, PEFT

O(𝑛2 · 𝑝)

HCPT O(𝑛 log𝑛)
Table 1. Asymptotic time complexities of the evaluated scheduling heuris-
tics, expressed in number of tasks 𝑛, number of processors 𝑝 , and number
of dependencies 𝑒 .

5 EXPERIMENTAL SETUP

5.1 System Configuration
All experiments were conducted in a Windows 11 environment

using Python 3.10.12 for implementation and R 4.1.2 for statistical

analysis and visualization. The baseline algorithms HEFT, HCPT

and MinMin, used for the comparative evaluation, were adopted

directly from the publicly available implementations provided by

Canon et al. [9].

Each experimental configuration was executed 1000 times to

ensure that the results are statistically robust and not influenced

by randomness in the DAG generation process. Five different ran-

domDAG generators were used to create a diverse set of synthetic

DAGs. To evaluate the scheduling heuristics under different levels

of parallelism, each DAG configurations was tested using 2, 3, 5,

7, and 10 processors.

Further details on the evaluation dataset, experimental param-

eters, and DAG generation techniques are provided in the follow-

ing section. All source code and additional resources are publicly

available through the accompanying GitHub repository [11]. This

repository includes all scripts needed to replicate the experiment,

ensuring full reproducibility.

5.2 Evaluation Data
To evaluate the proposed algorithms, we use synthetically gener-

ated DAGs with 𝑛 = 100 vertices. The processing costs are sam-

pled uniformly over a range of 1 to 20. Although actual processing

costs vary significantly by domain, this range provides a balanced

set of task execution times, suitable for a general evaluation. The

generation methods produce DAGs with varying structural prop-

erties, allowing us to assess the strengths and limitations of each

heuristic across various DAG topologies. These generation tech-

niques were implemented and analyzed in detail by Canon et

al. [9]. The following methods will be used for evaluation:

Erdős–Rényi-Based Random Generation: This generation
method is based on the Erdős–Rényi algorithm [12], which con-

structs DAGs by adding edges between pairs or vertices with

independent probability 𝑝 . To maintain acyclicity, edges are only

added in the upper triangle of the adjacency matrix. The value of

𝑝 controls the graph’s sparsity or density. In our study, we use

𝑝 = 0.1 and 𝑝 = 0.5. The former produces sparse graphs with few

edges between the nodes, while the latter produces dense graphs

with many edges between the nodes. These p-values allow us to

evaluate whether our algorithm performs better on sparse, dense,

or both types of graphs.

Uniform Random DAG Generation: This generation method

uniformly samples from the set of all labeled DAGs with 𝑛 ver-

tices using a recursive counting approach [23]. It guarantees an

unbiased distribution within this well-defined class, ensuring ev-

ery labeled DAG has the same probability of being selected. This

enables an evaluation of the scheduling algorithms without any

bias towards particular DAG shapes or structural patterns. How-

ever, the total number of dense DAGs significantly exceeds that

of sparse ones in the sample space. This is due to the increasing

number of possible edge combinations as graphs become denser.

Consequently, dense graphs naturally appear more frequently in

the generated dataset.

Random Orders Method: This method derives a DAG from

randomly generated orders [28]. These orders are generated by

intersecting 𝑘 random total orders. The parameter 𝑘 controls the

depth and structure of the resulting DAGs. Higher values of k

produce sparser and shallower DAGs, as edges are only added

when multiple random total orders consistently agree on the di-

rection. For our study, we select 𝑘 = 3 to generate DAGs that

reflect a balanced combination of task dependencies and paral-

lelism. This choice produces graphs with moderate depth and

sparsity, offering a realistic workload for scheduling algorithms.

Layer-by-Layer Method: The layer-by-layer method, first pro-

posed by Adam et al. [1], is adapted in this study using a variant

introduced by Canon et al. [9]. This method constructs DAGs

by assigning vertices to layers and adding edges between layers

with probability 𝑝 . In this study, we use

√
𝑛 layers and set 𝑝 = 0.5.

This layered structure naturally models workflows with sequen-

tial phases, which enables a realistic assessment of scheduling

algorithms under layered dependency constraints.

5

TScIT 43, July 4, 2025, Enschede, The Netherlands N.P. Damink

|𝑃 | = 2 |𝑃 | = 3 |𝑃 | = 5 |𝑃 | = 7 |𝑃 | = 10

E
r
d
.-
L
.

E
r
d
.-
B
.

R
e
c
u
r
.

R
.
o
r
d
.

L
a
y
e
r
e
d

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

LBC-SRL

LBC-SWS

LBC-SAS

LBC-SDS

LBC-S

LBC

LBC-SRL

LBC-SWS

LBC-SAS

LBC-SDS

LBC-S

LBC

LBC-SRL

LBC-SWS

LBC-SAS

LBC-SDS

LBC-S

LBC

LBC-SRL

LBC-SWS

LBC-SAS

LBC-SDS

LBC-S

LBC

LBC-SRL

LBC-SWS

LBC-SAS

LBC-SDS

LBC-S

LBC

Absolute makespan difference

H
e
u
r
i
s
t
i
c

Fig. 1. Comparative performance of LBC-based task ranking strategies across various DAG topologies and processor configurations. The x-axis shows the
absolute makespan difference. Lower values reflect better scheduling performance. ’Erd-L’ and ’Erd-B’ refer to Erdős–Rényi DAGs with edge probabilities
𝑝 = 0.1 and 𝑝 = 0.5, respectively. Other methods include recursive, random order, and layered DAG generators.

6 RESULTS

6.1 Comparative Evaluation of LBC-Based Ranking
Strategies

To evaluate the effectiveness of the proposed LBC-based ranking

strategies, the absolute makespan differences achieved by each

approach across a diverse set of DAG topologies and processor

configurations were measured. For each scheduling run, we com-

pute the makespan 𝐶𝑚𝑒𝑡ℎ𝑜𝑑 achieved by a given heuristic and

subtract the minimal makespan 𝐶𝑚𝑖𝑛 obtained across all heuris-

tics for that specific configuration. Formally, the value plotted on

the y-axis is:

Δ𝐶 = 𝐶𝑚𝑒𝑡ℎ𝑜𝑑 −𝐶𝑚𝑖𝑛 (16)

Figure 1 summarizes these results. In this figure, algorithms posi-

tioned further to the left correspond to lower makespan values,

indicating better scheduling performance. Among all ranking

strategies, LBC-SRL consistently showed the best performance,

demonstrating the effectiveness of recalculating task criticalities.

Furthermore, the figure shows that the graph density has a

significant influence on the results. Sparser DAGs tend to result

in a greater variability in makespan across the heuristics. These

graphs have less restrictive precedence constraints, which offer

greater flexibility in task ordering. In such cases, more informed

heuristics can leverage the graph structure more effectively, result-

ing in lower makespan values. In contrast, as the processor count

increases, denser DAGs fail to differentiate ranking strategies.

Denser DAGs restrict the range of available scheduling permuta-

tions more, causing the results to converge more to the length of

the 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ.

Among the remaining ranking strategies, LBC-SWS achieves

the second-best results, closely followed by LBC-SAS. These find-

ings support the hypothesis that successor tasks play a significant

role in determining the criticality of a task. This highlights the

value of incorporating successor information in the task prioritiza-

tion process. In contrast, both LBC and LBC-S show consistently

poor results across all DAG structures. This suggests that rely-

ing solely on a node’s LBC score is insufficient for effective task

prioritization.

Overall, LBC-SRL proved to be the most effective ranking strat-

egy among those evaluated. Therefore, it is selected as the primary

heuristic for the comparison against the established scheduling al-

gorithms. However, because of its relatively lower computational

complexity, LBC-SWS is also included in further analyses.

6.2 Evaluation Against Established Heuristics
Figure 2 presents the absolute difference in makespan between

the established scheduling algorithms and the two proposed LBC-

based heuristics. The figure clearly shows that HEFT consistently

achieves the lowest makespan. This supports its reputation as

one of the most effective list scheduling algorithms.

LBC-SRL achieves the second best results. It outperforms sev-

eral well-known heuristics. For instance, it achieves consistently

better results than both HCPT and MinMin. This outcome is

expected for MinMin due to its simplistic design, which does

not consider the broader graph structure or future dependen-

cies. HCPT also has a major limitation. Despite considering the

graph structure, it does not utilize insertion-based scheduling.

This reduces HCPT’s flexibility in utilizing available processor

6

A Novel Heuristic for Directed Acyclic Graph Task Scheduling using Longest Betweenness Centrality TScIT 43, July 4, 2025, Enschede, The Netherlands

|𝑃 | = 2 |𝑃 | = 3 |𝑃 | = 5 |𝑃 | = 7 |𝑃 | = 10

E
r
d
.-
L
.

E
r
d
.-
B
.

R
e
c
u
r
.

R
.
o
r
d
.

L
a
y
e
r
e
d

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

HEFT

MinMin

HCPT

PEFT

LBC-SWS

LBC-SRL

HEFT

MinMin

HCPT

PEFT

LBC-SWS

LBC-SRL

HEFT

MinMin

HCPT

PEFT

LBC-SWS

LBC-SRL

HEFT

MinMin

HCPT

PEFT

LBC-SWS

LBC-SRL

HEFT

MinMin

HCPT

PEFT

LBC-SWS

LBC-SRL

Absolute makespan difference

H
e
u
r
i
s
t
i
c

Fig. 2. Absolute makespan differences for established scheduling heuristics and the proposed LBC-based algorithms (LBC-SRL, LBC-SWS) across various
DAG generation models and processor counts. The x-axis shows the absolute makespan difference. Lower values reflect better scheduling performance.

time slots, resulting in less efficient schedules. This drawback

is especially noticeable when the number of processors is low.

Efficient task placement becomes more critical when the num-

ber of available processors is limited. Consequently, as shown in

the figure, HCPT’s performance improves with higher processor

counts, where its lack of insertion flexibility has less impact.

Furthermore, PEFT slightly underperforms compared to LBC-

SRL. However, it should be noted that PEFT typically excels in

environments with significant communication costs. Such costs

are explicitly omitted in this study. This design decision likely

reduces the advantage of PEFT’s optimistic cost table, which is

optimized for both computation and communication costs.

LBC-SRL especially excels in denser graphs (such as those

generated using Erdős–Rényi-based method with 𝑝 = 0.5 as well

as DAGs generated using the recursive and layered methods).

This is likely because LBC-SRL better captures global structural

dependencies in complex DAGs, allowing it to prioritize tasks that

are critical across long dependency chains. In these dense graphs,

LBC-SRL achieves similar results to HEFT. HEFT’s reliance on

upward ranks may cause suboptimal task placements in graphs

with multiple equally critical paths, a situation more common in

dense graphs.

LBC-SWS outperformed both HCPT and MinMin. Like LBC-

SRL, this is likely due to its ability to account for global task de-

pendencies and better task placement. It even performs similarly

to PEFT. Although LBC-SWS does not quite match the perfor-

mance of LBC-SRL, its lower computational complexity makes it

a strong option in scenarios where efficiency is a priority.

Figure 3 provides a pairwise comparison of the heuristics, indi-

cating how frequently each algorithm outperforms another. For

each pair of heuristics ℎ𝑖 and ℎ 𝑗 , we calculate the percentage of

test cases where ℎ𝑖 produces a lower makespan than ℎ 𝑗 . Formally,

the win percentage is defined as:

𝑊 (ℎ𝑖 , ℎ 𝑗) =
Number of cases where 𝐶ℎ𝑖 < 𝐶ℎ 𝑗

Total number of comparisons

× 100 (17)

where 𝐶ℎ𝑖 and 𝐶ℎ 𝑗
are the makespan produced by heuristics ℎ𝑖

and ℎ 𝑗 . Ties, representing cases where both heuristics yield the

same makespan, can be inferred as the remaining percentage.

Specifically, they can be computed with the following formula.

𝑇 (ℎ𝑖 , ℎ 𝑗) = 100% −𝑊 (ℎ𝑖 , ℎ 𝑗) −𝑊 (ℎ 𝑗 , ℎ𝑖) (18)

The pairwise results reveal that LBC-SRL beats PEFT in 33.2% of

the cases, while being outperformed in only 21.7%. This clearly

indicates a significant improvement. However, it only outperforms

HEFT in 3.1% of cases and is outperformed in 42.0%, the remaining

54.9% being ties. This shows that, although LBC-SRL does not

surpass HEFT, it remains competitive by tying more than half

of the cases. Moreover, LBC-SRL is only outperformed in less

than 2% of the cases by HCPT and MinMin. This demonstrates a

significant improvement over these algorithms. Similarly, LBC-

SWS performs well, outperforming both MinMin and HCPT more

than 52% of the time.

7 CONCLUSION
This paper introduced novel heuristics for task scheduling based

on the Longest Betweenness Centrality metric. We developed

and evaluated six LBC-based ranking methods for task schedul-

ing. Among these, LBC-SRL emerged as the most effective vari-

ant. Experimental results demonstrated that our novel approach

7

TScIT 43, July 4, 2025, Enschede, The Netherlands N.P. Damink

3.1

8.9

1.3

0.3

0.7

42.0

21.7

7.1

1.9

1.0

46.1

33.2

13.9

4.3

5.7

57.5

50.7

43.0

11.7

9.1

67.4

65.2

62.8

54.4

27.1

59.4

59.1

55.1

52.2

39.8

HEFT

LBC-SRL

PEFT

LBC-SWS

MinMin

HCPT

H
E
F
T

L
B
C
-
S
R
L

P
E
F
T

L
B
C
-
S
W

S

M

in
M

in

H
C
P
T

Beaten heuristic

B
e
a
t
i
n
g
h
e
u
r
i
s
t
i
c

Win %

0%

25%

50%

75%

100%

Fig. 3. Pairwise win percentage heatmap for all evaluated heuristics
based on makespan performance. Each cell represents the proportion of
runs in which the row algorithm outperforms the column algorithm.

yields competitive makespan performance compared to estab-

lished heuristics, such as HEFT, MinMin, PEFT, and HCPT. It

particularly excelled in DAGs with high density.

To address the first research question, we investigated the im-

pact of various LBC-based strategies on scheduling performance.

Experimental results showed that LBC-SRL consistently achieved

the lowest makespan among the proposed heuristics. This indi-

cates that recalculating LBC iteratively after each scheduling step

is the most effective approach for estimating a task importance,

as it enables us to iteratively identify tasks that lie on the most

longest dependency paths.

Regarding computational efficiency, we observed that LBC-

based heuristics have a time complexity of O(𝑛2 · 𝑝) or O(𝑛2 ·
𝑝 + 𝑛 · 𝑒). While LBC-SRL offered the highest performance, LBC-

SWS traded some of this for reduced time complexity in dense

graphs. This makes it a more suitable choice in environments

where execution speed is of high priority. These complexities

are comparable to those of established algorithms, such as HEFT

and PEFT. As a result, LBC-based heuristics remains practical

for large task graphs and represent competitive alternatives to

existing heuristics without introducing significant computational

overhead.

Finally, in comparison to established heuristics, LBC-SRL and

LBC-SWS demonstrated competitive performance. LBC-SRL out-

performed MinMin, HCPT, and PEFT across nearly all configura-

tions. Results indicated that LBC-SRL especially excels on DAGs

with high density, achieving results similar to HEFT. Although

HEFT remained the top performer overall, pairwise comparison

revealed that LBC-SRL matches HEFT’s performance in 54.9%

of cases, while even outperforming it 3.1% of the time. These

findings highlight the effectiveness of LBC as a scheduling metric.

Overall, incorporating global task influence in task schedul-

ing heuristics can significantly enhance performance. The strong

results of LBC-SRL in dense graphs underscore the potential of

centrality-based heuristics as viable alternatives to traditional

methods, particularly in domains with many inter-task depen-

dencies. Beyond immediate performance improvements, these

findings indicate that incorporating advanced network analysis

techniques into task scheduling represents a promising direction

for the development of more topology-aware heuristics.

7.1 Limitations
Although the proposed LBC-based scheduling heuristics show

promising results, several limitations should be acknowledged.

Assumption of Homogeneous Processors: All experiments

in the evaluation were conducted assuming homogeneous pro-

cessors with identical capabilities. Although this simplifies the

scheduling model, it may not reflect the heterogeneous nature

of some real-world domains. However, given that the scheduling

phase of the proposed heuristics is based on the same insertion-

based EFT scheduling principle as HEFT, adapting it for heteroge-

neous settings is feasible and would likely maintain competitive

performance.

Assumption of Static Scheduling Environment: This study
assumes complete knowledge of the task graph and uses static

scheduling. However, in many real-world systems, scheduling

must be performed dynamically due to partial information, run-

time variability, or unexpected delays. The current approach does

not address these dynamic constraints.

Exclusion of Inter-Task Communication Costs: Communi-

cation delays between tasks assigned to different processors are

excluded in ourmodel. Communication overhead can significantly

impact scheduling performance in distributed environments.

Use of Synthetic Benchmark DAGs: The evaluation was per-

formed exclusively on synthetically generated DAGs. These allow

for controlled experimentation and structural variety, but may

not fully capture the irregularities of real-world workflows.

7.2 Future Work
Considering the findings and limitations of this study, there are

several meaningful directions to explore for future research.

Integration of Communication Costs: Incorporating inter-

task communication delays would provide a more realistic evalua-

tion of scheduling performance. Future adaptations of LBC-based

heuristics may include adaptations that account for communica-

tion costs during the processor selection phase.

Extension to Heterogeneous Environments: Adapting the

LBC framework to account for heterogeneous processors would

increase its applicability to modern distributed computing plat-

forms. This may involve modifying the processor selection strat-

egy to account for processor-specific execution times per task.

Moreover, the generation methods should be adapted to produce

processing times that accurately reflect the characteristics of each

processor.

Benchmarking on Real-World DAGs: Evaluating the heuris-
tics on real-world DAGs would provide stronger validation of

their practical effectiveness. As part of future work, real-world

DAGs from the WfCommons WfInstances collection [10] can be

leveraged, including Epigenomics [18], Genome [13], and Mon-

tage [24]. These datasets cover diverse domains, such as biomedi-

cal sequencing, genomic analysis, and astronomical imaging. Con-

sequently, they provide a wide range of structural characteristics

for evaluation.

BroaderAlgorithmicBenchmarking:While comparisonswere

made against several established heuristics, future work could ex-

pand this set to include more recent or domain-specific scheduling

algorithms. This would provide a more comprehensive evaluation

of where LBC excels and where it needs further improvement.

8

A Novel Heuristic for Directed Acyclic Graph Task Scheduling using Longest Betweenness Centrality TScIT 43, July 4, 2025, Enschede, The Netherlands

REFERENCES
[1] Thomas L. Adam, K. M. Chandy, and J. R. Dickson. 1974. A comparison of

list schedules for parallel processing systems. Commun. ACM 17, 12 (1974),

685–690. https://doi.org/10.1145/361604.361619

[2] Wakar Ahmad, Gaurav Gautam, Bashir Alam, and Bhoopesh Singh Bhati.

2024. An Analytical Review and Performance Measures of State-of-Art

Scheduling Algorithms in Heterogeneous Computing Environment. Archives
of Computational Methods in Engineering 31, 5 (2024), 3091–3113. https:

//doi.org/10.1007/s11831-024-10069-8

[3] Hamid Arabnejad and Jorge G. Barbosa. 2014. List Scheduling Algorithm for

Heterogeneous Systems by an Optimistic Cost Table. IEEE Transactions on
Parallel and Distributed Systems 25, 3 (2014), 682–694. https://doi.org/10.1109/

TPDS.2013.57

[4] AR. Arunarani, D. Manjula, and Vijayan Sugumaran. 2019. Task scheduling

techniques in cloud computing: A literature survey. Future Generation Computer
Systems 91 (2019), 407–415. https://doi.org/10.1016/j.future.2018.09.014

[5] A.I. Awad, N.A. El-Hefnawy, and H.M. Abdel-kader. 2015. Enhanced Particle

Swarm Optimization for Task Scheduling in Cloud Computing Environments.

Procedia Computer Science 65 (2015), 920–929. https://doi.org/10.1016/j.procs.

2015.09.064

[6] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. 2007.

Approximating Betweenness Centrality. In Algorithms and Models for the Web-
Graph, Anthony Bonato and Fan R. K. Chung (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 124–137.

[7] D. Bertsekas and J. Tsitsiklis. 2015. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, Athena. https://books.google.nl/books?

id=n_Q5EAAAQBAJ

[8] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality*. The
Journal of Mathematical Sociology 25, 2 (2001), 163–177. https://doi.org/10.

1080/0022250X.2001.9990249

[9] Louis-Claude Canon, Mohamad El Sayah, and Pierre-Cyrille Héam. 2019. A

Comparison of Random Task Graph Generation Methods for Scheduling Prob-

lems. In Euro-Par 2019: Parallel Processing, Ramin Yahyapour (Ed.). Springer

International Publishing, Cham, 61–73.

[10] Tainã Coleman, Henri Casanova, Loïc Pottier, Manav Kaushik, Ewa Deelman,

and Rafael Ferreira da Silva. 2022. WfCommons: A Framework for Enabling

Scientific Workflow Research and Development. Future Generation Computer
Systems 128 (2022), 16–27. https://doi.org/10.1016/j.future.2021.09.043

[11] Niek Damink. 2025. LBC Task Scheduling Heuristic. https://github.com/Niek-

Damink/LBC_TaskSched

[12] P. Erdős and A. Rényi. 1959. On random graphs I. Publ. math. debrecen 6,

290-297 (1959), 18.

[13] Rafael Ferreira da Silva, Rosa Filgueira, Ewa Deelman, Erola Pairo-Castineira,

Ian M. Overton, and Malcolm P. Atkinson. 2019. Using simple PID-inspired

controllers for online resilient resource management of distributed scientific

workflows. Future Generation Computer Systems 95 (2019), 615–628. https:

//doi.org/10.1016/j.future.2019.01.015

[14] Kannan Govindarajan, Supun Kamburugamuve, Pulasthi Wickramasinghe,

Vibhatha Abeykoon, and Geoffrey Fox. 2017. Task Scheduling in Big Data

- Review, Research Challenges, and Prospects. In 2017 Ninth International
Conference on Advanced Computing (ICoAC). IEEE, Chennai, India, 165–173.
https://doi.org/10.1109/ICoAC.2017.8441494

[15] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. 1979. Op-

timization and Approximation in Deterministic Sequencing and Scheduling:

a Survey. In Discrete Optimization II, P.L. Hammer, E.L. Johnson, and B.H.

Korte (Eds.). Annals of Discrete Mathematics, Vol. 5. Elsevier, Cham, 287–326.

https://doi.org/10.1016/S0167-5060(08)70356-X

[16] Oscar H. Ibarra and Chul E. Kim. 1977. Heuristic Algorithms for Scheduling

Independent Tasks on Nonidentical Processors. J. ACM 24, 2 (1977), 280–289.

https://doi.org/10.1145/322003.322011

[17] Jan Janecek and Tarek Hagras. 2003. A Simple Scheduling Heuristic for Het-

erogeneous Computing Environments . In Parallel and Distributed Computing,
International Symposium on. IEEE Computer Society, Los Alamitos, CA, USA,

104. https://doi.org/10.1109/ISPDC.2003.1267650

[18] Gideon Juve, Ann Chervenak, Ewa Deelman, Shishir Bharathi, Gaurang Mehta,

and Karan Vahi. 2013. Characterizing and profiling scientific workflows. Future
Generation Computer Systems 29, 3 (2013), 682–692. https://doi.org/10.1016/j.

future.2012.08.015

[19] Han Lin, Ming-Fan Li, Cheng-Fan Jia, Liu. Jun-Nan, and Hong An. 2019. Degree-

of-Node Task Scheduling of Fine-Grained Parallel Programs on Heterogeneous

Systems. Journal of Computer Science and Technology 34, 5 (2019), 1096–1108.

https://doi.org/10.1007/s11390-019-1962-4

[20] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multipro-

gramming in a Hard-Real-Time Environment. J. ACM 20, 1 (1973), 46–61.

https://doi.org/10.1145/321738.321743

[21] Fatma A. Omara and Mona M. Arafa. 2010. Genetic algorithms for task

scheduling problem. J. Parallel and Distrib. Comput. 70, 1 (2010), 13–22.

https://doi.org/10.1016/j.jpdc.2009.09.009

[22] L. Pinedo, Michael. 2016. Scheduling: Theory, Algorithms, and Systems (5 ed.).
Springer, Cham. https://doi.org/10.1007/978-3-319-26580-3

[23] Robert W Robinson. 1973. Counting unlabeled acyclic digraphs. New directions
in the theory of graphs (1973), 239–273.

[24] M. Rynge, G. Juve, J. Kinney, J. Good, B. G. B., A. Merrihew, and E. Deelman.

2013. Producing an Infrared Multiwavelength Galactic Plane Atlas using

Montage, Pegasus and Amazon Web Services. In Proceedings of the 23rd Annual
Astronomical Data Analysis Software and Systems (ADASS) Conference.

[25] Chathurangi Shyalika, Thushari Silva, and Asoka Karunananda. 2020. Rein-

forcement learning in dynamic task scheduling: A review. SN Computer Science
1, 6 (2020), 306.

[26] H. Topcuoglu, S. Hariri, and Min-YouWu. 2002. Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE Transactions
on Parallel and Distributed Systems 13, 3 (2002), 260–274. https://doi.org/10.

1109/71.993206

[27] J.D. Ullman. 1975. NP-complete scheduling problems. J. Comput. System Sci.
10, 3 (1975), 384–393. https://doi.org/10.1016/S0022-0000(75)80008-0

[28] Peter Winkler. 1985. Random orders. Order 1 (1985), 317–331.

9

https://doi.org/10.1145/361604.361619
https://doi.org/10.1007/s11831-024-10069-8
https://doi.org/10.1007/s11831-024-10069-8
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1016/j.future.2018.09.014
https://doi.org/10.1016/j.procs.2015.09.064
https://doi.org/10.1016/j.procs.2015.09.064
https://books.google.nl/books?id=n_Q5EAAAQBAJ
https://books.google.nl/books?id=n_Q5EAAAQBAJ
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1016/j.future.2021.09.043
https://github.com/Niek-Damink/LBC_TaskSched
https://github.com/Niek-Damink/LBC_TaskSched
https://doi.org/10.1016/j.future.2019.01.015
https://doi.org/10.1016/j.future.2019.01.015
https://doi.org/10.1109/ICoAC.2017.8441494
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1145/322003.322011
https://doi.org/10.1109/ISPDC.2003.1267650
https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1007/s11390-019-1962-4
https://doi.org/10.1145/321738.321743
https://doi.org/10.1016/j.jpdc.2009.09.009
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/71.993206
https://doi.org/10.1016/S0022-0000(75)80008-0

TScIT 43, July 4, 2025, Enschede, The Netherlands N.P. Damink

APPENDICES
A AI STATEMENT
During the preparation of this work the author used ChatGPT in

order to enhance the writing of this paper. After using this tool,

the author reviewed and edited the content as needed and takes

full responsibility for the content of the work.

B PSEUDOCODE
This appendix presents the detailed pseudocode for the algorithms

described in the main text. The pseudocode is designed to clearly

explain the algorithmic steps and key computations without rely-

ing on any specific programming language.

B.1 LBC Pseudocode
This appendix presents the pseudocode for computing LBC scores

for all nodes in a DAG.

Algorithm 2 𝐿𝐵𝐶 Pseudocode.

function 𝐿𝐵𝐶(Graph 𝐺)

LBC[𝑣] ← 0, 𝑣 ∈ 𝐺.𝑉 ;

𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑜𝑟𝑑𝑒𝑟 ← Topological-Sort(𝐺);
while topological_order ≠ ∅ do

𝑠 ← topological_order[0]
𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← [𝑠]
𝑃 [𝑤] ← [], 𝑤 ∈ 𝐺.𝑉 ;

𝜎 [𝑡] ← 0, 𝑡 ∈ 𝐺.𝑉 ; 𝜎 [𝑠] ← 1

𝑑 [𝑡] ← −1, 𝑡 ∈ 𝐺.𝑉 ; 𝑑 [𝑠] ← 0

for all 𝑣 ∈ 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑜𝑟𝑑𝑒𝑟 do
if 𝑣 ≠ 𝑠 and 𝜎 [𝑣] = 0 then

skip to next iteration
end if
append 𝑣 → 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

for all outgoing neighbors𝑤 of 𝑣 do
if 𝑑 [𝑤] < 𝑑 [𝑣] + 𝑐𝑣 then

𝑑 (𝑤) ← 𝑑 (𝑣) + 𝑐𝑣
𝜎 [𝑤] ← 𝜎 [𝑣]
𝑃 [𝑤] ← [𝑣]

else if 𝑑 [𝑤] = 𝑑 [𝑣] + 𝑐𝑣 then
𝜎 [𝑤] ← 𝜎 [𝑤] + 𝜎 [𝑣]
append 𝑣 → 𝑃 [𝑤]

end if
end for

end for
𝛿 [𝑡] ← 0, 𝑡 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
for all𝑤 ∈ reversed(𝑣𝑖𝑠𝑖𝑡𝑒𝑑) do

for all 𝑣 ∈ 𝑃 (𝑤) do
𝛿 [𝑣] ← 𝛿 [𝑣] + 𝜎 [𝑣]

𝜎 [𝑤] · (1 + 𝛿 [𝑤])
end for
if 𝑤 ≠ 𝑠 then

LBC[𝑤] ← LBC[𝑤] + 𝛿 [𝑤]
end if

end for
pop 𝑠 → topological_order

end while
end function

B.2 Source-based LBC Pseudocode
This appendix details the pseudocode for the source-based LBC

variant. The pseudocode is identical to the general LBC algorithm

with one key addition: at the start of each iteration over the

topological order, the algorithm checks if the current node has

incoming neighbors. If it does, the node is skipped to ensure only

source nodes initiate the traversal. Consequently, the following

line needs the be added to the start of the main loop:

Algorithm 3 Early-exit condition to restrict traversal to source

nodes only.

if incoming neighbors of 𝑣 ≠ ∅ then
return LBC

end if

B.3 LBC-SRL Pseudocode:
This appendix presents the pseudocode for the ranking phase of

the LBC-SRL algorithm, which is one of the fundamental stages

in the LBC-SRL heuristic.

Algorithm 4 Task Ranking using 𝐿𝐵𝐶 Scores.

function LBC-SRL-Ranking(Graph 𝐺)

𝑟𝑎𝑛𝑘𝑖𝑛𝑔← []
while 𝐺.𝑉 ≠ ∅ do

𝐺 ← Add-Super-Node(𝐺)
𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝐿𝐵𝐶𝑠 (𝐺)
𝐺 ← Remove-Super-Node(𝐺)
𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠 ← {𝑣 ∈ 𝐺.𝑉 | in_degree(𝑣) = 0}
𝑡𝑎𝑠𝑘 ← max

𝑣∈𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠
(𝑠𝑐𝑜𝑟𝑒𝑠 [𝑣])

append 𝑡𝑎𝑠𝑘 → 𝑟𝑎𝑛𝑘𝑖𝑛𝑔

Remove-Node(𝐺, 𝑡𝑎𝑠𝑘)
end while
return 𝑟𝑎𝑛𝑘𝑖𝑛𝑔

end function

B.4 Score-Guided Topological Sorting Pseudocode
This appendix presents the pseudocode for the score-guided topo-

logical sorting, which is used in most of the proposed heuristics

to generate a valid task ranking based on precomputed scores,

while respecting all dependency constraints.

Algorithm 5 Score-Guided Task Ranking Using 𝐿𝐵𝐶 Scores.

function Score-Guided-Ranking(Graph 𝐺 , Scores 𝑆)

𝑟𝑎𝑛𝑘𝑖𝑛𝑔← []
𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠 ← {𝑣 ∈ 𝐺.𝑉 | in_degree(𝑣) = 0}
ℎ𝑒𝑎𝑝 ← construct heap for [𝑆 [𝑣], 𝑣] ∈ 𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠
while ℎ𝑒𝑎𝑝 ≠ ∅ do

𝑣 ← highest-priority node from ℎ𝑒𝑎𝑝

append 𝑣 to 𝑟𝑎𝑛𝑘𝑖𝑛𝑔

for all successors𝑤 of 𝑣 do
remove edge (𝑣,𝑤) from 𝐺

if 𝑤 now has no incoming edges then
insert𝑤 into ℎ𝑒𝑎𝑝 with priority 𝑆 [𝑤]

end if
end for

end while
return 𝑟𝑎𝑛𝑘𝑖𝑛𝑔

end function

10

A Novel Heuristic for Directed Acyclic Graph Task Scheduling using Longest Betweenness Centrality TScIT 43, July 4, 2025, Enschede, The Netherlands

B.5 Insertion-based EFT Scheduling Pseudocode
This appendix presents the pseudocode for the scheduling phase

of the heuristics, which assigns tasks to processors using an

insertion-based EFT strategy.

Algorithm 6 Insertion-Based EFT Scheduling.

function Schedule(Graph 𝐺 , Ranking 𝑅, Processors 𝑃 , Costs

𝐶)

𝑡𝑎𝑠𝑘_𝑓 𝑖𝑛𝑖𝑠ℎ[𝑡] ← 0, 𝑡 ∈ 𝐺.𝑉

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← []
𝑝𝑟𝑜𝑐_𝑠𝑙𝑜𝑡𝑠 [𝑝] ← [], 𝑝 ∈ 𝑃
for all 𝑡 ∈ 𝑅 do

𝑟𝑒𝑎𝑑𝑦_𝑎𝑡 ← max{𝑡𝑎𝑠𝑘_𝑓 𝑖𝑛𝑖𝑠ℎ[𝑑] | 𝑑 ∈
predecessors(𝑡)}

𝐸𝐹𝑇 ←∞
for all 𝑝 ∈ 𝑃 do

𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 ← find first gap after 𝑟𝑒𝑎𝑑𝑦𝑎𝑡 on 𝑝

𝑓 𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 ← 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 +𝐶 [𝑡]
if 𝑓 𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 < 𝐸𝐹𝑇 then

𝑏𝑒𝑠𝑡_𝑝𝑟𝑜𝑐 ← 𝑝

𝐸𝑆𝑇 ← 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒

𝐸𝐹𝑇 ← 𝑓 𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒

end if
end for
Reserve slot [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] on processor 𝑏𝑒𝑠𝑡_𝑝𝑟𝑜𝑐

𝑡𝑎𝑠𝑘_𝑓 𝑖𝑛𝑖𝑠ℎ[𝑡] ← 𝐸𝐹𝑇

Append {𝑡𝑎𝑠𝑘 : 𝑡, 𝑝𝑟𝑜𝑐 : 𝑏𝑒𝑠𝑡_𝑝𝑟𝑜𝑐, 𝑠𝑡𝑎𝑟𝑡 : 𝐸𝑆𝑇,

𝑒𝑛𝑑 : 𝐸𝐹𝑇 } → 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

end for
return 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

end function

C ILLUSTRATIVE EXAMPLE OF LONGEST
BETWEENNESS CENTRALITY

This Appendix provides a concrete example demonstrating how

the Longest Betweenness Centrality (LBC) metric is computed on

a small weighted DAG. This example is intended for readers who

need further clarification beyond the formal definition provided

in the main text or for those who wish to develop a more intuitive

understanding of the metric through a step-by-step application.

LBC Example:
TheDAG, shown in Figure 4, contains six nodes and seven directed

edges, each annotated with a weight that represents the execution

time of the task.

A

B
2

C

2
D

4

4

E

4

F

4

5

Fig. 4. Example DAG with node colors representing LBC scores. Darker
nodes indicate higher centrality, reflecting more frequent occurrence on
longest weighted paths.

1: Longest Paths from Source 𝐴 to Sink 𝐹

The LBC metric quantifies how often a node lies on the longest

weighted paths between pairs of nodes in the DAG. Consequently,

we must consider all longest paths between all source-destination

pairs in the DAG. We will first consider the contribution to the

LBC from the longest path between 𝐴 and 𝐹

(1) A→ B→ D→ F with total weight: 2 + 4 + 4 = 10

(2) A→ C→ D→ F with total weight: 2 + 4 + 4 = 10

(3) A→ C→ E→ F with total weight: 2 + 4 + 5 = 11

The longest path among these is the third, so only nodes 𝐶 and 𝐸

contribute to LBC for this path.

2: Additional Longest Paths From Node 𝐴 To 𝐵,𝐶, 𝐷 and 𝐸

Wenow consider all longest paths originating from node𝐴, assign-

ing points to all nodes that lie along these paths. When multiple

longest paths exist, the points are evenly distributed across all

such paths.

• To 𝐷 :

– 𝐴 → 𝐵 → 𝐷 and 𝐴 → 𝐶 → 𝐷 . Both are equal-length

longest paths, so 𝐵 and 𝐶 each receive 0.5 points.

• To 𝐸:

– 𝐴→ 𝐶 → 𝐸. Node 𝐶 gains 1 point.

• To 𝐵 or 𝐶: Paths to 𝐵 and 𝐶 are direct from 𝐴, so no inter-

mediate nodes contribute to their LBC.

Thus, only considering all longest paths from source node 𝐴,

the intermediate LBC scores are described in the following table:

Node LBC Score

A 0

B 0.5

C 2.5

D 0

E 1

F 0

3: Computing the Final LBC Scores
To compute the final LBC scores, the same process is repeated for

all valid source–target pairs in the DAG. The cumulative scores

obtained are shown in the following table:

Node LBC Score

A 0

B 0.5

C 2.5

D 1

E 2

F 0

This example illustrates how LBC identifies structurally signif-

icant nodes that frequently appear along critical long execution

paths in the DAG.

11

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Problem Statement

	2 Background
	3 State-of-the-art
	3.1 MinMin
	3.2 HCPT
	3.3 HEFT
	3.4 PEFT

	4 Proposed Method: LBC-Based Scheduling Heuristics
	4.1 Longest Betweenness Centrality
	4.2 Ranking Phase
	4.3 Processor Selection Phase
	4.4 Complexity Analysis

	5 Experimental Setup
	5.1 System Configuration
	5.2 Evaluation Data

	6 Results
	6.1 Comparative Evaluation of LBC-Based Ranking Strategies
	6.2 Evaluation Against Established Heuristics

	7 Conclusion
	7.1 Limitations
	7.2 Future Work

	References
	A AI Statement
	B Pseudocode
	B.1 LBC Pseudocode
	B.2 Source-based LBC Pseudocode
	B.3 LBC-SRL Pseudocode:
	B.4 Score-Guided Topological Sorting Pseudocode
	B.5 Insertion-based EFT Scheduling Pseudocode

	C Illustrative Example of Longest Betweenness Centrality

