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Abstract
The semiconductor industry’s shift towards Domain-Specific Architectures (DSAs), largely enabled by
the open RISC-V instruction set architecture, has complicated the choice between mature, proprietary
electronic design automation toolchains and emerging open-source alternatives. A critical challenge in any
physical design flow is optimization of Performance, Power, and Area (PPA). This challenge is further
complicated by the “predictive gap”–the discrepancy between post-synthesis estimates and final post-
layout PPA results. This thesis investigates the significance of this gap in an open-source toolchain and
compares synthesis quality when implementing an identical RISC-V System on a chip using the open-
source Yosys and the proprietary Cadence Genus synthesis tools. Both flows targeted the IHP 130 nm
PDK. Post-synthesis analysis revealed that the proprietary tool produced a more efficient netlist, at the
cost of a longer runtime. Critically, post-synthesis timing proved to be an unreliable predictor of final
performance in the open-source flow; a design that met timing after synthesis exhibited significant timing
violations after physical implementation. This was accompanied by an increase in power and area due
to buffer insertion for the clock tree and hold-time fixing. The results highlight the trade-offs between
the rapid iteration speed of current open-source tools and the refined optimization of mature, proprietary
ones, while underscoring that the predictive gap remains a significant challenge.
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1 Introduction
The semiconductor industry is at a pivotal juncture. For half a century, its progress was reliably charted
by Moore’s Law and Dennard scaling, principles that guaranteed exponentially more powerful and efficient
processors with each generation. The breakdown of these foundational laws due to physical limitations has
forced a fundamental rethink of processor design. This introduction outlines this paradigm shift, details
the critical implementation challenges that have emerged, and establishes the research objectives of this
thesis, which investigates the predictability of modern design flows in this new landscape.

1.1 The End of an Era and the Rise of Specialization
The semiconductor industry is undergoing a foundational paradigm shift, as the two principles that gov-
erned its progress for half a century—Moore’s Law and Dennard scaling—have reached their physical limits.
For decades, Moore’s Law described the exponential increase in transistor density on integrated circuits,
serving as the primary driver of computational advancement. This was complemented by Dennard scaling,
which states that as transistors shrink, their power density remains constant, yielding proportional gains
in energy efficiency [1]. However, since the mid-2000s, physical constraints, such as rising sub-threshold
leakage currents, have effectively ended Dennard scaling, even as transistor counts continue to grow. This
has created a significant “power wall,” capping the practical clock speeds of general-purpose processors
and ending the era of automatic performance gains [2].

In response, the focus of processor innovation has pivoted from monolithic, general-purpose CPUs to a
new era of Domain-Specific Architectures (DSAs). This shift, heralded as a “new golden age for computer
architecture,” emphasizes custom-engineered hardware accelerators tailored for specific workloads, such
as artificial intelligence, network processing, or cryptography [3]. By aligning hardware structure with
algorithmic requirements, DSAs can deliver orders-of-magnitude improvements in performance and energy
efficiency for the specific tasks they are designed for, compared to their general-purpose counterparts.

1.2 The EDA Implementation Challenge
To realize these specialized designs, sophisticated Electronic Design Automation (EDA) toolchains are
required. These complex software suites automate the process of transforming a human-written hardware
description into a production-ready physical layout.

1.2.1 Open-source vs. Proprietary Toolchains
Engineers face a critical choice between two competing implementation philosophies: the established pro-
prietary ecosystem and the emerging open-source movement. The proprietary path, dominated by vendors
like Cadence and Synopsys, offers mature, silicon-proven EDA tools that are considered the industry stan-
dard for designing complex, high-performance systems on advanced technology nodes. In contrast, the
open-source movement promotes accessibility and collaborative innovation. This ecosystem is anchored by
the free and open RISC-V instruction set architecture, which allows for architectural customization and
doesn’t require any licensing fees [4]. This architectural freedom is now complemented by a complete, end-
to-end open-source EDA toolchain, the OpenROAD Project, which has demonstrated fully autonomous,
“no-human-in-the-loop” layout generation from register-transfer level (RTL) to final (GDSII) manufac-
turing files [5]. This open path significantly lowers the barrier to custom silicon development, fostering
innovation across academia and startups.

1.2.2 Post-Synthesis vs. Post-Layout
Regardless of the chosen toolchain, the central engineering challenge is the multi-objective optimization
of Power, Performance, and Area (PPA). To understand this challenge, it is essential to recognize the
two fundamental stages of digital design implementation. The first is logic synthesis, a process where the
high-level hardware description (RTL code) is translated into a “logical blueprint”—a gate-level netlist
that specifies which standard logic cells are needed and how they are logically connected. The second
stage is physical design, often called place-and-route (P&R), which takes this logical blueprint and creates
a “physical blueprint.” It determines the precise X-Y coordinates for every logic cell on the silicon die and
then routes the millions of microscopic metal wires that physically connect them.

The critical difficulty in this two-stage process is the “predictive gap”—the often significant disagree-
ment between PPA estimates made after synthesis and the final, measured results after the physical design
is complete. A smaller predictive gap indicates a more reliable and efficient design flow, reducing the risk
of costly late-stage redesigns caused by inaccurate estimations.
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The core of this predictive gap lies in the fundamental differences between the analysis performed at
each stage, as detailed in Table 1. Post-synthesis analysis provides the first PPA estimate. It is performed
on the logical gate-level netlist, before the cells have been physically placed and routed. At this point, the
actual length and complexity of the interconnecting wires are unknown. Consequently, the analysis must
rely on statistical Wire Load Models (WLMs) or other estimations to approximate interconnect delay,
which dominates modern designs [6]. While this process is computationally fast and suitable for early
feasibility checks, its accuracy is inherently limited.

In contrast, post-layout analysis occurs after the full physical implementation, including placement,
Clock Tree Synthesis (CTS), and routing. Its input is a physically-aware netlist enriched with detailed
parasitic data extracted from the actual, routed layout presented in a SPEF file. This allows for the calcula-
tion of delays based on real RC (resistance-capacitance) values of the interconnects, providing high-quality
results. This final verification is computationally intensive but essential, as it performs comprehensive
setup and hold time checks across various Process, Voltage, and Temperature (PVT) corners to account
for the true physical effects. The discrepancy between the fast, estimated results of the former and the
slow, accurate results of the latter define the predictive gap this thesis investigates.

Table 1: Comparison of Post-Synthesis and Post-Layout Static Timing Analysis

Attribute Post-Synthesis Timing
Analysis

Post-Layout Timing
Analysis

Design Stage After logic synthesis, before
physical placement & routing
(P&R).

After P&R, including clock tree
synthesis (CTS).

Input Data Gate-level netlist, library timing
models (.lib), estimated wire
loads.

Placed/Routed netlist (DEF),
library models (.lib), extracted
parasitics (SPEF/SDF).

Delay Models Wire Load Models (WLMs) or
statistical estimates (no physical
layout).

Based on RC parasitics extracted
from actual physical layout.

Accuracy Lower accuracy; primarily gate
delays + estimated interconnect.

High accuracy; includes actual
gate and interconnect delays.

Checks Performed Primarily setup time; hold time
checks less useful.

Comprehensive setup and hold
time checks across corners.

Computational Cost Relatively fast; suitable for
iterative synthesis loops.

Slower, especially parasitic
extraction; run less frequently.

Purpose Early feasibility check, guide
synthesis optimization, initial
P&R constraints.

Final timing verification,
determine max frequency.

1.3 The Croc SoC
To investigate the PPA predictive gap and the capabilities of open-source EDA tools, this thesis employs
the Croc System on a Chip (SoC) as the design under test. This investigation was performed on the
latest release of the SoC (version 1.1). The Croc SoC, a platform developed within the PULP (Parallel
Ultra-Low Power) ecosystem, is based on the CV32E40P RISC-V core (an implementation of the Ibex
core) and utilizes the Open Bus Interface (OBI) for on-chip communication [7].

The Croc SoC provides a platform for evaluating EDA flows. As illustrated in Figure 1, its archi-
tecture is divided into several key domains and components. The primary computational element is the
‘core wrap‘ module, which instantiates the Ibex CV32E40P RISC-V processor core. This core interacts
with memory and peripherals via an OBI Crossbar. The ‘croc domain‘ encapsulates the core, the OBI
crossbar, an OBI demultiplexer for peripheral access, dedicated SRAM (static random-access memory)
memory banks, and essential peripherals including SoC control registers, a UART (universal asynchronous
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receiver-transmitter), a timer unit, and GPIO (general-purpose input/output). Debug capabilities are pro-
vided through a JTAG interface connected to a debug module, which also interfaces with the OBI crossbar.
A user domain is provisioned for potential custom logic integration, though this was not modified for the
baseline experiments in this work.

croc domain

croc soc

user domain

CVE2

(Ibex)Debug

JTAG

OBI Demux

TimerUARTGPIO

uart*gpio*

jtag*

sbr obi*

irqs

SoC
Regs

OBI Crossbar

Mem

Bank

Mem

Bank

mgr obi*

core wrap

Figure 1: Croc SoC architecture [8]

1.4 Research Goal
This thesis presents an investigation of the predictive gap in an open-source flow and compares this to an
industry standard, proprietary flow. It seeks to answer the following research questions:

• How does post-synthesis timing analysis differ from post-layout timing analysis in a RISC-V processor
implementation using open-source toolchains?

• How does synthesis quality of the OpenROAD flow differ from the quality offered by an industry
standard, proprietary flow?

To ensure a controlled and equitable comparison, the Croc SoC will serve as the design under test. This
platform was selected as it is a complete, well-documented system representative of modern, open-source
RISC-V-based designs, featuring a standard core, peripherals, and memory hierarchy. As it is the default
for the Croc SoC, both implementation flows will target the same IHP 130 nm Process Design Kit (PDK).
By analyzing the PPA reports from both flows, this work will provide a comprehensive comparison of not
only the final achievable results but, more critically, the predictability of the journey to silicon, offering
valuable insights for designers evaluating these two distinct paths.
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2 Experimental Methodology
This section details the experimental methodology used to investigate the PPA predictive gap and compare
the synthesis quality of open-source and proprietary EDA toolchains. It begins by introducing the two
competing implementation flows at the heart of this study. It then outlines the experimental conditions,
including the design under test, target technology, and Process, Voltage, and Temperature (PVT) corners.
Finally, it describes the step-by-step procedures for design implementation and PPA analysis.

2.1 Introducing the Toolchains
The core of this investigation involves comparing two distinct EDA implementation philosophies, each
represented by a specific toolchain. Both toolchains take the same RTL input and target the same IHP
130 nm PDK, allowing for a direct comparison of their optimization quality and predictive capabilities.

2.1.1 The Open-Source Toolchain
This path represents the emerging ecosystem focused on accessibility and collaborative development. For
this work, the OpenROAD Project, comprised of multiple tools, is analyzed. It uses Yosys for synthesis,
several other tools for physical design (place-and-route), and OpenSTA for Static Timing Analysis (STA).
Yosys is a flexible synthesis suite that transforms RTL code into a technology-mapped gate-level netlist.
OpenROAD then takes this netlist and performs the full physical implementation flow—from floorplanning
to final routing, to produce a manufacturable layout. OpenSTA, a core component of OpenROAD, is used
for timing verification. Together, they provide a complete, end-to-end, open-source RTL-to-GDSII flow.

2.1.2 The Proprietary Toolchain
This path represents the established, industry-standard approach, known for its maturity and silicon-
proven results. For the scope of this thesis, which focuses heavily on the synthesis stage, the Cadence
Genus Synthesis Solution is used. Genus is a leading commercial tool for logic synthesis and optimization,
responsible for translating RTL into a highly optimized gate-level netlist based on PPA constraints. By
comparing the netlist generated by Genus against the one from Yosys, this work can assess the relative
synthesis quality.

2.2 Process, Voltage, and Temperature
To ensure a silicon design is robust, it must function correctly not just under ideal conditions, but across a
range of possible manufacturing and operating scenarios. These operational extremes are known as PVT
corners. The performance of transistors and interconnects varies significantly based on these three key
factors:

• Process (P): Due to inconsistencies in fabrication, transistors on a wafer can be inherently fast
(higher than normal carrier mobility) or slow (lower than normal carrier mobility). Timing models
are provided for these process variations.

• Voltage (V): The supply voltage delivered to the chip can fluctuate. Higher voltages generally allow
transistors to switch faster, where lower voltages slow them down.

• Temperature (T): The chip’s operating temperature affects carrier mobility and leakage. In modern
technologies, higher temperatures typically make transistors slower.

STA is performed at these corners to guarantee functionality. Setup time checks, which ensure data
arrives before a clock edge, are most challenging at the slow corner (e.g., slow process, low voltage, high
temperature) where signal delays are longest. Hold time checks, which ensure data remains stable after
a clock edge, are most critical at the fast corner (e.g., fast process, high voltage, low temperature) where
signals travel quickest. Verifying the design at these opposing extremes builds confidence that the design
will function reliably under all conditions.

All corners specified by the ihp13 library are shown in Table 2. As documentation is currently being
developed, these details are taken directly from the filenames and file contents [9]. The original flow
considers different corners at different stages. For synthesis, it considers only the typical (LV) corner,
denoted as tt, while the P&R procedure also takes into account the fast (LV) corner, denoted as ff. This
same structure will be used for this thesis to maintain consistency.
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Table 2: ihp13 Library Corner Specifications

Corner Designation Component Voltage (V) Temperature (◦C)

SRAM 1.08 125
Slow (LV) Standard Cell 1.08 125

I/O Cell 1.08 (Vdd) & 3.0 (ioVdd) 125

SRAM 1.08 125
Slow (HV) Standard Cell 1.35 125

I/O Cell 1.35 (Vdd) & 3.0 (ioVdd) 125

SRAM 1.20 25
Typical (LV) Standard Cell 1.20 25

I/O Cell 1.20 (Vdd) & 3.3 (ioVdd) 25

SRAM 1.20 25
Typical (HV) Standard Cell 1.50 25

I/O Cell 1.5 (Vdd) & 3.3 (ioVdd) 25

SRAM 1.32 −55
Fast (LV) Standard Cell 1.32 −40

I/O Cell 1.32 (Vdd) & 3.6 (ioVdd) −40

SRAM 1.32 −55
Fast (HV) Standard Cell 1.65 −40

I/O Cell 1.65 (Vdd) & 1.6 (ioVdd) −40

2.3 Croc SoC Implementation with OpenROAD
The entire implementation and analysis flow was conducted using exclusively open-source EDA tools,
executed within a containerized environment to ensure consistency and manage software dependencies.
In this case, version 2025.03 of the hpretl/iic-osic-tools Docker image, based on the IIC-OSIC-TOOLS
environment, was used [10], [11]. The implementation of the Croc SoC followed the standard automated
flow provided by the Croc repository, which is documented in the README [8]. Running the flow as
prescribed generates the post-synthesis and post-layout netlists, which are then analyzed as outlined in
later sections.

2.4 Croc SoC Synthesis with Cadence Genus
To establish a basis for comparison against the open-source toolchain, a parallel implementation flow was
developed using the proprietary Cadence EDA suite. As no predefined Cadence flow existed for the Croc
SoC, a standard synthesis and implementation methodology was constructed, using the Cadence Genus
Synthesis Solution – specifically version 23.33 – for logic synthesis. A tcl script was created to orchestrate
this process. For initial testing, this script uses the default Genus settings. It simply reads the required
files and synthesizes them without further configuration. After that, a comparison will be made between
different settings of some synthesis effort variables. These variables, their possible values and the default
value bold are shown below:

• syn generic effort {none low medium high}

• syn map effort {none low medium high}

• syn opt effort {none low medium high extreme}

• design power effort {none low high}

For this thesis, three sets of settings will be compared. Namely, all defaults, setting everything to none,
and setting all settings to high. To enable a full comparison, an additional data point, namely synthesis
runtime, will be tracked for each configuration. This will be tracked using the Linux time command, which
runs the command and tracks: real time, user CPU time, and system CPU time.
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The Cadence flow begins with a comprehensive setup phase to define the design environment. This
includes specifying paths to the technology libraries, which, for this work, is the same PDK library used in
the OpenROAD flow to ensure an equitable comparison. The script targets the same typical (LV) corner
as the Yosys script from the original flow.

Logic synthesis commences within Cadence Genus. It reads and parses all the same System Verilog files
as the original flow. This ensures that the logical input to both the open-source and proprietary synthesis
engines is identical. An essential step at this stage is the elaboration of the design, where Genus builds an
in-memory representation of the design hierarchy. Following elaboration, timing constraints are applied
by sourcing the same constraints file used in the original flow. This file is taken from the P&R stage of
the Croc flow, as Yosys is not timing-driven.

With the design elaborated and constrained, the core synthesis process, referred to as syn generic, is
initiated. This step performs high-level, technology-independent optimizations, focusing on architectural
and logical transformations. Subsequently, the syn map command maps the generic logic to the specific
standard cells available in the IHP SG13G2 technology library. This technology mapping is a critical
optimization step where the tool makes decisions to optimize PPA. The final synthesis command, syn opt,
performs post-mapping optimizations, including incremental logic restructuring, to further refine the PPA
results.

The script concludes by generating comprehensive reports using built in tools, namely:

• report gates

• report qor

• report timing

• report area

• report power

These artifacts constitute the native post-synthesis PPA metrics for the proprietary flow. In addition
to comparing the quality of the netlists, this methodology allows for the Genus-synthesized netlist to be
analyzed by the open-source OpenSTA tool. This facilitates a direct comparison between the timing and
power analysis engines of the proprietary and open-source toolchains. Finally, the technology-mapped
gate-level netlist is written to disk.

2.5 Post-Synthesis Analysis
As Yosys cannot perform timing analysis and to compare the analysis tools provided by both flows,
OpenSTA, another tool from the OpenROAD toolchain, was used for timing analysis. Yosys excels at
logic synthesis and technology mapping but does not include a built-in static timing analysis engine for
path-based timing verification against SDC constraints. While its internal show and stat commands can
provide structural and area information, and the logic mapping step is timing-driven based only on a
target period, a dedicated STA tool is required to perform comprehensive setup and hold checks on the
final synthesized netlist. Using OpenSTA allows for a consistent analysis methodology across different
netlists and provides detailed timing path reports that are essential for evaluating the performance of the
synthesized design. OpenSTA can also perform timing analysis on the Genus generated netlist, allowing
for a direct comparison between the timing engines.

Preliminary analysis using OpenSTA was performed using a basic script, which does the following:

• Read in the library (.lib) files corresponding to the tt corner.

• Read in the library (.lef) files and the bond pad (.lef) file

• Read either the Yosys or Genus synthesized netlist

• Source the helper reports.tcl script included with the Croc flow

• Call report metrics to generate a report
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2.6 Post-Layout Analysis
The evaluation of the final, physically-implemented design relies on the comprehensive reports and output
files generated by the automated OpenROAD flow. For this thesis, the primary source of post-layout data
is the set of final reports generated by the make openroad command, specifically the 07 croc.final.rpt file.
This report is generated at the final stage of the make openroad command. To create a full comparison
between both netlists they are sent through the OpenROAD P&R stage. This will reveal if any differences
observed post-synthesis also carry over to the layout stage.

2.7 Experimental limitations
It is important to note the scope and limitations of this experimental setup. The primary comparison in
this work focuses on the logic synthesis stage and the full physical implementation of the open-source flow.
A complete, end-to-end proprietary flow, which would involve place-and-route of the Genus-synthesized
netlist using a tool like Cadence Innovus, was not performed as the required proprietary libraries were
inaccessible. Consequently, a direct PPA comparison of a fully proprietary layout against a fully open-
source layout is not presented. Additionally, all power analyses were conducted without simulation-based
activity data, meaning the results are based on tool-default statistical estimates rather than realistic
workload-driven switching activity.
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3 Results & Discussion
This section presents the results of the comparative analysis between the open-source and proprietary EDA
flows. The investigation proceeds in stages, beginning with a post-synthesis comparison of the netlists
generated by Yosys and Genus. It then quantifies the predictive gap by analyzing the final post-layout
results of the open-source flow. Finally, it provides a definitive post-layout comparison of both netlists
after physical implementation in OpenROAD and examines the impact of different effort settings within
the proprietary tool.

3.1 Post-Synthesis Quality of Results (QoR) Comparison
The initial analysis focused on the gate-level netlists produced by Yosys and Cadence Genus to establish
a baseline for synthesis quality before physical implementation.

3.1.1 Initial Analysis and Identification of Estimation Artifacts
Initial analysis was performed by running both the Yosys and Genus-synthesized netlists through the
OpenSTA tool to establish a direct, tool-for-tool comparison of the synthesis quality. Additionally, the
Genus netlist was analyzed using its native timing engine. The PPA results from these three scenarios,
using the default constraints.sdc file from the original flow, are summarized in Table 3.

The “Yosys” column, corresponding to the Yosys netlist shows nearly 5000 paths with setup violations,
with the worst setup slack on the order of 60 ns. As the Croc SoC targets 80 MHz, this is significant.
However, upon further analysis it turns out that this is caused by a single, unbuffered clock tree an
extremely high fan-out. It is important to note that this specific issue, along with the numerous reported
hold violations, is resolved during the physical design stage, as the OpenROAD tool inserts buffers to drive
the high fan-out net and to fix short path delays. This buffering optimization is only performed during
layout, as the tool can then leverage estimated physical placement to make informed decisions. As this
one unoptimized net skewed the entire post-synthesis setup analysis, the netlist will also be analyzed with
these paths marked as false paths in a refined SDC file. All subsequent comparative analyses presented
in this thesis utilize this refined set of constraints to focus on the timing performance of the actual logic
paths.

The next column “Genus (OR)” depicts the results for the Genus netlist, analyzed in OpenROAD using
the same script. It shows a similarly large worst setup slack, also caused by an unbuffered high fan-out
instance, confirming that both synthesis tools deferred the optimization of this net to the P&R stage. The
hold violation count is comparable, reinforcing the observation that short path delays are not a primary
focus during logic synthesis.

Interestingly, the final column, “Genus (Cadence)”, which shows the results from Genus’s internal
timing analysis engine, paints a different picture. It reports only a single setup violation with a WNS (worst
negative slack) of -1.641 ns and does not report any hold violations (noted as ’N/R’ or Not Reported).
This suggests that the Genus engine, by default, automatically identifies the high fan-out clock-gating net
as an ideal net that will be buffered by the P&R tool and therefore excludes it from timing. This behavior
leads to a significantly less pessimistic—and arguably more realistic—pre-layout timing estimate compared
to the analysis performed by OpenSTA on the same netlist.

Table 3: Post-Synthesis PPA Metrics for Yosys vs. Genus

Metric Category Yosys Genus (OR) Genus (Cadence)

Performance

Worst Setup Slack -63.97 ns -58.36 ns -1.641 ns
Total Negative Setup Slack -308,935.12 ns -185,613.41 ns -1.641 ns
Worst Hold Slack -0.23 ns -0.41 ns N/R
Setup Violation Count 4,920 4,737 1
Hold Violation Count 157 144 N/R

Power

Internal Power 3.90e-02 W 2.02e-02 W 1.76e-02 W
Switching Power 7.18e-03 W 6.05e-03 W 1.39e-02 W
Leakage Power 7.04e-06 W 6.13e-06 W 6.32e-06 W
Total Power 4.62e-02 W 2.63e-02 W 3.15e-02 W

Area Standard Cell Area 575,547.6 µm2 457,867.5 µm2 457,867.5 µm2
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Beyond timing, the PPA metrics in Table 3 reveal other key differences. The Genus-synthesized design
achieves a notably smaller standard cell area (458k µm2) compared to the Yosys design (576k µm2), indi-
cating a more area-efficient optimization by the Cadence tool. The power reports also show a discrepancy,
however here it is critical to note that no switching activity file was provided to either toolchain. This
analysis was therefore limited to using the tools’ default statistical power models. A difference in these
default models is a likely contributor to the variance in reported power, particularly the switching power
component.

3.1.2 Synthesis Runtime Comparison
Another crucial dimension of comparison between the toolchains is the synthesis runtime. The Cadence
Genus synthesis runs were executed on a server using 16 threads on dual AMD EPYC 9354 and took
between 23 and 27 minutes of real time. The open-source Yosys flow was executed on a laptop also
using 16 threads on an AMD Ryzen 7 5800H and completed in 2 minutes and 48 seconds of real time
(2m43s user CPU time). Although the execution environments differ, this order-of-magnitude difference in
runtime highlights a significant advantage of the Yosys flow for rapid design iteration. The results suggest
a fundamental trade-off: the proprietary Cadence toolchain, with its advanced optimization heuristics,
achieves superior area results at the cost of a substantially longer runtime, whereas the open-source Yosys
tool provides a much faster turnaround time, which is highly beneficial for early-stage design exploration
and debugging, albeit with less optimized results.

3.2 Timing Analysis with Refined Constraints
Using a refined SDC file that marks the high fan-out net as a false path, the analysis was re-run on both
netlists using OpenSTA. The results are summarized in Table 4.

Table 4: Post-Synthesis Timing Comparison with Refined Constraints

Metric Category Yosys Genus

Setup Timing
Worst Setup Slack +1.32 ns -1.59 ns
Total Negative Setup Slack 0.00 ns -1.59 ns
Setup Violation Count 0 1

Hold Timing
Worst Hold Slack -0.23 ns -0.41 ns
Hold Violation Count 157 144

A stark difference emerges from this refined analysis. The Yosys-synthesized netlist now reports zero
setup violations, with a worst-case positive slack of +1.32 ns. This indicates that once the artifact of the
unbuffered clock net is removed, the logical paths synthesized by Yosys comfortably meet the 80 MHz
timing target at the typical corner.

In contrast, the Genus-synthesized netlist still exhibits a setup violation, albeit a single failing path
with WNS of -1.59 ns. The critical path originates from a flip-flop within the timer unit and terminates at
the status output port. This suggests that while Genus produced a more area-efficient design (as shown in
the area reports), its default optimization effort resulted in a slightly slower logic path to this particular
output port compared to the Yosys result. The -1.59 ns violation indicates that the design, as synthesized
by Genus with default settings, would not meet the 80 MHz target without further optimization or manual
intervention. The violating path in the Genus-synthesized netlist is the same failing path failing in the
last column of Table 3. The difference in the reported slack value for this same path highlights that even
when analyzing an identical netlist, different STA tools can produce slightly different results due to their
unique internal timing models.

Both netlists continue to show a significant number of hold violations (157 for Yosys, 144 for Genus),
with the Genus netlist having a slightly worse WNS of -0.41 ns compared to Yosys’s -0.23 ns. Since
neither synthesis tool performs physical placement, they do not attempt to insert delay buffers to fix these
short paths, leading to hold violations being a common artifact of this design stage. The similarity in the
number of violations suggests that both tools produce structurally similar short paths that will need to be
addressed by the P&R tool.
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3.3 The Predictive Gap in the Open-Source Flow
To evaluate the predictive accuracy of the post-synthesis analysis, a full physical implementation was
performed using OpenROAD. This post-layout stage incorporates crucial physical effects, such as the
actual delays of the synthesized clock tree and the parasitic resistance and capacitance of the routed
interconnect, providing a signoff-quality assessment of the design’s performance. The final PPA metrics,
generated by the OpenROAD flow, are presented in Table 5 alongside the pre-layout results for direct
comparison.

The results clearly demonstrate the significant impact of physical implementation on timing closure.
As hypothesized, all 157 hold violations reported in the post-synthesis analysis were successfully resolved
by the OpenROAD tool during the P&R process, resulting in zero hold violations in the final design. This
is achieved through the strategic insertion of delay buffers into short logic paths, validating the common
industry practice of deprioritizing post-synthesis hold fixes.

Conversely, the setup timing picture becomes more complex. While the initial -63.97 ns setup violation
caused by the high fan-out net was resolved by the insertion of a proper buffer tree, the final design still
exhibits 2,027 setup violations with a WNS of -2.449 ns. This indicates that while the most egregious
pre-layout issue was fixed, the introduction of realistic interconnect delays from the SPEF file revealed
thousands of other paths that fail to meet the 80 MHz target. This discrepancy highlights the “predictive
gap” inherent in post-synthesis analysis; even after correcting for obvious estimation artifacts (the high
fan-out net), the pre-layout analysis (with a WNS of +1.32 ns) provided an overly optimistic view of
performance. The final design, with a WNS of -2.449 ns, would require further optimization loops or a
reduction in target frequency to achieve timing closure.

The area and power metrics also shift significantly. The final standard cell area increased from 576k µm2

to 690k µm2, a rise of nearly 20%. This growth is primarily due to the addition of buffers during CTS and
for hold/slew fixing. Consequently, the total power consumption also increased from 4.62e-02 W to 6.86e-
02 W, driven by the increased cell area (higher leakage and internal power) and the additional switching
power of the clock tree buffers. As noted in communication with the design maintainers, the remaining
setup violations may be attributable to pessimistic modeling within the OpenROAD parasitic extraction
(RCX) module, which may require further calibration.

Table 5: Post-Synthesis vs. Post-Layout PPA Summary (Typical Corner)

Metric Category Yosys Yosys (False Paths) OpenROAD

Performance

Worst Setup Slack -63.97 ns +1.32 ns -2.449 ns
Total Negative Setup Slack -308,935.12 ns 0 -1987.24 ns
Setup Violation Count 4,920 0 2027
Hold Violation Count 157 157 0

Power

Internal Power 3.90e-02 W 3.90e-02 W 5.29e-02 W
Switching Power 7.18e-03 W 7.18e-03 W 1.58e-02 W
Leakage Power 7.04e-06 W 7.04e-06 W 9.91e-06 W
Total Power 4.62e-02 W 4.62e-02 W 6.86e-02 W

Area Standard Cell Area 575,547.6 µm2 575,547.6 µm2 689,891.1 µm2

3.4 Post-Layout PPA Comparison: Yosys vs. Genus Netlists
The final comparison involved running both the Yosys and Genus netlists through the same OpenROAD
P&R flow. The results, shown in Table 6, provide the most definitive assessment of netlist quality. The
results reveal that the initial area and power advantages of the Genus-synthesized design carry over after
layout using the OpenROAD P&R tool. The final standard cell area of the Genus-synthesized netlist after
routing is roughly 18.5% smaller than the original flow. At the same time, the Genus design consumes
approximately 25% less total power, with the most significant savings in internal power.

The performance metrics present a more nuanced picture. Both designs fail to meet the 80 MHz target,
which may be attributable to pessimistic modeling in the RCX module as discussed in subsection 3.3. The
Yosys-based design reports a better WNS of 2.449 ns, compared to -3.73 ns for the Genus design. This
is the same path that was shown to have negative slack post-synthesis in Table 4. The violating path
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count tells a different story: 2027 violating paths for the Yosys design compared to 151 violations for the
Genus design. This implies that, although Genus has a singular path with WNS, the design overall should
perform better.

Table 6: Yosys vs. Genus Netlist Post-Layout PPA Summary (Typical Corner)

Metric Category Yosys Genus

Performance

Worst Setup Slack -2.449 ns -3.73 ns
Total Negative Setup Slack -1987.24 ns -64.68 ns
Setup Violation Count 2027 151
Hold Violation Count 0 0

Power

Internal Power 5.29e-02 W 3.61e-02 W
Switching Power 1.58e-02 W 1.51e-02 W
Leakage Power 9.91e-06 W 8.79e-06 W
Total Power 6.86e-02 W 5.12e-02W

Area Standard Cell Area 689,891.1 µm2 562,308.0 µm2

3.5 Impact of Synthesis Effort on Proprietary Tool QoR
To assess the optimization capabilities of the proprietary toolchain, the Croc SoC was synthesized using
Cadence Genus under three distinct effort level configurations: none, high, and the tool’s defaults. The
PPA results for each configuration, analyzed within the Genus timing engine, are presented in Table 7.

The data illustrates a clear correlation between synthesis effort and QoR. The high effort configuration
yields the most favorable results across nearly all metrics when compared to the none configuration. It
achieves a better setup slack, a lower total power consumption, and a smaller standard cell area by more
than 1,000 µm2. This demonstrates the effectiveness of the advanced logic restructuring and optimization
algorithms employed by Genus when given sufficient runtime to explore the design space.

The comparison between high and default settings reveals that the default configuration achieves the
best setup slack (-1.641 ns) and the smallest standard cell area (457.9k µm2), marginally outperforming the
high effort run. However, the high effort configuration reports slightly lower total power consumption. This
is an expected outcome, as the high effort test case explicitly sets design power effort to high, enabling more
aggressive power-saving optimizations, whereas this setting is none by default. This analysis highlights
the complex, multi-objective nature of synthesis, where different effort settings result in distinct PPA
trade-offs.

Furthermore, the synthesis time, captured using the Linux time command, reveals the computational
cost of these optimizations. As expected, the high effort synthesis takes significantly longer (26m45s
real time) than the none effort run (23m39s). Interestingly, the default configuration, despite achieving
superior area and timing results, had a comparable runtime to the high effort configuration. This suggests
that the default settings for Genus represent a well-balanced heuristic that delivers excellent QoR without
an excessive runtime penalty compared to the all-high setting. These results underscore the ability for
designers to tune the synthesis tool’s behavior to meet specific project goals, whether they prioritize
maximum performance, minimum area, or faster design iteration cycles.
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Table 7: Different settings for Genus

Metric Category Genus (none) Genus (high) Genus (defaults)

Performance

Worst Setup Slack -1.849 ns -1.671 ns -1.641 ns
Setup Violation Count 1 1 1

Power

Internal Power 1.78e-02 1.76e-02 1.76e-02
Switching Power 1.40e-02 1.38e-02 1.39e-02
Leakage Power 6.28e-06 6.28e-06 6.32e-06
Total Power 3.18e-02 W 3.14e-02 W 3.15e-02 W

Area Standard Cell Area 459,787.1 µm2 458,747.5µm2 457,867.5µm2

Synthesis Time
Real time 23m39s 26m45s 27m14s
User CPU 21m07s 23m04 23m05s
System CPU 1m17s 2m00 1m28s
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4 Conclusion and Future Perspectives
This thesis conducted a comparative study of EDA methodologies by investigating the synthesis quality of
the open-source Yosys toolchain versus the proprietary Cadence Genus, and by quantifying the “predictive
gap” within the end-to-end open-source OpenROAD flow. Using the Croc RISC-V SoC and the IHP 130
nm PDK as a common baseline, this work provides direct, data-driven insights into the trade-offs between
these two design philosophies.

At the synthesis level, the proprietary Cadence Genus tool produced a netlist of superior quality,
achieving 1.75 times better power efficiency and a significantly smaller standard cell area (458k µm2 vs.
576k µm2). This advanced optimization came at the cost of a substantially longer runtime of approximately
25 minutes, in stark contrast to the 3-minute synthesis time of Yosys, which highlights the open-source
tool’s clear advantage for rapid design iteration and debugging.

Post-synthesis timing analysis proved to be an unreliable predictor of final performance. A design
that was timing-clean at the logical level ultimately failed timing closure after physical implementation,
accumulating over 2,000 setup violations with a WNS of -2.449 ns. This performance degradation was a
direct consequence of introducing realistic physical effects, with buffer insertion for the clock tree and hold-
time fixing causing a 20% increase in total standard cell area. This clearly illustrates that post-synthesis
metrics are insufficient for performance signoff and that full post-layout analysis is non-negotiable.

The findings of this thesis have broader implications for the adoption of open-source EDA within
the semiconductor industry. The rapid iteration speed of Yosys confirms the value of the open-source
ecosystem for academic research, startups, and early-stage design exploration, where quick feedback cycles
are paramount. However, the significant predictive gap and lower optimization quality observed highlight
a critical maturity hurdle. For open-source tools to gain trust for high-volume or performance-critical
commercial tapeouts, future development must focus on improving correlation between pre- and post-
layout analysis and advancing optimization algorithms to rival their proprietary counterparts. Until then,
the industry is likely to maintain a hybrid approach, leveraging open-source tools for initial development
and proprietary tools for final signoff verification and optimization.

Future work should involve a complete place-and-route of the Genus-synthesized netlist using a tool
like Cadence Innovus to determine if its superior synthesis performance translates to a superior final PPA.
Completing the proprietary flow would also serve as a crucial reference for validating the OpenROAD RCX
engine’s accuracy in parasitic extraction, which currently represents another significant area of uncertainty
within the open-source ecosystem. Furthermore, incorporating simulation-based activity files would enable
a more precise power comparison. In conclusion, this work affirms the trade-offs inherent in modern EDA
tool selection. While the open-source ecosystem offers a fast and accessible path to silicon, proprietary tools
provide more refined optimization. The significant predictive gap observed demonstrates that regardless
of the toolchain, the journey from RTL to a physically-realized design is fraught with challenges that can
only be identified and addressed through comprehensive post-layout analysis.
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and L. Benini, “Croc: An end-to-end open-source extensible risc-v mcu platform to democratize
silicon,” 2025.

[8] PULP Platform Contributors, “Croc system-on-chip.” [Online]. Available: https://github.com/pulp-
platform/croc

[9] IHP-GmbH, “Ihp open source pdk.” [Online]. Available: https://github.com/IHP-GmbH/IHP-
Open-PDK/

[10] H. Pretl. [Online]. Available: https://hub.docker.com/r/hpretl/iic-osic-tools/

[11] H. Pretl and G. Zachl, “GitHub repository of the IIC-OSIC-TOOLS.” [Online]. Available:
https://github.com/iic-jku/IIC-OSIC-TOOLS

16

https://par.nsf.gov/biblio/10171024
https://github.com/pulp-platform/croc
https://github.com/pulp-platform/croc
https://github.com/IHP-GmbH/IHP-Open-PDK/
https://github.com/IHP-GmbH/IHP-Open-PDK/
https://hub.docker.com/r/hpretl/iic-osic-tools/
https://github.com/iic-jku/IIC-OSIC-TOOLS

	Introduction
	The End of an Era and the Rise of Specialization
	The EDA Implementation Challenge
	Open-source vs. Proprietary Toolchains
	Post-Synthesis vs. Post-Layout

	The Croc SoC
	Research Goal

	Experimental Methodology
	Introducing the Toolchains
	The Open-Source Toolchain
	The Proprietary Toolchain

	Process, Voltage, and Temperature
	Croc SoC Implementation with OpenROAD
	Croc SoC Synthesis with Cadence Genus
	Post-Synthesis Analysis
	Post-Layout Analysis
	Experimental limitations

	Results & Discussion
	Post-Synthesis Quality of Results (QoR) Comparison
	Initial Analysis and Identification of Estimation Artifacts
	Synthesis Runtime Comparison

	Timing Analysis with Refined Constraints
	The Predictive Gap in the Open-Source Flow
	Post-Layout PPA Comparison: Yosys vs. Genus Netlists
	Impact of Synthesis Effort on Proprietary Tool QoR

	Conclusion and Future Perspectives
	References

