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Broken Object Level Authorization (BOLA) is widely recognized as one of
the most critical API security risks. Since its initial inclusion in the 2019
publication, the vulnerability has retained the number-one ranking in the
OWASP 2023 API Security Top Ten. Detecting BOLA attacks manually is
labour-intensive and error-prone, and the existing automated tools do not
provide full coverage over every API. The paper investigates whether large
language models (LLMs) can effectively identify BOLA vulnerabilities in
REST APIs. The research first presents a dataset of 12 REST APIs, described
in the OpenAPI 3.0 format. A prompt engineering approach is then employed
by giving the LLM a context-rich and role-specific prompt and asking it
to identify BOLA vulnerabilities. Four state-of-the-art LLMs are evaluated
using the dataset, and their outputs are compared against the ground truth.
The results show that LLMs achieve high accuracy and recall but suffer
from low precision, producing many false positives. Model performance is
compared against each other, and the Deepseek-R1 model achieves the best
overall performance. Lastly, small-parameter LLMs are explored; however,
the output shows a fundamental lack of knowledge in cybersecurity.

Additional Key Words and Phrases: Broken Object Level Authorization,
BOLA, LLM, Cybersecurity

1 INTRODUCTION
Application Programming Interfaces (APIs) have becomewidespread
and nearly unavoidable in modern web architecture, with the most
frequently used architectural style for web APIs being Representa-
tional State Transfer (REST). However, increasing reliance on APIs
has led to an increase in cyber-threats, with API related attacks
becoming a significant security concern.[10]
In its recent publication of the Open Worldwide Application Se-

curity Project (OWASP) 2023 API Security Top 10, the foundation
ranked Broken Object Level Authorization (BOLA) as the most
critical vulnerability affecting modern APIs.[8] This issue is per-
vasive in API-based applications because the server component
typically does not fully track the client’s state, instead relying more
on parameters such as object IDs, which are sent from the client
to determine which objects to access.[9] Executing a BOLA attack
typically requires knowledge of the object-identifier names within
an API request. It is possible to execute a BOLA attack using brute
force successfully.[2] However, a more efficient and less intrusive ap-
proach is to locate and analyze the OpenAPI specification of the API.
An OpenAPI specification is a standardized format used to describe
the structure and behavior of REST APIs. By successfully parsing
the OpenAPI document, malicious users can gain insight into the
API’s design, which can lead to the identification of potential flaws,
such as BOLA.
Although a person can identify BOLA vulnerabilities manually,

it becomes challenging, time-consuming, and error-prone to detect

TScIT 43, July 4, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

across complex APIs. Furthermore, most authorization mechanisms
are not specified in the OpenAPI specification, which means that
a significant amount of guesswork is required to determine their
implementation. Therefore, this thesis proposes utilizing recent
advances in LLMs as an automated approach to assist in detecting
BOLA vulnerabilities. This approach aims to reduce the need for
manual effort and enable security assessments across complex and
straightforward APIs. We propose the following research questions:
RQ1: How effectively can LLMs detect BOLA vulnerabilities in
REST APIs?
RQ2: Which Large Language Model - Deepseek R1, GPT-o4 mini,
Microsoft Copilot AI, Grok 3 performs best at detecting BOLAs?
RQ3: How effectively can LLMs parse and understand OpenAPI
specifications to identify BOLAs?
Section 2 provides a more detailed explanation of how a BOLA

attack can be performed against a vulnerable web application. The
current automated solutions for detecting BOLA vulnerabilities
will be discussed in Section 3. Subsequently, Section 4 outlines the
methodology and tools employed to gather OpenAPI specifications,
design LLM prompts, and discusses the interpretation of results.
Section 5 presents a discussion of the results, and Section 6 considers
the limitations of the research. Furthermore, Section 7 discusses
future work, and finally, Section 8 concludes the study.

2 BACKGROUND: BOLA AND OPENAPI
Object-level authorization is an access control mechanism that is
usually implemented at the code level to validate that a user can only
access the objects that they should have permission to access. [9]
Thismechanismmust verify the client’s permissions before handling
any API request that involves objects or receives object identifiers.
In the absence of a proper access control mechanism, a malicious
user can, in theory, gain access to sensitive data, manipulate it, or
completely delete it. Two examples are provided to help clarify how
a BOLA attack can be executed precisely.
Furthermore, it is essential to clarify what the OpenAPI specifi-

cations are. The OpenAPI Specification (OAS) defines a standard,
language-agnostic interface to HTTP APIs, which allows both hu-
mans and computers to discover and understand the capabilities
of the service without access to source code, documentation, or
through network traffic inspection. [7] To find BOLA vulnerabili-
ties, it can provide a malicious user with information such as a list of
all of the endpoints and their authentication mechanisms. Example
2 provides an example of the appearance of a vulnerable endpoint
in OpenAPI 3.0 format and how it can be exploited.

Example 1 - Unauthorized Data Disclosure
Consider an online clothing webshop where users are first required
to create an account, add items to their cart, and then proceed to
checkout. A malicious user named Bob logs in to their account and
observes that their user ID is "101". Meanwhile, an unaware user,
Alice, has already created an account beforehand. Upon inspecting
the network traffic or by locating the OpenAPI specification of the
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Fig. 1. Successful BOLA attack

webshop, Bob discovers that his and other users’ profiles are acces-
sible through /users/{id}. He then issues a new API request using an
API testing tool, such as Postman or Burp Suite, to the vulnerable
endpoint and manually modifies the user object ID to ’102’. He sends
the request "GET /users/102". The request goes through - the server
responds with the profile data of another user, Alice. This indicates
that the access control mechanism is flawed, and the BOLA attack
has been successfully exploited, allowing Bob to gain unauthorized
access to another person’s data. Figure 2.1 provides a representation
of the attack.

Example 2 - Unauthorized Data Deletion
The "Capital" digital goods store enables users to post and discuss
the sold articles in the comment section by creating, editing, and
deleting comments. In this scenario, the malicious user, Bob, first
locates an item, such as an e-book with the ID ’book33’, identifies
a comment that he dislikes, and discovers it has an ID of ’201’. By
acquiring the OpenAPI spec (capital.yaml), Bob locates the end-
point /articles/slug/comments/commentId, which has a call option
named ’DELETE’. This endpoint is illustrated in Listing 1 as part
of the API specification. Bob issues an API request, "DELETE /arti-
cles/book33/comments/201". The server accepts the request without
verifying whether Bob was the original author of the comment,
and the comment is deleted from the platform. Therefore, Bob has
successfully impersonated another user and deleted their comment
from the comment section. This confirms the BOLA vulnerability.

1 /articles /{slug}/ comments /{ commentId }:
2 delete:
3 tags:
4 - Articles , Favorite , Comments
5 summary: Delete Comment for Article
6 parameters:
7 - name: Content -Type
8 in: header
9 schema:
10 type: string
11 example: application/json
12 - name: X-Requested -With
13 in: header
14 schema:
15 type: string
16 example: XMLHttpRequest

17 - name: Authorization
18 in: header
19 schema:
20 type: string
21 example: Token {{token}}
22 - name: slug
23 in: path
24 schema:
25 type: string
26 required: true
27 - name: commentId
28 in: path
29 schema:
30 type: string
31 required: true
32 responses:
33 '200':
34 description: Successful response
35 content:
36 application/json: {}

Listing 1. OpenAPI Snippet for a BOLA-vulnerable Endpoint in capital.yaml

3 RELATED WORK
Automated detection of BOLA vulnerabilities in APIs is an ongoing
research area. Traditional security scanners, such as Static and Dy-
namic Application Security Testing (SAST/DAST), are ineffective at
finding BOLAs.[5] As a result, recent work has focused on novel au-
tomated techniques that leverage either the OpenAPI specification
or use known BOLA features. These techniques fall into three main
categories: formal mathematical model approaches, static analysis
of the API spec, and LLM-driven BOLA detection and generation.
Firstly, one line of work transforms an OpenAPI specification

into a formal model for analysis. Santos Filho et al. (2025) [3] pro-
pose Links2CPN, a tool that converts an OpenAPI 3 specification
into a Colored Petri Net (CPN) model. The tool then checks con-
formance between the model and actual API execution logs of the
API to detect BOLA vulnerabilities. In the field, Links2CPN achieves
high detection accuracy in case studies, reporting an accuracy of
over 95 percent. However, the tool has two significant drawbacks.
Firstly, it depends on careful OpenAPI documentation, where the
links feature is present within the specification. This feature de-
scribes relationships between API operations, which can be used
for modelling workflows; however, it is not always present in Ope-
nAPI specifications. Secondly, the tool relies on dynamic traces; it
analyzes server log files, which must be parsed into a JSON event
log to perform conformance checking, as it only accepts JSON logs
based on the Common Log Format. In summary, formal-model tools
like Links2CPN, which leverage mathematical structures to analyze
API behavior, can be utilized; however, they require high-quality
OpenAPI documents with the links feature and access to runtime
JSON format logs.
Another approach is a purely static analysis of the API specifi-

cation. Barbanov et al. (2022) [2] develop a rule-based algorithm
that parses an OpenAPI specification to identify potential BOLA
vulnerabilities. Their methodology consists of two phases: firstly,
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the tool annotates each endpoint with ’BOLA properties’ (e.g., iden-
tifying which parameters resemble object IDs); secondly, it applies
a rule-based ’attack analyzer’ to the annotated specification to gen-
erate possible attack vectors. The authors of the paper implemented
a Python algorithm that successfully identified vulnerabilities in
specifications. In practice, the authors note that their analyzer re-
quires trusted, well-annotated specifications, such as correct ’se-
curityScheme’ annotations and ’required’ flags. Nevertheless, this
is among the first to use only an OpenAPI specification to predict
BOLA vulnerabilities. It is noteworthy to mention that their tool is
not open-sourced, and the authors are impossible to contact, making
it unfeasible to recreate their results.

Finally, emerging AI-based methods have already been applied to
automate BOLA testing; however, there is a lack of documentation
of the results. Most notably, Palo Alto Networks’ "BOLABuster" [5]
leverages LLMs to interpret OpenAPI specifications and generate
test plans. First, it identifies potentially vulnerable endpoints; then,
it utilizes the LLM to uncover endpoint dependencies and constructs
workflows that demonstrate how endpoints can be accessed. Next,
it generates and executes tests against a live API, simulating two
users interacting with these endpoints, and analyzes responses for
authorization failures. Their tool can also dynamically generate tests
from the outputted endpoint dependencies and the specification.
Furthermore, the authors have proof of finding BOLAs in real-world
services such as Grafana or Harbor. However, their blog post does
not entail either the prompt design or the specific LLMs used, and
it does not provide any empirical evidence to substantiate their
findings.
In addition to these specific tools, other automated API security

frameworks exist, such as stateful fuzzers like RESTler or 42Crunch’s
audit tool. However, they do not specifically target BOLAs and are
outside the scope. Moreover, traditional methodologies like fuzzing
and static analysis are ineffective in detecting BOLAs, making man-
ual detection the standard approach.[5]

4 METHODOLOGY

4.1 Dataset Collection and Validation
We collected OpenAPI 3.0 specifications, formerly known as Swag-
ger, from open-source projects known to contain BOLA vulnerabili-
ties. The collection primarily consisted of intentionally vulnerable
APIs designed to assist people with learning about cybersecurity and
testing various tools; however, a real-world vulnerability example is
also used. GitHub was our primary source for finding the specifica-
tions; we used the built-in search tool to locate JSON and YAML API
definition files. For example, the VAmPI1vulnerable API provides
an openapi3.yml file in its repository. In addition to GitHub, we
consulted Google searches and scientific research databases to find
other candidates. In total, we obtained 12 distinct API specifications,
encompassing 241 unique endpoints. The full dataset is available
on our GitHub page. [4] Furthermore, every API in our dataset
had to be manually examined and confirmed for BOLA instances.
For example, a published writeup on the VAmPI API 2describes a
1VaMPi: https://github.com/erev0s/VAmPI
2Writeup on VAmPI: https://medium.com/@josegpach/vampi-vulnerable-api-a-
beginners-guide-to-api-security-testing-ed3b0302eeef

BOLA in the /books/v1/{title} endpoint. Every API was hosted
locally to confirm that the BOLA vulnerabilities truly exist. The
majority of the APIs included Docker configuration files, which
enabled efficient deployment through Docker containers. Postman,
together with the imported OpenAPI specification or a Postman
Collection, was used to probe specific endpoints, create users, and
execute BOLA attacks. Burp Suite Community Edition was a tool
also used for issuing API requests and confirming BOLAs. These
manual verifications ensured that all 19 cases in our dataset were
true positive BOLA vulnerabilities.

4.2 Prompt Engineering
Following practices committed in security-focused research [1] [11],
we crafted prompts that specify the task, role, and output format.
The final prompt is present in Appendix A. We experimented with
multiple templates (zero-shot and few-shot) and contents, where
the LLM was either given a single piece of context regarding the
definition of BOLAs or various pieces of context, along with explicit
role instructions and vulnerability examples. The final prompt in-
structs the LLM to "act as a security analyst." Such role-based and
domain-specific prompts have been shown to significantly improve
LLM accuracy in security tasks. [1] It asks for a structured JSON
response, listing any endpoints susceptible to BOLA. Furthermore,
it asks what not to give in the prompt response. Research has shown
that providing negative class examples can significantly enhance
the model’s performance and reduce false negatives [1]. Overall, the
prompt offers as much context as possible to the LLM and follows
the principles of prompting for security-related tasks by utilising an
appropriate expert role and focused content instructions to guide
the model’s analysis, thereby reducing false negatives and other
irrelevant input.

Without proper guidance, the LLMs often gave far too many false
positives and other unnecessary information, such as instructions
on how to mitigate the vulnerabilities. These issues were present
across all models, and proper actions were taken to address them. For
example, reducing the false positive rate was addressed by providing
the models with two separate examples of BOLA vulnerabilities and
11 specified points on how an endpoint with the issue might appear,
for example, "The parameter is likely to be a UUID, GUID, JWT, session
token, email address, or any string with high entropy."

What is not present in the final prompt is that other prompts were
used to make sure the results of the prompt were presented within
reason. To clarify, this meant asking the LLM for specific reasoning
behind every outputted endpoint and ensuring it was not an unin-
formed guess but a thoughtful and justifiable outcome. Additionally,
the prompts were enhanced with questions regarding the dependen-
cies of the outputted endpoints and the authorization mechanisms,
if applicable. Lastly, the LLMs were tasked with describing the prop-
erties of the endpoint in terms of what it was intended to do. The
features mentioned above would help in discerning the capability
of LLMs in understanding the OpenAPI specifications altogether,
therefore answering RQ2.
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4.3 LLM Selection
We selected four state-of-the-art LLMs for evaluation: Grok 3, Mi-
crosoft Copilot, GPT-o4-mini, and Deepseek R1. These models were
chosen because they represent leading AI capabilities and are ranked
among the top few on LMArena. It is worth mentioning that Copilot
AI is based chiefly on GPT-4 variants; however, it is specifically
tuned for tasks such as data analysis and code writing. Three addi-
tional models were also tested, namely Deepseek R1-7b, Deepseek
R1-14b, and LLama 3.1-8b. Although these models contain signif-
icantly fewer parameters — less than one-tenth of those in their
largest counterparts — they were selected for their feasibility in
terms of local runtime on standard desktop hardware.

4.4 Prompting
During the prompting phase, each LLM was given the exact prompt
found in Appendix A and specification five separate times. The
reason why the models were prompted five times is that the outputs
of the prompts showed very similar results, and almost four-fifths of
the time, the yielded output matched the previous one. The prompt-
ing itself was done either through the LLMs’ available graphical user
interface online or through a Python script in Visual Studio Code.
Each prompt was provided independently, meaning no prior context
was given to the LLM, and the session was reset to a blank state.
That way, no dialogue is carried over from a previous state or con-
versation. The resulting output was compiled into a comprehensive
spreadsheet to gain insights into the results.

4.5 Result Interpretation
To evaluate LLM performance, we computed standard classification
metrics from the confusion matrix, consisting of true positive (TP),
false positive (FP), true negative (TN), and false negative (FN) rates.
The rates mentioned above were labeled accordingly:

• TP: The model correctly identified BOLA
• TN: The model correctly ignored a safe endpoint
• FP: The model incorrectly identified a safe endpoint as BOLA
• FN: The model did not flag a BOLA

Accuracy is calculated as the fraction of correctly classified ex-
amples: (𝑇𝑃 +𝑇𝑁 )/(𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 ). Precision and recall are
computed as𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ), respectively. Lastly,
the F1 score, which is the harmonic mean between the precision
and recall, is calculated as 2 · (precision · recall)/(precision+ recall).
These metrics enable the measurement of model performance and
help identify the best overall model. Using all four metrics also
gives a more complete picture of the overall performance. For ex-
ample, a model could have high accuracy and low recall, meaning it
missed many true positives, or high recall and low precision, mean-
ing it overfitted the findings and produced a large number of false
positives, or vice versa.

5 RESULTS AND DISCUSSION

5.1 Analysis of Metrics
To address RQ1, tables were created for visual and quantitative
analysis. Table 1 reports the comprehensive gathering of the said
metrics for each LLM by summing TP, FP, TN, and FN over all of the

OpenAPI specifications. Furthermore, the table in Appendix B pro-
vides a more comprehensive representation of each LLM, displaying
the classification metrics for each specification.

Overall, all four models achieved a moderate accuracy (between
0.82 and 0.86. The recall is also relatively high (between 0.75 and
0.83), indicating that the models detected most of the BOLA vul-
nerabilities. It remained high across most of the API specifications,
with 8 out of 12 specs showing a recall of 1 (all of the vulnerabilities
were found) for all LLMs. With that said, the precision turned out to
be relatively low (between 0.28 and 0.33), meaning that many false
positives were flagged. Furthermore, the F1 scores yielded by the
research were only moderate at best (between 0.42 and 0.48).
After a finer analysis in Appendix B, it becomes clear what

causes the precision and F1 scores to plummet. Simple APIs such as
vampi, dvws or Vulnerable-rest-api specs typically yielded F1 scores
between (0.67-0.8). On the contrary, certain APIs with complex
logic, such as capital and crapi, which also had a large number
of endpoints — 34 and 40, respectively — achieved exceptionally
low F1 scores, with most of them being approximately 0.25. An
outlier with only 17 endpoints and 1 BOLA vulnerability was the
RESTaurant specification from the Damn Vulnerable RESTaurant
Game. The explanation for why this could be the case may relate to
the fact that the BOLA vulnerability did not match the prompt, and
there was nothing wrong with the specification on the surface. The
vulnerability itself was embedded in the application logic, not the
OpenAPI specification, meaning that even with sufficient context,
it would be challenging for an LLM to identify this vulnerability.

5.2 Reliability of LLM Output
In general, the output produced by the LLMs was satisfactory in
the end, although it required some refinement within the prompts.
Additionally, the definition of satisfactory in the research context
meant that the model should output only a list of possibly vulnerable
endpoints, and the list should match the instructions provided in
the prompt. This was also addressed in Section 4.2 by asking the
LLMs for specific reasoning behind each endpoint in their output
before conducting the final tests. This also helps with answering
RQ3 regarding the parsing of OpenAPI 3.0 specifications. It became
evident early on that the LLMs were fully capable of comprehending
the OpenAPI specifications. Firstly, they demonstrated the capability
to extract all endpoints within the context of a single specification.
Secondly, the models could correctly identify the methods and tasks
each endpoint was intended to perform in most cases. Thirdly, the
LLMs demonstrated their ability to properly analyze and discern
the dependencies within the endpoints, as well as parse the token
and authorization mechanisms evident in the specifications.

5.3 Model Comparison
Both tables - Table 1 and the table in Appendix B can be used
to analyze how well each LLM performed on its own and to help
answer RQ2. It becomes evident that the models exhibited very
similar performance across all key metrics, with Deepseek R1 out-
performing other models by a slight margin. Although it performed
as the best overall, the major drawback of its free-to-use model is
slow responses and server timeouts. In practice, it would only allow
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Table 1. Performance Metrics Comparison

LLM/Metric TP FP TN FN Accuracy Precision Recall F1-Score
Deepseek R1 79 158 952 16 0.8556 0.3333 0.8316 0.4759
Grok 3 75 188 922 20 0.8274 0.28517 0.7895 0.419
GPT o4-mini 71 170 940 24 0.839 0.2946 0.7474 0.4226
Copilot AI 75 192 918 20 0.824 0.2809 0.7895 0.4144

for a few inputs before timing out, at which point it was necessary
to use the model through a different account. The server response
time was deliberately degraded for the user, and it became quite
cumbersome to interact with after a while.

Furthermore, as mentioned in the subsection above, all the mod-
els demonstrated the capability to reason with an understanding
of the OpenAPI specification and with the prompt. However, no
specific outperformer can be identified from this conclusion, as it
would become quite strenuous to compare the reasoning behind the
thought processes of the models.

5.4 Smaller Models
Wewant to address the three additional models (Deepseek R1 7b/14b
and LLama 3.1 8b) that were tested. As highlighted in Section 4.3,
these models were run on a local machine where the OpenAPI spec-
ification, along with the prompt, was provided in plain text format
through a Python script. The minor 7b and 8b models responded
in approximately 30 seconds, while the 14b model took around a
minute to process, which made the process quite time-consuming.
Despite exhaustive testing (each model was tested around 30 times
with different prompt structures), none of them were able to ob-
tain any relevant or meaningful results. The models were unable
to understand the given problem. Despite all the context provided,
the models demonstrated a fundamental lack of understanding of
what a BOLA attack entails. They often hallucinated by outputting
unrelated data, for example, security advice on how to avoid SQL
injection and cross-site scripting (XSS) attacks. Taking into account
these limitations, the outputs from these models were deemed to be
too unreliable and were excluded from the quantitative analysis of
different LLMs.

5.5 General Implications
The results suggest that LLMs can reason about API logic and clas-
sical BOLA flaws to identify potentially vulnerable endpoints by
analyzing patterns and structure and being effectively guided by
carefully engineered prompts. Furthermore, the findings suggest
that LLMs possess a strong ability to reason when presented with an
appropriate and context-rich prompt. In practice, such automated
analysis could be incorporated into tools used by professionals,
such as security specialists, by utilising LLM-based scanners dur-
ing system reviews. Another possibility for LLM-based detection is
to complement existing BOLA detection methods, such as formal
analysis [3], which is constrained by logging but achieves very high
accuracy. However, the lack of F-1 scores and precision suggests
that the models overgeneralized the given rules, which is reinforced
by every LLM suffering from similar issues. This suggests that fully
automatic LLM-based tools should not be used as the sole remedy

for automatic BOLA detection, and that further manual labour or
intervention is required.

6 LIMITATIONS
Firstly, we acknowledge that we were unable to quantitatively com-
pare the output from the experiments with that of some relatedmeth-
ods. For example, the Links2CPN [3] tool requires JSON-formatted
server logs as one of the inputs. Unfortunately, the GitHub projects
the team took for the OpenAPI specifications did not include such
logging methods. The only possibility would be to implement such
logging techniques manually into the projects; however, this would
be too time-consuming since the codebases have different structures
and implementation methods. Likewise, the tool developed by Bara-
banov et al. (2022) [2] was not publicly accessible, and the contacts
they had provided in the paper were unreachable.

Secondly, more LLMs could have been tested for a more compre-
hensive comparison, for example, Claude Opus 4 or GPT-o3, which
are only available for PRO subscriptions or are paid by the number
of tokens. As the prompts used in the research are quite significant
(around 2000-4000 tokens per prompt), the costs would be as well.
Furthermore, local models such as LLama 3.1 70b, qwen3-235b, or
Deepseek R1-71b could not be tested due to hardware constraints,
as approximately 168 GB of GPU memory would be required to
serve the LLaMA model with 70 billion parameters.[6] In contrast,
the test setup used by the team had only 12 GB of GPU memory.

Thirdly, the number of documented and available OpenAPI spec-
ifications is limited, which constrains our dataset. While massive
datasets of OpenAPI 3.0 specifications already exist, those with
known BOLAs are scarce.

7 FUTURE WORK
The following key step addresses the limitations identified in the
study. First, a tool needs to be found or developed for reliable bench-
marking against LLMs and other methods concerning BOLAs. Sec-
ond, a more exploratory analysis of model performance would re-
quire a broader range of LLMs, including not only commercial but
also open-source types that can give reliable output. Lastly, the
dataset of OpenAPI specifications with BOLAs could be enlarged,
enabling even more generalizable conclusions regarding LLM effec-
tiveness.
In addition to addressing the limitations, other avenues could

be explored to approach this research. For example, fine-tuning
local, open-source models could produce more reliable results. This
could be done by specifically training the models on BOLA-related
data and changing the input parameters of the models themselves.
Furthermore, LLM-dependent prompts yield higher metric scores
by adjusting the prompts based on the LLMs.

5



TScIT 43, July 4, 2025, Enschede, The Netherlands Emils Johansens

Another option to enhance the research would be to explore more
advanced reasoning techniques, such as chain-of-thought reasoning,
which can assist the model in reasoning with greater accuracy by
generating intermediate reasoning steps.

Lastly, a fully automated pipeline for test generation and vulner-
ability confirmation could be explored using LLMs, leveraging the
metrics extracted from the research to further establish the applica-
bility of LLMs. This could mean detecting vulnerabilities with no
human intervention whatsoever.

8 CONCLUSION
This study aimed to investigate the ability of LLMs to detect BOLA
vulnerabilities in REST APIs by utilizing their OpenAPI specifica-
tions. The research intended to assess the overall effectiveness of
models, compare their performance, and evaluate their capability to
parse OpenAPI specifications. At the beginning of the study, three
research questions were addressed:

RQ1: How effectively can LLMs detect BOLA vulnerabilities
in REST APIs?

Overall, LLMs were shown to be partially effective. They achieved
high accuracy (0.82-0.86) and recall (0.75-0.83), identifying all BOLA
vulnerabilities in 66 percent of the cases. However, their precision
was low (0.28-0.33), meaning that many false positives were re-
ported, especially in more complex specifications. This limits their
overall reliability but suggests potential as a supportive tool in BOLA
detection.

RQ2: Which Large Language Model - Deepseek R1, GPT-o4
mini, Microsoft Copilot AI, Grok 3 performs best at detecting
BOLAs?

Among the tested models, Deepseek R1 performed the best across
most metrics. Although the rest of the competition achieved very
similar results, with the differences being marginal, Deepseek con-
sistently outperformed them.

RQ3: How effectively can LLMs parse and understand Ope-
nAPI specifications to identify BOLAs?

Larger LLMs demonstrated reasonable capability in parsing Ope-
nAPI specifications and identifying potentially vulnerable endpoints.
They consistently produced the correct type of data as the output,
with no hallucinations or errors in understanding the task at hand.
However, smaller models such as Deepseek R1-7b and Llama 3.1-8b
showed a lack of fundamental understanding of the assignment.

In conclusion, LLMs demonstrate significant promise for the auto-
mated detection of BOLA vulnerabilities in APIs, particularly when
reviewing well-documented and straightforward API specifications.
Precision issues in large APIs and the limited ability to reason over
complex logic are among the most critical unresolved problems,
indicating the need for human intervention. Further research into
LLMs, model fine-tuning, and prompt engineering enhancements
may mitigate such limitations and improve the overall real-world
applicability of LLMs to API security analysis.
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A APPENDIX A - FULL PROMPT
You must act as a security analyst looking for BOLA (Broken Object
Level Authorization) vulnerabilities within an OpenAPI 3.0 specifi-
cation. You will be given an OpenAPI 3 specification. Your task is
to parse it and identify potentially vulnerable endpoints based on
patterns commonly associated with BOLA flaws.

Here are a few examples of how a BOLA vulnerability might look
like:

(1) Accessing another user’s data:
For example, an API endpoint might look like /users/{userId},
where {userId} is a path parameter. If the API does not verify
that the user making the request is authorized to access the
specific userId, a malicious user could change the {userId}
value to retrieve another user’s data.

(2) Manipulating resources:
Another example is when anAPI endpoint like /orders/{orderId}
allows users to view or update their orders, but does not en-
force that the user is the creator or owner of the order. A
malicious user could access or manipulate another user’s
order by tampering with the {orderId} path parameter.

Identify and return all endpoints that could have BOLA vulnerabili-
ties and that meet any of the following criteria:

(1) The endpoint includes a path or query parameter whose name
or description suggests it identifies a user, session, organiza-
tion, or resource (e.g., userId, accountId, orgId, orderId, postId,
token).

(2) The parameter is likely to be a UUID, GUID, JWT, session
token, email address, or any string with high entropy.

(3) The endpoint includes a path or query parameter whose name
matches identifier patterns: Ends with id, ID, _id, Id, uuid,
UUID, guid, GUID, is exactly id, uuid, guid, token, key OR
matches known identifier terms: name, email, phone, group,
account, user, project, team, tenant, bucket, session, profile,
etc.

(4) The parameter may reference a group of users or resources
(e.g., teamId, projectId, tenantId).

(5) The parameter appears inHTTPmethods PUT, PATCH,DELETE,
or GET (indicating data access or mutation).

(6) The OpenAPI spec lacks explicit authorization mechanisms
on the operation (e.g., missing security requirements or 403
response codes).

(7) The parameter is reused acrossmultiple endpoints, suggesting
object reuse or shared access scope.

(8) Parameter is in the path and the path contains a match-
ing noun prefix (e.g., /orders/{order} where order and orders
align), or, the path pattern contains action verbs and resource-
like identifiers (e.g., /profileInfo/edit/{profile} or /{collection}/action/{item}).

(9) The parameter value corresponds to a resource created or
returned in another endpoint (e.g., /files creates fileId, used
in /files/{fileId}).

(10) The ’tags’ parameter has words like UUID, ID, GUID, id.
(11) The HTTP method is one that accesses or modifies data (GET,

PUT, PATCH, DELETE).

Only return a plain list of the endpoint paths that match the criteria.
Do NOT include any explanations, formatting, or reasoning. Output
ONLY the list of endpoints.
Do not include any explanation, description, extra text, or any

markdown formatting.
Do not include any other vulnerabilities, such as SQL injection,

XSS, etc.
Only focus on BOLA vulnerabilities (Broken Object Level Autho-

rization), not other vulnerabilities such as Broken Object Property
Level Authorization, Broken Access Control, or Broken Authentica-
tion.

Example output:
["/api/v1/patients/{patientId}", "/api/v1/medical-records/{recordId}",

"/api/v1/prescriptions/{prescriptionId}"]

Here is the OpenAPI 3 specification:(openapi3.yaml)

7
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B APPENDIX B

Table 2. Performance Metrics Comparison between specifications

Specification/LLM Deepseek R1 Grok 3 Gpt 4o-mini Copilot AI
Vapi Accuracy 0.9 0.9545 0.9545 0.9545

Precision 0.3125 0.5 0.5 0.5
Recall 1 1 1 1
F1 0.4762 0.6667 0.6667 0.6667

Capital Accuracy 0.8606 0.8182 0.8424 0.8121
Precision 0.1785 0.14286 0.1613 0.1389
Recall 1 1 1 1
F1 0.303 0.25 0.2778 0.2439

Vuln-Bank Accuracy 0.7 0.625 0.9167 0.6333
Precision 0.12195 0.1 0.3333 0.10204
Recall 1 1 1 1
F1 0.2174 0.1818 0.5 0.1852

dvapi Accuracy 0.9286 0.8571 0.9286 0.7571
Precision 0.5 0.3333 0.5 0.22727
Recall 1 1 1 1
F1 0.6667 0.5 0.6667 0.3704

crapi Accuracy 0.9063 0.8421 0.8256 0.8462
Precision 0.34615 0.25 0.14706 0.16667
Recall 0.9 1 0.5 0.5
F1 0.5 0.4 0.22727 0.25

vampi Accuracy 0.8571 0.8571 0.8571 0.8571
Precision 1 1 1 1
Recall 0.6667 0.6667 0.6667 0.6667
F1 0.8 0.8 0.8 0.8

RESTaurant Accuracy 0.8333 0.8235 0.8333 0.8235
Precision 0.5 0 0.0909 0
Recall 0.3333 0 0.2 0
F1 0.4 0 0.125 0

Vulnerable-rest-api Accuracy 0.88 0.9 0.8182 0.9
Precision 0.625 0.6667 0.5 0.6667
Recall 1 1 0.5 1
F1 0.7692 0.8 0.5 0.8

dvws Accuracy 0.9167 0.95 0.9167 0.9167
Precision 0.5 0.625 0.5 0.5
Recall 1 1 1 1
F1 0.6667 0.7692 0.6667 0.6667

OWASP Juice Shop V1 Accuracy 1 1 1 1
Precision 1 1 1 1
Recall 1 1 1 1
F1 1 1 1 1

OWASP Juice Shop V2 Accuracy 0.5 0.5 1 1
Precision 0 0 1 1
Recall 0 0 1 1
F1 0 0 1 1

Memos Accuracy 0.7368 0.7368 0.7632 0.7368
Precision 0.0909 0.0909 0.1 0.0909
Recall 1 1 1 1
F1 0.16667 0.16667 0.1818 0.16667
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