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Each year, there are more than 200 million surgeries performed worldwide,
providing essential and often lifesaving treatment. This study explores the
application of process mining techniques to improve the analysis of surgical
workflows using an annotated laparoscopic dataset. The dataset includes
three types of colorectal surgeries: Proctocolectomy, Rectal Resection and
Sigmoid Resection.

Process mining, which derives workflow models from event logs, was
applied using heuristic mining and alignment-based conformance checking
to construct standardized surgical process models. These models serve as
empirical baselines, enabling comparison of individual procedures against
data-driven best-practice workflows.

The analysis revealed recurring misalignments in specific surgical phases
and substantial variability in phase transitions and procedure durations.
these findings highlight the potential of process mining to quantitatively
evaluate surgical performance, informing training programs, and supporting
outcome monitoring.

Additional Key Words and Phrases: Process Mining • Colorectal
Surgery • Workflows • Laparoscopic • Heuristic Miners

1 INTRODUCTION
Process mining is a relatively recent subfield of data science, in-
troduced in the late 1990’s by prof.dr.ir. Wil van der Aalst [1]. It
revolves around the analysis of event logs, a structured record of
activities within a process, to extract and construct process models.
The analysis of these models consists of three main stages: process
discovery, conformance checking and process enhancement [17]. Pro-
cess discovery refers to the creation of process models based on
observed event logs, making use of various algorithms known as
miners. These models are then evaluated, validated and analysed
using conformance checking, which quantifies the differences be-
tween the models and new event logs. Finally, process enhancement
refers to the improvement or extension of the models using new
data, with the goal of increasing the alignments of the model with
the real-world behaviour. Through this framework, process mining
allows for the transformation of raw event data into quantifiable
and visual process representations.
In the domain of healthcare, process mining has been increas-

ingly prominent, providing optimizations for clinical procedures.
Prior studies have used it for case studies, process optimizations
and analysis and most notably in the context of our research, work-
flow analysis [13]. By recording and visualising procedural events
(traces), process mining can offer a means to better understand the
variability in surgeries and the various outcomes resulting from that
variability.

Each year, there are more than 200 million surgeries performed
worldwide, providing essential and often lifesaving treatment [7].
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Although modern surgical techniques are generally safe, complica-
tions and procedural errors are remain a concern, posing significant
challenge across surgical contexts [7]. Establishing a standardized
workflow derived from real surgical data offers a means for sur-
geons to analyse risks of upcoming procedures and improve surgi-
cal outcomes. By aggregating different procedures across multiple
instances of the same surgical type, it becomes possible to construct
an accurate representative model of a colorectal surgery. These mod-
els can provide guidance during training and help identify critical
deviations and phases that can influence patient outcomes.

2 PROBLEM STATEMENT
There is currently no universally established standard for surgical
procedures, particularly in the context of teaching and guidelines [7].
This lack of standardization can result in variability across surgical
practices, which can lead to avoidable risks before, during and after
the procedure. In complex procedures, such as colorectal surgery,
defined workflows can be a valuable asset for ensuring consistency
and improving outcomes.
Colorectal surgical complications can generally be categorised

into intraoperative complications and postoperative complications
[8]. One of the most critical postoperative complications is anasto-
motic leakage, linked to an increased mortality rate [9]. Research
has also demonstrated a positive correlation between increased
operating time and both intraoperative and postoperative complica-
tions [8]. While intraoperative complications are linked to increased
operating times [9], they are also a predictor for poorer surgical
outcomes. Interestingly, studies have shown that prolonged oper-
ating times in laparoscopic surgeries have not contributed heavily
to the increased intraoperative and postoperative complications, in
contrast to the alternative - open surgeries, likely due to the inher-
ent advantages that laparoscopic surgery provides [8]. Additionally,
evidence suggests a learning curve for laparoscopic colorectal surg-
eries exists, with operating times and intraoperative complications
declining steadily after approximately 30 procedures [15].

2.1 ResearchQuestions
This research inversitages how surgical workflowmodels from video
data can be improved with the additional help of tenchniques such
as process mining. By constructing standardized reference models,
we can compare individual procedures to an empirical baseline,
and quantify the variance. This analysis may contribute to better
understanding of surgical procedures and consequences, leading
to increased training and guidelines, potentially resulting in the
reduction of procedural complications.

(1) How can surgical workflows be improved with the help of
techniques from process mining?

(a) How can process mining be a viable asset in surgical work-
flow mining from computer vision algorithms?

(b) To what extent can alignment-based conformance checking
reveal patterns in surgical performance variability?
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3 TECHNICAL BACKGROUND
This research aims to analyse the application and effectiveness of
process mining in the context of surgical workflows. Specifically,
the study explores whether process mining algorithms can be mean-
ingfully applied to a colorectal dataset derived from a computer
vision model.

3.1 Process Mining
Process mining, introduced in the late 20th century by prof.dr.ir. Wil
van der Aalst, consists of three general stages: process discovery,
conformance checking and process enhancement [17]. In the process
discovery stage, event logs are analysed to generate a process model
that is representative of the real-world procedure that was provided.
A key challenge is to determine and select an appropriate mining
algorithm (miner) to derive the most meaningful process model in
accordance with the dataset. Conformance checking then evaluates
and validates the process model by comparing it to a different event
log of the same procedure, providing a quantifiable measure of
model accuracy. It also highlights the main differences between the
model and event log, providing key insight into deviations from
expected and observed behaviours. Finally, process enhancement
uses the alignment diagnostics from the previous stage to improve
or extend the model, ensuring it accurately describes the real-world
process [17].

This study focused primarily on the process discovery and confor-
mance checking stages of process mining. The central consideration
during process discovery was selecting a suitable mining algorithm
that would best model the procedure’s behaviour. Three types of
miners were evaluated: Integer Linear Programming (ILP) miner,
the inductive miner, and the heuristic miner.
The ILP miner aims to find a model that perfectly fits the event

log that is provided as input, often resulting in a fitness of 1. This is
considered a drawback by most, however for this research, where
avoiding deviations from the real world in the model is the goal, it
was a suitable option. In our case, the resulting ILPmodel incorrectly
permitted access to the beginning and end of the procedure at any
phase, it further introduced an unrealistic flexibility to the miner
along with an alignment later that favoured the model over the
event log.
Subsequently, we examined the inductive miner, which recur-

sively splits the event log to identify patterns [18]. While this ap-
proach can offer improved generalisation and accuracy with more
data, it’s structure becomes overly complex in a sparse dataset. Fi-
nally, the heuristic miner was also considered for this research,
the key difference between the heuristic miner and the inductive
miner is the dependency graph that is generated before creating the
splits and identifying the patterns [4]. After comparative testing, we
found that this difference resulted in the heuristic miner producing
a slightly better F-score and weighted average than the inductive
miner, and was therefore selected as our model for the next phase
of process mining.

3.2 Computer Vision
This annotated dataset in this study reflects the type of output that
can be provided by a Computer Vision (CV) algorithm applied to

surgical videos. A specific challenge for surgical phase labelling is
detecting the start of a phase. The dataset follows three definitions
that defined the start of a phase [12]:

• A phase starts when the instrument related to the first activity
relevant for this phase enters the screen.

• If a change of the anatomical region results in the transition
to a new phase, the camera movement towards the region
marks the start of the phase.

• If the camera leaves the body or is pulled back into the trocar
between two phases, the new phase starts with the first frame
that does not show the trocar in which the camera is located.

These criteria imply that both surgical instruments and camera
location influence phase labelling. The Robust Medical Instrument
Segmentation (ROBUST-MIS) challenge was proposed to develop an
international benchmark for robust and generalized algorithms to
detect and categorize surgical instruments [14]. As the instrument
segmentation and detection is available, the location of the camera
would be the next step to improve reliability of automated surgical
phase recognition.

3.3 Related Work
Process mining in health care has seen it’s fair share of research,
surgical workflows are not an exception. In this section, we are
going over some of the related work for process mining in surgical
workflows.

We are using an open source dataset from the Heidelberg Uni-
versity Hospital [11]. The dataset has a collection of four different
surgeries all focused around colorectal surgeries. The dataset con-
sists of frame, phase label pairs, where each of the 13 phase labels
represent the highest level of surgical workflow analysis [12].
Christos Spiliadis, a Master student at the Technical University

of Delft, wrote a master thesis on surgical workflow analysis [16].
The research was conducting by using ceiling mounted cameras
followed by a combination of GMM-HMM models, to automate the
phase creation of surgical workflow.
Web-video-mining-supported workflow modelling, is a paper

published in 2016 focusing on surgical workflow modelling from
web-video mining [10]. They created a scraping algorithm and com-
bined it with a selection and segmentation algorithm that allowed
them to create a probabilistic surgical workflow model.

Modelling the workflow of a cholecystectomy has also been used
to build a Hidden Markov Model [3]. The research resulted in a GUI
that graphically represented the surgical workflow, allowing the
comparison of surgical video that have been synchronized with the
model.

4 EXPERIMENTAL METHODOLOGY
The methodology was structured into three semi-sequential phases:
pre-processing, process discovery, and conformance checking. This
modular design enabled a clear structure, and backtracking was
only required when a new miner needed to be tested or further pre-
processing was implemented. The overall workflow is illustrated in
Figure 1, which depicts the components and their interdependencies.
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Fig. 1. Project methodology flow chart

4.1 Pre-Processing
The pre-processing phase began with a review of the dataset to
identify the existing elements and how they can be transformed
into the required structure for event log construction. Event logs
are composed of three core attributes: a case identifier, an activity
label, and a timestamp. The data we received contains two distinct
columns: Frames and Labels. To this end, the procedure identifier
(e.g., Proctocolectomy_1_Phase) was used as the case ID. The 13
unique phase labels were mapped to their distinct textual represen-
tation to improve interpretability and reduce confusion. The frame
number was converted into a timestamp, spanning a 1 second : 25
frames ratio, using the current implementation time as a starting
point.
Each procedure contained, on average, 270’000 rows. Most of

these entries are redundant, as each phase can range between sec-
onds and several minutes. To reduce this duplication, for both mem-
ory efficiency and to improve the clarity of model construction,
only the first instance and the time of the last instance of a set of
consecutive phases was retained. This preserved the full temporal
scope of the procedure, while reducing the retention of duplication.
The transformation condensed the event logs to fewer than 100
rows per procedure, preserving all relevant information.

4.2 Process Discovery
The process discovery was central to the research, producing the
reference model required later for conformance checking as well
as providing visual insight into surgical procedures and patterns.
Three primary goals defined this step: (1) identifying a suitable
mining algorithm, (2) constructing a suitable reference model, and
(3) creating a train/test split consisting of a set of 10 procedures of
the same type.

Initially the experimentation focused on selecting an appropriate
miner. Based on literature, the ILP miner appeared as a promising
candidate due to its well-known characteristic of producing models
with a perfect fitness (fitness = 1.0). This initially suggested that
it would closely follow the structure of the event log, creating a
reference model perfectly mimicking the real world. However, em-
pirical testing revealed the opposite. The ILP miner over generalized

the model, introducing two "black boxes", which reduced the inter-
pretability and precision of the model. Through the black boxes,
each of the phases was allowed to start and end the entire procedure.
It further resulted in a model focused alignment result making the
ILP miner unviable for our application.

Subsequent testing introduced both the inductive and the heuris-
tic miners. The heuristic miner outperformed the inductive miner,
on their respective best working models, in terms of F-score and
weighted average metrics. The F-score was computed using the
standard harmonic mean between fitness and precision [6]:

𝐹_𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

To further refine the model selection, a weighted average of the four
process mining quality metrics, fitness (f), precision (p), general-
ization (g), and simplicity (s), was constructed using the following
formula [2]:

𝑊𝐴 = 0.4 ∗ 𝑓 + 0.4 ∗ 𝑝 + 0.15 ∗ 𝑔 + 0.05 ∗ 𝑠

The weights reflect our priority of balancing model accuracy with
interpretability and generalization.
To automate the generation of the train/test split, a script was

implemented to automatically generate and evaluate all valid com-
binations. A ratio of 4:6 was chosen, to prioritize the quantification
and analysis of data. To ensure that the generated model reflected a
typical surgical procedure, all combinations containing a procedure
with the phase ’exception’ were skipped. The algorithm returned
the train/test split with the highest average between F-score and
weighted average, corresponding to the selected reference model
reflected in this study.

4.3 Alignment-based Conformance Checking
The final methodological phase involved evaluating the individual
surgical traces and how they aligned with the discovered reference
model. This was accomplished bymaking use of pm4py.conformance_-
diagnostics_alignments module. This algorithm identifies an optimal
alignment between a process model and an event log by minimizing
the cost of deviations, thereby producing a trace-by-trace mapping
of observed vs. expected behaviour. Due to the characteristics of the
heuristic miner, the reference model contained many black boxes,
resulting in an alignment that favoured log moves as more cost
efficient, reproducing an alignment that contained the full event
log.
Each event log results in a sequence of tuples in the form (log

move, model move), representing how each trace aligns or misaligns
with a corresponding step in the process model. Custom scripts were
written for this type of output to generate dataframes containing
log moves, model moves and the associated case identifier, which
served as the basis for the analysis and visualisations.
Due to the nature of this dataset, conformance checking was

conducted in two forms: once focusing on non-timed results and
once with a focus on timed results. This enabled separate evalua-
tions of structural alignments and temporal deviation and anomalies,
without cluttering either result with too much information.
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A critical aspect of the alignment output was the identification
and filtering of misalignments. To highlight the deviations, two
types of tuples were excluded:

• Synchronous moves, where the model and the event log
transitions aligned, indicating expected behaviour.

• Artificial start transitions, returned as a ("»", None) tuple,
which typically occurs and the beginning of a trace represent-
ing a "skip" on both sides and is therefore not meaningful.

Upon removing these elements, the resulting data structure retains
only the deviations:

• Log moves, which are traces that are observed but not ex-
pected by the model.

• Model moves, which are traces that are expected by the
model but not observed in the event log.

These filtered misalignments help highlight and identify patterns of
structural deviations and potential anomalies in the procedures.

5 EXPERIMENTAL SETUP

5.1 Dataset
The study used the ’Heidelberg Colorectal Dataset for surgical data
Science in the sensor operating room’ (HeiCo) [11, 12, 14]. This
dataset covers three types of colorectal procedures: Proctocolectomy,
Rectal Resection and Sigmoid Resection, each having 10 separate
recordings. This has resulted in 30 fully annotated laparoscopic
colorectal procedures with an average duration of approximately 3
hours. The HeiCo dataset provided a structured and semantically
rich foundation, similar to a computer vision algorithm, from which
valid event logs could be constructed for process mining.

5.2 General Approach
The first milestone was constructing a representative reference
model of one of the surgery types. While there are certain estab-
lished conventions for surgical procedures, most executions vary in
practice due to patient-specific factors and intraoperative decisions
and complications. Consequently the reference model constructed
followed a generalized sequence derived from the observed data,
preserving a real world structure of events.

To validate the robustness and representativeness of the reference
model, a train/test split was employed. All combinations of training
and testing splits were evaluated systematically, through the script,
each resulting in a model scored using the F-score [5] and weighted
average metrics.

After selecting the optimal model based on the validation metrics,
the next milestone is the alignment-based conformance checking.
This step enables granular comparison between the observed event
log and the expected reference model, at the level of individual event
transitions.

Lastly, post-processing allowed the transformation of the results
into analysable and interpretable data structures.

5.3 Implementation
The research was carried out in a Jupyter notebook environment,
using python 3.11.x and pm4py 2.7.x. The main requirement to

Fig. 2. Best heuristic result

recreate the result is a large CPU, as process mining requires a lot
of memory to run efficiently.

6 RESULTS
This section presents the finding of the alignment-based confor-
mance checking and explores two parallel analyses: non-timed
and timed alignment results. The non-timed results highlight phase
sequences and misalignment patterns, while the timed results al-
low exploration of phase durations, repetitions and temporal devi-
ations across surgical procedures. These same analyses were also
performed on the full alignment to gain further insight into the
differences and similarities of the full procedures.

6.1 Reference Model
The reference model, constructed using the heuristic miner on pro-
cedures 1, 4, 6, and 7, is a Petri-net visualized in Figure 2. The model
includes several transition (black box) nodes, highlighting the flex-
ibility in these surgical procedures. This model allows for varied
paths between phases, creating closed loops and defined sequences.

Fig. 3. Phase 7 to phase 3 transition in heuristic workflow model

An area of interest involves the interaction between phase 7
and phase 3 (Figure 3). Clinically, these phases are often linked, as
phase 3 may serve as an intermediate step during the mobilization
of the ascending colon (Online Table 1) [12]. The model, showing
transitions from phase 7 to both phase 3 and a black box, reflects this
variability. This suggests that phase 3, which only has an incoming
connection from phase 7, is fully interconnected with that phase.

Fig. 4. Phase 4, 5, 6 transition in heuristic workflow model

A second noteworthy region of the model concerns the typical
sequence form phase 4 to phase 5, and onward to phase 6 (Figure 4).
The model reflects a consistent pattern observed across all training
procedures, with transitions confirming the expected phase pro-
gression. A similar pattern was also discovered between phase 9
and phase 10 (Figure 5), representing the two most aligned phases
according to our results.
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Fig. 5. Phase 9 to phase 10 transition in heuristic workflow model

Table 1. Durations of each surgery

Procedure Duration (HH-MM-SS)
1 04-07-44
2 03-53-41
3 03-05-58
4 02-54-21
5 03-31-57
6 02-16-04
6 02-50-21
8 02-53-08
9 03-31-55
10 04-56-21

6.2 Non-Timed Alignment Results
The non-timed conformance results provide insights into misalign-
ments based purely on phase transitions, irrespective of their re-
spective durations. Two procedures, 3 and 10, display prominent
deviations from the reference model.
Procedure 10 is the longest in Proctocolectomy dataset, lasting

nearly 5 hours. Its alignment showed a significant deviation during
the middle of the operation. Specifically the sequence:

𝑃ℎ𝑎𝑠𝑒_7 → 𝑃ℎ𝑎𝑠𝑒_0 → 𝑃ℎ𝑎𝑠𝑒_3

was represented multiple times, despite being an invalid transition
in the reference model. No exception was recorded for this case,
suggesting an operational challenge. The repetition of phase 0 im-
plies potential difficulties completing or progressing beyond specific
steps, further suggesting operational challenges, likely stemming
from patient conditions.

Procedure 3 highlights a similar anomaly. An exception, though
unspecified of the exact nature, occurred midway through phase 6.
This could be the explanation as to why the surgical team addressed
phase 6 before phase 7, a further deviation from our model. While
the nature of the exception is unknown, the likely outcome was an
adaption in the procedure not known to our reference model.

6.3 Timed Alignment Results
To complement the structural analysis, a timed evaluation of the
results was performed. Table 1 presents the total durations for each
Proctocolectomy procedure. Timed analysis enables the identifica-
tion of phase variability and commonality.

6.3.1 Total and Average phase durations. Phase 8 emerged as the
most complex and variable across procedures. It was repeated an
average of three times per surgery and each exhibiting durations
ranging from 12 to 45 minutes. The high variance, both in total
and average duration, supports the hypothesis that this phase is

Fig. 6. Misaligned Combined Bar Chart

technically demanding and heavily dependent on patient-specific
anatomy.

Procedure 10 exhibited significant misalignment inside of which,
phase repetitions were highly notable: six repetitions for two phases
and three for others. One instance of phase 6 lasted over an hour,
while combined with the remaining deviations the phases accounted
for over two hours of the surgery, nearly the full duration of an
average Proctocolectomy procedure. This pattern reinforces earlier
observations that this procedure represents a significant outlier in
this surgery type. It further suggests, that during this procedure
there was likely a patient-specific anatomy that induced a high
degree of complexity to the procedure.

6.3.2 Phase Variability and Stability. Figure 6 presents an overview
of misaligned trace durations across phases and cases. The most
volatile phase was again found to be phase 6, particularly influ-
enced by procedure 10, demonstrated by Figure 10. Looking deeper
into the misalignments, a difference between the one-minute and
17-minute separation was found. This suggests that at least one
instance may have been mislabelled, due to the annotation con-
ditions, potentially due to brief spatial proximity without active
engagement. This hypothesis is further supported by Figures 11 and
12, which both highlight the one-minute phase as an outlier specific
to procedure 10.
In contrast, several phases appear relatively stable, both in the

misaligned and full-trace analyses. These phases often only occur
once per surgery, hinting at procedural simplicity or anatomical
constraints. Phase 7, for example, while frequently involved in mis-
alignment transitions, remained consistent in duration, suggesting a
simple yet frequently revisited step. Similarly, other than the outlier
in procedure 10, phase 3 can be observed as a highly stable phase,
reinforcing the hypothesis above, as the non-timed results showed
phase 7 to be a wrapper for phase 3.

A broader observation arises when comparing misaligned versus
full trace. Phase 8, which was found to be one of the most complex
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and variable phases, had few yet very stable misalignments. Com-
pared to phase 6, which we found to have very high variability, when
looking at the full surgical procedure, it was found to be much more
stable compared to phase 8. This indicates that model alignment,
while useful in identifying patterns, does not necessarily correlate
with surgical difficulty. Instead, variability in full procedure traces
may reflect more complex challenges, reinforcing the need for both
structural and temporal perspectives in workflow evaluation.

7 DISCUSSION

7.1 Interpretation of key findings
This study set out to explore how surgical workflows can be im-
proved through the application of process mining techniques. Sec-
tion 4 outlines the methodology used to achieve this, demonstrating
how annotated video data can be transformed into structured event
logs and process models. The results presented in section 6 show
that even with a small dataset, process mining revealed both typical
procedural sequences and meaningful deviations. Patterns such as
the misalignment in procedure 10 and the high variability in phase
8 illustrate how process mining can support structured workflow
evaluation by identifying variations and points of interest within
surgical practice.
Two sub-questions supported this central inquiry. The first sub-

question asked whether process mining could be combined with CV
algorithms to become a viable asset in surgical workflow mining.
While CV was not implemented in this study, the structure of the
HeiCo dataset and the resulting models suggest that integration and
automation is feasible. If developed further, CV integration could
enable scalable, near real-time workflow analysis, reducing reliance
on manual annotation and traditional statistical models.

The second sub-question addressed the extent towhich alignment-
based conformance checking could quantify surgical variability. The
results indicate that this technique is effective in visualizing dif-
ferences across procedures and within phases. When paired with
clinical context such as patient characteristics or surgical outcomes,
these deviations can support surgeon reflection, performance evalu-
ation and quality improvement efforts.

Overall, these findings suggest that process mining is a promising
tool for surgical workflow analysis. With future integration of CV, it
could support real-time feedback, surgical training, and continuous
quality assurance by enabling automated and timely evaluation of
surgical procedures.

7.2 Limitations
This study has faced several limitations related to the scope and
structure of the dataset, which constrained the depth of analysis.
Notably, phase 13, in two of the three types of surgery was only
observed in a single procedure. As a result, it was not feasible to
investigate the potential causes or implications of these exceptions
in a meaningful or statistically grounded way.
A fundamental characteristic of process mining is the availabil-

ity of a large number of cases with relatively fewer activities. This
structure allows algorithms to detect robust patterns and depen-
dencies with greater accuracy. However, in this study, the opposite
was true: the dataset contained more activity types than distinct

surgical procedures. The most detailed procedure only consists of 36
meaningful rows after pre-processing. Consequently, the resulting
models were based on sparse data, and the connections derived from
them remain largely hypothetical rather than conclusive.
Furthermore, the dataset lacked contextual metadata, such as

patient demographics, or surgical outcomes. This omission limited
our ability to interpret the causes of prolonged phases and misalign-
ments. Without this information, it is not possible to differentiate
between variations due to procedural complications and those aris-
ing from patient-specific factors. Thus, while the observed patterns
and deviations may be accurate reflections of surgical behaviour,
their definitive explanation remains speculation.

7.3 Future Work
There are several promising directions for future work. First and
foremost, expanding the dataset, as mentioned in the limitations,
would significantly enhance the value of the results and analysis,
allowing for less speculative answers. Moreover, with appropri-
ate implementation, introducing this to surgical teams could serve
as valuable education and reflection on the procedures that are
done. Ultimately, integrating this approach into surgical data sci-
ence pipelines, with the use of CV, could contribute to improved
patient outcomes by identifying inconsistencies or opportunities
for best-practice reinforcement.

8 CONCLUSION
This study demonstrated that process mining techniques can be
applied to laparoscopic video-derived data to generate and anal-
yse surgical workflows. Even with a limited dataset, the resulting
models captured both standard procedural structure and variation.
Alignment-based conformance checking revealed patterns of surgi-
cal variability, offering potential value for training and performance
evaluations. With further development, particularly the integration
of computer vision for more efficient annotation, process mining
could become a valuable component of surgical data science, sup-
porting real-time assessment and continuous improvement.
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A TABLES

A.1 Phase Label

Table 2. Phase ID to textual label

ID Phase name
0 General preparation and orientation in the abdomen
1 Dissection of lymph nodes and blood vessels en bloc
2 Retroperitoneal preparation towards lower pancreatic border
3 Retroperitoneal preparation of duodenum and pancreatic head
4 Mobilization of sigmoid colon and descending colon
5 Mobilization of splenic flexure
6 Mobilization of transverse colon
7 Mobilization of ascending colon
8 Dissection and resection of the rectum
9 Extra-abdominal preparation of anastomosis
10 Intra-abdominal preparation of anastomosis
11 Creation of stoma
12 Finalization of operation
13 Exception

A.2 Non-times results

Table 3. Misaligned traces

2_Phase 3_Phase 5_Phase 8_Phase 9_Phase 10_Phase Log Move Count Unique Phases Normalized Difference
7 None None None None None 1 1 0
3 None None 8 None None 2 2 0
7 None 8 None 8 None 3 2 0.5

None 6 4 8 4 None 4 3 0.333333333
6 13 None 4 None None 3 3 0
5 7 7 None 7 None 4 2 1

None 3 3 None 3 None 3 1 2
None 7 7 None 7 7 4 1 3
None 3 3 None 3 0 4 2 1
None 8 7 7 7 7 5 2 1.5
None None 3 3 3 0 4 2 1
None None 8 None 8 7 3 2 0.5
None None None None None 0 1 1 0
None None None None None 3 1 1 0
None None None None None 6 1 1 0
None None None None None 0 1 1 0
None None None None None 0 1 1 0
None None None None None 6 1 1 0
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Table 4. Full event log alignment trace

2_Phase 3_Phase 5_Phase 8_Phase 9_Phase 10_Phase Log Move Count Unique Phases Normalized Difference
0 0 0 0 0 0 6 1 5
7 None None None None None 1 1 0
3 4 4 8 4 4 6 3 1
7 5 8 4 8 5 6 4 0.5

None 6 4 8 4 6 5 3 0.666666667
6 13 5 4 5 None 5 4 0.25
4 6 6 5 6 5 6 3 1
5 None None None None 6 2 2 0
6 None None 4 None None 2 2 0
5 7 7 5 7 5 6 2 2
4 3 3 6 3 6 6 3 1

None 7 7 None 7 7 4 1 3
None 3 3 None 3 0 4 2 1
None 8 7 7 7 7 5 2 1.5
8 1 3 3 3 0 6 4 0.5

None None 8 1 8 7 4 3 0.333333333
0 8 1 None 1 0 5 3 0.666666667

None 9 None 8 None 3 3 3 0
8 10 8 9 8 4 6 4 0.5
9 None 9 10 9 None 4 2 1
10 11 10 None 10 6 5 3 0.666666667

None None None 11 None 0 2 2 0
12 10 11 None 11 6 5 4 0.25

None None None 10 None 0 2 2 0
11 12 12 None 12 6 5 3 0.666666667

None None None 12 None 4 2 2 0
None None None None 11 None 1 1 0
None None None 11 None 1 2 2 0
None None None None 12 None 1 1 0
None None None None None 8 1 1 0
None None None None None 9 1 1 0
None None None None None 10 1 1 0
None None None None None 11 1 1 0
None None None None None 12 1 1 0

A.3 Timed results

case_id phase activity_count average_duration total_duration
1_Phase 0 2 04:56.5 00:09:53
1_Phase 1 3 02:24.2 07:12.6
1_Phase 3 1 13:15.3 13:15.3
1_Phase 4 4 05:44.1 22:56.6
1_Phase 5 1 01:57.3 01:57.3
1_Phase 6 2 13:38.1 27:16.2
1_Phase 7 2 05:40.1 11:20.1
1_Phase 8 5 12:14.3 01:11.6
1_Phase 9 1 52:05.4 52:05.4
1_Phase 10 1 19:44.1 19:44.1
1_Phase 11 1 19:22.3 19:22.3
1_Phase 12 1 01:28.6 01:28.6
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10_Phase 0 6 02:08.9 12:53.3
10_Phase 1 1 05:12.8 05:12.8
10_Phase 3 1 18:19.8 18:19.8
10_Phase 4 3 11:47.0 35:21.0
10_Phase 5 3 05:04.8 15:14.4
10_Phase 6 6 09:34.9 57:29.6
10_Phase 7 3 05:22.0 16:05.9
10_Phase 8 1 45:20.7 45:20.7
10_Phase 9 1 43:21.4 43:21.4
10_Phase 10 1 30:08.3 30:08.3
10_Phase 11 1 14:44.6 14:44.6
10_Phase 12 1 02:07.7 02:07.7
2_Phase 0 2 02:49.1 05:38.1
2_Phase 3 1 04:50.0 04:50.0
2_Phase 4 2 14:28.2 28:56.4
2_Phase 5 2 06:30.6 13:01.3
2_Phase 6 2 13:56.3 27:52.6
2_Phase 7 2 07:29.4 14:58.8
2_Phase 8 2 31:21.2 02:42.4
2_Phase 9 1 53:12.4 53:12.4
2_Phase 10 1 10:26.9 10:26.9
2_Phase 11 1 02:30.1 02:30.1
2_Phase 12 1 09:31.1 09:31.1
3_Phase 0 1 02:29.9 02:29.9
3_Phase 1 1 10:28.3 10:28.3
3_Phase 3 2 02:59.0 05:58.0
3_Phase 4 1 09:36.8 09:36.8
3_Phase 5 1 06:19.2 06:19.2
3_Phase 6 2 08:19.3 16:38.6
3_Phase 7 2 02:46.1 05:32.3
3_Phase 8 2 22:32.9 45:05.7
3_Phase 9 1 38:06.4 38:06.4
3_Phase 10 2 13:00.7 26:01.4
3_Phase 11 1 07:24.1 07:24.1
3_Phase 12 1 07:47.7 07:47.7
3_Phase 13 1 00:04:29 00:04:29
4_Phase 0 3 02:40.4 08:01.3
4_Phase 1 2 00:03:23 00:06:46
4_Phase 3 2 01:33.7 03:07.4
4_Phase 4 1 12:28.7 12:28.7
4_Phase 5 1 00:09:42 00:09:42
4_Phase 6 1 11:50.5 11:50.5
4_Phase 7 2 02:43.3 05:26.6
4_Phase 8 3 12:19.7 36:59.2
4_Phase 9 1 39:03.0 39:03.0
4_Phase 10 2 15:29.4 30:58.8
4_Phase 11 2 02:36.3 05:12.7
4_Phase 12 2 02:21.8 04:43.6
5_Phase 0 1 08:32.4 08:32.4
5_Phase 1 1 06:57.5 06:57.5
5_Phase 3 3 00:55.9 02:47.8
5_Phase 4 2 04:16.8 08:33.6
5_Phase 5 1 03:16.0 03:16.0
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5_Phase 6 1 16:23.8 16:23.8
5_Phase 7 3 01:58.3 05:54.8
5_Phase 8 3 19:33.2 58:39.6
5_Phase 9 1 47:26.8 47:26.8
5_Phase 10 1 22:24.8 22:24.8
5_Phase 11 1 14:32.1 14:32.1
5_Phase 12 1 16:27.1 16:27.1
6_Phase 0 1 00:59.4 00:59.4
6_Phase 1 2 01:48.8 03:37.6
6_Phase 3 1 02:13.4 02:13.4
6_Phase 4 1 06:56.8 06:56.8
6_Phase 5 1 01:35.4 01:35.4
6_Phase 6 1 09:03.8 09:03.8
6_Phase 7 2 02:55.3 05:50.6
6_Phase 8 3 15:58.6 47:55.9
6_Phase 9 1 32:30.9 32:30.9
6_Phase 10 2 06:55.5 13:50.9
6_Phase 11 2 04:10.3 08:20.5
6_Phase 12 2 01:33.9 03:07.8
7_Phase 0 2 04:53.0 09:46.0
7_Phase 1 1 07:10.6 07:10.6
7_Phase 3 2 01:59.2 03:58.5
7_Phase 4 1 09:04.5 09:04.5
7_Phase 5 1 03:32.6 03:32.6
7_Phase 6 1 14:35.2 14:35.2
7_Phase 7 3 00:58.7 02:56.1
7_Phase 8 3 12:05.4 36:16.3
7_Phase 9 1 41:01.5 41:01.5
7_Phase 10 2 12:03.3 24:06.6
7_Phase 11 2 07:28.0 14:56.1
7_Phase 12 1 02:57.3 02:57.3
8_Phase 0 1 06:55.7 06:55.7
8_Phase 1 1 04:00.6 04:00.6
8_Phase 3 1 05:22.9 05:22.9
8_Phase 4 3 04:16.0 12:48.1
8_Phase 5 2 05:27.9 10:55.8
8_Phase 6 1 08:04.4 08:04.4
8_Phase 7 1 04:23.7 04:23.7
8_Phase 8 3 16:01.8 48:05.4
8_Phase 9 1 38:47.6 38:47.6
8_Phase 10 2 10:07.1 20:14.1
8_Phase 11 2 05:44.3 11:28.6
8_Phase 12 1 02:00.6 02:00.6
9_Phase 0 1 08:30.6 08:30.6
9_Phase 1 1 06:57.4 06:57.4
9_Phase 3 3 01:20.1 04:00.4
9_Phase 4 2 05:19.8 10:39.7
9_Phase 5 1 02:32.3 02:32.3
9_Phase 6 1 00:15:23 00:15:23
9_Phase 7 3 01:24.6 04:13.8
9_Phase 8 3 19:35.5 58:46.6
9_Phase 9 1 47:26.8 47:26.8
9_Phase 10 1 22:24.4 22:24.4

TScIT 43, July 4, 2025, Enschede, The Netherlands.



12 • Francisco Thomas van der Boon

9_Phase 11 2 09:41.5 19:23.0
9_Phase 12 2 05:48.3 11:36.6

B ENHANCED FIGURES

B.1 Petri-net

Fig. 7. Full-size version of best heuristic result

B.2 Full Sized Workflow Chart

Fig. 8. Large workflow chart
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B.3 Full Sized Bar Charts

Fig. 9. Full Sized - Misaligned combined bar chart
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Fig. 10. Full Sized - Misaligned separated bar chart
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Fig. 11. Full Sized - Combined bar chart
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Fig. 12. Full Sized - Separated bar chart
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C STATEMENT ON AI USE
During the development of this thesis, I used OpenAI’s ChatGPT to support the research process in the following ways:

• To brainstorm and refine ideas related to the methodology.
• To review the paper for grammar and academic tone.

At all times, the content and analysis presented in this work reflect my own understanding, interpretation, and original contributions. The AI
tool was used solely to enhance the quality and readability of the final text.
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