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The Internet of Things (IoT) continues to expand rapidly. Meanwhile, vul-
nerabilities in IoT systems have become increasingly prevalent. Despite
this, the Common Vulnerabilities and Exposures (CVE) database, a key
resource in cybersecurity, does not explicitly indicate whether a vulnera-
bility is related to IoT. Previous studies primarily rely on keyword-based
searches and manual review to identify IoT-related vulnerabilities, which
is time-consuming and may fail to capture more nuanced cases. In this
paper, we assess the effectiveness of large language models (LLMs) in clas-
sifying CVEs as IoT-related or not and compare their performance against
fine-tuned Natural Language Processing (NLP) based classifiers. We then
investigate which specific components of a CVE entry, such as the descrip-
tion or affected items, contribute most significantly to the classification
decision, providing insights into the internal decision-making process of
the LLMs. Our goal is to go beyond simple keyword detection, reduce
manual work, and expand the current datasets of IoT vulnerabilities. Re-
sults show that LLMs have high potential in automatically classifying
CVEs with an accuracy of 92% without any fine-tuning or the need for
labeled training data. It significantly reduces the manual effort required
for processing such large vulnerability datasets and offers researchers
and security professionals a powerful tool for enhancing IoT security.

Additional Key Words and Phrases: IoT vulnerabilities, CVE, large lan-
guage models, dataset labeling

1 INTRODUCTION
The Internet of Things (IoT) is expanding at an extraordinary rate,
with forecasts suggesting that the number of connected devices
could reach 75.44 billion by 2025 and that the economic impact of
IoT technologies ranges between $2.7 trillion and $6.2 trillion [21].
Despite this rapid growth, security remains a major concern. For
example, the smart home sector alone was expected to surpass $40
billion by 2020, yet there are still no universal security standards
for IoT devices. As a result, many products remain vulnerable
to attacks targeting their physical components, networks and
encryption mechanisms [8].
A notable example of these risks is the Mirai botnet, which

exploited default credentials in IoT devices to create a large net-
work of compromised systems capable of launching devastating
Distributed Denial-of-Service (DDoS) attacks [23]. Mirai infects
vulnerable IoT devices, mainly targeting products such as IP cam-
eras and home routers. It was used in major DDoS attacks, in-
cluding the disruption of a DNS provider and several high-profile
websites [26].

Therefore, given the high stakes involved, it is crucial to identify
vulnerabilities in IoT systems. Prior research has shown that IoT
vulnerabilities often stem from common, recurring issues [18]
and that auditing frameworks typically assess whether a device
can be exploited based on previously disclosed vulnerabilities.
However, despite the existence of extensive vulnerability datasets
such as the NVD CVE database, IoT-specific vulnerabilities are not
explicitly labeled. Prior efforts to identify IoT-related CVEs have
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relied on keyword-based searches and manual review. However,
this approach is time-consuming and not scalable, limiting its
effectiveness in systematically identifying IoT vulnerabilities.
These limitations highlight the need for an effective and ef-

ficient method to classify vulnerabilities in large CVE datasets.
Recent progress in large language models has shown impressive
performance across various natural language processing tasks,
particularly in text classification, often without the need for la-
beled data or extensive fine-tuning. For instance, Kostina et al.
[14] demonstrated that LLMs like LLaMA3 and GPT-4 can outper-
form traditional classifiers on complexmulticlass and binary tasks,
simply by applying effective prompts. Similarly, Sun et al. [20]
demonstrated that few-shot prompting techniques can achieve
near-supervised performance using as few as 16 examples per
class. Despite these advances, whether LLMs can accurately label
CVEs as IoT-related remains unexplored.
Therefore, in this work, we leverage large language models

to automatically classify CVEs as either IoT-related or not IoT-
related. We evaluate a diverse set of LLMs from different model
families and parameter sizes in a zero-shot setting, using a care-
fully constructed and manually validated dataset. To assess how
effective LLMs are compared to other available technologies, we
also fine-tune several state-of-the-art NLP-based classifiers on
the same task.
In addition to measuring standard performance metrics, we

analyze feature importance to determine which input fields con-
tribute most significantly to LLM classification decisions. This
leads us to the following research questions (RQ) as the basis of
our research:

• RQ1: How do different LLMs compare in performance on
the task of IoT vulnerability classification?

• RQ2: How effectively can large language models classify
CVE entries as IoT-related compared to fine-tuned classi-
fiers?

• RQ3: Which fields or features of a CVE entry (e.g. de-
scription, affected items, published date) contribute most
significantly to determining IoT relevance?

The rest of the paper is organized as follows. In Section 2, we
review prior studies. Section 3 explains our methodology and
the selected LLM models. Section 4 elaborates on the dataset, the
conducted analysis, and the results. In Section 5, we present the
discussion, and we conclude in Section 6. All supporting materials
used in this study can be found in the references section, as well as
in the appendices. The final datasets, along with all intermediate
results, are publicly available on the GitHub repository at [4].

2 RELATED WORK
In this section, we review two main strands of related work. First,
we discuss studies that have investigated IoT vulnerabilities at
scale and highlighted the complexity of reliably identifying and
classifying IoT-related security issues. Second, we review recent
research that has applied large language models to various text
classification tasks, demonstrating their potential for understand-
ing and categorizing unstructured textual data.
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2.1 IoT Vulnerability Analysis
We base our study on the labeled dataset created by Chen et
al. [7], who manually classified CVEs as IoT-related or non-IoT-
related. Their empirical study collected 198,464 CVE entries from
the National Vulnerability Database (NVD) and applied an IoT-
specific keyword filtering and manual verification process to
construct a dataset containing 1,739 IoT-related and 196,725 non-
IoT-related CVEs.
Zhao et al. [27] performed a large-scale empirical analysis

of vulnerabilities introduced by third-party components in IoT
firmware. By analyzing 34,136 firmware images, they identified
584 TPCs and 429 CVEs. They found that outdated components
are major sources of vulnerabilities. Their work also shows that
a single CVE can propagate across many devices due to shared
components and libraries.
Hulayyil and Li [13] proposed an IoT vulnerability detection

and mitigation system that does not rely on predefined features.
Instead, it processes raw network traffic using a lightweight neural
network and a language model. The system runs in real time and
achieves high accuracy in detecting and responding to threats
during live operation.

2.2 LLMs for Text Classification
Abburi et al. [1] proposed an ensemble-based method for text
classification, combining the outputs of multiple large language
models as features for a traditional fine-tuned machine learn-
ing classifier. Their findings showed strong performance in both
binary and multi-class tasks across English and Spanish datasets.

Vajjala and Shimangaud [24] compared zero-shot, few-shot, and
synthetic-data approaches across 32 datasets in eight languages.
While zero-shot works well for sentiment tasks, few-shot tuning
and synthetic data often perform better in more complex cases,
especially across different languages.
Tony et al. [22] introduced LLMSecEval, a benchmark of 150

natural-language prompts targeting MITRE’s Top 25 CWEs for
evaluating code-security capabilities of LLMs. Each prompt in-
cludes secure implementation examples, enabling assessment of
vulnerability generation potential in model outputs.

3 METHODOLOGY
In order to identify IoT-related CVEs, we first propose a precise
definition of the IoT ecosystem and IoT-related CVEs. We then
select several LLMs publicly available through the Ollama frame-
work [19], covering various LLM sizes and families. Each model
is then prompted via a structured input that includes our defini-
tion of an IoT ecosystem followed by the CVE description. The
performance of LLMs is evaluated on a ground-truth dataset com-
prising IoT and non-IoT CVEs. We further compare LLMs against
several state-of-the-art NLP classifiers in terms of performance
and execution time.

3.1 IoT ecosystem definition
In this study, we define an IoT system as comprising three primary
components: device, network, and application [11, 15]. The device
component refers to physical objects embedded with sensors, soft-
ware, and connectivity features that allow it to collect, exchange,
and act on data over the internet or other networks without re-
quiring direct human intervention. Examples include—but are
not limited to—routers, switches, IP cameras, smart home devices,
etc. Moreover, components that enable IoT connectivity, such as

embedded modules, smart controllers, and network interfaces are
considered part of the IoT devices [12]. The network component
serves as the communication layer that facilitates data transfer
and connectivity between devices. This includes, but is not lim-
ited to, technologies and protocols such as BLE, CoAP and MQTT.
The application component is responsible for processing data
into actionable insights and delivering user-facing functionality.
Examples include companion mobile apps, user interfaces, and
platforms like IFTTT and SmartThings.

Given the above definition of an IoT system, we define an IoT-
related CVE as one that impacts or targets essential components
of an IoT system, including devices, networks, and applications,
and is primarily or exclusively deployed within IoT contexts. It is
worth noting that we do not consider the smartphone, computer,
or tablet as an IoT device.

3.2 Chosen Large Language Models
We selected six LLMs based on factors such as model size, archi-
tecture, instruction-following capability, and efficiency on local
hardware. Below is an overview of the selected models and a brief
explanation of why each was chosen:

• LLaMA 3.1 (8B):We selected LLaMA 3.1 (8B) primarily be-
cause it is known for its strong performance in processing
complex, technical text, which often contains dense termi-
nology. It is developed by Meta and one of the most widely
adopted open-weight models in the industry, making it a
strong benchmark for evaluating classification effective-
ness. It has 8B parameters and a disk size of 4.7GB [16].

• Mistral (7B): Mistral (7B) was selected for its compact
architecture and strong reasoning capabilities, making it
well-suited for local inference without compromising clas-
sification performance. On paper, it offers performance
comparable to LLaMA 3.1 while requiring fewer resources.
We chose the 7B parameter version, which has a disk size
of 4.1GB, making it a lightweight yet powerful model for
our use case [3].

• Phi 4 Mini (3.8B): Phi-4 Mini (3.8B) is a compact and ef-
ficient language model released by Microsoft in February
2025 as part of the Phi-4 family. It’s the newest model in
our evaluation. We selected the 3.8B parameter variant to
explore the impact of model size on classification accuracy,
particularly in handling complex and nuanced CVE descrip-
tions. With a disk size of 2.5GB, it was the smallest model
in our comparison, allowing us to assess whether a higher
parameter count and smaller model results in a less precise
identification [17].

• DeepSeek-R1 (7B): DeepSeek-R1 (7B) is a 7-billion param-
eter model developed by DeepSeek AI. With a disk size
of 4.7GB, DeepSeek-R1 (7B) was selected not only for its
technical strengths but also due to its recent rise in popu-
larity within the open-source community. Including it in
our evaluation allows us to explore how newly emerging
open models perform in comparison to more established
baselines like LLaMA 3.1 (8B) and Mistral (7B) [2].

• Gemma 3 (4B): Gemma (4B) is a lightweight, instruction-
tuned open-weight model developed by Google, with 4
billion parameters and a disk size of approximately 3.3GB.
It was selected to provide a useful point of comparison
with Phi-4 Mini (3.8B) to establish a stronger baseline for
small-model effectiveness in CVE classification tasks [9].
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• Gemma 3 (12B): Gemma (12B) is the larger variant in
Google’s Gemma model family, containing 12 billion pa-
rameters and a disk size of approximately 8.1GB. It was
selected to examine how models of the same family scale
in performance by comparing this larger variant with its
smaller 4B counterpart [9].

3.3 Consistent Classification
To ensure consistency in classification and eliminate ambiguity
in interpretation, we design the prompt by first providing the
exact definition of IoT-related vulnerabilities given in Section 3.1.
This is then followed by the inclusion of the following structured
fields:

• affected_items: A structured list indicating which prod-
ucts, vendors, or systems are affected by the vulnerability.

• description: A summary describing the vulnerability, its
impact, and technical details.

• provider_short_name: Name or abbreviation of the vul-
nerability data provider or source.

• published_date: Date on which the CVE entry was offi-
cially published.

• tags: Additional labels or metadata assigned to the CVE
entry.

This prompt structure ensures that the models receive both
the contextual and factual information necessary for consistent
decision-making. By clearly stating the definition upfront, we
minimize subjective variation and ensure that both LLMs and
human annotators apply the same criteria.

3.4 Classification Models
We selected three well-established transformer-based models to
serve as the core classifiers in our evaluation pipeline. Each model
was chosen based on its strengths in handling text classification
tasks and its alignment with the language and structure of CVE
descriptions:

• SciBERT (allenai/scibert_scivocab_uncased): Trained
on a large corpus of scientific and technical text, SciBERT
is particularly well-suited to the domain-specific language
used in CVE entries. Its familiarity with structured, formal
writing makes it ideal for accurately parsing cybersecurity-
related content.

• DistilBERT (distilbert-base-uncased): This distilled ver-
sion of BERT offers a lightweight alternative that retains
much of BERT’s representational power while significantly
improving inference speed and efficiency. It is particularly
useful for real-time or resource-constrained applications.

• DeBERTa v3 Small (microsoft/deberta-v3-small): De-
BERTa introduces advanced attention mechanisms and im-
proved positional encoding, resulting in state-of-the-art
performance on classification benchmarks. It serves as a
high-performing benchmark model in our analysis.

4 ANALYSIS AND RESULTS
In this section, we first explain our system setup, evaluation met-
rics and dataset. We then present our results and address the
research questions.

4.1 System setup
All experiments were conducted on a local workstation equipped
with an NVIDIA RTX 2060 GPU featuring 16GB of dedicated
VRAM, paired with 32GB of system RAM and a multi-core CPU.

This hardware configuration provided sufficient computational
resources for evaluating medium-sized LLMs while maintaining
reasonable processing times. However, the hardware limitations
prevented us from exploring larger-scale models, which typically
require significantly more memory and computational power. The
full hardware setup and detailed specifications are provided in
Appendix A.

4.2 Evaluation Metrics
The following metrics are collected for each model to evaluate
classification performance in relation to RQ1 and RQ2:

• Accuracy: The overall proportion of correctly classified
CVEs.

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

• Precision: The proportion of CVEs predicted as IoT-related
that are truly IoT-related.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

• Recall: The proportion of actual IoT-related CVEs that are
correctly identified.

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• F1 Score: The harmonic mean of precision and recall, pro-
viding a balanced metric when considering both false posi-
tives and false negatives.

F1 Score = 2 · Precision · Recall
Precision + Recall

• Execution time (s): The average inference time per CVE
sample, measured in seconds.

Execution Time =
Total Time

Number of Samples

4.3 Dataset
We utilize the IoT vulnerability classification dataset constructed
by Chen et al. [7] as a basis dataset. Their work collected 198,464
CVE entries from the National Vulnerability Database (NVD),
covering the period from August 1999 to April 2023. To identify
IoT-related vulnerabilities, they created an IoT-specific keyword
list derived from the titles and keywords of papers published
in top security conferences. This keyword list was then used to
filter the CVE database, resulting in a dataset containing 1,739
IoT-related CVEs and 196,725 non-IoT CVEs.
Because the original dataset contains significantly more non-

IoT-related CVEs than IoT-related ones, we balanced the data
by randomly selecting an equal number of non-IoT CVEs from
the same time period as the IoT-labeled entries. This results in
a balanced dataset with a 50/50 distribution between IoT and
non-IoT CVEs (both consisting of 1,739 CVE’s), ensuring that the
classification task is not biased by class imbalance.
Afterwards, we divide this dataset into training and testing

sets. The training set is used to fine-tune the classifiers, while
the testing set is used to evaluate the performance of both the
classifiers and LLMs. Specifically, we randomly select 70% of the
dataset (2,478 samples) for training, ensuring a balanced 50/50
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Table 1. Classification performance for different LLMs on the test set.

Model Accuracy Precision Recall F1 Score Avg time per sample (s)
Gemma (12B) 87.4% 0.883 0.869 0.876 8.5
LLaMA 3.1 (8B) 85.6% 0.925 0.786 0.850 1.7
Mistral (7B) 86.3% 0.879 0.877 0.878 1.5

DeepSeek (7B) 84.5% 0.851 0.838 0.845 15.7
Gemma 3 (4B) 83.2% 0.823 0.861 0.842 1.4

Phi-4 Mini (3.8B) 77.8% 0.720 0.898 0.799 2.2

Table 2. Classification performance for fine-tuned Transformers on the test set.

Model Accuracy Precision Recall F1 Score Avg time per sample (s)
SciBERT (scivocab-uncased) 97.5% 0.993 0.975 0.984 0.008

DeBERTa v3 Small 96.0% 0.947 0.994 0.969 0.005
DistilBERT (base-uncased) 96.2% 0.987 0.961 0.974 0.007

Fig. 1. Evaluation process overview.

split between IoT and non-IoT samples. The remaining 30% (1000
samples) is used for testing. During the fine-tuning process, the
training set is further split into training and validation subsets
using an industry-standard 80/20 ratio.
We evaluated all selected LLMs using the prompt design de-

scribed in Section 3.3. Both the LLMs and fine-tuned classifiers
were tested on the test set of 1,000 CVEs. and assessed using the
evaluation metrics defined in Section 4.2. This ensures a fair and
unbiased comparison between the classifiers and the LLMs. For a
high level overview of the process, see Figure 1.

4.4 LLM Comparison
In order to answer RQ1, we evaluate the performance of selected
LLMs on the test set. Table 1 shows the comparison results.Mistral
(7B) and Gemma (12B) stand out as the top-performing models
among all evaluated LLMs. Gemma (12B) achieved the highest
accuracy (87.4%) and a strong F1 score (0.876), indicating robust
overall performance. Mistral (7B), however, delivered a slightly
higher F1 score (0.878) despite a bit lower accuracy (86.3%), mak-
ing its classification quality nearly indistinguishable from that of
Gemma (12B). Both models demonstrate a well-balanced trade-off

between precision and recall, enabling effective detection of IoT-
related CVEs while minimizing false positives and false negatives.
However, it is important to consider the cost of this perfor-

mance. At 12 billion parameters, Gemma (12B) is significantly
larger than Mistral (7B), resulting in a higher computational over-
head and a 5.7x longer evaluation time per sample.

Notably, LLaMA 3.1 (8B) achieved the highest precision (0.925),
indicating strong capability in correctly identifying non-IoT CVEs
and reducing false positives. However, this came at the cost of a
lower recall (0.786), indicating that it misses a larger proportion
of true IoT-related cases compared to other models.

Next in performance,DeepSeek-R1 (7B) andGemma (4B) demon-
strated comparable performance, with F1 scores of 84.5% and
84.2%, respectively. Notably, Gemma (4B), despite being approxi-
mately half the size of DeepSeek-R1 (7B), achieved nearly identical
performance, while being almost 11× faster. This suggests that
even smaller-scale models can maintain strong classification per-
formance and that results may also reflect the strengths of specific
model families, such as Gemma, which appears to scale effectively
across different parameter sizes.

Phi-4 Mini (3.8B) delivered the weakest results overall, with an
accuracy of just 77.8%. It achieved relatively high recall (0.898), but
at the expense of precision (0.720), leading to frequent misclassifi-
cation of non-IoT CVEs and only moderately correct classification
of IoT-related ones.
We can clearly see that execution time generally increases

with model size. Gemma (12B) requires 8.5 seconds per sample,
while DeepSeek-R1 (7B), although it performs reasonably well in
terms of accuracy, has an average inference time of 15.72 seconds
per sample, making it the slowest model by far. This is because
DeepSeek attempts to provide an explanation for its decisions
and is not well suited for returning a structured response. In
contrast, smaller models such as Mistral (7B) and Gemma (4B)
complete inference significantly faster. This trend indicates that
execution time is strongly correlated with model size, particularly
the number of parameters.

Overall,Gemma (12B) demonstrates that scale can lead to mean-
ingful gains in classification performance, while also highlighting
the need to consider computational cost. The consistency and
margin of improvement suggest that large, general-purpose mod-
els can be highly effective, even without task-specific fine-tuning.
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We speculate that even larger models with greater parameter ca-
pacity may yield further performance gains, pointing to a positive
correlation between model size and classification effectiveness.

4.5 Dataset review
The observed classification performance of the LLMs was lower
than expected, which raised questions about the validity of the
dataset. As a result, we manually inspected a sample of the data
to assess its quality. Upon review, we discovered that some en-
tries were incorrectly labeled, certain CVEs marked as IoT-related
were not actually IoT-related, and vice versa. For example, the
original dataset reports CVE-2017-7050 as IoT-related, while it is
related to macOS, which runs on desktop devices and is not IoT-
related. Conversely, some entries labeled as non-IoT-related are
in fact associated with IoT systems. For instance, CVE-2008-1258
involves a cross-site scripting vulnerability in the web interface of
a router. Exploiting this vulnerability could allow an attacker to
inject malicious scripts into the router’s management panel, po-
tentially hijacking sessions or redirecting traffic from connected
IoT devices. This is classified under our definition as IoT-related
since it targets a network-connected device that serves as a com-
munication interface between IoT components, affecting both
the device and network layers of the IoT architecture. Therefore,
relying purely on the original labels may introduce inaccuracies
into the dataset.
Therefore, we decided to manually review some CVEs and

verify their label. To do so, we utilize the three best performing
LLMs from RQ1 to conduct an initial filtering of the test set.
Namely these LLMs are:

• LLaMA 3.1 (8B)
• Mistral (7B)
• Gemma (12B)

An overview of the manual review process is provided in Fig-
ure 2. For each CVE in the test set, we collect the labels predicted
by the three LLMs and apply majority voting. If the resulting con-
sensus label differs from the original label in the dataset, the CVE
is flagged for manual inspection. This filtering process resulted
in 126 CVEs being selected for manual inspection.
After manually reviewing the marked CVEs, we identified 86

CVEs that were incorrectly labeled in the original dataset. For
each of these cases, we reassigned the correct label: CVEs that
were incorrectly marked as IoT-related were relabeled as non-IoT,
and vice versa. After updating these entries, we integrated the cor-
rected labels back into the full dataset. Since a larger proportion
of the misclassifications were originally labeled as IoT-related, the
correction process led to a class imbalance. To restore a balanced
dataset, we randomly downsampled the non-IoT class until both
classes contained an equal number of samples. This resulted in
a final dataset consisting of 916 CVEs, with an even 50/50 split
between IoT and non-IoT vulnerabilities, which we use as the
corrected dataset for the other two research questions. The final
validated dataset, along with the original version prior to manual
review, is publicly available at [4].

After revising the labels, we evaluated the performance of LLMs
on the corrected dataset. Table 3 shows the performance of LLMs
on the corrected dataset. We observe that the classification per-
formance of all LLMs has improved significantly when evaluated
on this corrected dataset. The average F1 score increased from
0.848 to 0.897, representing a gain of 0.05 points. Likewise, the
average accuracy rose by approximately five percentage points.

Fig. 2. Dataset construction overview.

This suggests that the original dataset contained mislabeled en-
tries, and that the LLMs had previously made correct predictions
which were penalized due to inaccurate ground-truth labels.

4.6 LLM vs. fine-tuned classifiers
To answer RQ2, we fine-tune the selected classifiers on the train-
ing set and evaluate their performance on the test set, both before
and after applying the manual review corrections.

Tables 2 and 4 present the performance of the fine-tuned clas-
sifiers on the original and corrected test sets, respectively. All
classifiers perform well and show similar results, with SciBERT
slightly outperforming the others, achieving up to 1% higher ac-
curacy. Comparing Table 1 and Table 2, which contrast LLMs
with fine-tuned classifiers on the original test set, we observe
that the fine-tuned classifiers significantly outperform the LLMs,
achieving accuracies of 96–97%, compared to a maximum of 87%
for the LLMs. However, this performance gap narrows when eval-
uating on the corrected test set, as shown in Tables 3 and 4. While
classifiers still outperform LLMs, their accuracy drops to 94–95%,
whereas LLMs reach up to 92%. This reduction in classifier per-
formance is likely due to the fact that they were trained on the
original dataset, which contained labeling noise. As a result, the
models were optimized on misclassified data, leading to decreased
accuracy when evaluated on the manually corrected test set.

Another notable difference lies in execution time. The training
time for the fine-tuned classifiers was relatively short, averaging
around 5-9 minutes, with evaluation taking only a few hundred
milliseconds. In contrast, LLMs exhibited significantly higher
inference times, ranging from 1.3 seconds to over 15 seconds per
CVE, depending on model size and model type.

Although in our experiments the fine-tuned classifiers consis-
tently outperform the LLMs in terms of accuracy and efficiency,
some considerations should be noted. First, the presence of in-
correct labels in the original dataset highlights the need for a
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Table 3. Classification performance for different LLMs on the testset after review.

Model Accuracy Precision Recall F1 Score Avg time per sample (s)
Gemma (12B) 92.4% 0.953 0.898 0.924 8.4
LLaMA 3.1 (8B) 91.3% 0.975 0.847 0.907 1.6
Mistral (7B) 92.0% 0.923 0.917 0.920 1.5

DeepSeek-R1 (7B) 89.1% 0.894 0.887 0.890 15.9
Gemma 3 (4B) 89.2% 0.870 0.921 0.895 1.3

Phi-4 Mini (3.8B) 82.5% 0.761 0.948 0.844 2.2

Table 4. Classification performance for fine-tuned Transformers on the testset after review.

Model Accuracy Precision Recall F1 Score Avg time per sample (s)
SciBERT (scivocab-uncased) 95.7% 0.990 0.969 0.980 0.008

DeBERTa v3 Small 94.8% 0.943 0.990 0.966 0.005
DistilBERT (base-uncased) 95.4% 0.985 0.955 0.970 0.007

high-quality dataset of IoT-related CVEs which is almost over-
looked in the literature. Second, one of the key strengths of LLMs
lies in their ability to operate without any task-specific fine-tuning
as demonstrated in prior work [6]. Unlike classifiers that rely on
labeled training data to learn explicit patterns, LLMs leverage
their broad pre-trained knowledge to reason over the content,
enabling them to interpret subtle semantic cues and contextual
information that may not align with previously seen examples.
Furthermore, in our evaluation setup, the test samples closely
resemble the training data, further favoring the performance of
fine-tuned models. For example, a CVE describing a vulnerability
in a newly released IoT-connected medical device may contain
unfamiliar terms or product names. A fine-tuned classifier might
fail to classify it as IoT-related due to lack of prior exposure.
In contrast, an LLM can infer the relevance of IoT from signals
such as remote access or embedded firmware [25], even with-
out recognizing the specific product. These findings suggest that
while fine-tuned classifiers excel under stable and well-annotated
data, LLMs offer valuable robustness and adaptability in scenarios
where label quality or domain familiarity is limited. Note that,
although the execution time of LLMs is significantly higher than
that of the classifiers, it may be acceptable given that labeling is a
one-time process.

4.7 Feature Importance
To address RQ3, we initially prompted the LLMs themselves to
identify which input fields they considered most important for
their classification decisions. When providing the CVE data to
each model, we included an additional instruction in the prompt
asking the model to specify which field contributed most signifi-
cantly to its decision. This approach enables us to directly analyze
which CVE fields the models perceive as most informative for
determining IoT relevance.

Table 5 shows the resutls. These findings should be interpreted
with caution, as not all fields are consistently available across
CVEs, particularly in older entries. Only description, published date,
and provider short name are present for all samples, while fields
like affected items and tags are often missing. To provide context,
the table includes field presence counts indicating how frequently
each field was available during evaluation. To account for these
differences across fields, we normalize the counts by the number
of CVEs in which each field was present. The normalized selection
rate is computed as:

Selection Rate =
Field Selection Count
Field Presence Count

.

The normalized results for all fields are shown in Table 6.
A clear trend emerges: When asked themselves, most models
identify affected_items as the primary contributor, followed by
description, whereas published_date is unsurprisingly never se-
lected given its limited relevance to IoT classification.

Notably, model size appears to influence field preference. Smaller
models, such as Phi-4 Mini (3.8B) and Gemma 3 (4B), said they rely
predominantly on description and affected_items, with only a sin-
gle selection of provider_short_name. In contrast, larger models
consistently prioritize affected_items, suggesting that their in-
creased capacity enables more in-depth exploitation of structured
fields beyond simple descriptions.

While these self-reported attributions provide insight into how
models perceive field relevance, they are inherently limited: LLMs
still receive the full CVE input, including all contextual informa-
tion, making it difficult to isolate the true impact of individual
fields on classification decisions, though it remains interesting to
observe how the models interpret their own reasoning.
To better understand which input fields influence model pre-

dictions, we also adopt a SHAP-inspired post-hoc explanation
approach, following the methodology described in [5]. Tradi-
tional SHAP relies on internal model signals such as gradients
or probability distributions, which are not accessible in large lan-
guage models due to their black-box nature. Therefore, we use
a black-box approach to measure each field’s contribution. We
focus on the two most important fields, namely affected_items
and description, as identified by the LLMs in their self-reported
importance assessments. To evaluate the impact of these fields,
we test all three combinations of input:

• Only description
• Only affected_items
• Both fields combined

For each configuration, we record whether the model correctly
classifies the CVE. This enables us to assess the contribution of
each input field and understand how they influence predictions
both individually and in combination. The analysis is conducted
on the 812 CVEs where both fields are present, and the results
are presented in Figure 3.

We observe that all LLMs achieve the highest classification per-
formance when both description and affected_items are provided.
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Table 5. Most Significant Fields contributing to LLM classification decisions.

Model affected_items description provider_short_name published_date tags
Gemma (12B) 493 394 29 0 0
LLaMA 3.1 (8B) 668 226 22 0 0
Mistral (7B) 516 389 11 0 0

DeepSeek-R1 (7B) 504 392 19 0 0
Gemma 3 (4B) 228 687 1 0 0

Phi-4 Mini (3.8B) 345 571 0 0 0
Field Presence Count 812 916 916 916 836

Table 6. Normalized Selection Rate per Field (relative to field presence, values between 0 and 1).

Model affected_items description provider_short_name
Gemma (12B) 0.6071 0.4300 0.0317
LLaMA 3.1 (8B) 0.8228 0.2467 0.0240
Mistral (7B) 0.6356 0.4247 0.0120

DeepSeek-R1 (7B) 0.6207 0.4279 0.0208
Gemma 3 (4B) 0.2807 0.7500 0.0011

Phi-4 Mini (3.8B) 0.4249 0.6235 0.0000

Fig. 3. The accuracy of various LLMs over different set of CVE fields.

Among the individual fields, description consistently outperforms
affected_items, especially in smaller models like Phi-4 Mini (3.8B)
and Gemma (4B). For instance, Gemma (4B) drops all the way to
64.4% accuracy when relying solely on affected_items, suggesting
difficulty in extracting meaningful patterns without the richer
context that description provides.
Larger models show a smaller gap between the two fields, re-

flecting a greater ability to infer IoT relevance even frommore lim-
ited input. Notably, althoughmostmodels identified affected_items
as the most important field when asked directly, their actual per-
formance reveals a stronger dependence on description. This
mismatch likely arises because description often embeds refer-
ences to affected products along with additional contextual cues,

providing signals that enhance classification. When explicitly
asked to reflect, models may focus on concrete identifiers like
product names, even if their predictions are more strongly driven
by descriptive context.
Another noteworthy observation is that classification perfor-

mance using only the description and affected_items fields is ap-
proximately 2–3 percentage points lower compared to when all
input fields from Section 3.3 are provided, as shown in Table 3.
This suggests that, while the additional fields may not individu-
ally offer strong contextual signals for IoT relevance, they still
contribute meaningfully when combined with the core fields. The
models leverage all available inputs to achieve higher classifica-
tion accuracy.

7
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Based on these observations, we conclude that description is
the most important field for IoT classification. The isolated re-
sults show a consistent pattern where description outperforms
affected_items. However, the two fields are complementary when
used together.

5 DISCUSSION
Building on the results, several important aspects emerge that
further illustrate the strengths, limitations, and practical con-
siderations. We discuss these aspects in detail in the following
sections.

5.1 Flexibility and Adaptability
A major strength of large language models is their flexibility.
Unlike traditional classifiers that rely on explicit features and task-
specific training, LLMs can generalize across diverse inputs with
little or no fine-tuning. However, we have seen that this flexibility
comes at a computational cost. LLMs take significantly longer to
evaluate each CVE, often several seconds more compared to fine-
tunedmodels. Still, given that only around 108 CVEs are published
daily [10], this overhead is rarely a practical bottleneck. Since
classification would typically be applied after release, the slightly
longer evaluation time per CVE remains acceptable, especially
given the benefit of deeper contextual understanding that LLMs
provide. While LLMs may not be ideal for scenarios requiring
extremely high throughput, their computational demands are
manageable for most practical applications in IoT-related CVE
assessment.

5.2 Handling missing data
Another important distinction and advantage in LLMs lies in how
both model types handle variability and incompleteness in the
input data. The fine-tuned classifiers rely heavily on the availabil-
ity and consistency of structured fields during both training and
inference. When these fields are missing or incomplete, which is
common in CVE databases, their performance degrades, as they
have limited capacity to compensate for missing signals. In con-
trast, LLMs are inherently more resilient to such data sparsity.
Even when structured fields are unavailable, LLMs can rely on
the unstructured text contained in CVE descriptions and extract
contextual clues to guide their predictions. This ability to flexibly
adapt to incomplete inputs makes LLMs particularly more well-
suited for real-world vulnerability datasets, where data quality
and field completeness often vary widely across records.

5.3 Limitations
While this study offers useful insights, several limitations should
be noted. The manually labeled dataset consists of 916 CVE en-
tries, which reflects practical constraints in time and resources
for manual review. Although this sample allows for meaning-
ful comparisons between models, a larger dataset would help
strengthen the conclusions and better capture the full diversity
of IoT-related vulnerabilities, including more edge cases and less
common device types.

It should also be noted that the LLMs in this study were evalu-
ated in a zero-shot setting, where each CVE was independently
processed without any form of iterative learning or accumulated
feedback. Although each prompt included our definition of what
we consider an IoT related CVE, along with examples, the models
did not benefit from adjusting based on prior classifications or

feedback. If LLMs could incorporate feedback or learn from previ-
ous predictions during operation, their performance would likely
improve further, particularly for more ambiguous or edge-case
CVEs. Exploring such adaptive or semi-supervised approaches
may offer an interesting direction for future work, potentially
narrowing the gap between LLMs and fine-tuned classifiers.

Another limitation lies in the manual review process itself. The
labeling was performed by a single reviewer. From a scientific and
methodological standpoint, it is standard practice to involve at
least three independent reviewers who each assess the CVEs and
apply a majority voting rule to categorize them. This helps reduce
individual bias and improve the overall quality and reliability of
the dataset. The absence of such a process in this study means
that the corrected labels, while carefully assigned, may still reflect
individual interpretation.
Finally, it is important to recognize that the study ultimately

depends on the quality and consistency of the underlying NVD
database itself. Although the NVD serves as the most widely used
public source for vulnerability information, it is not immune to is-
sues such as inconsistent data entry or incomplete records. These
factors can introduce noise into both training and evaluation,
potentially influencing model behavior in subtle ways. As a result,
part of the observed model performance may reflect not only the
model capability but also the structure and limitations of the data
source itself.

6 CONCLUSION
In this paper, we explored the use of large language models for
classifying IoT-related vulnerabilities within the CVE dataset.
While fine-tuned classifiers trained on domain-specific data achieved
the highest overall performance, the difference compared to the
best-performing LLMs was relatively modest. Importantly, LLMs
were able to achieve strong results without any task-specific fine-
tuning, relying solely on their pre-trained knowledge to interpret
the CVE descriptions.
Among the evaluated models, we found that larger LLMs, in

particular Gemma 3 (12B), consistently delivered the strongest
performance across most metrics. This suggests that model scale
plays a key role in improving LLM classification capability for
this task. However, our evaluation was limited to models within
a certain size range, and it remains likely that even larger models
could further improve classification accuracy. In addition, our
feature importance analysis showed that the description field was
the most critical across all models. However, incorporating addi-
tional fields further improves classification accuracy by providing
complementary context.

Overall, our findings indicate that LLMs, especially larger ones
can serve as effective classifiers for IoT-related CVE data, even
in zero-shot settings. This makes them a practical and flexible
alternative for automated vulnerability classification, particularly
in scenarios where labeled data is limited or evolving rapidly.
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A HARDWARE CONFIGURATION
All experiments were conducted on a local workstation with the
following hardware specifications:

Table 7. Hardware Configuration

Component Specification
CPU AMD Ryzen 5 2600X
GPU NVIDIA GeForce RTX 2060
RAM 64 GB DDR4
Motherboard MSI B450 Gaming Pro
Storage Samsung 870 EVO SSD
Power Supply Corsair RM650e
Operating System Windows 10 Education
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