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ABSTRACT
Fault Tree Analysis (FTA) is a widely used method for assessing
the reliability and safety of the system. However, the increasing
structural complexity of fault trees can make them difficult to in-
terpret, particularly when models are reused or modified by others.
To address this challenge, this study explores the understandability
of fault trees by identifying complexity-related metrics that influ-
ence the ease with which a model can be interpreted. Drawing on
research from related fields, particularly business process model-
ing, we adapt a set of candidate metrics. These metrics were then
applied to a sample of fault tree models, and an Exploratory Factor
Analysis (EFA) was performed to uncover latent dimensions under-
lying perceived complexity. The resulting factor structure provides
a foundation for a systematic framework to assess and potentially
improve fault tree understandability. This work contributes toward
more interpretable safety models.
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1 INTRODUCTION
Fault trees (FT) are a widely explored and adopted tool for software
verification between a variety of sectors. Fault tree analysis (FTA)
provides insight into accident mitigation by identifying critical
components, system failure rates, and more. Over time, numerous
extensions to traditional fault trees have been developed to address
specific scenarios, such as dynamic fault trees [6] and fuzzy fault
trees [21], as well as efficient algorithms for their evaluation, in-
cluding methods to find minimal cut sets and critical components
[18, 19].

At its core, a fault tree is structured as a Directed Acyclic Graph
(DAG), composed primarily of two types of nodes: base event (BE)
represents a fundamental component failure, and logic gate defines
how these base events combine to produce higher-level failures.
The root node, located at the apex of the tree, symbolizes the overall
failure of the system, and its probability or occurrence depends on
various combinations of underlying base events. The logic gates
utilized in static fault trees are 𝑂𝑅, 𝐴𝑁𝐷 and 𝐾/𝑁 types [19]. An
example of such a tree can be seen in Fig. 1. However, for more
complex systems modeled using, for example, dynamic trees, it is
characteristic to have specific custom gates [6].

Although fault trees have a relatively simple notation and struc-
ture, complex systems often result in larger and/or more intricate
trees that can become difficult for humans to interpret [19]. Even
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Figure 1: An example of a fault tree

though fault trees are not generally hard to understand for non-
experts of the FT field, more complex models present an increased
challenge for domain specialists who must evaluate fault trees for
correctness, particularly when they did not create the models them-
selves [19]. Therefore, it is important to create fault trees that are
as concise and readable to humans as possible. However, currently
there is no standardized framework by which to benchmark the
complexity of a fault tree. In this paper, the terms "complexity" and
"understandability" will be used interchangeably.

Currently, there is no universally accepted set of metrics to sys-
tematically quantify the complexity of a fault tree. However, empir-
ical research from related fields, notably Business Process Modeling
(BPM), explores potential metrics that could be adapted to assess
fault tree complexity. BPM involves the graphical representation of
business processes [11], often using a standardized notation similar
to that found in fault trees. The BPM field has been extensively stud-
ied in terms of model understandability and complexity, making it
a viable resource for this work. The metrics developed in the BPM
research could provide a starting point for developing a systematic
method of evaluating fault tree complexity. The exploratory factor
analysis (EFA) [24] could then be used on these metrics, revealing
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Figure 2: Diagram representing the workflow of the entire process

the underlying dimensions of complexity. A dimension represents
broader concepts that simplify the complexity of the original vari-
ables. In this paper, the terms "dimension" and "factor" will be used
interchangeably. By identifying these dimensions, it could provide
a more high-level view of the fault tree understandability itself,
while providing researchers and practitioners with guidance when
creating FT models. The research question is phrased as "How can
an understandability framework for fault trees be developed by
adapting complexity metrics and methodologies from the field of
BPM?"

1.1 Contributions
This research aims to address the lack of structured methods to
approach the complexity and understandability of a fault tree. The
key contributions are as follows.

(1) A Python tool to calculate the metrics defined in the method-
ology section using the NetworkX library and to visualize
graphs using the Pygraphviz library. [23].

(2) A survey and adaptation of understandability metrics from
related fields applied in the context of fault tree complexity
analysis.

(3) Identifying the complexity dimensions to act as a potential
base when creating a framework for fault tree complexity
evaluation.

(4) A proposed methodology for the systematic development
and validation of the fault tree complexity framework.

1.2 Workflow
To provide a better overview of the structure of the study, a vi-
sual representation of the workflow is presented in Fig. 2. Given
the modular nature of the research, the conventional structure of
background, methodology, and results is not ideally suited. Instead,
the paper is organized into distinct sections, each addressing a
specific component of the overall process as depicted in the dia-
gram. The progression begins with the preliminary refinement of
the selected metrics and subsequently follows the logical sequence
indicated in the figure. Each section includes its own introduction,
methodological approach, and corresponding results.

This paper introduces a number of technical terms that may
be unfamiliar to some readers. To support clarity and ease of un-
derstanding, a terminology table is provided in Appendix A for
reference.

2 BPM RESEARCH BASIS
Although research specifically addressing metrics for the under-
standability of fault trees remains limited, substantial work exists
on readability metrics within similar model domains, such as BPM
[9, 13, 17] or decision trees [1]. While potential biases may arise
when directly applying these existing metrics to fault trees, this
study will assume sufficient structural and visual similarity be-
tween fault trees and these related models. Specifically, fault trees,
such as BPMN diagrams, are structured as directed, layered graphs
composed of nodes, gates, and branching flow paths [10, 12]. This
assumption enables the reasonable application of established met-
rics, thereby leveraging prior research to guide the development of
fault tree complexity evaluation criteria.

In the field of BPM, several prevailing dimensions of model
understandability have been identified: simplicity, fitness, precision,
and generalization [14]. Among these, simplicity has shown the
strongest correlationwith general understandability [14]. Simplicity
itself is primarily defined by three subcomponents: structuredness,
model size, and entropy [14].

Model size can be quantified using metrics such as the number
of nodes [7, 17], which directly reflects the overall scale of the fault
tree. Structuredness is captured by metrics such as sequentiality
[17], which measures the degree to which the model follows a
horizontal and straightforward path structure. Entropy reflects
unpredictability and disorder within the model and is associated
with metrics such as gate diversity (a wider range of gate types
increases unpredictability) [13] and connector heterogeneity [17]
(greater variation in the number of incoming connections).

Following these principles, a set of 11 complexity metrics was
compiled, each supported by existing literature. However, not all of
these metrics will be included in the Exploratory Factor Analysis.
In the Results section, the selection will be refined to include only
those metrics deemed most relevant and applicable to the context
of fault trees specifically.

3 LITERATURE REVIEW AND METRICS
After researching the understandability metrics, 11 complexity met-
rics were identified. The articles were selected through separate
searches conducted using a combination of keywords in Google
Scholar and the University of Twente Library. Some of the key-
words used are "business process modeling", "process model under-
standability", "complexity metrics", "BPMN", and "cognitive factors".
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From the resulting articles, the most relevant metrics were chosen.
They can be seen in Table 1, with their names, descriptions, and
appropriate sources indicated next to their name. The last column
indicates whether the variable was included in the EFA analysis.
The selection process will be explained in the following sections of
this paper.

Table 1: List of Graph Metrics and Inclusion Status for EFA
(The latter is explained in sections 5.2, 6.1 and 6.2)

Metric Description EFA

Number of Nodes
(Size) [7, 17]

The total count of all nodes in the
graph, namely events and gates
(connectors).

✓

Number of Levels
[17]

The length of the longest path from
the root node to any leaf node in the
graph.

Avg. Connector
Degree [17]

The average number of input con-
nections (in-degree) per connector
in the graph. A higher average indi-
cates denser junctions.

Sequentiality [17] A measure of the linearity of
paths; higher values indicate more
straight-line sequences of nodes.
High sequentiality corresponds to
more straightforward paths.

Connector Het-
erogeneity [17]

The degree of inconsistency in the
number of inputs between connec-
tors of the same type.

✓

Branching Factor
[22]

The average number of child nodes
per parent node. High branching in-
creases the perceived width of the
graph.

Path Complexity
[1, 13]

The average length of all paths from
the root to each of the leaf nodes.

✓

Max. Connector
Degree [17]

The highest in-degree observed on
a single connector in the graph.

Label Density [5] The ratio of text labels to available
visual space or number of nodes.

Gate Diversity
[13]

The count of unique logic gate types
used in the graph.

✓

Graph Density
[17]

The density of connections between
elements divided by maximum pos-
sible connections (value in [0, 1])

✓

4 SAMPLE
4.1 Sample Dataset
To ensure the applicability of the exploratory factor analysis in
actual scenarios, it is preferred that the sample accurately reflects
real-world fault tree structures. For this purpose, a set of graphs

from the FFORT repository [20] was selected. The FFORT (the Fault
tree FOResT) dataset consists of fault trees and was developed
by academic staff and students of the University of Twente. Tree
samples were gathered mainly from academic publications and the
rest were developed for other applications, such as experiments.

The possibility of including automatically generated fault trees
in the sample was initially considered, but ultimately rejected due
to several limitations. To generate fault trees, Olzhas Rakhimov’s
[16] fault tree generation algorithm was used. One key issue was
the difficulty of generating models small enough to be suitable for
human interpretability. Automatically generated fault trees typi-
cally contain more than 40 basic events and are primarily intended
for computational analysis, rather than for evaluation by human
experts. Moreover, these models generally rely on a narrow set of
gate types, primarily 𝐴𝑁𝐷 , 𝑂𝑅, and 𝐾/𝑁 , which limits the struc-
tural variety and does not reflect the complexity and nuance of
specialized systems.

Given that the focus of this study is on the human understand-
ability of fault trees, it was deemed more appropriate to rely on
manually created models. These are typically tailored to a spe-
cific system and generally incorporate a broader range of specific
structural elements, and are the most similar to those that domain
specialists encounter in their work. It makes them better suited for
evaluating the understandability aspects of fault tree analysis. As
Berres and Schumann note [2], automatically generated fault trees
often result in complex models that, while useful for computational
safety assessments, still require substantial manual effort to verify
and refine and are best used as support tools.

From this repository, a representative sample of 45 fault trees
was chosen for analysis. An example of such a graph can be visual-
ized using a Python-based tool built with the PyGraphviz library
(Fig. 3). According to established guidelines for EFA, a ratio of five
observations per variable is considered minimum, while a ratio of
ten is recommended [24]. After the final selection of variables, the
variable-to-observation ratio becomes 9:1.

Figure 3: An example of a visualized fault tree from the ffort
sample library
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4.2 Limitations of the Sample
Although small sample sizes (𝑁 < 50) are often criticized in factor
analysis [3], exceptions can be made under specific conditions. De
Winter et al. [4] demonstrate that meaningful factor solutions can
be achieved with small samples, provided that

(1) variables are well-defined;
(2) communalities are high (preferably > 0.8).

A well-defined variable refers to one that is conceptually indepen-
dent (by portraying a measure substantially different from the rest).
The definition and explanation of communalities can be found in
Section 6.

Similarly, MacCallum et al. [15] argue that the rules of thumb
for the sample size should not be applied rigidly, as the adequacy
of the EFA results depends more heavily on data characteristics,
such as the level of communality and variable overdetermination.
When communalities exceed 0.6 and variables are well-specified,
the sample size becomes substantially less critical.

5 PRELIMINARY DATA SAMPLE ANALYSIS
AND METRIC FILTERING

5.1 Sample Analysis Using Descriptive Statistics
For the preliminary evaluation, descriptive statistics of the sample
were calculated. Descriptive statistics can be useful to acquire in-
formation about the data and uncover some preliminary patterns
before performing a more sophisticated analysis. It was chosen to
include only the five-number summary (mean, median, standard
deviation, minimum, and maximum). The descriptive statistics of
the sample can be seen in Table 2.

Table 2: Descriptive Statistics of Graph Metrics

Metric Mean Median Std. Dev. Min Max

Number of Nodes 58.56 39.00 53.47 10.00 219.00
Number of Levels 4.93 5.00 1.16 3.00 8.00
Avg. Connector Degree 0.90 0.90 0.18 0.50 1.36
Sequentiality 0.03 0.01 0.06 0.00 0.40
Connector Heterogeneity 1.27 0.99 1.03 0.28 5.26
Branching Factor 2.86 2.67 0.74 2.00 5.29
Path Complexity 3.98 3.86 0.79 2.74 5.89
Max. Connector Degree 6.89 6.00 5.44 2.00 30.00
Label Density 8.33 7.13 5.53 3.23 38.12
Gate Diversity 0.13 0.09 0.10 0.02 0.41
Graph Density 0.04 0.03 0.03 0.01 0.1

From the descriptive statistics, several interpretations of the
model were made, and some of the more interesting patterns were
described in the following text. The number of nodes ranges widely
from 10 to 219, with a mean of 58.56, highlighting significant dif-
ferences in model size. However, the median (39) is well below the
average, indicating that the data consists mainly of smaller-size
samples, and there may be outliers of large size. The avg. connector
degree remain relatively stable with the coefficient of variation
(standard deviation / mean) being 0.2. This indicates a relatively
similar junction complexity on average between the sample in-
stances. The same can be said about the max. connector degree,
however, there may be some outliers present, since maximum is as

high as 30. Most models show very low sequentiality values (mean =
0.03), indicating that they are not predominantly linear in structure.
Notably, label density and gate diversity display skewed distribu-
tions, with a few models being significantly more text-heavy or
logic-diverse than others. Some metrics show exceptionally high
variability, namely the number of nodes (CV = 0.913), connector
heterogeneity (CV = 0.811), max. connector degree (CV = 0,79) and
gate diversity (CV = 0.77). Sequentiality even attains a CV value of
2, however, it may be extremely sensitive due to very low values
attained from most models. In conclusion, the preliminary inspec-
tion of descriptive statistics indicates that the small sample size
encompasses very diverse models with possible outliers from the
perspective of previously indicated metrics that showed greater
variability.

5.2 Filtering of variables
Due to the limited sample size, it was preferred to select the smallest
set of metrics that still retained substantial explanatory power.
During this stage, metrics that showed excessively high correlations
with others were excluded to avoid conceptual redundancy.

In total, three such metrics were removed: number of nodes, av-
erage connector degree and maximum connector degree. Number of
nodes was dismissed due to its strong correlation with path com-
plexity, which captures a similar aspect of depth and hierarchical
complexity. Average connector degree was omitted because in fault
trees this metric is functionally equivalent to the branching factor
due to the structure: the base events only appear at the lowest
level and the intermediate nodes (including the top event or root)
consist entirely of connectors. Although it displayed different val-
ues, it produced equivalent factor loadings during the execution
of EFA. Maximum connector degree was dropped due to high corre-
lation with the average connector degree and its limited additional
explanatory power.

6 EXPLORATORY FACTOR ANALYSIS
6.1 Methodology
To discover the latent structure of the complexity metrics of the
fault tree, an exploratory factor analysis was performed, using
the R-type common factor analysis approach [8]. In R-type CFA,
the analysis is conducted on the correlation matrix of variables,
treating variables as the units of analysis and aiming to extract
latent factors that account for the covariance between them [8].
This method focuses exclusively on the shared variance among
observed variables, making it suitable for identifying underlying
dimensions that influence multiple complexity metrics.

Given that the objective of this study is to investigate interrela-
tionships among fault tree understandability metrics rather than
individual model properties, the R-type analysis was selected. This
method contrasts with Q-type analysis, which focuses on correla-
tions among sample instances rather than variables [8].

Before factor analysis, a re-evaluation of variableswas performed.
The less clearly defined variables were discarded from the analysis.
Thereafter, two tests were performed, namely the Bartlett’s Spheric-
ity Test and the Kaiser-Meyer-Olkin (KMO) Sampling Adequacy
Measure [8] to check which variables would prove a good basis for
a meaningful analysis. Bartlett’s Test of Sphericity measures the
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extent to which the correlation matrix is different in comparison to
the identity matrix, signifying the possibility of deriving clear pat-
terns. The KMO test evaluates how well the variables are suited for
factor analysis by measuring the proportion of common variance
between the variables (that is, the variance that could be attributed
to underlying latent factors) [8]. KMO scores range from 0 to 1.
Variables with a KMO score lower than 0.5 were cut off due to their
inadequacy for this experiment, as they are below the established
threshold [8].

After preprocessing, the communalities of each variable were
calculated. Communality ranges from 0 to 1 and measures the
degree to which the variance of the variables can be explained by
the potential underlying factors [8]. During each iteration, items
with a communality value below the threshold of 0.3 were removed
because of their low explainability.

The number of factors (dimensions) was derived using a Scree
plot. In Scree plot, dimension values lie on the X-axis, while the
eigenvalues lie on the Y-axis. The general rule is to select the value
where the graph forms an elbow-like structure [24]. A widely used
but debated rule is that the selected point must lie above the eigen-
value of one (Kaiser criterion) [8], as anything below could have
an increased risk of overfitting.

To make interpretability easier, a Varimax rotation was applied,
an orthogonal rotation technique. Varimax maximizes the variance
of squared loadings within each factor, yielding a simpler and more
interpretable factor structure where each variable loads strongly
on one factor and minimally onto others[8].

6.2 Results
Since EFA evaluates the correlation of variances, it is necessary that
there is enough variability in the data. The standard deviations from
Table 2 are enough to conduct the EFA. Bartlett’s Test of Sphericity
was significant (𝜒2 = 113.87, 𝑝 < .001), indicating a sufficient
overall correlation between variables to justify factor analysis. The
overall KMO score is 0.686, which is mediocre to acceptable and
lies in the range of 0.577-0.791 between variables (see Table 3). The
branching factor was dropped due to its low KMO score.

Table 3: KMO Measure of Sampling Adequacy and Commu-
nality Score for Each Variable

Variable KMO Score Communality

Number of Nodes 0.791 0.582
Path Complexity 0.735 0.334
Connector Heterogeneity 0.577 0.584
Gate Diversity 0.682 0.827
Graph Density 0.644 0.957

Sequentiality and label density were dropped because of their
low communality scores. All remaining variables have a mediocre
to high communality score, except for path complexity, which is
slightly above the threshold of 0.3. The final communality scores
can be seen in Table 3.

After analyzing the scree plot (Fig. 4), an elbow-like structure was
detected at factors=2, it was significantly above the eigenvalue of 1.
Based on the small number of variables and the small sample size,

Figure 4: The scree plot resulting fromfive proposed variables

two dimensions were deemed appropriate to discover the initial
underlying structure.

Table 4: Factor Loadings for Selected Complexity Metrics

Metric F1 F2

Number of Nodes -0,629 0,433
Path Complexity -0,498
Connector Heterogeneity 0,754
Gate Diversity 0,866
Graph Density 0,956

The factor loadings can be found in Table 4. The higher the
absolute value, the stronger the correlation. Values with an absolute
value of less than 0.35 were removed because they were deemed
insignificant [8].

7 DISCUSSION
Based on the analysis conducted, two dimensions were derived, to
which the labels and descriptions were given as follows:

7.1 Factor 1: Density–Size Complexity Axis
Factor 1 appears to capture a trade-off between size-related com-
plexity and information density. The negative correlation between
the number of nodes and both graph density and gate diversity sug-
gests that larger fault trees tend to be less densely interconnected
and show less gate diversity. In contrast, smaller trees often contain
a higher concentration of information, expressed through special-
ized and densely connected components. This indicates that for
smaller fault trees, it is not necessarily true that they contain less
information; instead, they may reflect systems with greater internal
coupling and more sophisticated gates, implying a more specialized
connection that would otherwise be reached through a combina-
tion of multiple gates. In contrast, larger trees may represent more
hierarchical or modular systems in nature, where functionality is
distributed across broader structures with less immediate intercon-
nectivity. However, these two concepts are fundamentally different;
therefore, this dimension could hypothetically be split into two



43rd Twente Student Conference on IT, July 4th, 2025, Enschede, NL

subdimensions, namely Density Complexity and Size or Depth
Complexity, each measuring their respective complexity concept.

7.2 Factor 2: Variability Complexity
Factor 2 appears to represent a dimension of complexity related
to the variability or uniformity of information structures within
fault trees, which may be referred to as "Variability Complexity".
The "information structures" in this case are primarily represented
by connector heterogeneity, which captures the variability of con-
nectors between each connector type. A moderate positive loading
from number of nodes suggests that larger fault trees tend to have
more uniform gate inputs between types, potentially due to struc-
tural repetition or modular design. In contrast, smaller trees tend to
be more irregular and show higher variability in how components
are connected and interact, likely due to specialized connectors.
This form of complexity can be conceptually linked to entropy in
the sense that systems with greater connector and their respective
input variability and less predictable structure may be seen as being
more unpredictable and harder to analyze for the human eye.

8 CONCLUSION
This study investigated the complexity and understandability di-
mensions of fault trees, with the objective of providing a systematic
approach and a methodology to evaluate their understandability.
The research already conducted on the subject of understandability
in related domains was explored and a list of potential understand-
ability metrics for fault trees was derived. Then, to discover the
relationships of these variables, an exploratory factor analysis was
performed, revealing two dimensions: Density–Size Complexity and
Variability Complexity.

The Density–Size Complexity dimension represents a trade-off
between model size and information density, suggesting that larger
fault trees often exhibit less dense interconnectivity and gate diver-
sity compared to smaller, more densely interconnected models. This
indicates that complexity in smaller trees may originate from con-
centrated and specialized components, whereas larger trees might
represent more modular or hierarchical designs. This dimension
could be hypothetically split into density complexity and size or
depth complexity, each measuring their respective complexity.

The second dimension, Variability Complexity, expresses the
complexity arising from inconsistent or varied connector structures
within fault trees. Higher connector heterogeneity indicates models
that are structurally less predictable.

Based on these findings, practitioners are advised to consider
these complexity dimensions when designing fault trees. Reduc-
ing positively-correlated or increasing negatively-correlated metric
scores of a specific dimension may help reduce the respective di-
mension’s complexity, resulting in a better understandability of the
model. Practitioners could also experiment with the metrics defined
in this study and incorporate the ones that were not present in the
EFA as additional dimensions of complexity.

For further research, it might be valuable to utilize the pro-
posed methodology with larger data samples. Larger data samples
might reveal different patterns and dimensions, because the anal-
ysis would not be bound by the limitations present in the current
study. The variables excluded from the EFA could also be included

in such future research either in the EFA or as a standalone di-
mension itself. In addition, an empirical study could be conducted
with human participants, measuring the actual applied impact of
discovered complexity factors.
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APPENDIX A: TERMINOLOGY
Term Definition

Fault Tree (FT) A graphicalmodel representing the logical relationships between system failures
and component faults, typically used in reliability analysis.

Base Event (BE) A fault or failure at the level of the fundamental component, located at the base
of a fault tree.

Logic Gate An operator (for example: AND, OR, K/N) that connects base events or inter-
mediate events to represent logical dependencies.

Top Event The root node of a fault tree that represents the overall system failure being
analyzed.

Dynamic Fault Tree (DFT) An extension of traditional fault trees incorporating dynamic gates or time-
based behavior.

Directed Acyclic Graph (DAG) A type of graph with no cycles, often used to structure fault trees.

Understandability The ease with which a fault tree can be interpreted by humans; used inter-
changeably with "complexity" in this paper.

Complexity Metrics Quantitative measures used to assess various aspects of the structure of the
fault tree that can affect human comprehension.

Business Process Modeling (BPM) A domain where business workflows are modeled graphically; its complexity
metrics are adapted in this study for FTs.

Exploratory Factor Analysis (EFA) A statistical method for identifying latent dimensions that explain the observed
correlations between variables.

Factor / Dimension A latent construct that underlies a group of related complexitymetrics, identified
via EFA.

Communality The proportion of a variable’s variance that is explained by common factors in
factor analysis.

Varimax Rotation A method used in EFA to simplify the interpretation of factors by maximizing
the variance of squared loadings.

Kaiser-Meyer-Olkin (KMO) Score A measure of sampling adequacy that assesses the suitability of variables for
factor analysis.

Bartlett’s Test of Sphericity A statistical test assessing whether the correlation matrix is significantly differ-
ent from an identity matrix.

Scree Plot A graph plotting eigenvalues to help determine the number of factors to retain
in EFA.

Density–Size Complexity A factor capturing the trade-off between graph size (number of nodes) and
information density.

Variability Complexity A factor reflecting the structural irregularity or inconsistency within the fault
tree.

https://github.com/4rnelis/experiments_trees
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