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Indicators of compromise (IOCs) are forensic artifacts, such as malicious IP

addresses, URLs, file hashes, or malware names, that signal a likely system

breach. Accurate detection and extraction of such indicators from open

threat reports is crucial for timely defense, as delays in identifying IOCs can

lead to missed opportunities to contain or mitigate a threat on time. Rapid

IOC recognition enables real-time alerts, automated blocking, and faster

incident response. Traditionally, open-source tools and research prototypes

rely on hand-crafted regular expressions (regex) and rule-based extractors

to identify IOCs in text. This constraint is problematic as human analysts

face an overwhelming volume of unstructured reports. These static patterns

struggle with variable threat report syntax, obfuscation (e.g., defanged URLs),

and novel IOC formats.

Recent advancements in AI, especially Large Language Models (LLMs),

offer powerful natural language understanding that can identify entities

and relationships in text. By leveraging LLMs to suggest or adapt regex

patterns based on new threat reports, we aim to increase IOC coverage and

adaptability while reducing manual effort.

This paper concludes that, when augmented with gemma3:27b-generated

regexes, the rule-based extractor’s average recall jumps from 37.9% to 69.1%

and its F1 score climbs from 41.0% to 55.3%, while precision increases mod-

estly from 46.6% to 50.4%. By contrast, the smaller Regex-AI-Llama-3.2-

1B:F16 model yielded only marginal gains (mean recall 39.2%, F1 32.6%).

These results show that larger LLMs can substantially broaden IOC cov-

erage, yet the broader patterns they generate can introduce false positives.

As a result, maintaining high extractor reliability in a dynamic threat land-

scape still depends on a human-in-the-loop workflow to review and refine

LLM-suggested rules.

Additional Key Words and Phrases: Cybersecurity, Cyber Threat Intelligence

(CTI), IOC extraction, Large-Language Model (LLM)

1 INTRODUCTION
Indicators of Compromise (IOCs) are concrete signs of a security

breach – for example, file hashes, domain names, IP addresses, or

registry keys associated with malware or attacks [7]. Security teams

and tools rely on IOCs to detect and block threats; for instance,

malware hash lists and C&C server addresses help network defend-

ers identify malicious activity. Modern threat intelligence often

appears as narrative reports or blogs containing IOCs, so extrac-

tion tools must parse unstructured text to extract and normalize

those indicators. Traditional rule-based IOC extractors can achieve

high accuracy on well-known formats, but they must be manually

crafted and updated to handle new patterns. For example, defanged

IOCs like 127[.]0[.]0[.]1 easily evade simple regex extractors,

necessitating specialized patterns or post-processing to deobfus-

cate. Moreover, most IOC extractors can only perform a small set of

defang transformations [7, 3, 2].
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Recent advancements in AI show promising results for full-stack

extraction systems. For example, SecIE achieved over 92% F1 accu-

racy for entity extraction in threat reports [15]. Large Language

Models (LLMs) in particular show great promise for cybersecurity:

they can “identify latent attack patterns and vulnerabilities, assist

in analyzing attack behaviors, predict threats, and even provide

real-time defensive support” [23]. Recent LLM-based tools have suc-

cessfully generated threat-hunting rules from unstructured threat

intelligence – e.g., LLMCloudHunter automatically produced sig-

nature detection rules from textual and visual open-source CTI

data with ∼99% accuracy for extracted IOCs [20]. These findings

suggest LLMs can help convert natural-language threat data into

meaningful rules. While LLMs can generate syntactically valid rules,

in practice, they often miss corner-case patterns or produce overly

broad—sometimes hallucinated—rules, as illustrated by this evalua-

tion. Moreover, relying entirely on LLMs for IOC detection carries

the risk of prompt-injection due to their "black-box" design [24].

However, little work addresses how to keep those regex rules

up-to-date as new indicator formats and obfuscation techniques

emerge. Maintaining high recall and precision over time, therefore,

remains a manual and error-prone task. In this paper, we fill that

gap by evaluating whether large language models can automate

both the generation of new regex patterns and the refinement of

existing ones.

This leads to the main research question: "To what extent can

an LLM help analysts create new or refine existing regex rules that

capture emerging IOC patterns from threat reports?"

To answer the main research questions, first, we tackle the fol-

lowing sub-questions:

RQ1. How does the LLM-based solution compare to the baseline

in terms of recall and precision when generating new and improving

existing IOC patterns?

RQ2.Which LLM models are better suited for the task of regex

generation and refinement?

RQ3.What fraction of LLM-suggested regex rules are valid with-

out modification, and how many edits do the remaining suggestions

require?

2 RELATED WORK
A long line of work has addressed Indicator-of-Compromise (IOC)

extraction from text, typically relying on handcrafted pattern rules.

Early open-source extractors (e.g. Jager [18], IOCParser [9], Cacador

[19], Cyobstract [4], IoC-Finder [10], iocextract [13]) apply large

sets of regular expressions to free text. For example GoodFATR plat-

form [3] integrates seven such tools and adds its own iocsearcher

module, which applies regex for 41 indicator types to documents

(PDF/HTML/text). These regex-based tools are generally effective at

matching well-formed observables, but are brittle. As GoodFATR’s

analysis notes, even slight differences between equivalent regexes

can greatly change what they match. In practice, analysts often
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“defang” IOCs (e.g. writing hxxp:// or 9[.]9[.]9[.]9 for safety),
and newer obfuscations (Unicode homographs, mixed-case encod-

ings, novel hash-like formats, etc.) continually appear [8]. Moreover,

standards such as CVE undergo periodic syntax updates [14] and

entirely new IOC types emerge, each requiring manually crafted

regex patterns for reliable detection. Consequently, handwritten

regex lists can rapidly become outdated as formats evolve and novel

obfuscation techniques appear.

Given these limits, full-stack AI pipelines have been proposed to

augment or replace pure regex. Systems such as SecIE [16] and cyob-

stract [4] combine pattern rules with statistical models. SecIE, for in-

stance, uses pattern-based extraction for entities with strict formats

(e.g. IP addresses, email addresses) and a learned encoder (BERT) for

others. Notably, SecIE explicitly models many common obfuscated

IOC forms (e.g. 82(dot)103(dot)137(dot)14”, x0x0[.]example[.]com),
which generic tools would miss. Other pipelines (TTPDrill [12],

ThreatRaptor [6], LADDER [1], etc.) similarly mix regexes, dictio-

naries, and learned classifiers to extract IOCs, malware names, and

related attack patterns (TTPs). However, even these end-to-end sys-

tems ultimately embed regex steps for raw indicator matching [3],

and must be retrained as new obfuscation strategies and indicator

types emerge.

Recent work has begun to leverage large language models (LLMs)

to overcome some of these limitations. For unstructured threat

reports, GPT-3.5/ChatGPT has been applied both to extract IoCs

and to convert narrative CTI into structured formats. For example,

Purba and Chu [17] use GPT-3.5 to parse CTI text and pull out

IoCs, and Siracusano [21] et al. use it to generate STIX-formatted
1

threat intelligence from reports. Hu et al. [11] show that fine-tuning

or prompting LLMs on security data can improve annotation and

classification of threat entities [20]. However, naively prompting an

LLM for IoC labeling tends tomiss context: recent work by Froudakis

et al. [5] finds that using an untuned GPT-4o model achieved only

∼0.67 F1 in IoC extraction.

Beyond extraction, LLMs are also being used to generate detection

rules from threat intel. The recent LLMCloudHunter framework

[20] uses GPT-4 to produce custom rule templates (STIX) from

open-source CTI. It includes an "IoC Extractor" component that

prompts the LLM to scan report paragraphs for explicit IOCs (e.g.,

IPs, user-agent strings) and normalize any obfuscated forms. A

subsequent "IoC Enhancer" then injects these discovered IOCs into

rule candidates, expanding their signature conditions. In evaluation,

LLMCloudHunter achieved ∼99% precision/recall on IoCs in cloud-

incident reports. Similarly, industry projects like SigmaGen train

LLMs on existing Sigma rules so that "AI extracts relevant attack

patterns from security blogs and maps them to MITRE ATT&CK"

[22].

However, these LLM-enabled efforts focus on one-off rule creation

rather than the continual maintenance of regex libraries [24], leaving

open the question of how LLMs can assist in rule maintenance,

which is the focus of this research.

1
https://oasis-open.github.io/cti-documentation/stix/intro.html

3 METHODOLOGIES & APPROACH

3.1 Threat reports collection
For this evaluation, threat reports from a variety of sources from the

past 2-3 years are considered. When collecting reports, priority was

given to reports that contain a wide selection of IOCs in medium-to-

large quantities. Reports were selected from the following datasets:

• (RE1-RE5) Selection of reports from the APTnotes dataset
2

• (RE6-RE10) Trend Micro Threat Encyclopedia
3

• (RE11) Google Threat Intelligence Group4

The complete list of used reports can be found in Appendix A.1.

The reports were collected in PDF format, wherever possible, or as

a plaintext extracted from the webpage.

Listing 1. Example labeled JSON data for RE1

1 {
2 "report_name": "Report 0 - IOCs",
3 "report_description": "Indicators of compromise

from Report 0.",
4 "iocs": {
5 "ip4": [
6 {
7 "value_non_defanged": "173.239.196.66",
8 "value_defanged": "173[.]239[.]196[.]66"
9 },
10 {
11 "value_non_defanged": "194.126.178.8",
12 "value_defanged": "194[.]126[.]178[.]8"
13 },
14 ...
15 ],
16 "fqdn": [
17 {
18 "value_non_defanged": "

czyrqdnvpujmmjkfhhvs4knf1av02demj.oast
.fun",

19 "value_defanged": "
czyrqdnvpujmmjkfhhvs4knf1av02demj.oast
[.]fun"

20 },
21 ...
22 ]
23 }
24 }

Each report was reviewed manually to establish a reliable ground

truth of IOCs, since a security analyst would always have the

best IOC extraction quality. An analyst (the author of the paper)

read through each report line by line and highlighted every in-

stance of an IOC in both its original and defanged forms (e.g.,

“173.239.196.66” and “173[.]239[.]196[.]66”). These annota-
tions were recorded in a simple tabular format, with columns for

the indicator type (IP, URL, hash, etc.), the non-defanged value,

and the corresponding defanged variant. Once all reports had been

labeled, a script ingested this spreadsheet and generated a struc-

tured JSON file for each report, following the schema shown in

2
https://github.com/aptnotes/data/blob/master/APTnotes.csv

3
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware

4
https://cloud.google.com/blog/topics/threat-intelligence/
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4: under an “iocs” object, each indicator type maps to an array of

{ "value_non_defanged": . . . , "value_defanged": . . . }
entries. This manual process ensured that the evaluation dataset

captured every IOC instance—including edge cases of line-broken

or unusually obfuscated indicators—so that LLM-augmented regex

patterns could be tested against a truly comprehensive baseline.

The labeled (baseline) data is used to build a list of IOCs that

iocsearcher fails to find with its list of patterns. This list of missed

IOCs is used afterwards for building the prompts as described in

3.3.

3.2 Deploying local LLMs
To conduct this measurement, it was essential to use high-parameter

LLM models. Selecting the appropriate models was part of a prelim-

inary analysis, but initial considerations included recent popular

models such as Gemma 3, DeepSeek, Qwen3, and others. Ollama

0.6.5 was used to deploy the models on the HPC cluster of our insti-

tution. A single NVIDIA A40 with 48 GB of VRAM was selected to

support the resource demands of large LLMs.

3.3 LLM prompting
Large Language models are notoriously sensitive to prompt design.

This is why well-established prompt engineering techniques have

been applied such as few-shot learning.

3.3.1 System prompt. The system prompt provides the model with

context and instructions. It ensures that the model outputs only a

single, valid regular expression. The prompt explicitly instructs the

model to omit any explanatory text or formatting. It is important to

note that this does not affect the chain-of-thought in thinking mod-

els, which still reason internally but suppress explanatory output as

instructed.

Listing 2. System prompt

1 You are a helpful assistant that only outputs a
single, valid regular expression based on a
list of indicators of compromise.

2 Apply appropriate regex syntax for masked or
blocked parts.

3 Do NOT include any explanatory text or quotes -
just the regex itself.

3.3.2 Instruction prompt. LLMs often struggle to infer the specifics

of an IoC type solely from its name and a few examples. To address

this, a textual description is provided alongside examples for each

IoC type.

If iocsearcher does not have a predefined regex for a specific

IOC, the regex generation prompt is used. This includes missed

examples and a description to clarify the intended pattern.

Listing 3. Regex generation prompt

1 Task: Generate a Python -compatible regex pattern
to extract the following IOC type from text.

2 Description: {description}
3 Examples:
4 {examples_section}
5 Constraints:

6 - Use raw -string syntax (r"...").
7 - Do not include anchors (^ or $).

If a regex already exists for a given IOC, its pattern, associated

description, and missed examples are used in the regex refinement
prompt to improve accuracy.

Listing 4. Regex refinement prompt

1 Task: Refine the existing regex to also match the
missed examples.

2 Description: {description}
3 Regex: {existing_regex}
4 Missed Examples:
5 {examples_section}
6 Constraints:
7 - Use raw -string syntax (r"...").
8 - Do not include anchors (^ or $).

3.4 Automated testing
The testing process begins by applying the regex-based IOC extrac-

tor to threat reports and collecting the resulting extractions. Missed

IOCs are collected using two strategies: per-report and aggregated

across all reports. This dual approach allows comparisons on how

the volume and diversity of input examples influence the quality

and generalizability of the resulting regex. Generating rules from a

single report may lead to highly specific patterns, while aggregated

examples may produce more robust, general-purpose regexes.

When indicators are missed by the baseline extractor, they are

collected and passed as input to the LLM for regex rule generation

or refinement. Any valid regex suggestions are then integrated back

into the rule set. The improved configuration is re-evaluated using

the same dataset. This testing setup enables efficient experimenta-

tion across multiple large language models, prompt templates, and

generation parameters.

3.5 Evaluation
The evaluation compares IOCsearcher’s extractions—first using the

original regex patterns, thenwith the LLM-augmented rules—against

a ground-truth dataset of manually labeled IOCs for each report

(see 3.4). Performance is measured in two stages:

• Baseline run: iocsearcher operated using its original pattern

set.

• LLM-augmented run: iocsearcher’s regex rules were updated

with valid suggestions, and the reports were re-evaluated.

Based on this comparison, the system computes standard evalua-

tion metrics—precision, recall, and F1 score—to quantify how well

the tool captures the intended indicators. These metrics are defined

as follows:

• Precision = TP / (TP + FP)

• Recall = TP / (TP + FN)

• F1 Score = 2 × (Precision × Recall) / (Precision + Recall)

Where:

• TP (True Positives) refers to IOCs correctly extracted.

• FP (False Positives) are incorrectly matched values.

3
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• FN (False Negatives) are missed IOCs that appear in the

ground truth but were not extracted.

4 RESULTS

4.1 Preliminary Analysis
A variety of large language models were initially considered as

part of this research to identify those best suited for the task of

regular expression generation and refinement. Initial considerations

included recent popular models such as Gemma 3, DeepSeek-r1, and

Llama 3.1, as well as more specialized models fine-tuned for regular

expression generation. The goal was to isolate models that could

reliably produce valid, precise, and generalizable regex patterns

when provided with threat intelligence descriptions and examples.

After preliminary testing, two models were selected for focused

analysis: gemma3:27b and Regex-AI-Llama-3.2-1B:F16. These
models demonstrated consistent performance in generating valid

regex patterns and captured a broad range of IOC formats with

minimal prompt tuning.

While other models were briefly evaluated, their outputs showed

lower reliability in terms of validity, had excessive hallucination, or

limited syntax control, which made consistent testing infeasible. As

such, only aggregatedmean results from these additionalmodels will

be reported, without detailed per-model breakdowns. Additionally,

some newer models, such as Llama 4 and Qwen 3.5, were excluded

due to compatibility issues with the available version of Ollama at

the time of evaluation.

The following sections focus primarily on the comparative per-

formance of gemma3:27b and Regex-AI-Llama-3.2-1B:F16.

4.2 Validity of LLM-Generated Regex
The syntactic validity of regex patterns produced by LLMs varied

notably across different models. Models such as gemma3:27b and

deepseek-r1:32b consistently generated regex expressions with

valid Python syntax throughout the evaluation. Across the three

newly generated rules (filename, filepath, malwarename) and two

refined rules (cve, registrykey), both models successfully produced

syntactically valid patterns in all cases.

In contrast, more lightweight models such as Regex-AI-Llama-
3.2-1B:F16 and llama3.1:8b had lower reliability in maintaining

syntactic correctness. Specifically, Regex-AI-Llama-3.2-1B:F16
produced invalid patterns for the filepath IOC type, while llama3.1:8b

failed to correctly generate a valid regex for filepath, filename. This
result indicates that the fine-tuned version of the Llama model is

better suited for generating syntactically valid patterns.

This discrepancy in syntactic validity highlights a trade-off be-

tween model size/capability and regex correctness. Higher param-

eter models (such as gemma3 and deepseek-r1) not only adhere

better to the prompt’s structural constraints but also generalize

more effectively from examples. Smaller models, while faster and

less resource-intensive, require post-processing and validation to

ensure usable output.

Despite occasional failures, the majority of regexes across all

models were syntactically valid. However, semantic validity—i.e.,

whether the generated pattern accurately captures the intended IOC

format remains a separate concern, discussed in the next section

(4.3).

To avoid runtime errors, syntactically invalid patterns are skipped

and not used in testing.

4.2.1 LLM output polluted with unnecessary data. During testing,
the outputs of several language models were found to be inconsis-

tent and poorly structured. The placement of the regex pattern, as

well as the presence or absence of code fencing, varied unpredictably

between generations. Moreover, models like deepseek-r1, and espe-

cially smaller ones such as llama3.1:8b, frequently ignored explicit
system-level instructions, such as “Do NOT include any explanatory

text or quotes – just the regex itself.” This often resulted in output

that included extra explanations, Markdown formatting, or even

commentary, which made automated parsing difficult or impossible.

Structured output formats (such as JSON) were explored as a

potential mitigation; however, gemma3 and deepseek-r1 failed to

produce a valid JSON despite specifying the output format as such.

This may have been due to limitations in the Ollama version used

at the time (0.6.5), though time constraints prevented a deeper in-

vestigation. As a result, enforcing output structure required manual

post-processing or additional prompt engineering, neither of which

were consistently reliable.

Notably, this issue was not observed with the selected models

gemma3:27b and Regex-AI-Llama-3.2-1B:F16, both of which pro-

duced consistent, clean regex outputs without additional content.

4.2.2 Generated regex is syntactically invalid. Another recurring
problem—particularly with smaller models—was the frequent gen-

eration of syntactically invalid regular expressions. These invalid

patterns could not be compiled by standard regex engines and there-

fore failed entirely during IOC extraction.

For instance, when asked to generate a regex pattern to match

file names based on the following examples:

'Client.py', 'SystemUpdate.lnk', 'VMSearch.sfx.exe',
'VMSearch.exe', '2.txt', '2.ps1',
'KFP.311.152.2023.pdf.lnk',
'Strategies of Ukraine.pdf.lnk', 'python.exe',
'powershell.exe', 'wody.pdf'

One model produced the following invalid regex:

.\(\[a-zA-Z0-9]+\.[a-zA-Z]{1,5}\)\.lnk?\

This pattern is unusable for several reasons:

(1) Illegal escape sequences - The backslashes before the paren-

theses "(", ")", "[", "]" suggest an attempt to escape

the parentheses, but most modern regex engines (including

Python’s re) do not accept either as valid escapes. Because the
prompt did not specify a particular regex engine, the model

incorrectly assumed that they would be universally valid.

This could be considered a missing element of the prompt.

(2) The dot at the very beginning, in its current form, is matching

any character. It most likely should have been escaped using

\. to match just the start of the file extension.

(3) Even if the backslashes were a valid escape, this regex would

require the text to contain actual parentheses around the

filename (e.g. (example).lnk), which none of our sample

filenames include.
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Table 1. Comparison of Baseline and LLM-Augmented Performance (gemma3:27b)

Report Baseline LLM-Augmented (Individual) LLM-Augmented (Combined)
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Report 1 (RE1) 0.8246 0.5281 0.6438 0.494 0.9213 0.6431 0.4314 0.7416 0.5455

Report 2 (RE2) 1 0.8421 0.9143 0.8537 0.9211 0.8861 0.9174 0.8947 0.9315

Report 3 (RE3) 0.8636 0.5278 0.6525 0.6889 0.8611 0.7654 0.5577 0.8056 0.6591

Report 4 (RE4) 0.875 0.5185 0.6512 0.8 0.5926 0.6809 0.7143 0.7407 0.7273

Report 5 (RE5) 0.6986 0.75 0.7234 0.4265 0.8529 0.5686 0.6 0.8382 0.6994

Report 6 (RE6) N/A N/A N/A 0.1579 0.4286 0.2308 0.1538 0.2857 0.2

Report 7 (RE7) N/A N/A N/A 0.75 0.6923 0.72 0.1515 0.3846 0.2174

Report 8 (RE8) N/A N/A N/A 0.1429 0.0769 0.1 0.044 0.3077 0.0769

Report 9 (RE9) N/A N/A N/A 0.1667 0.75 0.2727 0.1429 0.25 0.1818

Report 10 (RE10) N/A N/A N/A 0.2 0.5 0.2857 0.0833 0.25 0.1250

Report 11 (RE11) 0.8667 1 0.9286 0.8667 1 0.9286 0.74 0.97 0.46

Mean 0.4662 0.3788 0.4103 0.5043 0.6906 0.5529 0.4124 0.5881 0.4385

Table 2. Comparison of Baseline and LLM-Augmented Performance (Regex-AI-Llama-3.2-1B:F16)

Report Baseline LLM-Augmented (Individual) LLM-Augmented (Combined)
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Report 1 (RE1) 0.8246 0.5281 0.6438 0.4845 0.5281 0.5054 0.4608 0.5281 0.4921

Report 2 (RE2) 1 0.8421 0.9143 1 0.8421 0.9143 0.7805 0.8421 0.8101

Report 3 (RE3) 0.8636 0.5278 0.6525 0.8636 0.5278 0.6552 0.5278 0.5278 0.8101

Report 4 (RE4) 0.875 0.5185 0.6512 0.3256 0.5185 0.4 0.4667 0.5185 0.4912

Report 5 (RE5) 0.6986 0.75 0.7234 0.0453 0.75 0.0857 0.4286 0.75 0.5455

Report 6 (RE6) N/A N/A N/A 0 0 0 0 0 0

Report 7 (RE7) N/A N/A N/A 0 0 0 0 0 0

Report 8 (RE8) N/A N/A N/A 0 0 0 0 0 0

Report 9 (RE9) N/A N/A N/A 0.0667 0.1429 0.0909 0 0 0

Report 10 (RE10) N/A N/A N/A 0 0 0 0 0 0

Report 11 (RE11) 0.8667 1 0.9286 0.8667 1 0.9286 0.74 0.97 0.46

Mean 0.4662 0.3788 0.4103 0.3320 0.3918 0.3255 0.3095 0.3760 0.3281

4.3 Analysis by IOC Type
4.3.1 filename. Extracting filenames poses a unique challenge: sim-

ple patterns easily over-match non-file strings, while overly strict

patterns miss valid but uncommon formats.

Single-report prompting
When fed only a few examples from one report, both models

commonly produced:

\w+\.\w+
Although this captures nearly every “name.extension” combina-

tion, it also flags unrelated text segments. For instance:

• 127.0.0.1 -> false positives “127.0” and “0.1”

• www.google.com - false positive “www.google”

Aggregated-report prompting
After exposing gemma3:27b to a wide variety of filenames drawn

from all reports, the generated pattern became:

[A-Za-z0-9._-]+(\.[A-Za-z0-9]+){1,2}
This pattern handles cases with hyphens and dots in the filename

more effectively, allowing for more realistic file name structures

found in practice (e.g., my-file.v2.backup). It also supports file-

names with two file extensions, such as .tar.gz, which are common

in compressed archive formats. Additionally, it provides greater

flexibility in extension matching.

4.3.2 filepath. Extracting file paths reliably poses several chal-

lenges, especially on Windows systems where environment vari-

ables, nested directories, and multiple file extensions must all be

handled. Two different prompting strategies illustrate these issues:

Single-report prompting
When provided only a handful of examples from one report, both

gemma3:27b and Regex-AI-Llama-3.2-1B:F16 tended to generate
highly specific patterns such as:

(?:%User Temp%\\(?:[^\\]+\\.dll)|%Windows%\\regedit\.exe|
%Program Files%\\Seagull\\BarTender Suite\\bartend\.exe|
%User Temp%\\(?:[^\\]+\\.ttf)|%User Temp%\\
(?:[^\\]+\\.reg)|%User Temp%\\{[0-9a-fA-F]+\\.dll)

While this captures exactly the examples given, it fails to match:

• Paths in other system variables (e.g. %APPDATA%)
• Nested folder structures beyond those listed

• Different file extensions (e.g. .exe, .zip, .txt)

• UNC (network-share) paths (e.g. \\SERVER\payload.exe)

5
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Aggregated-report prompting
After pooling dozens of file-path examples from all reports,

gemma3:27b learned a much more general but still precise pattern:

(?:%[A-Z]+%|CSIDL_[A-Z]+|\\(?:[0-9]{1,3}\.){3}[0-9]
{1,3}(?:@\d{1,5})?|C:\\(?:Users\\)?(?:Public\\
Documents\\)?)[^\\]+\.(?:vbs|exe|dll|zip|txt|lnk|
bat|js|html|reg|png|gif|css|htc|log|tmp)|%User Temp%
\\(?:inH{[0-9a-fA-F]+}\\)?(?:[^\\]+\\)*[^\\]+\.
(?:vbs|exe|dll|zip|txt|lnk|bat|js|html|reg|png|gif|
css|htc|log|tmp)

Key improvements compared to the first pattern:

• Variable support: Matches any %VARIABLE% or CSIDL_ place-

holder.

• Network paths: Allows UNC paths or IP-at-port notation

(\\192.168.0.1@8080\. . . ).
• Drive letters: Optional C:\Users\ or C:\Public\Documents\
• Extension list: A comprehensive set of common file types,

both primary (e.g. .exe, .dll, .zip) and secondary (e.g. nested

.tmp or .log).

• Nested directories: Supports zero or more additional subfold-

ers with chained \\. . . \. segments.

By increasing the diversity and volume of examples, the aggre-

gated pattern achieves a balance between generality and precision.

It captures realistic Windows paths while avoiding random strings

or URLs. This significantly reduced false positives on non-filepath

strings (such as portions of URLs or log entries) compared to the

overly narrow, single-report regex.

4.3.3 malwarename. Crafting a regex for malware identifiers is

tricky because reports usually mention only a few specific families,

causing even aggregated patterns to lean heavily on known prefixes.

The following regex was generated from dozens of malware names

pooled across all reports:

(?:Win32|MSIL|Trojan(?:Spy|)|HackTool|Adware)\.
(?:[A-Za-z0-9\.]+)\.(?:[A-Za-z0-9]+)

Limitations:

• Hard-coded families: Any malware name without one of the

listed prefixes (e.g. “Conti” or “Qbot”) will be missed entirely.

• No hyphens or underscores: Names like DarkComet-RAT or

NanoCore_Injector aren’t captured.

• Only three segments: Simpler names without two dots or

deeper hierarchies with more than two dots may fail to match.

Despite these constraints, this aggregated pattern strikes a bal-

ance between precision and coverage for well-known families of

malware, but additional refinement or a more general fallback rule

would be needed to cover emerging or unconventional malware

names.

4.3.4 cve. Detection of CVE identifiers is one of the simpler extrac-

tion tasks—yet even here, static regexes can lag behind evolving

standards. By default, IOCsearcher uses:

CVE\-[0-9]{4}\-[0-9]{4,6}

This pattern covers CVEs issued between 1999 and 2015 (which

always had between four and six digits in the second component)

but fails to match newer entries that exceed six digits.

LLM-Refined Pattern Both gemma3:27b and Regex-AI-Llama-
3.2-1B:F16 consistently suggested:

CVE\-[0-9]{4}\-[0-9]{4,}

This pattern has an unbounded upper limit and ensures that any

number of digits above four after the year is accepted. This aligns

with the MITRE CVE syntax change implemented in 2016, which

removed the six-digit cap on identifier numbers [14].

4.4 Model Comparison
The evaluation reveals a significant performance gap between mod-

els. This comparison focuses on gemma3:27b and Regex-AI-Llama-
3.2-1B:F16, with other models providing context for the range of

capabilities.

As shown in Tables 1 and 2, gemma3:27b consistently outper-

formed Regex-AI-Llama-3.2-1B:F16, achieving higher F1 scores
across most reports, especially with the aggregated prompting strat-

egy. Where the baseline failed to find any IOCs (RE6-RE10),
gemma3:27b generated effective rules while Regex-AI-Llama-3.2-
1B:F16 often yielded zero scores. This highlights gemma3:27b’s
ability to generalize from diverse examples. There was also a quali-

tative difference seen in its more sophisticated filename and filepath

patterns.

gemma3:27b also proved more reliable, consistently generating

valid regex and adhering to prompt instructions. In contrast, Regex-
AI-Llama-3.2-1B:F16 failed on malwarename and fqdn IOC types,

showing its limitations.

While deepseek-r1:32b produced decent patterns, it failed to

write the output in a structured way regardless of the prompt. This

made it challenging to extract the regex to use for testing, and thus,

this model was omitted. At the other end, llama3.1:8b exempli-

fied the issues with smaller models, frequently producing invalid

regex and ignoring prompt instructions, making it unsuitable for

an automated workflow.

5 DISCUSSION
The results clearly indicate that an LLM-assisted workflow can sub-

stantially improve the recall of existing rule-based extractors. This

finding directly addresses RQ1, which compares the LLM-based

solution to the baseline in terms of recall and precision. As shown

in Table 1, the gemma3:27b model, when prompted with missed

IOCs, consistently enabled the baseline iocsearcher tool to iden-

tify indicators it had previously overlooked. This was particularly

evident in the successful refinement of the cve pattern, where the

LLM correctly adapted an outdated rule to a new, more flexible

standard—a task that would otherwise require manual intervention

by an analyst aware of the syntax change.

However, this increase in recall was frequently accompanied by

a decrease in precision. The LLM-generated rules, while capturing

more true positives, also introduced a higher number of false posi-

tives. This suggests that the models, especially when generalizing

from a limited set of examples, tend to create broader patterns than

necessary. This trade-off is a critical consideration for practical de-

ployment. While higher recall reduces the risk of missing IOCs, low

precision can overwhelm analysts with false alerts, eroding trust in

6
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the system. The goal is not just to find more IOCs, but to find them

reliably.

The comparison between per-report (individual) and aggregated

(combined) prompting strategies revealed another layer of complex-

ity. The aggregated approach, which provided the LLM with a more

diverse set of examples, was hypothesized to create more robust,

general-purpose rules. This held true for filename and filepath IOCs,

where the aggregated patterns were qualitatively superior, handling

a wider variety of formats and edge cases. Conversely, for some re-

ports, the per-report strategy yielded a better F1 score. This suggests

that for highly contextual or unique IOC formats, a specific, targeted

regex may be more effective than a generalized one, highlighting

the need for an analyst to choose the right strategy based on the

specific maintenance task.

In addressing RQ2, which asks which LLM models are better

suited for the task, the findings strongly favor larger, more capa-

ble models. gemma3:27b demonstrated superior performance in

generating both syntactically and semantically valid regex com-

pared to the smaller Regex-AI-Llama-3.2-1B:F16 model. This ob-

servation also helps answer RQ3, which questions the fraction of

valid, ready-to-use regex suggestions. As noted in Section 4.2, the

larger models consistently produced syntactically valid regex that

required no modification for basic usability. In contrast, smaller

models frequently generated invalid patterns that were unusable

without significant manual correction. This implies that the fraction

of usable suggestions is highly dependent on model capability.

The analysis by IOC type further illuminated the LLMs’ reason-

ing process. For well-structured indicators like CVEs or file paths

with predictable patterns, the models excelled. However, for more

amorphous types like malwarename, the LLM struggled to general-

ize beyond the specific examples provided, producing a regex that

was essentially a hard-coded list of known malware families. This

underscores a key limitation: LLMs are pattern matchers, not cyber-

security experts. They cannot infer the platonic ideal of a "malware

name" but can only generalize from the data they are shown.

6 LIMITATIONS
While this research offers valuable insights, its findings are sub-

ject to several limitations that may affect the generalizability and

interpretation of the results.

First, the reliability of the baseline comparison is a key con-

cern. The iocsearcher tool, used for the baseline, might system-

atically fail to read IOC patterns from PDFs, especially when an

indicator is stretched across two lines. This can artificially lower

the baseline’s performance, meaning the perceived improvement

from LLM-augmented rules could be inflated, as some "missed" IOCs

might stem from parsing errors rather than inadequate regex.

Second, the study highlights the model’s sensitivity to data
quality. A single incorrectly written IOC in a report, such as a

SHA256 hash containing 63 characters instead of 64, can mislead

a model into attempting to "refine" an already optimal regex. This

could result in a less accurate pattern. To mitigate this, the eval-

uation deliberately avoided refining patterns for IOC types with

well-established formats (e.g., hashes, URLs, IPv4 addresses), which

itself constitutes a limitation by narrowing the scope of the mainte-

nance task studied.

Third, the study’s scope is limited by its reliance on a curated set

of eleven threat reports. This small sample, though drawn from rep-

utable sources, may not be representative of the diverse landscape

of cyber threat intelligence. The specific IOC formats and reporting

styles present in this dataset mean the performance metrics and the

quality of the generated regex may not generalize to other sources.

Finally, the research revealed significant limitations in the ca-
pabilities of the tested LLMs, particularly smaller models. These

models struggled with both syntactic correctness and instruction ad-

herence. For instance, some produced syntactically invalid patterns

containing illegal escape sequences, while others ignored system

prompts and polluted the output with explanatory text, complicating

automated parsing.

7 FUTURE WORK
There are several approaches to build on this research:

First, expanding the evaluation to a much larger and more varied

corpus of threat reports would help validate the generalizability of

these findings.

Second, exploring more advanced prompt engineering, such as

Chain-of-Thought (CoT) or self-correction prompts, could poten-

tially improve the models’ ability to generate more precise rules.

Third, fine-tuning smaller, open-source models specifically for

the task of regex generation could offer a more efficient and reli-

able alternative to relying on large, general-purpose models. Finally,

developing an interactive toolchain that formally integrates the hu-

man feedback loop—allowing an analyst to easily accept, reject, or

edit suggestions and have those corrections inform future genera-

tions—would be a valuable next step toward practical implementa-

tion.

8 CONCLUSIONS
This research aimed to determine how Large Language Models

(LLMs) can assist analysts in maintaining regex rules for Indicator

of Compromise (IOC) extraction. The study confirms that LLMs can

be effective assistants, but their usefulness is maximized only when

supervised by a human.

LLM-assisted regex generation significantly improves recall and

allows the capturing of new IOC formats, but often at the cost of

precision by generating overly broad rules and false positives. Model

capability is also a critical factor; larger models like gemma3:27b
consistently produce more syntactically and semantically valid sug-

gestions than smaller models.

In conclusion, LLMs can substantially accelerate the maintenance

of rule-based IOC extractors by drafting patterns for structured IOCs

like CVEs. However, because the models can struggle with gener-

alization and are sensitive to data quality issues, human oversight

is essential. The most effective approach is a "human-in-the-loop"

model where an analyst validates the LLM-suggested rules. This

method would combine the AI’s speed and general knowledge with

the security analyst’s expertise to ensure that the LLM-generated

suggestions are meaningful.
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A APPENDICES

A.1 Appendix A.1

Table 3. Threat report URLs

ID URL
RE1 https://app.box.com/s/s2uqsgl0krjgy2q806x3vy0hx6jfjem8

RE2 https://app.box.com/s/dd69xw7nerwy3w6zkqapfwhrsacgtxxj

RE3 https://app.box.com/s/rel585pqa8fc80voc96wt9oidsik0pvl

RE4 https://app.box.com/s/hn3cttmgg2ijnz0qr41iwh6kpgenapvr

RE5 https://app.box.com/s/hwalx6d0jzl86zfotki735i40j5a7fr0

RE6 https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/trojanspy.ps1.poweater.a

RE7 https://www.trendmicro.com/vinfo/nl/threat-encyclopedia/malware/hacktool.win32.patcher.0bdg14

RE8 https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/adware.win32.installcore.r002c0rce25

RE9 https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/trojan.html.powload.c

RE10 https://www.trendmicro.com/vinfo/nl/threat-encyclopedia/malware/trojan.lnk.argulong.b

RE11 https://cloud.google.com/blog/topics/threat-intelligence/coldriver-steal-documents-western-targets-ngos
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