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ABSTRACT
Randomly generated Kripke structures (graphs with states, initial
states and directed edges) are used in model checkers to evaluate
benchmarks, this consists of checking the truth of a temporal logic
formula, specifically for this research, a Computation Tree Logic
(CTL) formula, for the given structure. It has been shown by previ-
ous research that, as these graphs grow in size (node/state count),
the probability of truth of any given CTL formula converges to a
fixed value. This paper focuses on a gap in the current research,
which is determining how fast this convergence occurs. The paper
demonstrates how the convergence happens very quickly, at graph
sizes not exceeding a few hundred nodes even for very complex
CTL formulae. This greatly impacts model checking because graph
sizes of tens thousands of nodes are typically used. Since it has been
shown how to calculate the convergence probabilities by previous
research, and we now know that these probabilities are converged to
very quickly, this phenomenon can be exploited by model checkers
by probabilistically guessing whether a given formula holds for a
model instead of actually verifying whether it does. The paper also
shows that the convergence happens exponentially, and the pattern
of how graph generation parameters (probability of edges occurring,
probability of states being labeled as initial) also affect the rate of
convergence.

1 INTRODUCTION

1.1 Background and Context
Model checking is an automated method for checking whether a
model of a system satisfies certain correctness properties[1]. For this
research, a ’model’ refers specifically to a Kripke structure[6], which
is, in principle, similar to a finite-state automaton: a graph with one
or more initial states, nodes that represent reachable states and
directed edges which represent transitions between states, but with
a focus on interpretation of temporal logics. In general, a temporal
logic is any system of rules used to reason about events in terms of
time (for example, "I am always hungry" or "I will be hungry until I
eat something").

In the field of model checking, it is important to have benchmarks
which can be used on a variety of different models to measure the
performance of model checkers. In the context of this paper, a bench-
mark is a logic formula or set of logic formulae used to evaluate a
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model. Organizations such as the Hardware Model Checking Com-
petition (HWMCC)[7] have developed large numbers of models and
benchmarks which are used to evaluate model checkers. However,
as the models being tested become larger, logic formulae follow 0-1
and convergence laws[3]. A logic formula adheres to convergence
law if, as you increase the size of a random model, the probability
of the logic formula holding converges to a fixed value (from 0 to
1). If the probability of the formula holding converges strictly to
only 0 or 1, then it adheres to 0-1 law. It has also been found by
previous studies that convergence law is followed for single-initial
state Kripke structures, while 0-1 law is followed for multiple-initial
state Kripke structures[3].

1.2 Problem Statement
While it is known that this convergence of probability occurs and
how to calculate it, there is little research to show exactly when
the convergence occurs. ’When’, in this case, refers to how large
the model needs to be for the formula’s probability of holding to
converge. This is important because if we find that the convergence
happens relatively ’early’ (for example, for model sizes smaller than
those used to test benchmarks) this would mean that many of the
benchmarks currently being used are not as reliable as expected. On
the other hand, if the convergence only happens when the models
are incredibly large (larger than any models used in practice), this
would mean that presently used model checkers and benchmarks
remain unaffected. The HWMCC uses models based on electrical
circuits, many of which have thousands and even millions of nodes
[8]. So, if convergence for a CTL formula (see Section 2 for detailed
explanation of CTL) occurs within merely hundreds of nodes on

Fig. 1. Example of Kripke Structure satisfying AF(p) and AF(q). AF(p) means:
on all paths (starting at initial, double-circled, states), you will eventually
reach a state containing the atomic proposition 𝑝 . This holds trivially for
this example because both initial states contain 𝑝 . For 𝐴𝐹 (𝑞) , one of the
initial states already contains 𝑞, the other has 2 outgoing transitions, both
of which lead to a state with 𝑞. The empty state simply means neither 𝑝
nor 𝑞 holds in that state.
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any random Kripke structure, model checkers partaking in such
a competition would be able to calculate the fixed convergence
probability of the given CTL formula for the given Kripke structure
according to the findings of Dong et al. [3] and, given the large
graph sizes used, the actual probability of truth of the CTL formula
holding for said Kripke structure would be converged to the fixed
value calculated, resulting in the model checker essentially being
able to perform a probabilistic guess instead of actually verifying
whether the formula holds for the given model. This would enable
model checkers to greatly increase their speed while maintaining
accuracy, without actually performing the verification or calculation
expected of them, working purely on probability.

1.3 Objective and goals
The paper which found the convergence to occur[3] proved its
findings for Computation Tree Logic (CTL) and Linear Temporal
Logic (LTL)[1]. In this research, the focus is limited to Computation
Tree Logic (CTL), which views time as a branching tree of possible
futures. Further explanation on CTL follows in Section 2. The objec-
tive of this study is to experiment with many randomly generated
models and derive a pattern of how large these models need to be for
the convergence to occur. This is tested for both single-initial and
multiple-initial state models. CTL is chosen due its polynomial time
complexity, making it feasible to compute sufficient results within
the time frame of this study, as opposed to the PSPACE-complete
complexity (requiring exponential time) of LTL[1].

2 TERMINOLOGY AND DEFINITIONS
• Kripke Structure[6]: A mathematical model, in the form of
a graph, which represents the behavior of a system. The
states of the system are represented by nodes, the transitions
between the different states are represented by directed edges,
and initial states (labeled as a double-circled node in Figure 1)
which represent the points from which we begin to evaluate
the behavior of a CTL formula.

• CTL[1]: Extends propositional logic (basic boolean opera-
tions over atomic propositions) with temporal operators. For
example, the formula 𝐴𝐹 (𝑞) states that on all paths (A) we
will eventually reach (F) a state where atomic proposition 𝑞

holds. As seen in Figure 1, the formula 𝐴𝐹 (𝑞) is satisfied, by
beginning at either initial state, no matter which transitions
we follow, we will eventually reach a state that contains 𝑞.

• Random Kripke Structure[4, 5]: Interchangeably referred to
as graphs or models in this paper, random Kripke structures
are just Kripke structures which are not modeled after an
actual system, but have instead been generated following a
set of rules. For this research, the Erdős–Rényi[5] strategy
for random graph generation is used. The Erdős–Rényi ap-
proach consists of selecting a graph size 𝑛 (number of nodes)
and probability 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 of each possible edge between
two nodes existing. This process is described in further de-
tail in Section 3.1. The importance in using randomly gener-
ated models lies in obtaining very large numbers of different
graphs, while not modeling after any existing systems which
could introduce unwanted patterns and bias.

• Convergence and 0-1 laws[3]: A convergence law is a prop-
erty of a temporal logic and a random graph model. A con-
vergence law states that, as the number of nodes in a random
model (with the same generation parameters) increases, the
probability that the temporal logic formula holds converges
to a fixed value. For the case of multiple-initial state models,
a 0-1 law is followed, which is the exact same principle but
the fixed value is always either exactly 0 or 1.

3 METHODOLOGY AND APPROACH

3.1 Model Generation
As discussed, the models for this research are Kripke structures.
The models are generated using the pyModelChecking[2] Python
package. This tool was chosen because it is fully open-source, has a
vast amount of documentation online and is specifically designed for
working with CTL/LTL on Kripke structures. The Kripke structures
are generated by setting the graph size 𝑛 and the probability of
transition 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 , as per the Erdős–Rényi model. The following
additional constraints are also set:

• All atomic propositions each have an independent 50% chance
of appearing at any given state.

• Similar to transitions, each state has an independent proba-
bility 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 of being labeled as an initial state. For graphs
or tables seen in this paper, single-initial state models are
described as having 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.0.

• For the sake of totality, if, due to chance, any node in a gen-
erated graph does not receive an outgoing edge, the graph is
discarded and one is re-generated with the same parameters.

3.2 Model Checking
The pyModelChecking package allows verification of whether a
certain CTL formula holds true for the encoded Kripke structure.
Table 1 shows the selected CTL formulae for this research. The

formulae follow an increasing complexity, although no strict metric
is used to quantify their complexity, simply higher number of atomic
propositions and clauses. Since we are testing randomly generated
graphs, the formulae are not based on any real behavior of a system,
rather they are also random.

3.3 Raw data collection
The research process for getting the raw data (probabilities of truth
of different formulae for increasing graph sizes) is broken down in
Figure 2. For this paper, the step used in the graph size ranges (the
amount by which 𝑛 is increased when moving onto a larger graph
size) is kept at 2 to balance granularity and data generation time.
The iteration count, or the number of graphs averaged to obtain the
final probability, is 10000 for 𝜑1..9 and 1000 for 𝜑10, reduced for 𝜑10
due to very large computation times.

3.4 Data analysis and statistical techniques
3.4.1 Convergence Point Calculation. The convergence point is cal-
culated by taking the 20-80 inter-percentile range in a window of
10 data points (this equates to a range of 20 nodes since a step of
2 is used for all data collected). If the inter-percentile range is less
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𝝋 CTL

𝜑1 𝐴𝐹 𝑝

𝜑2 𝐸𝐹 (𝐸𝑋 (𝑟 ))

𝜑3 𝐸𝐹 (𝑝 ∧ 𝐸𝐹 (𝑞))

𝜑4 𝐸𝐺 (𝑝 ∧ (𝑞 ∨ 𝑟 ))

𝜑5 𝐴𝐺 (𝑝 → 𝐴𝐹 (𝑞))

𝜑6 𝐴 ((𝑝 → 𝑞) 𝑈 𝑟 )

𝜑7 𝐴𝐺 (𝑝 → 𝐴𝐹 (𝐸𝑋 (¬𝑞)))

𝜑8 𝐴𝐺 (𝑝 → 𝐴𝐹 (𝑞 ∧ 𝐸𝑋 (𝐸 (𝑟 𝑈 𝑠))))

𝜑9
𝐴𝐺 (𝐸𝐹 (𝑝 ∧ 𝐸𝑋 (𝑞)) →
𝐸𝐺 (¬𝑟 ∨𝐴 (𝑠 𝑈 𝐴𝐹 (𝑡))))

𝜑10
𝐴𝐺 ((𝑝 → 𝐴𝐹 (𝑞 ∧ 𝐸𝑋 (𝑟 ∨ 𝐸 (¬𝑠 𝑈 𝑡))))

∨𝐸𝐺 (¬𝑞 ∧ 𝐸 (𝑝 𝑈 (𝑠 ∨𝐴𝐹 (𝑟 )))))
Table 1. CTL formulae.

than 0.01 for 4 consecutive windows, the data is deemed to have
converged.

3.4.2 Setup for Exponential. In order to demonstrate an exponential
relationship, the following steps were taken:

• Find the limit towards which the data is converging. For data
that is visibly tending to either 0 or 1, those values are manu-
ally selected. For limits which are unclear, SciPy’s 𝑐𝑢𝑟𝑣𝑒_𝑓 𝑖𝑡
was performed on the raw data to fit an exponential curve of
the following general form:

𝑝 = 𝐿 + 𝑑 ∗ 𝑒𝑘𝑛

Where 𝑝 is the probability of truth of𝜑 , 𝐿 is the limit the curve
converges to, 𝑑 and 𝑘 are coefficients of the exponential, and
𝑛 is the number of nodes in the graph.

• If the raw data is converging to an upper limit then we adjust
the y-data (probabilities) by performing:

𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑_𝑝𝑟𝑜𝑏𝑠 = 𝐿 − 𝑝𝑟𝑜𝑏𝑠

where 𝑝𝑟𝑜𝑏𝑠 is the list of probabilities of truth.
• If, however, the raw data is converging to a lower limit we
adjust the y-data by performing:

𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑_𝑝𝑟𝑜𝑏𝑠 = 𝑝𝑟𝑜𝑏𝑠 − 𝐿

• Filter out any non-positive values and take the base 10 loga-
rithm of the filtered 𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑_𝑝𝑟𝑜𝑏𝑠 .

• Perform linear regression on the filtered node range vs. the
filtered 𝑝𝑟𝑜𝑏𝑠 .

If the relationship is, in fact, exponential, this result should yield a
straight line with a downward trend.

Fig. 2. Flowchart of raw data collection process for a single configuration.

3.4.3 Omission of Values. Due to irregular behavior, which will
be explored in Section 4, for smaller graph sizes, some values are
omitted before performing curve-fitting and linear regression. Since
the raw data is experimental and not perfect, some values may fall
above an approximated upper asymptote or below an approximated
lower asymptote, these values are also omitted.

4 RESULTS

4.1 Convergence Speed
Looking at Figure 3, we see a clear convergence occurring within
merely a couple hundred nodes for both 𝜑1 and 𝜑10. Notice how,
despite the CTL formulae being of vastly differing complexity, the
convergence still happens rather quickly in both cases.

As seen in Table 2, all of the CTL formulae converge for relatively
small graph sizes, not exceeding a couple hundred nodes. It is also
evident fromTable 2 and Figure 4 that the formulae have very similar,
in some cases even the same, convergence points for single-initial
and multiple-initial state models, despite the fact that the values
being converged to in those cases are different.
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Fig. 3. Probability of Truth vs. Graph Size (Number of Nodes) for 𝜑1 (blue)
and 𝜑10 (red), both with 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.1 and 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.1

Fig. 4. Probability of Truth vs. Graph Size (number of nodes) for 𝜑1 with
single-initial and multiple-initial state model.

4.2 Exponential Behavior
Although far more noticeable for 𝜑10 than 𝜑1, both curves experi-
ence visibly non-exponential behavior at the beginning. This is likely
due to the graph size not yet being large enough to demonstrate the
behavior of the full CTL formula, with all of its clauses, consistently.
By performing linear regression on the base 10 logarithm of the
probabilities, following the steps in Section 3.4.2, it becomes clear
that the probability of truth does, indeed, follow an (inverse) expo-
nential curve. The data is more sparse towards the end, past the
point of convergence, due to many of the probabilities equaling 0
and having to be excluded. The data also becomes increasingly jitter,
due to the logarithm producing a more extreme effect on the data
as it tends to the limit. Furthermore, the resolution of the results is
10−4 for 𝜑1 and 10−3 for 𝜑10 due to the 10000 and 1000 graphs being
averaged for the two formulae respectively, meaning that the data
below the 10−4 and 10−3 marks, respectively for the two formulae
when plotting the logarithm, becomes unreliable. Hence, the best
fit line is cut off earlier to fit the consistent exponential section, this

Formula
Convergence Point

Single-Initial Multiple-Initial
𝜑1 82 98
𝜑2 44 48
𝜑3 46 52
𝜑4 108 78
𝜑5 64 64
𝜑6 86 100
𝜑7 108 110
𝜑8 62 62
𝜑9 64 64
𝜑10 174 176

Table 2. Convergence Points found for all selected CTL formulae. All
generated models use 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.1, single-initial state models use
𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.0 and multiple-initial state models use 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.1. Note
that these convergence points are subject to deviation if recalculated due
to the relatively weak nature of detecting the convergence (in detail in
Subsection 3.4 and the averaging over only 10000 graphs for the sake of
computation times for this research.

Fig. 5. Log (base 10) of Probability of Truth vs. Graph Size (number of
nodes) for 𝜑1 with non-exponential section cut off by eye. 𝑅2 = 0.9948.
𝑅𝑀𝑆𝐸 = 0.0574. Fit for nodes 20 to 130.

cut off is done by eye, not directly at the limit of resolution. The
initial non-exponential section is also excluded by eye (notice the
x-axis).

4.3 Impact of Generation Parameters
As visible in Figures 7&8, it is clear that the value of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 has
a distinct effect on the convergence: a greater 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 causes
a quicker convergence. For 𝜑1, the actual convergence point does
not differ, as the curves seem to merge into one another, however,
for 𝜑10 the convergence point decreases very noticeably, reducing
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Fig. 6. Log (base 10) of Probability of Truth vs. Graph Size (number of
nodes) for 𝜑10 with non-exponential section cut off by eye. 𝑅2 = 0.9940.
𝑅𝑀𝑆𝐸 = 0.0354.

Fig. 7. Probability of Truth vs. Graph Size (number of nodes) for 𝜑1 with
constant 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.1 and different values of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 .

the non-exponential section at the beginning for higher values
of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 . Also notice how the convergence curve of 𝜑1 for
𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.2 is actually closer to the curve for 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.9
than to 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.1. This means that some form of a non-
linear relationship is also followed for the effect of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 on
the convergence speed.
By plotting the slope coefficients of the linear regression lines

fitted from the logarithm of the probabilities for a more fine-grained
range of values for 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 , seen in Figure 9, we clearly see
that a relationship resembling an exponential curve is followed for
increasing values of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 . It is, however, important to note
the scale of the y-axis, indicating how small the difference actually
is in this case. Also notice a misleading factor: seeing as the slopes
are negative, the regression lines are more steep for lower values

Fig. 8. Probability of Truth vs. Graph Size (number of nodes) for 𝜑10 with
constant 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.1 and different values of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 .

Fig. 9. Linear Regression (of the base 10 log of the probability of truth) slope
coefficient vs. increasing 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 for 𝜑1 with constant 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.1 All
slopes fit with linear regression of nodes 20 to 130.

of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 , however, this does not indicate that the probability
converges faster for those values. If we look back at Figure 7, we
see that the curves already begin at much lower values (around
0.7 for 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.1 but around 0.4 for 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.9). So,
despite the curve for 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.9 being closer to the limit being
approached, its slope is lower due to the lower starting point.
Looking at Figure 10, we get a further indication that the differ-

ence for varying values of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 is clear, although not very
largely impactful for𝜑1, even for a very large difference in 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 .
Further towards the end, the data becomes more jittery and inter-
twined (notice the darker, overlapping points), the possible reasons
for this were discussed at the end of Section 4.2. Although the lines
of best fit interpolated from the data intersect very clearly, it is
difficult to say at what point they would intersect if the resolution
of the results was greatly increased.
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Fig. 10. Log (base 10) of the Probability of Truth vs. Graph Size (Num-
ber of Nodes) for 𝜑1 with constant 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.1 and different values of
𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 .

Fig. 11. Probability of Truth vs. Graph Size (number of nodes) for 𝜑1 with
constant 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.1 and different values of 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .

Figure 11 shows the impact of 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , and it clearly has a greater
effect on the convergence speed than 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 for 𝜑1.

Figure 12, on the other hand, shows a completely different effect
for 𝜑10. We see no effect whatsoever, especially since the slight
deviations are due to lower averaging being used for this formula.
The effect of both 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 and 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 varies depending on the
specific CTL formula used, but greater values for both parameters
appear to either increase the rate of convergence or not affect it.

5 CONCLUSIONS
To conclude, this research demonstrates that the convergence of the
probability of truth of CTL formulae in random Kripke structures
happens very quickly. Even for CTL formulae with many nested
clauses, the convergence occurs within a few hundred nodes. This

Fig. 12. Probability of Truth vs. Graph Size (number of nodes) for 𝜑10 with
constant 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.1 and different values of 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .

is seen for both single-initial and multiple-initial state models. Fur-
thermore, the convergence happens exponentially with respect to
the number of states (nodes) in the Kripke structure, after an initial
period of non-exponential behavior, the size of which depends on
the CTL formula and generation parameters used, namely the prob-
ability of transitions being added to the graph and the probability
of states being labeled as initial. Finally, the magnitude of the effect
of the generation parameters differs depending on the CTL formula
used, but greater values of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 and 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 generally increase
the rate at which the convergence occurs, or have no effect on it.
Since many of the graphs used to evaluate model checkers are of
sizes far greater than the convergence points found in this research,
when a model checker is given some random model and some CTL
formula, it could exploit the convergence phenomenon by calcu-
lating the fixed value to which the probability of truth of said CTL
formula on said model converges[3], then make a probabilistic guess
on whether the formula holds or not, depending on the calculated
value, instead of actually verifying the formula’s truth (as would
be expected of it in the context of benchmarking a model checker).
This is problematic because model checkers are able to greatly in-
crease their speed without actually being better model checkers.
Moreover, multiple-initial state models give rise to a bigger problem
than single-initial state models due to their following of 0-1 law,
since, in such a case, a CTL formula on a given model would hold
either 100% of the time or 0% of the time if the graph size is beyond
the convergence point for that model and formula combination,
allowing for a trivial verification of the formula. For single-initial
state models (with the probability of some CTL formula holding
converging to a value not equal to 0 or 1), the outcome is not as
trivial, but could still give some insight or the opportunity for a
guess.



Convergence in Model Checking of Random Kripke Structures TScIT 43, July 4, 2025, Enschede, The Netherlands.

6 FUTURE WORK
The convergence phenomenon has great possibility for further re-
search and future work to build upon the findings of this paper and
the findings of Dong et al. Future work may include:

• Repetition of the experiments for a wider range of CTL for-
mulae, as well as LTL formulae.

• Repetition of the experiments with larger graph averaging
for higher resolution results.

• Repetition of the experiments on the effect of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 and
𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 for a variety of different formulae with more fine-
grained ranges of 𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 and 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .

• Research into how the complexity of CTL formulae affects the
convergence point, with formally defined complexity rather
than simply different formula lengths.

• Repetition of the experiments with different random graph
generation strategies (other than the Erdős–Rényi[5] approach
used in this paper and that of Dong et al.).
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