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This study presents a comprehensive evaluation of five post-hoc calibra-
tion methods (Temperature Scaling, Isotonic Regression, Histogram Binning,
Dirichlet Calibration, and a composite Dirichlet-Isotonic method) across a
variety of modern vision architectures (ViT, ResNet, ConvNeXt) and datasets.
Our multi-perspective analysis reveals that a one-size-fits-all approach to
calibration is insufficient. We demonstrate that simple methods like Temper-
ature Scaling are unreliable and can completely fail on certain architectures,
whereas flexible non-parametric and composite methods provide statistically
significant improvements in calibration. The composite Dirichlet-Isotonic
method consistently proves to be the most effective and robust choice, suc-
cessfully correcting complex, architecture-specific error patterns. Further-
more, our work uncovers critical trade-offs, such as the potential to improve
average calibration error (ECE) at the cost of worst-case error (MCE), high-
lighting the need for careful assessment. The primary contribution of this
work is an evidence-based decision framework that guides practitioners in
selecting the optimal calibration method based on their specific model archi-
tecture and application requirements, thus contributing to more trustworthy
and reliable AI systems.
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1 Introduction
Psychologist Fischhoff found in his research that people tend to
be overconfident in difficult tasks (confidence > accuracy), while
they tend to be underconfident in very simple tasks (confidence <
accuracy). This is known as the "hard-easy effect"[21]. Psychologi-
cal research classifies this type of confidence bias as metacognitive
bias, which means that when an individual assesses their confidence
level in their knowledge or performance, they systematically deviate
from the actual level[4]. In Fischhoff’s probability calibration model,
calibration refers to the degree of agreement between a person’s
subjective confidence and their actual accuracy in decision-making
or judgment tasks. Good calibration is critical in high-stakes fields
such as medicine[2][5], law, and finance[1]. Miscalibration of confi-
dence can sometimes have serious consequences, leading to flawed
judgments and poor decision-making.
Recently, a similar phenomenon has been observed in the field

of artificial intelligence. Like humans, DNNs obtain their "confi-
dence" through exposure to vast amounts of information, though
in different forms. Whereas human metacognition is influenced by
years of life experience, social feedback, and cognitive reflection,
the confidence of a neural network is molded through optimiza-
tion during supervised learning. A DNN training process involves
minimizing a loss function (often cross-entropy) for better classi-
fication. Specifically, the network first outputs raw scores (logits)
that are subsequently fed into a softmax function to obtain a prob-
ability distribution over classes. Softmax outputs (values 0-1) are
often interpreted as the model’s confidence[6, 9]. Consequently,
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the model learns not only to predict the correct class, but also to
output a high probability for the predicted label. However, similar to
humans, DNNs are also susceptible to metacognitive biases such as
the hard-easy effect; they can be overconfident, particularly when
dealing with out-of-distribution data or when the input does not
favor any one class. These models can produce predictions with
high confidence scores even when they are incorrect, a problem
known as miscalibration[6, 8].

This issue is particularly obvious in contemporary high-capacity
architectures, such as Vision Transformers (ViTs)[3] and large Con-
volutional Neural Networks (CNNs). As these models are increas-
ingly deployed in high-stakes, safety-critical applications like au-
tonomous driving[10] and medical diagnostics[2], ensuring that
their confidence scores are a faithful representation of their like-
lihood of being correct is paramount. This miscalibration arises
from several factors inherent to modern deep learning, includ-
ing model capacity, the nature of standard training objectives, the
quantity and quality of training data, and specific architectural
choices[6, 12, 15, 24], which we will detail further in Section 2.3.
To address this, researchers have developed a variety of calibra-

tion techniques, which can be broadly categorized into two families:
in-training and post-hoc methods[6, 24]. In-training methods mod-
ify the model’s architecture or training regime, for example by using
alternate loss functions (e.g., focal loss[13]) or confidence-penalizing
regularization[16]. On the other hand, post-hoc methods operate on
the outputs of a pre-trained model without retraining, and thus are
often highly practical in many real-world settings[6, 11]. We focus
our study on post-hoc methods due to their compelling practical
advantages. They are easy to implement, computationally efficient,
and can maintain the original model’s accuracy. Most importantly,
in an era dominated by large-scale, pre-trained base models, post-
hoc techniques offer a valuable and feasible way to improve the
reliability of models, which are resource-intensive to retrain[11].
This study systematically evaluates five different post-hoc cali-

bration methods ranging from simple, well-known methods to more
complex, state-of-the-art methods. We begin with Temperature Scal-
ing, a simple yet surprisingly effective method that serves as a strong
baseline[6]. We then investigate two classic non-parametric meth-
ods, Isotonic Regression[26] and Histogram Binning[25], which
offer greater flexibility to model complex calibration errors[26]. Re-
alizing the limitations of these methods in multiclass settings, we
also include Dirichlet Calibration, a more recent and powerful para-
metric method designed to handle class-wise calibration issues[11].
Finally, inspired by recent work[27], we explored composite meth-
ods, where we apply Dirichlet followed by Isotonic Regression to
leverage the strengths of both methods.

Despite the importance of calibration, there is a significant gap in
the current literature. Although several studies have evaluated cali-
bration, none of them have provided a systematic comparison across
diverse modern vision architectures (e.g., Transformers, CNNs, and
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hybrid models). Furthermore, the evaluations of the methods’ perfor-
mance were not comprehensive enough to capture the full picture
of a method’s performance. In this paper, we aim to fill this gap
by conducting a comprehensive, multi-perspective evaluation of
post-hoc calibration methods. We leverage an evaluation framework
that analyzes performance from four dimensions: calibration quality,
predictive performance, reliability, and robustness. By testing across
a variety of models and datasets, we gain a deeper understanding
of how these methods perform under different settings. Our main
contribution is not only a thorough empirical analysis but also the
development of a systematic decision framework to guide practi-
tioners in selecting the optimal calibration method for their specific
use case.
In this study, our research seeks to answer the following ques-

tions:
1. Howdo different post-hoc calibrationmethods perform across

modern vision architectures like Vision Transformers, ResNets,
and ConvNeXt?

2. What is the trade-off between improvements in calibration
quality and the preservation of predictive performance?

3. Which calibration methods are most robust and generalize
best across a diverse range of datasets and model architec-
tures?

4. Can composite calibration methods systematically outper-
form their individual components?

5. How can we develop a systematic framework to guide the
selection of an optimal post-hoc calibration method?

2 Background and Theoretical Foundations
To systematically evaluate post-hoc calibration methods, it is es-
sential to first establish a clear theoretical foundation. This section
defines the core concepts of model calibration, details the primary
metrics and diagrams used for its measurement, discusses the theo-
retical basis of probabilistic predictions, and explores the sources of
miscalibration in modern neural networks.

2.1 Defining and Measuring Calibration
Imagine a weather forecaster who predicts a “70% chance of rain.”
We intuitively trust this forecast if, over many days with such a
prediction, it actually rains about 70% of the time. This is the essence
of calibration: to ensure the model’s predicted probabilities reflect
the true likelihood of events.
In machine learning, a model predicts a class 𝑌 with a certain

confidence score 𝑃 . We say the model is perfectly calibrated if the
confidence score truly reflects the probability of being correct. Math-
ematically, this simple idea is expressed as:

P(𝑌 = 𝑌 | 𝑃 = 𝑝) = 𝑝, ∀𝑝 ∈ [0, 1]

where 𝑌 is the predicted class, 𝑌 is the true label, and 𝑃 is the confi-
dence score. Crucially, calibration differs from accuracy: while accu-
racy measures prediction correctness (𝑌 = 𝑌 ), calibration assesses
confidence reliability. A highly accurate model assigning uniform
99.9% confidence to all predictions remains poorly calibrated.
In practice, the condition for perfect calibration cannot be veri-

fied for every possible confidence value 𝑝 . Instead, miscalibration is

estimated by partitioning the predictions into 𝑀 confidence bins.
This is commonly visualized using a Reliability Diagram[17] (Figure
1), which plots the average accuracy within each bin against the
average confidence within that same bin[6]. For a perfectly cali-
brated model, these points would lie on the diagonal identity line.
Deviations from this line signify miscalibration.

To quantify this deviation, we use several metrics:
• Expected Calibration Error (ECE): This is the most com-
mon metric. It measures the average gap between confidence
and accuracy across all the bins, weighted by the number of
samples in each. A lower ECE indicates better calibration[6].

ECE =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑛
|acc(𝐵𝑚) − conf(𝐵𝑚) |

where𝑛 is the total number of samples, 𝐵𝑚 is the set of indices
of samples whose prediction confidence falls into the𝑚-th
interval, acc(𝐵𝑚) is the accuracy of bin 𝐵𝑚 , and conf(𝐵𝑚) is
the average confidence in bin 𝐵𝑚 . These are formally defined
as:

acc(𝐵𝑚) =
1
|𝐵𝑚 |

∑︁
𝑖∈𝐵𝑚

1(𝑌𝑖 = 𝑌𝑖 )

conf(𝐵𝑚) =
1
|𝐵𝑚 |

∑︁
𝑖∈𝐵𝑚

𝑃𝑖

While widely used, ECE’s value can be sensitive to the number
of bins𝑀 and the binning strategy (e.g., equal-width vs. equal-
mass)[19].
• Maximum Calibration Error (MCE): For high-stakes ap-
plications, the average error is insufficient; we need to know
the worst-case scenario. MCE identifies the single bin with
the largest confidence-accuracy gap[6]:

MCE = max
𝑚∈{1,...,𝑀 }

|acc(𝐵𝑚) − conf(𝐵𝑚) |

• Adaptive Calibration Error (ACE): A refinement of Ex-
pected Calibration Error (ECE) that uses equal-mass bins
to compute calibration error, improving robustness against
skewed confidence score distributions[19].

ACE =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑛
|acc(𝐵𝑚) − conf(𝐵𝑚) |

• Classwise ECE: Crucial for multiclass problems, this metric
calculates the ECE for each class separately. This is important
because a model might be well-calibrated for common classes
but poorly calibrated for rare ones[11].

Classwise ECE =

𝐶∑︁
𝑐=1

ECE(𝑐)

where 𝐶 is the number of classes, and ECE(𝑐) is the ECE for
class 𝑐 .

2.2 Decomposition of Probabilistic Forecasts
A deeper theoretical understanding of calibration can be gained by
decomposing proper scoring rules, such as the Brier score. The Brier
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(a) Underconfident Model
ResNet50-D on Food-101

(b) Well-Calibrated Model
ViT on Food-101

(c) Overconfident Model
ViT on Tiny-ImageNet

Fig. 1. Representative reliability diagrams illustrating different calibration behaviors across model-dataset combinations. The diagonal dashed line represents
perfect calibration. (a) An underconfident model where predicted confidence is systematically lower than actual accuracy, demonstrating conservative behavior.
(b) A well-calibrated model where confidence closely matches accuracy across all confidence bins, representing the ideal calibration state. (c) An overconfident
model where predicted confidence consistently exceeds actual accuracy, particularly in high-confidence regions where most practical decisions are made.

score measures the mean squared error between predicted probabil-
ities and one-hot encoded true labels. For a set of probabilistic fore-
casts, it can be additively decomposed into three components[17]:

Brier Score = Reliability − Resolution + Uncertainty

• Reliability measures the weighted average of the squared
differences between the mean forecast probability and the
true conditional probability for each bin. It is a direct measure
of miscalibration; a perfectly calibrated model has a reliability
term of zero.
• Resolutionmeasures the ability of themodel to separate sam-
ples into subpopulations with different outcomes. A higher
resolution indicates a more informative model that can confi-
dently distinguish between easy and hard cases.
• Uncertainty reflects the inherent variability of the outcomes
in the dataset and is an irreducible error component that is
independent of the model.

This decomposition exposes a critical calibration-performance trade-
off[17]. Post-hoc methods tend to focus mainly on improving reli-
ability (pushing it towards zero via probability smoothing), at the
cost of potentially degrading resolution—the capacity of the model
to output distinct, discriminative predictions[6]. Sharpness, mea-
sured by the negative entropy of predictive distributions, represents
a related consideration[12]. While we desire clear predictions (low
entropy), these must also be well-calibrated. The optimal calibration
method should maximize reliability gains while preserving as much
resolution and predictive accuracy as possible.

2.3 Sources of Miscalibration in Modern Architectures
Modern vision models achieve impressive results but face new cal-
ibration challenges. While older models like AlexNet often had
well-calibrated confidence scores, today’s powerful models tend to
be overconfident[6]. Four key factors explain this trend:

First, the training process itself contributes. Models trained with
standard cross-entropy loss are incentivized to maximize accuracy.
With millions of parameters, they learn to be highly confident (push-
ing probabilities toward 1.0) since this most quickly reduces training
loss[15]. The system prioritizes being right over being honest about
uncertainty. Although techniques like using focal loss[13] or la-
bel smoothing[18] can help during training, they do not address
already-trained models[13, 18, 22].
Second, specific design choices affect confidence scores. Batch

Normalization—crucial for stable training—unintentionally affects
confidence scores inways that hurt calibration[6]. Newer approaches
like Layer Normalization (used in Transformers) have different but
equally important impacts, showing that every architectural choice
influences calibration[15].
Third, the quality and quantity of training data fundamentally

impact a model’s ability to produce reliable confidence estimates.
When complex models are trained on limited data, they tend to
memorize individual examples instead of learning general patterns,
leading to overconfident predictions for unusual inputs. Techniques
like Mixup/CutMix data augmentation and pretraining on large
datasets before fine-tuning help models generalize better[23]. Class
imbalance introduces additional challenges—models frequently be-
come overconfident in common classes while struggling with rare
ones. Researchers address this issue by adjusting the loss function
to focus more on harder examples during training[13]. Even with
perfectly balanced data, differences between training and real-world
environments can undermine reliability, as models may encounter
data patterns they were not trained on[20].
Finally, a model’s built-in assumptions matter profoundly. Tra-

ditional CNNs start with strong biases about how images work
(focusing on local patterns), while Vision Transformers (ViTs)[3]
instead process images as sequences of patches, without such in-
nate biases. Although this allows ViTs to discover global patterns,
it also enables them to develop unnatural confidence patterns that
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CNNs avoid. This fundamental difference explains why no single
calibration solution works for all architectures—each needs tailored
approaches[15].

3 Post-hoc Calibration Methods
The term “post-hoc” means “after the fact.” Post-hoc methods im-
prove a model’s confidence scores by learning a transformation on
its outputs (logits or probabilities) using a separate calibration set,
thus avoiding the need for costly retraining. This section details the
five methods evaluated in this study, which range from simple para-
metric techniques to more flexible non-parametric and composite
methods.

3.1 Temperature Scaling (TS)
Temperature Scaling is the classic “less is more” approach in calibra-
tion. It is an effective extension of Platt Scaling[26] to the multiclass
setting[6]. It operates on the principle that miscalibration is often
due to systemic over- or under-confidence, which can be corrected
by “softening” or “sharpening” the softmax function. This is done
by adding a single scalar parameter, the temperature 𝑇 > 0, which
divides the logits z before the softmax operation. The calibrated
probability 𝑞𝑖 for class 𝑖 is given by:

𝑞𝑖 =
exp(𝑧𝑖/𝑇 )∑𝐾
𝑗=1 exp(𝑧 𝑗/𝑇 )

The temperature 𝑇 is obtained by minimizing the Negative Log-
Likelihood (NLL) on a held-out calibration set. If𝑇 > 1, the resulting
probability distribution becomes softer (less confident), correcting
for overconfidence. If𝑇 < 1, the distribution becomes sharper (more
confident). Crucially, it does not alter the ranking of the predictions;
the class with the highest probability remains the same. Its simplicity
and low computational overhead make it a strong and widely used
baseline.

3.2 Isotonic Regression (ISO)
However, if the calibration error is not that simple—e.g., the model is
overconfident for some predictions but underconfident for others—
then this is where a more flexible, non-parametric method like
Isotonic Regression comes in. It provides greater flexibility than
Temperature Scaling by not assuming a fixed functional form for the
calibration map[26]. It learns a non-decreasing, piecewise-constant
function that maps the model’s original confidence scores to cali-
brated probabilities. This power comes with a price: it requires more
data and is more prone to overfitting compared to TS. We included it
as a representative of a significant step up in flexibility from simple
parametric models.

3.3 Histogram Binning (HB)
Histogram Binning is another non-parametric classic, perhaps the
most intuitive of all. It divides the confidence space into a set of𝑀
bins and learns a simple correction for each bin[25]. For a prediction
with confidence 𝑝 that falls into bin 𝐵𝑚 , the calibrated confidence 𝑝
is set to the empirical accuracy of all samples within that bin:

𝑝 = acc(𝐵𝑚) =
1
|𝐵𝑚 |

∑︁
𝑖∈𝐵𝑚

1(𝑦𝑖 = 𝑦𝑖 )

The primary design choice in Histogram Binning is the binning
strategy. Equal-width binning divides the [0, 1] interval into bins
of the same size, while equal-mass (or equal-frequency) binning
creates bins with an equal number of samples. Intuitive and eas-
ily interpretable, Histogram Binning’s performance is sensitive to
the number of bins, and it can produce unstable results if bins are
sparsely populated. We selected it as a representative of this funda-
mental “bin-and-correct” philosophy.

3.4 Dirichlet Calibration (Dir)
The global nature of Temperature Scaling becomes a critical weak-
ness in complex multiclass problems where miscalibration patterns
differ across classes. Dirichlet Calibration is a more powerful para-
metric method designed specifically to address this limitation[11].
It learns a class-wise affine transformation in the log-probability
space. Given an uncalibrated probability vector p, the calibrated
logits z′ are computed as:

z′ =W log(p) + b
The final calibrated probabilities are then obtained by applying a

softmax function to z′. The parameters, a weight matrixW (often
constrained to be diagonal) and a bias vector b, are optimized on the
calibration set. This formulation is equivalent to fitting a Dirichlet
distribution to the model’s posterior probabilities and provides a
flexible framework for correcting intricate, class-dependent calibra-
tion errors that simpler methods cannot capture. This method was
selected because it achieves such a balance: significantly more ex-
pressive than TS, yet still parametric, making it more data-efficient
and less prone to overfitting than non-parametric methods like ISO.

3.5 Composite Methods (Dir+Iso)
However, what if the best solution is not one method, but a combi-
nation of them? This is the compelling idea behind composite cali-
bration, in which methods are stacked sequentially. Recent work,
particularly the “Mix-n-Match” paradigm explored by Zhang et
al.[27], has shown that such compositional recipes can create cali-
bration maps that are more expressive and robust than any single
method alone.

Our curiosity drove us to investigate a powerful pairing: Dirichlet
followed by Isotonic Regression (Dir+Iso). The logic here is com-
pelling and speaks directly to a classic bias-variance trade-off.

(1) Stage 1 (The Broad-Stroke Correction): The Dirichlet cal-
ibrator acts as a low-variance, parametric tool. Its job is to
perform the initial, heavy lifting—fixing the large, structural,
class-specific biases that a simple method like TS would miss.

(2) Stage 2 (The Fine-Tuning): After Dirichlet has fixed the
gross errors, the Isotonic Regressor takes over. It acts as a
high-variance, non-parametric “finisher,” mopping up any
subtle, non-monotonic residual errors that remain.

This two-stage process yields a strictly more expressive calibra-
tion map. The composite function, 𝑓comp (𝑝) = 𝑔iso (𝑓DC (𝑝)), can
capture complex error landscapes that are inaccessible to a single
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calibrator[15, 27]. This is especially powerful in low-data regimes;
rather than relying on one powerful but data-hungry method, we
use a simpler tool to get most of the way there, leaving less work
for the more flexible second stage. While stacking methods can
potentially alter the model’s accuracy, the implementation pipeline,
formalized in Algorithm 1, is straightforward and adds negligible
inference cost, making it a highly practical strategy for pushing the
boundaries of calibration performance.

Algorithm 1 Composite Calibration Pipeline

Require: Model 𝑓 , calibration setDcal = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, test setDtest
Ensure: Calibrated predictions 𝑃cal
1: // Extract uncalibrated predictions
2: 𝑃 cal

uncal ← {𝑓 (𝑥𝑖 ) : (𝑥𝑖 , 𝑦𝑖 ) ∈ Dcal}
3: 𝑃 test

uncal ← {𝑓 (𝑥𝑖 ) : (𝑥𝑖 , 𝑦𝑖 ) ∈ Dtest}
4: 𝑌cal ← {𝑦𝑖 : (𝑥𝑖 , 𝑦𝑖 ) ∈ Dcal}
5: // Fit Dirichlet calibrator
6: 𝜃dir ← argmax𝜃

∑
𝑖 log 𝑝dir (𝑦𝑖 |𝑃 cal

uncal [𝑖], 𝜃 )
7: 𝑃 cal

dir ← ApplyDirichlet(𝑃 cal
uncal, 𝜃dir)

8: 𝑃 test
dir ← ApplyDirichlet(𝑃 test

uncal, 𝜃dir)
9: // Fit Isotonic regression on Dirichlet-calibrated probabil-

ities
10: 𝜃 iso ← FitIsotonic(𝑃 cal

dir , 𝑌cal)
11: 𝑃cal ← ApplyIsotonic(𝑃 test

dir , 𝜃iso)
12: return 𝑃cal

4 Experimental Methodology
Our experimental design was created to answer a fundamental
question: how do we fairly and comprehensively compare post-hoc
calibration methods across the diverse landscape of modern vision
models? We developed a systematic framework that moves beyond
single-metric evaluations to capture the nuanced ways these meth-
ods perform under different architectural and data-driven pressures.

4.1 Experimental Setup
To create a robust testbed, our experiments encompass 12 model-
dataset combinations. Ourmodel lineup spans three distinct paradigms
in modern computer vision, chosen to provide a comprehensive ar-
chitectural analysis. We selected ViT-Base[3] as a representative
of Transformer architectures that process images as a sequence
of patches, avoiding the convolutional inductive biases of tradi-
tional CNNs. To represent mature, highly optimized CNNs, we chose
ResNet50-D[7], an improved variant of the classic Residual Network.
Lastly, for modern hybrid designs, we included ConvNeXt-Base[14],
which adapts standard CNNs with principles from Vision Trans-
formers. This selection, with all models initialized with pre-trained
weights from the timm library, allows us to test calibration onmodels
with fundamentally different inductive biases. These architectures
were evaluated on datasets representing a spectrum of difficulty:
CIFAR-10 and CIFAR-100 serve as controlled benchmarks for study-
ing the effect of class count, Tiny-ImageNet increases the complexity,
and Food-101 presents a real-world, fine-grained classification chal-
lenge where visual similarities between classes can confound even
human experts.

Experimental Protocol: Tomimic real-world scenarios, we used
a parameter-efficient fine-tuning strategy; that is, we froze the pre-
trained backbones and only trained the final classification head for
5 epochs. For every experiment, the dataset was strictly split into an
80% fine-tuning set, a 20% calibration set (used solely for fitting the
calibrators), and the original held-out test set for final evaluation.
This strict separation prevents any information leakage and ensures
the integrity of our results[6].

4.2 The Four-Perspective Evaluation Framework
A single metric like ECE is insufficient to capture the full impact of
a calibration method. We therefore developed a multi-perspective
evaluation framework that first analyzes performance using a suite
of foundational metrics and then synthesizes these into a unified
visual tool—the Assessment Matrix—for holistic comparison.

4.2.1 Foundational Analysis Perspectives. Our initial analysis is
built on four pillars, each addressing a critical aspect of perfor-
mance:

(1) Calibration Quality: Measures the alignment between con-
fidence and correctness using Expected Calibration Error
(ECE), Maximum Calibration Error (MCE), Adaptive Calibra-
tion Error (ACE)[19], and Classwise ECE[11].

(2) Predictive Performance:Quantifies the impact on themodel’s
core predictive power by tracking Top-1 and Top-5 accuracy,
as well as proper scoring rules like Negative Log-Likelihood
(NLL) and the Brier Score[17].

(3) Reliability: Decomposes the Brier score into its Reliability,
Resolution, and Uncertainty components[17], and measures
prediction consistency to understand the nature of the cali-
bration improvement.

(4) Robustness: Assesses generalization by measuring perfor-
mance consistency across different datasets and architectures,
validated with statistical significance testing (paired t-tests).

4.2.2 The Assessment Matrix: A Unified View for Comparison. To
synthesize the dozens of metrics from our foundational analysis
into a clear and comparable format, we developed the Assessment
Matrix, visualized as a radar chart. This matrix distills performance
into four intuitive axes, providing a holistic profile of each method’s
strengths and weaknesses.

The four axes of the Assessment Matrix are:
• Calibration Accuracy: Derived from ECE, this axis directly
measures how well confidence scores match empirical accu-
racy. A higher score indicates lower calibration error.
• Predictive Performance: Based on the model’s raw Top-1
accuracy, this axis confirms that the method does not degrade
the model’s ability to make correct predictions.
• Accuracy Preservation: This measures the ratio of the cal-
ibrated accuracy to the baseline (uncalibrated) accuracy. A
high score signifies that the method improves calibration
without harming the original model’s performance.
• Training Stability:Derived from the consistencymetric, this
axis reflects the method’s stability across different confidence
regimes, with higher scores indicating more reliable and less
erratic behavior.
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Each axis is normalized to a 0–10 scale, where 10 is the ideal
score. The resulting radar chart provides an instant visual summary:
a method with a larger and more balanced area is superior and
more well-rounded. This Assessment Matrix is the primary visual
instrument used in our Results section to compare methods across
different architectures and datasets.

5 Results and Analysis
Our comprehensive evaluation across three model architectures and
four datasets produced a rich set of results that offer a nuanced view
of post-hoc calibration. In this section, we present our findings, first
comparing the methods at a high level, then examining how per-
formance is influenced by model architecture and dataset difficulty,
and finally validating our core claims statistically.

5.1 Overall Performance Comparison
To begin, we evaluate the overall performance of each calibration
method averaged over all experimental configurations. Figure 2
offers a high-level summary. While all methods offer some improve-
ment over the uncalibrated baseline, two methods quickly stand
out: both Isotonic Regression (iso) and the composite dir_iso
methods achieve the lowest average Expected Calibration Error
(ECE). Importantly, the Predictive Performance panel confirms a
crucial point: no method significantly harms the model’s accuracy.

Fig. 2. A high-level dashboard summarizing the average performance of
each calibration method across all experiments. Error bars show standard
deviation. Lower is better for ECE; higher is better for Accuracy and Consis-
tency.

Quantifying these visual trends, Table 1 reveals that dir_iso
and iso are the top performers in reducing ECE. Not only do they
succeed, but they achieve the greatest success on average. An intrigu-
ing nuance in the table is that some methods such as TS perfectly
preserve the original model’s accuracy. This is by design, as Tem-
perature Scaling applies a monotonic transformation that cannot

change the model’s top prediction. In contrast, more flexible meth-
ods such as ISO exhibit a slight, likely insignificant, decrease in
accuracy. This is a known trade-off: their ability to correct more
complex calibration errors comes with a slight risk of overfitting to
the calibration set, resulting in these minor performance variations.
This is a minimal price to pay for the substantial improvement in
calibration quality.

Table 1. Mean performance metrics across all model and dataset configura-
tions. Lower ECE is better; higher Accuracy is better.

Method Mean ECE (↓) ECE Std. Dev. Mean Accuracy (↑)
Uncalibrated 0.076 0.080 0.780
TS 0.076 0.080 0.780
ISO 0.026 0.020 0.779
HIST 0.049 0.027 0.772
DIR 0.076 0.080 0.780
DIR_ISO 0.026 0.020 0.779

Naturally, performance is not solely determined by a single metric.
The trade-off between obtaining the correct answer (accuracy) and
understanding how confident one should be (calibration) is inherent.
Figure 3 illustrates this balance. The ideal method would reside in
the top-left corner. We observe that dir_iso and iso consistently
define the optimal frontier, offering the best possible ECE for any
given level of accuracy.

Fig. 3. Calibration quality (ECE) vs. predictive performance (Accuracy).
The ideal region is the top-left. Non-parametric and composite methods
consistently define the optimal performance trade-off.

5.2 Architecture-Specific Findings
Does the choice of model architecture matter? Our results show it
matters profoundly. To provide a holistic view, we use an Assessment
Matrix—a radar chart that profiles each method across four axes. A
larger, more balanced shape signifies superior, well-rounded per-
formance. The results for ResNet50-D in Figure 4 tell a particularly
compelling story.
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Fig. 4. Assessment matrix for the ResNet50-D architecture. A larger area
signifies better overall performance. The dramatic expansion along the
“Calibration Accuracy” axis by ISO and DIR_ISO is evident. Full results for
all architectures are in Appendix B.

Vision Transformers (ViT) present a nuanced case. While they
can be surprisingly well-calibrated (in terms of overall ECE) out-of-
the-box, with no improvement possible from simple methods such
as Temperature Scaling due to the low baseline error[15], this good
overall score conceals problems underneath. Our main finding is
that flexible non-parametric and composite methods (iso, dir_iso),
while only slightly changing the top-1 ECE, provide the best class-
wise calibration. They rebalance the calibration across all classes,
correcting subtle but important imbalances that simpler methods
miss.
ResNet50-D represents a typical example of severe miscalibra-

tion in our study. As seen in Figure 4, its baseline calibration is
extremely poor. The key finding here is that parametric methods
completely fail: Temperature Scaling and Dirichlet Calibration of-
fer no improvement whatsoever, with their radar plots perfectly
overlapping the uncalibrated model’s. For this architecture, flexible,
non-parametric methods are not merely better—they are essential.
They improve calibration accuracy substantially and also yield a
better Brier score, indicating a more accurate probabilistic forecast
overall.
ConvNeXt, as a hybrid design, shares traits with both architec-

tures. Similar to ResNet, it is often poorly calibrated, and simple
methods are insufficient to address this issue. Nevertheless, it high-
lights a crucial trade-off. While iso and dir_iso provide the best
ECE reduction, this comes at the cost of a significantly higher Maxi-
mum Calibration Error (MCE). This means that they improve the
average calibration at the expense of worsening the singleworst-case
error, a critical consideration for high-stakes applications.
Across all three distinct architectural paradigms, the compos-

ite dir_iso method consistently delivers top-tier performance. Its
radar shape remains large and well-rounded regardless of the model,
establishing it as the most robust and reliable choice.

5.3 Dataset Complexity Impact
The nature of the classification task also plays a crucial role. On sim-
pler datasets like CIFAR-10, the performance gap between methods
is less pronounced, as most methods can perform reasonably well.
However, as we consider more complex tasks—either in terms

of a larger number of classes (CIFAR-100, Tiny-ImageNet) or more
challenging fine-grained categories (Food-101)—the limitations of
simpler methods and the robustness of advanced ones become ap-
parent. The baseline miscalibration of the models tends to worsen
on these more difficult tasks. The “ECE vs Dataset Complexity” plot

(Figure 5) from our analysis reveals that iso and dir_iso consis-
tently achieve the lowest ECE regardless of the dataset’s difficulty.
This pattern is most evident on Food-101. The visual similarity

of its 101 fine-grained classes creates challenging, class-specific
error patterns. This is precisely the scenario where a composite
method like dir_iso excels. Its Dirichlet component first performs
a class-aware correction to address these specific biases, followed
by the Isotonic Regression stage providing a final non-parametric
refinement. This demonstrates that for complex, real-world tasks, a
multi-stage approach represents a highly effective strategy.

5.4 Trade-offs and Statistical Significance
Our analysis reveals a critical trade-off between a method’s complex-
ity and its effectiveness. Simple methods like TS are computationally
trivial but may prove ineffective. Complex methods like Dir+Iso
require more computation but are far more reliable.

Ultimately, are the observed improvements statistically meaning-
ful? To answer this, we performed paired t-tests comparing each
method’s ECE to the uncalibrated baseline[19]. Table 2 provides the
definitive answer.

Table 2. Statistical Significance Analysis: Paired t-tests vs Uncalibrated
Baseline

Method t-stat p-value Effect Size Improvement Sig.

TS 1.109 0.291 0.320 5.02e-07 No
ISO 2.255 0.045 0.651 0.0505 Yes*
HIST 1.312 0.216 0.379 0.0274 No
DIR 0.910 0.382 0.263 4.15e-05 No
DIR_ISO 2.259 0.045 0.652 0.0504 Yes*

Notes: * significant at 𝛼 = 0.05; n=12 for all tests; Improvement = mean ECE reduction vs
uncalibrated baseline

The results are striking. Only iso and dir_iso demonstrate im-
provements that are statistically significant (𝑝 < 0.05). Further-
more, their effect sizes (Cohen’s 𝑑 > 0.65) are medium-to-large,
confirming that the improvements are not merely statistically de-
tectable but also practically meaningful. The numerical gains from
other methods do not meet this standard of evidence. This valida-
tion reinforces our primary conclusion: for effective, robust, and
significant calibration improvements, flexible non-parametric and
composite methods are the superior choice.

6 Decision Framework
Based on our comprehensive evaluation, we propose a systematic
decision framework to guide practitioners in selecting an optimal
post-hoc calibration method. The choice should be driven by a
clear understanding of the primary objective and the specific model
architecture in use.
Step 1: Identify Your Top Priority The first step is to decide

which requirement is most important for your application.
• For Best Calibration Quality: If the top priority is to ob-
tain the best possible average calibration error (ECE), then
the evidence strongly favors the composite Dirichlet-Isotonic
(Dir+Iso) method, closely followed by Isotonic Regression
(ISO). Our statistical analysis confirms that only these two
methods provide a significant improvement over the baseline.
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• For Strict Accuracy Preservation: If it is essential that
the top prediction of the model never changes, then Tem-
perature Scaling (TS) is the only option. It is mathematically
guaranteed to preserve accuracy, though its ability to correct
calibration error is limited.
• For Maximum Computational Efficiency: In resource-
constrained settings (e.g., real-time inference or edge devices),
Temperature Scaling (TS) is the best choice due to its minimal
computational cost.

Step 2: Consider Your Model Architecture Different architec-
tures have different miscalibration patterns, making architecture-
specific selection crucial.
• For ResNet50-D (and Similar Classic CNNs): This archi-
tecture can suffer from severe miscalibration that is non-
monotonic. Our results indicate that simple parametric meth-
ods such as TS and DIR can completely fail. For these models,
the non-parametric flexibility of Isotonic Regression (ISO) is
not only beneficial but essential.
• For Vision Transformers (ViT): ViTs can appear to be
well-calibrated in terms of overall ECE while having poor
class-wise calibration. To address this, a class-awaremethod is
needed. We suggest Dirichlet-based methods (Dir or Dir+Iso)
to rebalance calibration across classes.
• For ConvNeXt (and Other Modern Hybrids): These mod-
els highlight a key trade-off. While Dir+Iso or ISO provide
the best average calibration (ECE) performance, this can lead
to worse worst-case error (MCE). We advise practitioners to
use these methods but to verify the MCE on a validation set
if controlling worst-case deviation is a concern.

This architectural dependence, likely rooted in the different induc-
tive biases of model families[15], underscores that a one-size-fits-all
approach to calibration is insufficient. By following this two-step
framework, practitioners can make more informed and evidence-
based choices.

7 Discussion
Our systematic evaluation reveals several key insights that advance
our understanding of post-hoc calibration. The overarching conclu-
sion is that there is no universal “best” method; optimal calibration is
highly context-dependent, and our work provides an evidence-based
map for navigating this context.

First, we find that architecture is a key driver of miscalibration pat-
terns. We provide clear, empirical confirmation that modern training
procedures give rise to complex, non-monotonic errors that cannot
be corrected by simple parametric methods[6], in that Temperature
Scaling and Dirichlet Calibration entirely fail on ResNet50-D. On the
other hand, we discover that Vision Transformers present a more
subtle challenge—although they can have low overall ECE, this tends
to conceal poor class-wise calibration. This implies that the source
of error in ViTs may be different, perhaps related to the global na-
ture of self-attention, and requires class-aware corrections like those
provided by Dirichlet-based methods, in agreement with the “Mix-n-
Match” philosophy of matching calibrators to architectures[15, 27].
Second, the composite methods demonstrate a clear and robust

advantage. The consistent and statistically significant success of the

Dir+Isomethod is a powerful result. It leverages a compelling bias-
variance trade-off: the parametric Dirichlet calibrator first corrects
structural, class-specific biases with low variance, while the more
flexible, high-variance Isotonic Regressor performs a final “fine-
tuning” of the residual errors. This sequential strategy is strictly
more expressive and proved to be the most robust approach across
our diverse experiments.
Third, our work highlights a critical trade-off between average

and worst-case calibration error. The case of ConvNeXt is telling—
while ISO and dir_iso yielded the best average ECE, they also
resulted in a higher Maximum Calibration Error (MCE). This is a
crucial finding for practitioners in high-stakes domains, as it shows
that optimizing for a singlemetric can have unintended negative con-
sequences. It empirically supports the arguments of Nixon et al.[19]
that ECE alone is insufficient and that a multi-metric perspective is
essential for a holistic understanding of calibration performance.
Limitations: We have studied vision tasks with a fixed set of

architectures and datasets. While the general principles uncovered—
such as the benefits of matching the calibrator flexibility to the
complexity of error—are likely widely applicable, our direct rec-
ommendations should be validated before being applied to other
domains such as natural language processing. Furthermore, while
we use a suite of metrics, the field of calibration is constantly evolv-
ing, and future work could incorporate evenmore recent metrics[24]
to characterize other facets of reliability.

8 Conclusion
This study presents a thorough, multifaceted assessment of post-hoc
calibration methods, resulting in an actionable decision framework
for practitioners. Our findings first show that simple calibration
techniques like Temperature Scaling are unreliable for current archi-
tectures and may fail completely. Consequently, we find that only
flexible non-parametric (ISO) and composite (Dir+Iso) methods
deliver statistically significant improvements. Building on this, we
identify the two-stage Dir+Iso method as the most robust choice
overall, consistently reducing calibration error across the widest
range of models and datasets. Nevertheless, our study also reveals
that there is no perfect solution, uncovering crucial trade-offs such
as improving average error (ECE) at the cost of worst-case error
(MCE). This ultimately confirms that a one-size-fits-all solution is
inadequate and that practitioners must select methods based on the
specific requirements of their application.
The journey toward truly reliable AI requires not just accurate

predictions but also honest uncertainty quantification[20]. By pro-
viding a rigorous decision framework and clear evidence of what
works where, this research offers both practical tools and theoretical
insights for building more trustworthy machine learning systems.
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A Four-Perspective Evaluation Results
This appendix presents the detailed results from our comprehensive
four-perspective evaluation framework, including both visualiza-
tions and quantitative summaries for each analysis dimension.

A.1 CalibrationQuality Analysis

Table 3. CalibrationQuality Analysis Results

Model Method ECE MCE ACE Class-wise ECE

convnext DIR 0.0359 0.2009 0.0374 0.0880
convnext DIR_ISO 0.0135 0.3188 0.0163 0.0636
convnext HIST 0.0359 0.1955 0.0416 0.0782
convnext ISO 0.0138 0.3190 0.0160 0.0636
convnext TS 0.0359 0.2020 0.0374 0.0880
convnext UNCALIBRATED 0.0359 0.2020 0.0374 0.0880
resnet50d DIR 0.1739 0.2553 0.1740 0.2478
resnet50d DIR_ISO 0.0324 0.0993 0.0465 0.1696
resnet50d HIST 0.0613 0.2077 0.0733 0.1994
resnet50d ISO 0.0318 0.1341 0.0458 0.1697
resnet50d TS 0.1739 0.2549 0.1740 0.2477
resnet50d UNCALIBRATED 0.1739 0.2549 0.1740 0.2477
vit DIR 0.0192 0.0993 0.0227 0.0826
vit DIR_ISO 0.0320 0.1436 0.0350 0.0681
vit HIST 0.0498 0.2056 0.0597 0.0874
vit ISO 0.0320 0.1437 0.0350 0.0681
vit TS 0.0193 0.0996 0.0226 0.0826
vit UNCALIBRATED 0.0193 0.0996 0.0226 0.0826

Note: ECE: Expected Calibration Error; MCE: Maximum Calibration Error; ACE:
Adaptive Calibration Error; Lower values indicate better calibration.

A.1.1 Key Findings.

• Overall Effectiveness:On average, Isotonic Regression (iso)
and the composite Dirichlet-Isotonic (dir_iso) method are
the most effective at reducing calibration error. The ECE Dis-
tribution boxplot shows they have the lowest median ECE
and the most consistent performance (smallest interquartile
range) across all experiments.
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Fig. 5. Calibration quality analysis across all model-dataset combinations. Lower ECE, MCE, and ACE values indicate better calibration performance.

• Architecture-Specific Performance: The ECE heatmap
and Table 3 reveal that performance is highly dependent on
the model architecture:
– For resnet50d, which exhibits severe baseline miscalibra-
tion (ECE=0.1739), iso and dir_iso dramatically reduce
the error to ~0.032. Simpler methods like Temperature Scal-
ing (ts) and Dirichlet (dir) show no improvement.

– For convnext, iso and dir_iso also provide the best ECE
reduction. However, this comes at the cost of a significantly
higher Maximum Calibration Error (MCE) compared to
the uncalibrated model, highlighting a potential trade-off
between improving average error and controlling for worst-
case error.

– For vit, which is already well-calibrated (ECE=0.0193),
iso and dir_iso slightly increase the ECE. However, they
provide the best Class-wise ECE, suggesting they improve
calibration balance across classes, even if the top-1 predic-
tion calibration worsens slightly.

• Performance Across Metrics: The "Multiple Calibration
Metrics Comparison" chart shows that the superiority of iso
and dir_iso holds for ECE, ACE, and Class-wise ECE. How-
ever, their MCE performance is not consistently the best,
reinforcing the trade-off observed with the convnext model.
• Impact of Dataset Complexity: The "ECE vs Dataset Com-
plexity" line plot indicates that iso and dir_iso consistently
achieve the lowest ECE regardless of the dataset’s complexity,
making them robust choices for a variety of tasks.
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A.2 Predictive Performance Analysis

Table 4. Predictive Performance Analysis Results

Model Method Accuracy Top-5 Acc. NLL Brier Score

convnext DIR 0.8869 0.9788 0.4134 0.1639
convnext DIR_ISO 0.8857 0.9745 0.6566 0.1623
convnext HIST 0.8799 0.9495 0.9384 0.1757
convnext ISO 0.8857 0.9746 0.6567 0.1624
convnext TS 0.8869 0.9788 0.4134 0.1639
convnext UNCALIBRATED 0.8869 0.9788 0.4134 0.1639
resnet50d DIR 0.6140 0.8584 1.6338 0.5542
resnet50d DIR_ISO 0.6117 0.8561 1.6792 0.5087
resnet50d HIST 0.6034 0.7873 1.8748 0.5287
resnet50d ISO 0.6121 0.8562 1.6791 0.5087
resnet50d TS 0.6140 0.8585 1.6338 0.5542
resnet50d UNCALIBRATED 0.6140 0.8585 1.6338 0.5542
vit DIR 0.8384 0.9571 0.5934 0.2251
vit DIR_ISO 0.8391 0.9517 1.0449 0.2283
vit HIST 0.8340 0.9179 1.2251 0.2440
vit ISO 0.8391 0.9517 1.0450 0.2283
vit TS 0.8384 0.9571 0.5934 0.2251
vit UNCALIBRATED 0.8384 0.9571 0.5934 0.2251

Note: NLL: Negative Log-Likelihood; Higher accuracy and lower NLL/Brier scores are
better.

A.2.1 Key Findings.

• Accuracy is Preserved:The "Accuracy byDataset andMethod"
bar chart and Table 4 clearly show that all calibrationmethods
have a negligible impact on Top-1 accuracy. Methods like ts
and dir are guaranteed to preserve accuracy, while the minor
fluctuations from iso, dir_iso, and hist are not statistically
significant. This confirms that post-hoc calibration is a safe
procedure that does not harm the model’s core classification
capability.
• Improved Probabilistic Predictions: While accuracy is
maintained, the quality of the full probability distribution
is improved by calibration. The "Brier Score by Model and
Method" plot shows that for poorly calibrated models like
resnet50d, iso and dir_iso achieve a substantially lower
(better) Brier score. This indicates a more accurate probabilis-
tic forecast, even when the top prediction remains the same.
The "Accuracy vs Log-Likelihood Trade-off" plot further sup-
ports this, showing that iso and dir_iso tend to achieve a
better (lower) NLL for a given accuracy level.
• Effective Confidence Modulation: The "Confidence Anal-
ysis by Method" chart reveals how effective calibrators work.
Compared to the uncalibrated model, all methods increase
the average confidence on correct predictions while simulta-
neously decreasing the average confidence on incorrect pre-
dictions. This desirable behavior is most pronounced for iso
and dir_iso, which create the largest separation between
the confidence of correct and incorrect answers, making the
model’s outputs more trustworthy.

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Fig. 6. Predictive performance analysis showing accuracy preservation and proper scoring rule metrics across calibration methods.

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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A.3 Reliability Analysis

Table 5. Reliability Analysis Results

Model Method Reliability Resolution Consistency Sharpness

convnext DIR 0.0032 0.0342 0.9987 4.2043
convnext DIR_ISO 0.0004 0.0353 0.9999 4.2040
convnext HIST 0.0024 0.0358 0.9979 4.2033
convnext ISO 0.0004 0.0353 0.9999 4.2040
convnext TS 0.0032 0.0341 0.9987 4.2043
convnext UNCALIBRATED 0.0032 0.0341 0.9987 4.2043
resnet50d DIR 0.0392 0.0637 0.9970 4.2012
resnet50d DIR_ISO 0.0024 0.0712 0.9993 4.2018
resnet50d HIST 0.0083 0.0704 0.9950 4.1999
resnet50d ISO 0.0024 0.0709 0.9993 4.2018
resnet50d TS 0.0392 0.0637 0.9970 4.2012
resnet50d UNCALIBRATED 0.0392 0.0637 0.9970 4.2012
vit DIR 0.0009 0.0482 0.9997 4.2021
vit DIR_ISO 0.0027 0.0469 0.9988 4.2036
vit HIST 0.0062 0.0460 0.9961 4.2028
vit ISO 0.0027 0.0469 0.9988 4.2036
vit TS 0.0009 0.0483 0.9997 4.2021
vit UNCALIBRATED 0.0009 0.0483 0.9997 4.2021

Note: Lower reliability, higher resolution, consistency, and sharpness are generally
better.

A.3.1 Key Findings.

• Favorable Reliability-Resolution Trade-off: The "Reliabil-
ity vs Resolution" plot shows that iso and dir_iso provide
the best trade-off. They significantly reduce the reliability er-
ror (the primary goal of calibration) while largely preserving,
or in the case of resnet50d, even improving model resolu-
tion. This means the model becomes more reliable without
losing its ability to issue confident predictions for distinct
subpopulations.
• Meaningful Confidence Ordering is Preserved: The "Ac-
curacy by Confidence Quartiles" chart is critical. It confirms
that for all calibration methods, the accuracy of predictions
correctly increases with the confidence level (from Q1 to Q4).
This monotonic behavior is essential, as it validates that the
calibrated confidence scores remain a trustworthy indicator
of correctness.
• Reliability is Improved Without Sacrificing Sharpness:
The "Sharpness vs Reliability" plot and Table 5 show that
methods achieve lower reliability error without a significant
drop in sharpness. In particular, iso and dir_iso reach the
lowest reliability error while maintaining sharpness compa-
rable to the uncalibrated model. This indicates they are not
simply making all predictions uncertain, but are performing
targeted corrections.
• High Consistency Across All Methods:All tested methods
achieve a near-perfect consistency score of almost 1.0. This
indicates that the learned calibration maps are stable and
well-behaved across the entire confidence spectrum, which
is a fundamental requirement for a reliable calibrator.

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Fig. 7. Reliability analysis showing Brier score decomposition into reliability, resolution, and uncertainty components.

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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A.4 Robustness Analysis

Table 6. Cross-Architecture Robustness Analysis Results

Method Arch. Consistency ECE Variance ViT ECE ResNet ECE ConvNeXt ECE

UNCALIBRATED 0.9352 0.004806 0.0193 0.1739 0.0359
TS 0.9352 0.004806 0.0193 0.1739 0.0359
ISO 0.9915 0.000073 0.0320 0.0318 0.0138
HIST 0.9897 0.000108 0.0498 0.0613 0.0359
DIR 0.9352 0.004809 0.0192 0.1739 0.0359
DIR_ISO 0.9912 0.000078 0.0320 0.0324 0.0135

Note: Higher architecture consistency and lower ECE variance indicate better
robustness.

A.4.1 Key Findings.

• ISO and DIR_ISO Demonstrate Superior Robustness:
The "Architecture Consistency" chart and "ECE Variance"
column in Table 6 show that iso and dir_iso are by far
the most robust methods. They have the highest consistency
scores (~0.99) and the lowest variance, indicating their perfor-
mance is stable and predictable across different architectural
paradigms.
• Simpler Methods Lack Robustness: In contrast, ts and
dir are shown to be brittle. The "ECE by Model Architec-
ture and Method" chart vividly illustrates this: they perform
well on ViT but completely fail to improve the calibration of
ResNet50D, resulting in a very high ECE for that model. This
architectural dependence makes them unreliable choices in a
general setting.
• Robustness Comes from Consistent Error Reduction:
The reason iso and dir_iso are robust is because they suc-
cessfully reduce ECE to a consistently low level for all tested
architectures. The non-robust methods are inconsistent be-
cause their effectiveness varies dramatically from one model
to another. Therefore, for a practitioner seeking a reliable
"one-size-fits-all" solution, the more flexible non-parametric
and composite methods are the most trustworthy choices.

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Fig. 8. Robustness analysis showing method stability across different architectures and datasets.

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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B Comprehensive Assessment Matrix
This section presents the comprehensive assessment matrix visu-
alization that provides a holistic view of all calibration methods
across different model architectures and datasets. Each radar chart
represents the four-dimensional performance profile of calibration
methods for a specific model-dataset combination.

The radar charts enable direct visual comparison across:
• Architectures: ConvNeXt, ResNet50-D, Vision Transformer
• Datasets: CIFAR-10, CIFAR-100, Food-101, Tiny-ImageNet
• Methods: DIR, DIR_ISO, HIST, ISO, TS, UNCALIBRATED

This visualization demonstrates architecture and dataset depen-
dencies in calibration effectiveness.

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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Fig. 9. Comprehensive assessment matrix showing radar charts for all model-dataset combinations. Each chart displays four-perspective evaluation results for
different calibration methods.

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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